WorldWideScience

Sample records for hyperfine line emission

  1. Measurement of hyperfine structure in the $\\rm D_1$ line of $^{87}$Rb

    CERN Document Server

    Datar, Durgesh; Ananthamurthy, Sharath; Natarajan, Vasant

    2016-01-01

    This work reports a new measurement of the hyperfine structure constant of the $\\rm D_1 $ line in $ \\rm ^{87}Rb $ through precision laser spectroscopy. In a departure from methods that rely on locking the laser on the transitions of interest, the technique reported here relies on scanning around the transition. This is carried out so as to overcome potential frequency shifts caused by various noise sources including electronic noise and thermal fluctuations. The value of the hyperfine constant reported here is $ A = 408.29(25) $ MHz, which is in variance from an earlier value reported from our lab but is consistent with other recent measurements.

  2. Experimental investigation of the hyperfine structure of praseodymium-I lines using laser spectroscopy

    Science.gov (United States)

    Khan, Shamim; Gamper, Bettina; Iqbal, S. Tanweer; Windholz, Laurentius

    2011-05-01

    The electronic ground state configuration of praseodymium 59Pr141 is [Xe] 4f3 6s2 , with ground state level 4I9 / 2 . Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines on the basis of their hyperfine (hf) structure. In a hollow cathode discharge lamp, praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The laser induced fluorescence (LIF) signal is then recorded using lock-in detection techniques. From the recorded hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of the involved new levels. Up to now we have discovered a large number of previously unknown energy levels with various angular momentum values. We present here the characteristic data (energy, parity, angular momentum J and magnetic hyperfine constant A) of ca. 40, until now unknown energy levels.

  3. Magnetic field dependent intensity variation in the hyperfine split Rb D1 and D2 lines

    Science.gov (United States)

    Hu, Jianping; Ummal Momeen, M.

    2017-11-01

    We present the variation of intensity in Doppler-free hyperfine lines for rubidium atoms with the application of magnetic field. Different polarization configurations have been studied systematically with varying magnetic fields. There is a significant increase in the intensity variation with applied magnetic field related to different polarization configurations. These variations are explained with the theoretical calculations. The calculations are performed by adopting Nakayama's four level model with the varying magnetic field induced transition probability.

  4. Database of emission lines

    Science.gov (United States)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  5. Experimental investigation of the hyperfine spectra of Pr I - lines: discovery of new fine structure levels with low angular momentum

    Science.gov (United States)

    Shamim, K.; Siddiqui, I.; Windholz, L.

    2011-10-01

    We present 39 odd and 15 even parity newly discovered fine structure levels of Pr I with low angular momentum: J = 1/2, 3/2 and 5/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. With the help of these levels, 119 spectral lines were classified directly by laser excitation and 127 lines were classified as fluorescence lines.

  6. Frequency tripled 1542 nm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range

    CERN Document Server

    Philippe, Charles; Holleville, David; Lours, Michel; Minh-Pham, Tuam; Hrabina, Jan; Burck, Frederic Du; Wolf, Peter; Acef, Ouali

    2016-01-01

    We report on telecom laser frequency stabilization to narrow iodine hyperfine line in the green range of the optical domain, after a frequency tripling process using two nonlinear PPLN crystals. We have generated up to 300 mW optical power in the green (P3w), from 800 mW of infrared power (Pw). This result corresponds to an optical conversion efficiency eta= P3w/Pw ~ 36 %. To our knowledge, this is the best value ever demonstrated for a CW frequency tripling process. We have used a narrow linewidth iodine hyperfine line (component a1 of the 127I2 R 35 (44-0) line) to stabilize the IR laser yielding to frequency stability of 4.8x10-14 t-1/2 with a minimum of 6x10-15 reached after 50 s of integration time. The whole optical setup is very compact and mostly optically fibered. This approach opens the way for efficient and elegant architecture development for space applications as one of several potential uses.

  7. Emission-Line Region Variability

    Science.gov (United States)

    Peterson, Bradley M.

    We propose to obtain simultaneous optical and ultraviolet observations of the rapidly varying active galaxies Akn 120 and 3C 120. Both these sources are distinguished by short-time scale variations in their continuum and broadline fluxes, and we intend to exploit this property to determine fundamental characteristics of the emission-line gas. Akn 120 has been studied extensively by the Ohio State group, and is one of the few active galaxies for which a reliable upper limit for the separation between the continuum source and the emission-line clouds has been established from reverberation measurements. The important goals of the proposed project are (1) to provide a suitable database of optical and ultraviolet broad-line flux measurements obtained during different continuum states and (2) to compare the temporal behavior of optical and ultraviolet emission lines. In particular, we wish to determine whether or not C III] A1909 varies on the same time scale as the Balmer lines and how much of the flux in this feature can actually be ascribed to broad-line emission from C^+2. These data will enable us to make a differential comparison with predictions of photoionization models, since the emission-line spectrum will change in response to the variable ionizing continuum flux. Such a differential comparison between observation and theory should be more reliable than attempts to match absolute intensities because errors in the atomic data base should tend to cancel out.

  8. Hyperfine structure investigations of Pr-I lines in the region 4200-4450 A

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Imran; Khan, Shamim; Tanweer Iqbal, Syed; Windholz, Laurentius [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A 8010 Graz (Austria)

    2012-07-01

    Praseodymium I spectral lines were investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The investigations led to the discovery of new Pr I energy levels of even and odd parity. A high resolution Fourier transform (FT) spectrum was used to extract promising excitation wavelengths. In the FT spectrum the investigated line 4375.53 A shows up as a narrow peak hfs with a weak SNR. Nevertheless, the line was excited and fluorescence signals were observed on 6 lines (4163 A, 4816 A, 5091 A, 5164 A, 5209 A, 5233 A). The hfs of the line was recorded by scanning the laser frequency and was fitted to obtain angular momentum J and hf constant A of the combining levels. We got J{sub up}=5/2, A{sub up}=1028.30 MHz, J{sub lo}=7/2 and A{sub lo}=861.46 MHz (the subscripts refer to upper and lower level). Assuming an unknown upper level, a known lower level was searched among the known levels having sufficient values of J and A. The level 7617.440 cm{sup -1}, even parity, J{sub lo}=7/2 and A{sub lo}=868 MHz fulfils these requirements. Using the center of gravity wave number of the line 4375.53 A and the energy of the lower level, the unknown upper level was calculated to have 30465.424 cm{sup -1}, odd parity, J{sub up}=5/2 and A{sub up}=1033(6) MHz.

  9. Decoupling of hyperfine structure of Cs $D_1$ line in strong magnetic field studied by selective reflection from a nanocell

    CERN Document Server

    Sargsyan, Armen; Hakhumyan, Grant; Tonoyan, Ara; Papoyan, Aram; Leroy, Claude; Sarkisyan, David

    2016-01-01

    Decoupling of total electronic and nuclear spin moments of Cs atoms in external magnetic field for the case of atomic $D_1$ line, leading to onset of the hyperfine Paschen-Back regime has been studied theoretically and experimentally. Selective reflection of laser radiation from an interface of dielectric window and atomic vapor confined in a nanocell with 300 nm gap thickness was implemented for the experimental studies. The real time derivative of selective reflection signal with a frequency position coinciding with atomic transitions was used in measurements, providing $\\sim$ 40 MHz spectral resolution and linearity of signal response in respect to transition probability. Behavior of 28 individual Zeeman transitions in a wide range of longitudinal magnetic field (0 - 6 kG) has been tracked under excitation of Cs vapor by a low-intensity $\\sigma^+$- polarized cw laser radiation. For $B\\ge 6~$kG, only 8 transitions with nearly equal probabilities and the same frequency slope remained in the spectrum, which i...

  10. The Astrophysics of Emission-Line Stars

    CERN Document Server

    Kogure, Tomokazu

    2007-01-01

    Many types of stars show conspicuous emission lines in their optical spectra. These stars are broadly referred to as emission line stars. Emission line stars are attractive to many people because of their spectacular phenomena and their variability. The Astrophysics of Emission Line Stars offers general information on emission line stars, starting from a brief introduction to stellar astrophysics, and then moving toward a broad overview of emission line stars including early and late type stars as well as pre-main sequence stars. Detailed references have been prepared along with an index for further reading.

  11. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    Science.gov (United States)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  12. The Emission Line Objects At 0PEARS

    Science.gov (United States)

    Pirzkal, Norbert; Malhotra, S.; Rhoads, J. J. E.; Ly, C.; Rothberg, B.; Dahlen, T.

    2012-05-01

    Emission line galaxies are a powerful tracer of star formation in the Universe. By computing and examining the shape of the line luminosity function (the number density per logarithmic interval in line luminosity) we can study how star formation occurred in star forming galaxies. We can also look for variation in the line luminosity function of these objects as a function of redshift to look for evidence of evolution in the way star formation took place over the last few billion years. We present emission line luminosity functions obtained using the slitless grism survey data of the PEARS projects. We applied the PEARS-2D technique to pinpoint the location of line emission in field galaxies and hence were able to extract spectra of individual line emission regions in the PEARS fields, which covers a large fraction of the GOODS-N and GOODS-S fields. We detected lines with fluxes as low as 5. 10^-18 erg/s/cm^2 and identified Ha, OIII, OII, Hg and Lya lines, over a redshift range of 0lines we identified are Ha (213 lines, 0lines, 0.2lines, 0.6line emission regions, multiple line emissions regions as well as several cases of multiple star forming regions in single galaxies. We present the luminosity functions for Ha, OII, and OIII computed across these relatively broad redshift ranges using both the Vmax and STY methods and investigate the redshift dependence of these luminosity functions, and the physical distribution of the emission line regions we detect.

  13. Emission Lines of Northern Planetary Nebulae

    Science.gov (United States)

    Aksaker, Nazim; Yerli, Sinan K.; Kızıloǧlu, Ümit; Atalay, Betül

    2017-10-01

    In this work, we present results of long slit spectrophotometric emission line flux observations of selected planetary nebulae (PNe). We have measured absolute fluxes and equivalent widths (EW) of all observable emission lines. In addition to these observations, electron temperatures (Te), densities (Ne), and chemical abundances were also calculated. The main purpose of this work is to fill the gaps in emission line flux standards for the northern hemisphere. It is expected that the measured fluxes would be used as standard data set for further photometric and spectrometric measurements of HII regions, supernova remnants etc.

  14. Emission line imaging of 3CR quasars and radio galaxies

    NARCIS (Netherlands)

    Hes, R; Barthel, PD; Fosbury, RAE

    Optical emission line images and spectra of sixteen 3CR powerful radio galaxies and quasars are presented. Extended line emission is detected in both radio galaxies and quasars. We show that line luminosities, derived from the spatially integrated [OII]lambda 3727 narrow emission line, are on

  15. Accurate Emission Line Diagnostics at High Redshift

    Science.gov (United States)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  16. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  17. Spin-torsion effects in the hyperfine structure of methanol

    Science.gov (United States)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-07-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.

  18. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    Science.gov (United States)

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  19. Perfect Thermal Emission by Nanoscale Transmission Line Resonators.

    Science.gov (United States)

    Liu, Baoan; Gong, Wei; Yu, Bowen; Li, Pengfei; Shen, Sheng

    2017-02-08

    Thermal radiation with a narrow-band emission spectrum is of great importance in a variety of applications such as infrared sensing, thermophotovoltaics, radiation cooling, and thermal circuits. Although resonant nanophotonic structures such as metamaterials and nanocavities have been demonstrated to achieve the narrow-band thermal emission, maximizing their radiation power toward perfect emission still remains challenging. Here, based on the recently developed quasi-normal mode theory, we prove that thermal emission from a nanoscale transmission line resonator can always be maximized by tuning the waveguiding loss of the resonator or bending the structure. By use of nanoscale transmission line resonators as basic building blocks, we experimentally demonstrate a new type of macroscopic perfect and tunable thermal emitters. Our experimental demonstration in conjunction with the general theoretical framework from the quasi-normal mode theory lays the foundation for designing tunable narrow-band thermal emitters with applications in thermal infrared light sources, thermal management, and infrared sensing and imaging.

  20. Hyperfine structure studies with the COMPLIS facility

    CERN Document Server

    Crawford, J E; Le Blanc, F; Lunney, M D; Obert, J; Oms, J; Putaux, J C; Roussière, B; Sauvage, J; Zemlyanoi, S G; Verney, D; Pinard, J; Cabaret, L A; Duong, H T; Huber, G; Krieg, M; Sebastian, V; Girod, M; Peru, S; Genevey, J; Ibrahim, F; Lettry, Jacques

    1998-01-01

    COMPLIS is an experimental facility designed to carry out spectroscopic studies on radioisotopes produced by disintegration of elements available at CERN's Booster-ISOLDE on-line isotope separator. During recent series of experimental runs, hyperfine structure measurements have yielded information on nuclear moments and deformations of platinum and iridium isotopes, For the first time, population by alpha -decay from Hg was exploited to investigate /sup 178/-/sup 181/Pt-the most neutron-deficient Pt isotopes yet studied. Successful measurements have recently been carried out on /sup 182-189/Ir. (10 refs).

  1. High-redshift SDSS Quasars with Weak Emission Lines

    DEFF Research Database (Denmark)

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a prominent...... rest-frame 0.1-5 µm spectral energy distributions that are quite similar to those of normal quasars. The variability, polarization, and radio properties of WLQs are also different from those of BL Lacs, making continuum boosting by a relativistic jet an unlikely physical interpretation. The most...

  2. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofisica de Canarias, Via Lactea S/N, La Laguna E-38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Munoz, J. A. [Departamento de Astronomia y Astrofisica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Valparaiso (Chile)

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  3. Cross-correlation Diagnostics for Contamination in Emission Line Surveys

    Science.gov (United States)

    Gebhardt, Henry; Jeong, Donghui

    2018-01-01

    Galaxy catalogues generated from emission line surveys with low-resolution spectrographs generally contain contaminants due to errors in line identification. Measuring the contamination fraction, in this case, is essential for the cosmological analysis from the catalogue. Here we present a novel method of contamination diagnostics by using the shape of the auto- and cross-correlations. As an example, we study a case for the HETDEX (Hobby-Eberly Telescope Dark Energy eXperiment) survey where low-redshift Oxygen line (3727 Å) emitters contaminate high-redshift Lyman-α (1216 Å) emitters. We include redshift-space distortion and lensing magnification. This technique is also useful for future emission line surveys such as eBOSS, WFIRST, SPHEREx, and Euclid.

  4. Search for an emission line of a gravitational wave background

    CERN Document Server

    Nishizawa, Atsushi

    2015-01-01

    In the light of the history of researches on electromagnetic wave spectrum, a sharp emission line of gravitational-wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and the commonly-used value 0.25 Hz is far from optimal, decreasing the signal-to-noise ratio by up to a factor of seven. By reanalyzing the existing data with a smaller bin width, we might detect a precious line signal from the early universe.

  5. Typing supernova remnants using X-ray line emission morphologies

    NARCIS (Netherlands)

    Lopez, L.A.; Ramirez-Ruiz, E.; Badenes, C.; Huppenkothen, D.; Jeltema, T.E.; Pooley, D.A.

    2009-01-01

    We present a new observational method to type the explosions of young supernova remnants (SNRs). By measuring the morphology of the Chandra X-ray line emission in 17 Galactic and Large Magellanic Cloud SNRs with a multipole expansion analysis (using power ratios), we find that the core-collapse SNRs

  6. Spectrophotometry of emission-line stars in the magellanic clouds

    Science.gov (United States)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  7. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  8. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  9. profit: a new alternative for emission-line profile fitting

    Science.gov (United States)

    Riffel, Rogemar A.

    2010-06-01

    I briefly describe a simple routine for emission-line profile fitting by Gaussian curves or Gauss-Hermite series. The profit (line- profile fitting) routine represent a new alternative for use in fits data cubes, as the ones from Integral Field Spectroscopy or Fabry-Pérot Interferometry, and may be useful to better study the emission-line flux distributions and gas kinematics in distinct astrophysical objects, such as the central regions of galaxies and star forming regions. The profit routine is written in IDL language and is available at http://www.ufsm.br/rogemar/software.html . The profit routine was used to fit the [Fe ii] λ=1.257 μm emission-line profiles for about 1800 spectra of the inner 350 pc of the Seyfert galaxy Mrk 1066 obtained with Gemini NIFS and shows that the line profiles are better reproduced by Gauss-Hermite series than by the commonly used Gaussian curves. The two-dimensional map of the h 3 Gauss-Hermite moment shows its highest absolute values to be in regions close to the edge of the radio structure. These high values may be originating with an biconical outflowing gas associated with the radio jet—previously observed in the optical [O iii] emission. The analysis of this kinematic component indicates that the radio jet leaves the center of the galaxy with the north-west side slightly oriented towards us and the south-east side away from us, being partially hidden by the disc of the galaxy.

  10. DISCOVERY OF POLARIZED LINE EMISSION IN SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, W. B.; Pringle, J. E.; Long, K. S.; Cracraft, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Carswell, R. F., E-mail: sparks@stsci.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2015-12-10

    Laming predicted that the narrow Balmer line core of the ∼3000 km s{sup −1} shock in the SN 1006 remnant would be significantly polarized due to electron and proton impact polarization. Here, based on deep spectrally resolved polarimetry obtained with the European Southern Observatory (ESO)’s Very Large Telescope (VLT), we report the discovery of polarized line emission with a polarization degree of 1.3% and position angle orthogonal to the SNR filament. Correcting for an unpolarized broad line component, the implied narrow line polarization is ≈2.0%, close to the predictions of Laming. The predicted polarization is primarily sensitive to shock velocity and post-shock temperature equilibration. By measuring polarization for the SN 1006 remnant, we validate and enable a new diagnostic that has important applications in a wide variety of astrophysical situations, such as shocks, intense radiation fields, high energy particle streams, and conductive interfaces.

  11. Spatially Resolved Emission Line Ratios for Nuclear AGN Selection

    Science.gov (United States)

    Bridge, Joanna

    2017-08-01

    Differentiating between AGN activity and star formation in z 2 galaxies is difficult because traditional methods such as line ratio diagnostics change with redshift, while multiwavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGN. We have developed a new method for spatially resolving emission lines in HST/WFC3 G141 grism spectra, quantifying AGN activity through the spatial gradient of the [O III]/HBeta line ratio. Through detailed simulations, we have shown that our novel line-ratio gradient approach identifies low-mass and obscured AGN well beyond the limits of classic methods. In the course of this archival program, we will extend the current simulations beyond stellar mass, star formation rate, and AGN accretion, additionally modeling the effects of different galaxy sizes and morphologies. We will then use the two-orbit 3D-HST G141 grism observations and 12- and 40-orbit G102 grism observations from FIGS and CLEAR in the CANDELS fields of several thousand 0.6 grism is the ideal tool for this work because its unique spatial abilities applied to such a large dataset are unparalleled. Our simulations of spatially resolved AGN+galaxy emission lines will inform many related studies of resolved galaxy properties, such dust, star formation rate, metallicity.

  12. Polarization diagnostics for cool core cluster emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, W. B.; Pringle, J. E.; Cracraft, M.; Meyer, E. T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Carswell, R. F. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Voit, G. M.; Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320 (United States); Hough, J. H. [University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Manset, N., E-mail: sparks@stsci.edu [CFHT, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States)

    2014-01-01

    The nature of the interaction between low-excitation gas filaments at ∼10{sup 4} K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ∼10{sup 7} K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits (≲ 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfaces.

  13. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    Science.gov (United States)

    Fausnaugh, M. M.; Grier, C. J.; Bentz, M. C.; Denney, K. D.; De Rosa, G.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Horne, Keith; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Starkey, D. A.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.

    2017-05-01

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-Hβ lags, we measure black hole masses for all five targets. We also obtain Hγ and He II λ4686 lags for all objects except 3C 382. The He II λ4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100-300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  14. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Brown, Jonathan S.; Coker, C. T. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Grier, C. J.; Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Rosa, G. De [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Adams, S. M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Barth, A. J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bhattacharjee, A.; Brotherton, M. S. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University Avenue, Laramie, WY (United States); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 298409 (Russian Federation); Boroson, T. A. [Las Cumbres Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bottorff, M. C. [Fountainwood Observatory, Department of Physics FJS 149, Southwestern University, 1011 E. University Avenue, Georgetown, TX 78626 (United States); Brown, Jacob E. [Department of Physics and Astronomy, University of Missouri, Columbia (United States); Crawford, S. M. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  15. Emission Line Astronomy - Coronagraphic Tunable Narrow Band Imaging and Integral Field Spectroscopy. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to continue our program of emission line astronomy featuring three areas of emphasis: 1) The distribution and nature of high redshift emission line...

  16. Emission Line Metallicities from the Faint Infrared Grism Survey

    Science.gov (United States)

    Pharo, John; Christensen, Lise; Malhotra, Sangeeta; Rhoads, James; Smith, Mark; Harish, Santosh; yang, huan; FIGS Collaboration

    2018-01-01

    We present the redshifts and line identifications for 71 emission-line galaxies (ELGs) with z ~ 0.3 - 3 in the HUDF as part of the Faint Infrared Grism Survey (FIGS). We have calculated gas-phase metallicity for 39 ELGs using the R23 method, and for 14 ELGs for which we have [OIII]4363 measurements at S/N > 3, which enables the direct measurement of metallicity from the [OIII] electron temperature. The ELGs were selected by an automatic search of one-dimensional slitless spectroscopy from the WFC3 G102 grism on the Hubble Space Telescope. We matched the ELG candidate spectra with high-resolution optical spectra from MUSE, which allowed confirmation and identification of single-line FIGS detections and provided lower-wavelength line measurements. Once individual line fluxes were measured, we produced metallicities via the [OIII]4363 and R23 methods and analyzed the metallicity in relation to mass, star formation rate, and other properties.

  17. X-ray line emission from the Cygnus Loop

    Science.gov (United States)

    Kahn, S. M.; Charles, P. A.; Bowyer, S.; Blissett, R. J.

    1980-01-01

    The HEAO 1 satellite has observed the X-ray spectrum of the Cygnus Loop in the 0.1-2.0 keV band. The observed count-rate spectrum is deconvolved by the Kahn and Blissett technique to demonstrate conclusively the presence of oxygen- and iron-line emission between 0.6 and 0.9 keV. The spectrum has been fitted with single- and two-component Raymond-Smith plasma emission models. The best-fit dominant X-ray temperature is approximately 3,200,000 K, and the best-fit interstellar column density is approximately a few times 10 to the 20th/sq cm.

  18. Deuterium hyperfine structure in interstellar C3HD

    Science.gov (United States)

    Bell, M. B.; Watson, J. K.; Feldman, P. A.; Matthews, H. E.; Madden, S. C.; Irvine, W. M.

    1987-01-01

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  19. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  20. Measurements of isotope shifts and hyperfine structure in Ti II

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Z; Rosner, S D; Holt, R A [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Li, R [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6 T 2A3 (Canada); Scholl, T J, E-mail: rholt@uwo.c [Department of Medical Biophysics, University of Western Ontario, London, ON N6A 5C1 (Canada)

    2010-06-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts of 38 transitions in the wavelength range 429-457 nm and the hyperfine structures (hfs) of 22 levels in Ti II. The isotope shift and hfs measurements are the first for these transitions and levels. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines.

  1. VizieR Online Data Catalog: Emission lines for SDSS Coronal-Line Forest AGNs (Rose+, 2015)

    Science.gov (United States)

    Rose, M.; Elvis, M.; Tadhunter, C. N.

    2017-11-01

    In this paper, we make use of SDSS spectra. The basic properties of the CLiF AGN sample studied in this paper are given in Table 1. Note that the outputs of the SDSS pipeline are used only for the sample selection. Detailed measurements of emission line parameters such as the flux and velocity widths are measured using our own methods (Section 4). The redshifts were determined using single Gaussian fits to the [O III] λ5007 emission line. This line was chosen because it is the most prominent emission line in the optical spectra of these and most other AGN. (5 data files).

  2. Extent and structure of intervening absorbers from absorption lines redshifted on quasar emission lines

    Science.gov (United States)

    Bergeron, J.; Boissé, P.

    2017-07-01

    Aims: We wish to study the extent and sub-parsec spatial structure of intervening quasar absorbers, mainly those involving cold neutral and molecular gas. Methods: We have selected quasar absorption systems with high spectral resolution and a good signal-to-noise ratio data, with some of their lines falling on quasar emission features. By investigating the consistency of absorption profiles seen for lines formed either against the quasar continuum source or on the much more extended (Lyα-N v, C iv or Lyβ-O vi) emission line region (ELR), we can probe the extent and structure of the foreground absorber over the extent of the ELR ( 0.3-1 pc). The spatial covering analysis provides constraints on the transverse size of the absorber and thus is complementary to variability or photoionisation modelling studies, which yield information on the absorber size along the line of sight. The methods we used to identify spatial covering or structure effects involve line profile fitting and curve-of-growth analysis. Results: We have detected three absorbers with unambiguous non-uniformity effects in neutral gas. For the extreme case of the Fe I absorber at zabs = 0.45206 towards HE 0001-2340, we derive a coverage factor of the ELR of at most 0.10 and possibly very close to zero; this implies an overall absorber size no larger than 0.06 pc. For the zabs = 2.41837 C I absorber towards QSO J1439+1117, absorption is significantly stronger towards the ELR than towards the continuum source in several C I and C I⋆ velocity components, pointing to spatial variations of their column densities of about a factor of two and to structures at the 100 au-0.1 pc scale. The other systems with firm or possible effects can be described in terms of a partial covering of the ELR, with coverage factors in the range 0.7-1. The overall results for cold neutral absorbers imply a transverse extent of about five times the ELR size or smaller, which is consistent with other known constraints. Although

  3. A versatile apparatus for on-line emission channeling experiments

    CERN Document Server

    da Silva, Manuel Ribeiro; Correia, João Guilherme; Amorim, Lígia Marina; Pereira, Lino Miguel da Costa

    2013-01-01

    The concept and functionality of an apparatus dedicated to emission channeling experiments using short-lived isotopes on-line at ISOLDE/CERN is described. The setup is assembled in two functional blocks - (a) base stand including beam collimation, implantation and measurement chamber, cryogenic extension, and vacuum control system and - (b) Panmure goniometer extension including maneuvering cradle and sample heating furnace. This setup allows for in situ implantation and sample analysis in the as-implanted state and upon cooling down to 50 K and during annealing up to 1200 K. The functionality of the setup will be illustrated with the example of establishing the lattice location of $^{56}$Mn probes implanted into GaAs.

  4. A probabilistic approach to emission-line galaxy classification

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.

    2017-12-01

    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.

  5. Massive Emission-Line Stars in Nearby Galaxies

    Science.gov (United States)

    Lim, P. L.; Holtzman, J. A.; Walterbos, R. A. M.

    2003-12-01

    The evolution of massive stars is still poorly understood because of critical effects of mass loss during the post-main sequence phase. Of particular relevance is the Luminous Blue Variable phase, during which high mass loss may occur over a brief period. It would be useful to know the mass range of stars that enter this phase, and the life time of the phase. For that, better estimates of the numbers of LBVs in different environments is crucial. In a study of M31, we detected candidate LBVs as luminous stars with strong Hα emission-lines and no nebular [SII] emission. (King, N.L., Walterbos, R.A.M., & Braun, R., 1998, ApJ, 507:210-220). HST's sensitivity offers the capability to identify these candidate LBVs in galaxies beyond the Local Group. We identify massive Hα emmision-line stars in nearby spiral galaxies within 10 Mpc, using data from the HST WFPC2 archive. We obtained stellar photometry in Hα (F656N) and various broadband filters, with methods developed for the HST Local Group Stellar Photometry archive (Holtzman, J., Afonso, C., & Dolphin, A., 2003, ApJS, submitted). We identify candidates based on the amount of Hα excess in two-color plots. We also require an absolute magnitude MV ≤ -5, and photometry fit parameters consistent with point source characteristics. Candidates are inspected visually on the images for verification purpose. We find promising candidates in several nearby galaxies. We will present a catalog of the objects, and discuss their properties and the environments in which they are found. Support for this work was provided by NASA through grant numbers AR-08372.01-97A and HST-AR-08749.01-A from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555.

  6. On the sodium D line emission in the terrestrial nightglow

    Science.gov (United States)

    Plane, John; Oetjen, Hilke; de Miranda, Marcelo; Saiz-Lopez, Alfonso; Gausa, Michael; Williams, Bifford

    2012-01-01

    Emission from atomic Na, consisting of a doublet of lines at 589.0 and 589.6 nm, is a prominent feature of the earth’s nightglow. A large data-base of measurements of the relative intensities of the D lines (RD) was gathered at three locations: the ALOMAR observatory, Andenes (Norway, 69°N), Kuujjuarapik (Canada, 55°N) and the Danum Valley (Borneo, 8°N). RD varies between 1.5 and 2.0, with an average value of 1.67. These results were interpreted using a theoretical model of the Na nightglow which involves initial production of electronically excited NaO(A2Σ) from the reaction between Na and O3, followed either by reaction with O to generate Na(2PJ) with a branching ratio of 1/6 and a J=3/2 to 1/2 propensity of 2.0, or quenching of NaO(A) to NaO(X2Π) by O2. The resulting NaO(X) then reacts with O to generate Na(2PJ) with a branching ratio of 1/6 and a J=3/2 to 1/2 propensity of 1.5. These branching ratios and spin-orbit propensities are derived from statistical correlation of the electronic potential energy surfaces connecting the reactants NaO(A)+O and NaO(X)+O with the products Na+O2, through the Na+O2- ion-pair intermediate. A fit of this statistical model to the results of an earlier laboratory study (Slanger et al., 2005), where RD was measured as a function of the ratio [O]/[O2], indicates that the rate coefficient for the quenching of NaO(A) by O2 is around 1×10-11 cm3 molecule-1 s-1. The statistical model is also in good accord with recent high resolution observations of the Na D line widths (Harrell et al., 2010). An atmospheric model is then used to show that gravity wave-driven perturbations to the Na layer can account for the observed variability of RD.

  7. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    CERN Document Server

    Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.

    2015-02-04

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  8. Detection of Rest-frame Optical Lines from X-shooter Spectroscopy of Weak Emission Line Quasars

    Science.gov (United States)

    Plotkin, Richard M.; Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Fan, Xiaohui; Gallo, Elena; Lira, Paulina; Luo, Bin; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.; Wu, Jianfeng

    2015-06-01

    Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4-1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii, Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15-40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s-1, and significant C iv blueshifts (≈1000-5500 km s-1) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.B-0355 and 090.B-0438.

  9. Elemental Abundances in the Broad Emission Line Region of Quasars at Redshifts larger than 4

    DEFF Research Database (Denmark)

    Dietrich, M.; Appenzeller, I.; Hamann, F.

    2003-01-01

    We present observations of 11 high redshift quasars ($3.9 \\la z \\la 5.0$) observed with low spectral resolution in the restframe ultraviolet using FORS 1 at the VLT UT 1. The emission-line fluxes of strong permitted and intercombination ultraviolet emission lines are measured to estimate the chem...

  10. A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey

    DEFF Research Database (Denmark)

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2008-01-01

    We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7......We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7...

  11. VizieR Online Data Catalog: MUSE-Wide survey: 831 emission line galaxies (Herenz+, 2017)

    Science.gov (United States)

    Herenz, E. C.; Urrutia, T.; Wisotzki, L.; Kerutt, J.; Saust, R.; Werhahn, M.; Schmidt, K. B.; Caruana, J.; Diener, C.; Bacon, R.; Brinchman, J.; Schaye, J.; Maseda, M.; Weilbacher, P. M.

    2017-05-01

    This data release consists of an emission line galaxy catalogue containing 831 emission line galaxies detected in the first period of observations of the MUSE-Wide survey. We also release 1D PSF-weighted extracted spectra and 3D datacubes for each of those 831 sources. The emission line galaxy catalogue consists of two tables: A catalogue of all 831 detected emission line objects and a table of all 1652 detected emission lines in those objects. These tables are described in detail in Sect. 4.1 and 4.2 of the paper. Both tables are in the FITS binary table format, adhering to the FITS standard described in Pence et al. (2010A&A...524A..42P). (8 data files).

  12. The Emission Line Luminosity Functions Of hα, OII, And OIII At 0PEARS

    Science.gov (United States)

    Pirzkal, Norbert; Malhotra, S.; Rhoads, J. E.; Ly, C.; Rothberg, B.; Straughn, A.; Meurer, G.

    2012-01-01

    Emission line galaxies are a powerful tracer of star formation in the Universe. By computing and examining the shape of the line luminosity function (the number density per logarithmic interval in line luminosity) we can study how star formation occurred in star forming galaxies. We can also look for variation in the line luminosity function of these objects as a function of redshift to look for evidence of evolution in the way star formation took place over the last few billion years. We present emission line luminosity functions obtained using the slitless grism survey data of the PEARS projects. We applied the PEARS-2D technique to pinpoint the location of line emission in field galaxies and hence were able to extract spectra of individual line emission regions in the PEARS fields, which covers a large fraction of the GOODS-N and GOODS-S fields. We detected lines with fluxes as low as 5. 10-18 erg/s/cm2 and identified Hα, OIII, OII, Hg and Lyα lines, over a redshift range of 0lines we identified are Hα (213 lines, 0lines, 0.2lines, 0.6line emission regions, multiple line emissions regions as well as several cases of multiple star forming regions in single galaxies. We present the luminosity functions for Hα, OII, and OIII computed across these relatively broad redshift ranges and conclude by examining the evolution of the Hα luminosity function from z=0.5 to z=0, the OII luminosity function from z=1.7 to z=0.6, and the OIII luminosity function from z=1.0 to z=0.2.

  13. A Survey of Recombination Line Emission from the Galactic Plane at ...

    Indian Academy of Sciences (India)

    tribpo

    Carbon recombination lines are identified in 12 of the directions. The hydrogen line intensities are found to correlate well with the total continuum intensity (which includes the nonthermal galactic background) indicating that most of the lines arise due to stimulated emission by the background radiation. A preliminary ...

  14. Metal-line emission from the warm-hot intergalactic medium - I. Soft X-rays

    Science.gov (United States)

    Bertone, Serena; Schaye, Joop; Dalla Vecchia, Claudio; Booth, C. M.; Theuns, Tom; Wiersma, Robert P. C.

    2010-09-01

    Emission lines from metals offer one of the most promising ways to detect the elusive warm-hot intergalactic medium (WHIM; 105 rsim 106 K). We find that the OVIII 18.97 Å is the strongest emission line, with a predicted maximum surface brightness of ~102photon s-1 cm-2 sr-1, but a number of other lines are only slightly weaker. All lines show a strong correlation between the intensity of the observed flux and the density and metallicity of the gas responsible for the emission. On the other hand, the potentially detectable emission consistently corresponds to the temperature at which the emissivity of the electronic transition peaks. The emission traces neither the baryonic nor the metal mass. In particular, the emission that is potentially detectable with proposed missions traces overdense (ρ > rsim 102ρmean) and metal-rich (Z > rsim 10-1 Zsolar) gas in and around galaxies and groups. While soft X-ray line emission is therefore not a promising route to close the baryon budget, it does offer the exciting possibility to image the gas accreting on to and flowing out of galaxies.

  15. Hyperfine characterization of {beta}-zirconium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, P.C.; Martinez, J.A.; Rodriguez, A.M.; Lopez Garcia, A.R. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Dejneka, M. [Rutgers University, Center for Ceramic Research (United States)

    1997-10-15

    The evolution of the hyperfine quadrupole interaction in {beta}-ZrF{sub 4} at Zr sites, is measured between 273 and 740 K via the Perturbed Angular Correlations technique. Two different quadrupole interactions, in a ratio 1:2 of relative fractions, are determined. It is observed that the compound remains stable all over the thermal range. Moisture exposure at room temperature seems not to affect the hyperfine interaction suggesting that {beta}-ZrF{sub 4} is less sensitive to air water than other varieties of zirconium fluoride.

  16. Consistency of spherical, gravity-dominated dynamics with quasar high-ionization emission-line profiles

    OpenAIRE

    Kallman, T. R.; Wilkes, Belinda Jane; Krolik, J. H.; Green, Richard

    1993-01-01

    Line profile data are used to test a simple kinematic model - spherically symmetric gravitational free fall - in which the number of free parameters is limited by requiring physical self-consistency. The predictions of this model are fitted to high-resolution spectra of the stronger rest-frame UV emission lines in 12 quasars with z of about 2. It is found that if all the lines are radiated predominantly from the illuminated faces of the emission-line clouds, the profiles of Ly-alpha, N V 1240...

  17. First detection of line emission from the hot interstellar medium with solid state detectors

    Science.gov (United States)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1981-01-01

    Previously reported enhanced soft X-ray emission from the North-Galactic Polar region supports the theory of a hot interstellar component. This paper reports the first detection of line emission from the hot interstellar component in the North-Galactic-Polar region. Measurements were made with solid state Si(Li) detectors aboard a spin-stabilized rocket launched from the White Sands Missile Range on March 22, 1980. Two features are clearly present in the low energy portion of the spectrum derived from the data. They correspond to emission lines from C V (300 eV) and C VI (360 eV), and from O VII (560 eV) and O VIII (650 eV). The detection of emission lines coming from these highly stripped ions is direct evidence for the thermal origin of the emission and confirms the presence of a hot (1-million K) component in the interstellar medium.

  18. The Influence of Opacity on Hydrogen Line Emission and Ionisation Balance in High Density Divertor Plasmas

    OpenAIRE

    Behringer, K.

    1997-01-01

    The influence of opacity on hydrogen line emission and ionisation balance in high density divertor plasmas. - Garching bei München : Max-Planck-Inst. für Plasmaphysik, 1997. - 21 S. - (IPP-Report ; 10/5)

  19. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    Science.gov (United States)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  20. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  1. Emission Line Morphologies in Markarian Starburst Galaxies A ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    tribution of hot, young stars in star forming regions of normal and starburst galaxies. Extensive Hα surveys of samples of normal galaxies were carried out by Kennicutt &. Kent (1983). They found that the integrated emission of a galaxy is strongly correlated with its Hubble type and colour. They also inferred that the variation ...

  2. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  3. Tracing the origins of permitted emission lines in RU Lupi down to AU scales

    Science.gov (United States)

    Podio, L.; Garcia, P. J. V.; Bacciotti, F.; Antoniucci, S.; Nisini, B.; Dougados, C.; Takami, M.

    2008-03-01

    Context: Most of the observed emission lines and continuum excess from young accreting low mass stars (Classical T Tauri stars - CTTSs) take place in the star-disk or inner disk region. These regions have a complex emission topology that is still largely unknown. Aims: In this paper the magnetospheric accretion and inner wind contributions to the observed permitted He and H near infrared (NIR) lines of the bright southern CTTS RU Lupi are investigated for the first time. Methods: Previous optical observations of RU Lupi have shown a strong Hα profile, due to the emission from a wind in the line wings, and a micro-jet detected in forbidden lines. We extend this analysis to NIR lines through the seeing-limited, high spectral-resolution spectra taken with VLT/ISAAC, and narrow-band imaging and low spectral-resolution spectroscopy acquired with the adaptive optics (AO) aided telescope VLT/NACO. Using spectro-astrometric analysis we investigate the presence of extended emission down to very low spatial scales (a few AU). Results: The HeI λ10830 line presents a P Cygni profile whose absorption feature indicates the presence of an inner stellar wind. Moreover, the spectro-astrometric analysis proves the presence of an extended emission superimposed on the absorption feature and likely coming from the micro-jet detected in the optical. In contrast, the origin of the hydrogen Paschen and Brackett lines is difficult to address. We tried to explain the observed line profiles and flux ratios with both accretion and wind models showing the limits of both approaches. The lack of a spectro-astrometric signal indicates that the HI emission is either compact or symmetric. Our analysis confirms the sensitivity of the HeI line to the faint extended emission regions in the close proximity of the star. Based on observations collected at the European Southern Observatory, Chile (ESO Programme 71.C-0703).

  4. Evidence for moving features in the corona from emission line profiles observed during eclipses

    Science.gov (United States)

    Delone, A. B.; Makarova, E. A.; Iakunina, G. V.

    1988-03-01

    Using the line profiles of forbidden Fe x 6374 A and Fe XIV 5303 A emission lines observed during five total solar eclipses, the problem whether the solar corona is static or contains moving features is addressed. Many of the profiles of both emission lines have complicated shapes, which is interpreted as an evidence for the existence of many, small, moving features in the corona. The line-of-sight velocities observed by other investigators such as Desai et al., 1982 also supported this view. On the other hand, about 15 recent interferometric and multislit investigations of coronal emission lines have not shown evidence of moving elements. It is suggested that this is due to insufficient spatial resolution.

  5. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  6. Comparison of MGII and CIV emission lines in NGC5548

    Science.gov (United States)

    Ptak, R.; Stoner, R. E.

    1992-01-01

    Results are presented of a cross-correlation analysis in which the Seyfert galaxy NGC 5548 was monitored in the UV portion of its spectrum every 4 d for an 8-mo period by an international collaborative effort using the IUE satellite. The analysis shows that the CIV 1550-A line correlates with the underlying continuum with a time delay of about 10 d. A similar analysis for the MgII 2798-A line yields a much broader peak and a delay of about 50 +/- 20 d. Thus the MgII line emitting gas appears to be about 5 times more distant from the central source. The MgII and CIV profiles in this series of spectra are compared on the same velocity scale. The two lines are quite similar on the red side of the profile, with the CIV more extended on the blue side. The overall width of the CIV is as much as 40 percent larger, but it is definitely not larger by a factor or two or more. It is concluded that the motion of the broad line emitting gas is not dominated by the gravitational influence of a central massive object.

  7. Hyperfine interaction of Er3+ ions in Y2SiO5 : An electron paramagnetic resonance spectroscopy study

    Science.gov (United States)

    Guillot-Noël, O.; Goldner, Ph.; Du, Y. Le; Baldit, E.; Monnier, P.; Bencheikh, K.

    2006-12-01

    Electron paramagnetic resonance (EPR) spectroscopy of rare earth ions in crystals is a powerful tool to analyze the hyperfine structure of the rare earth ground state. This can be useful for coherent spectroscopy and quantum information applications where the hyperfine structure of the electronic levels is used. In this work, we give a detailed analysis of the hyperfine structure of the ground state [I15/24(0)] of Er3+ ions in Y2SiO5 . The electronic Zeeman, hyperfine, and quadrupole matrices are obtained from angular variations of the magnetic field in three orthogonal crystal planes. An excellent agreement is obtained between experimental and simulated magnetic field positions and relative intensities of EPR lines.

  8. ROTATIONAL LINE EMISSION FROM WATER IN PROTOPLANETARY DISKS

    NARCIS (Netherlands)

    Meijerink, R.; Poelman, D. R.; Spaans, M.; Tielens, A. G. G. M.; Glassgold, A. E.

    2008-01-01

    Circumstellar disks provide the material reservoir for the growth of young stars and for planet formation. We combine a high-level radiative transfer program with a thermal-chemical model of a typical T Tauri star disk to investigate the diagnostic potential of the far-infrared lines of water for

  9. Thermal Balance in Dense Molecular Clouds: Radiative Cooling Rates and Emission-Line Luminosities

    Science.gov (United States)

    Neufeld, David A.; Lepp, Stephen; Melnick, Gary J.

    1995-01-01

    We consider the radiative cooling of fully shielded molecular astrophysical gas over a wide range of temperatures ( 10 K line strengths that contribute to the total radiative cooling rate, and we have obtained example spectra for the submillimeter emission expected from molecular cloud cores. Many of the important cooling lines will be detectable using the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite.

  10. The ultraviolet-to-mid-infrared spectral energy distribution of weak emission line quasars

    NARCIS (Netherlands)

    Lane, R.A.; Shemmer, O.; Diamond-Stanic, A.M.; Fan, X.; Anderson, S.F.; Brandt, W.N.; Plotkin, R.M.; Richards, G.T.; Schneider, D.P.; Strauss, M.A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS

  11. The spatial distribution of ultraviolet line and continuum emission in Herbig-Haro objects

    Science.gov (United States)

    Lee, M. G.; Boehm, K. H.; Temple, S. D.; Raga, A. C.; Mateo, M. L.

    1988-01-01

    Archival IUE data and monochromatic CCD images in the optical range are used to compare the spatial distribution of UV and optical emission in HH 1, HH 2, HH 24, HH 32, HH 43, and HH 47. For all six objects, the observed UV radiation is shown to originate in the objects themselves. The results indicate that the C IV and semiforbidden emission-line regions are small. Although the continuum in the IUE short-wavelength range displays a distribution that is broader than that of any measured line emission in the UV or optical range, the continuum distribution in the IUE long-wavelength range is quite narrow.

  12. Emission-line Diagnostics of Nearby HII Regions Including Supernova Hosts

    Science.gov (United States)

    Xiao, Lin; Eldridge, J. J.; Stanway, Elizabeth; Galbany, L.

    2017-11-01

    We present a new model of the optical nebular emission from HII regions by combining the results of the Binary Population and Spectral Synthesis (bpass) code with the photoionization code cloudy (Ferland et al. 1998). We explore a variety of emission-line diagnostics of these star-forming HII regions and examine the effects of metallicity and interacting binary evolution on the nebula emission-line production. We compare the line emission properties of HII regions with model stellar populations, and provide new constraints on their stellar populations and supernova progenitors. We find that models including massive binary stars can successfully match all the observational constraints and provide reasonable age and mass estimation of the HII regions and supernova progenitors.

  13. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    Science.gov (United States)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  14. Detection of laser-produced tin plasma emission lines in atmospheric environment by optical emission spectroscopy technique

    Science.gov (United States)

    Aadim, Kadhim A.

    2017-12-01

    A spectroscopic study on laser-produced tin plasma utilizing the optical emission spectroscopy (OES) technique is presented. Plasma is produced from a solid tin target irradiated with pulsed laser in room environment. Electron temperature is determined at different laser peak powers from the ratio of line intensities, while electron density is deduced from Saha-Boltzmann equation. A limited number of suitable tin lines are detected, and the effect of the laser peak power on the intensity of emission lines is discussed. Electron temperatures are measured in the range of 0.36 eV-0.44 eV with electron densities of the order 1017 cm-3 as the laser peak power is varied from 11 MW to 22 MW.

  15. [Fe III] EMISSION LINES IN THE PLANETARY NEBULA NGC 2392

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Chau, W.; Hsia, C.-H.; Kwok, S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Fang, X.; Liu, X.-W. [Department of Astronomy, Peking University, Beijing 100871 (China); Koning, N., E-mail: zhangy96@hku.hk [Department of Physics and Astronomy, University of Calgary, Calgary T2N 1N4 (Canada)

    2012-07-20

    NGC 2392 is a young double-shell planetary nebula (PN). Its intrinsic structure and shaping mechanism are still not fully understood. In this paper we present new spectroscopic observations of NGC 2392. The slits were placed at two different locations to obtain the spectra of the inner and outer regions. Several [Fe III] lines are clearly detected in the inner region. We infer that NGC 2392 might have an intrinsic structure similar to the bipolar nebula Mz 3, which also exhibits a number of [Fe III] lines arising from the central regions. In this scenario, the inner and outer regions of NGC 2392 correspond to the inner lobes and the outer outflows of Mz 3, respectively. We construct a three-dimensional morpho-kinematic model to examine our hypothesis. We also compare the physical conditions and chemical composition of the inner and outer regions, and discuss the implications on the formation of this type of PN.

  16. The extended narrow line region of NGC 4151. : I. Emission line ratios and their implications

    NARCIS (Netherlands)

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D. J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Diaz, A.; Dietrich, M.; Durret, F.; Dyson, J. E.; Gondhalekar, P.; van Groningen, E.; Jablonka, P.; Jackson, N.; Kollatschny, W.; Laurikainen, E.; Lawrence, A.; Masegosa, J.; McHardy, I.; Meurs, E. J. A.; Miley, G.; Moles, M.; O'Brien, P.; O'Dea, C.; del Olmo, A.; Pedlar, A.; Perea, J.; Perez, E.; Perez-Fournon, I.; Perry, J.; Pilbratt, G.; Rees, M.; Robson, I.; Rodriguez-Pascual, P.; Rodriguez Espinosa, J. M.; Santos-Lleo, M.; Schilizzi, R.; Stasińska, G.; Stirpe, G. M.; Tadhunter, C.; Terlevich, E.; Terlevich, R.; Unger, S.; Vila-Vilaro, V.; Vilchez, J.; Wagner, S. J.; Ward, M. J.; Yates, G. J.

    1990-01-01

    The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the Extended Narrow Line Region (ENLR) of the galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically

  17. New constraints on quasar broad absorption and emission line regions from gravitational microlensing

    Science.gov (United States)

    Hutsemékers, Damien; Braibant, Lorraine; Sluse, Dominique; Anguita, Timo; Goosmann, René

    2017-09-01

    Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  18. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Directory of Open Access Journals (Sweden)

    Damien Hutsemékers

    2017-09-01

    Full Text Available Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  19. X-ray narrow emission lines from the nuclear region of NGC 1365

    Science.gov (United States)

    Whewell, M.; Branduardi-Raymont, G.; Page, M. J.

    2016-11-01

    Context. NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM-Newton Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365, in order to analyse and characterise in a uniform way the soft X-ray narrow-line emitting gas in the nucleus. Aims: We characterise the narrow-line emitting gas visible by XMM-Newton RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. Methods: This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 × 1023 cm-2, and only one observation of the nine we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using Gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoionised line emission models representing the AGN line emission. The collisional and photoionised emission line models are fitted together (rather than holding either one constant), on top of a physical continuum and absorption model. Results: The X-ray narrow emission line spectrum of NGC 1365 is well represented by a combination of two collisionally ionised (kT of 220 ± 10 and 570 ± 15 eV) and three photoionised (log ξ of 1.5 ± 0.2, 2.5 ± 0.2, 1.1 ± 0.2) phases of emitting gas, all with higher than solar nitrogen abundances. This physical model was fitted to the 2012-13 stacked spectrum, and yet also fits well to the 2004-07 stacked spectrum, without changing any characteristics of the emitting gas phases. Our 2004-07 results are consistent with previous emission line work using these data, with five additional

  20. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    Science.gov (United States)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  1. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    Science.gov (United States)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  2. A First-Principles Spectral Model for Blazar Jet Acceleration and Emission with Klein-Nishina Scattering of Multiple Broad Line Region Emission Lines

    Science.gov (United States)

    Lewis, Tiffany R.; Finke, Justin; Becker, Peter A.

    2017-08-01

    Blazars are a sub-class of active galactic nuclei, with a polar jet aligned along our line of sight. Emission from blazar jets is observed across the electromagnetic spectrum. In our model we assume that the emission emanates from one homogeneous zone in the jet, which is in the process of passing through the Broad Line Region (BLR). We start from first-principles to build up a particle transport model, whose solution is the electron distribution, rather than assuming a convenient functional form. Our transport model considers shock acceleration, adiabatic expansion, stochastic acceleration, Bohm diffusion, synchrotron radiation, and Klein-Nishina radiation pulling seed photons from the BLR and dusty torus. We obtain the steady-state electron distribution computationally, and calculate individual spectral contributions due to synchrotron with self-absorption, disk, synchrotron self-Compton, and external-Compton emission, using numerical integration. We compare the resulting radiation spectrum with multi-wavelength data for 3C 279, during quiescence and two flares. Our preliminary results suggest that the jet emission is produced in a region with a sub-equipartition magnetic field, and that the magnetic field in the jet decreases during flaring events, implying that reconnection may play a role in blazar flares.

  3. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    Science.gov (United States)

    Kharb, P.; Subramanian, S.; Vaddi, S.; Das, M.; Paragi, Z.

    2017-09-01

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>106 K) are consistent with this interpretation. Doppler boosting with jet speeds of ≳0.55c to ≳0.25c, going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O III] is also indicative of an outflow in the emission line gas at a velocity of ˜350 km s-1, while the [O I] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.

  4. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  5. Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air

    Science.gov (United States)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-12-01

    The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.

  6. Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    DEFF Research Database (Denmark)

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.

    2015-01-01

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. We present the first search for dark matter line emission in the range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line...

  7. THE CONNECTIONS BETWEEN THE UV AND OPTICAL Fe ii EMISSION LINES IN TYPE 1 AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Kovacević-Dojcinović, Jelena; Popović, Luka Č., E-mail: jkovacevic@aob.bg.ac.rs, E-mail: lpopovic@aob.bg.ac.rs [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia)

    2015-12-15

    We investigate the spectral properties of the UV (λλ2650–3050 Å) and optical (λλ4000–5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part of the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe ii{sub opt}) versus EW [O iii] 5007 Å and EW Fe ii{sub opt} versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.

  8. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    Science.gov (United States)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  9. Spectroscopic Study of the HST/ACS PEARS Emission-line Galaxies

    Science.gov (United States)

    Xia, Lifang; Malhotra, Sangeeta; Rhoads, James; Pirzkal, Norbert; Zheng, Zhenya; Meurer, Gerhardt; Straughn, Amber; Grogin, Norman; Floyd, David

    2011-02-01

    We present spectroscopy of 76 emission-line galaxies (ELGs) in Chandra Deep Field South taken with the LDSS3 spectrograph on the Magellan Telescope. These galaxies are selected because they have emission lines with the Advanced Camera for Surveys (ACS) grism data in the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) grism Survey. The ACS grism spectra cover the wavelength range 6000-9700 Å and most PEARS grism redshifts are based on a single emission line + photometric redshifts from broadband colors; the Magellan spectra cover a wavelength range from 4000 Å to 9000 Å and provide a check on redshifts derived from PEARS data. We find an accuracy of σ z = 0.006 for the ACS grism redshifts with only one catastrophic outlier. We probe for active galactic nuclei (AGNs) in our sample via several different methods. In total, we find 7 AGNs and AGN candidates out of 76 galaxies. Two AGNs are identified from the X-ray full-band luminosity, L X-ray,FB > 1043 erg s-1, the line widths, and the power-law continuum spectra. Two unobscured faint AGN candidates are identified from the X-ray full-band luminosity L X-ray,FB ~ 1041 erg s-1, the hardness ratio and the column density, and the emission-line and X-ray derived SFRs. Two candidates are classified based on the line ratio of [N II]λ6584/Hα versus [O III]λ5007/Hβ(BPT diagram), which are between the empirical and theoretical demarcation curves, i.e., the transition region from star-forming galaxies to AGNs. One AGN candidate is identified from the high-ionization emission line He IIÅ4686.

  10. Improved Study of the Antiprotonic Helium Hyperfine Structure

    CERN Document Server

    Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.

    2008-01-01

    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

  11. Hyperfine Structure and Isotope Shifts in Dy II

    Directory of Open Access Journals (Sweden)

    Dylan F. Del Papa

    2017-01-01

    Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.

  12. [A new automated method to identify emission line star from massive spectra].

    Science.gov (United States)

    Pan, Jing-Chang; Zhang, Cai-Ming; Wei, Peng; Luo, A-Li; Zhao, Yong-Heng

    2012-06-01

    Stellar spectra are characterized by obvious absorption lines or absorption bands, while those with emission lines are usually special stars such as cataclysmic variable stars (CVs), HerbigAe/Be etc. The further study of this kind of spectra is meaningful. The present paper proposed a new method to identify emission line stars (ELS) spectra automatically. After the continuum normalization is done for the original spectral flux, line detection is made by comparing the normalized flux with the mean and standard deviation of the flux in its neighbor region The results of the experiment on massive spectra from SDSS DR8 indicate that the method can identify ELS spectra completely and accurately. Since no complex transformation and computation are involved in this method, the identifying process is fast and it is ideal for the ELS detection in large sky survey projects like LAMOST and SDSS.

  13. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan; Liu, Bo; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng [Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hao, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Ji, Tuo; Shi, Xiheng; Zhang, Shaohua, E-mail: lizz08@mail.ustc.edu.cn, E-mail: zhouhongyan@pric.org.cn, E-mail: haol@shao.ac.cn [Polar Research Institute of China, Jinqiao Rd. 451, Shanghai, 200136 (China)

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similar to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.

  14. Solar Flare Termination Shock and Synthetic Emission Line Profiles of the Fe xxi 1354.08 Å Line

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lijia [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA (United States); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Reeves, Kathy; Raymond, John, E-mail: gang.li@uah.edu [Harvard-Smithsonian Center for Astrophysics, Boston, MA (United States)

    2017-09-01

    Solar flares are among the most energetic phenomena that occur in the solar system. In the standard solar flare model, a fast mode shock, often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the TS has been recently related to spectral hardening of a flare’s hard X-ray spectra at energies >300 keV. Observations of the Fe xxi 1354.08 Å line during solar flares by the Interface Region Imaging Spectrograph ( IRIS ) spacecraft have found significant redshifts with >100 km s{sup −1}, which is consistent with a reconnection downflow. The ability to detect such a redshift with IRIS suggests that one may be able to use IRIS observations to identify flare TSs. Using a magnetohydrodynamic simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe xxi 1354.08 line in this work. We show that the existence of the TS in the solar flare may manifest itself in the Fe xxi 1354.08 Å line.

  15. Detection of emission in the Si I 1082.7 nm line core in sunspot umbrae

    Science.gov (United States)

    Orozco Suárez, D.; Quintero Noda, C.; Ruiz Cobo, B.; Collados Vera, M.; Felipe, T.

    2017-11-01

    Context. Determining empirical atmospheric models for the solar chromosphere is difficult since it requires the observation and analysis of spectral lines that are affected by non-local thermodynamic equilibrium (NLTE) effects. This task is especially difficult in sunspot umbrae because of lower continuum intensity values in these regions with respect to the surrounding brighter granulation. Umbral data is therefore more strongly affected by the noise and by the so-called scattered light, among other effects. Aims: The purpose of this study is to analyze spectropolarimetric sunspot umbra observations taken in the near-infrared Si I 1082.7 nm line taking NLTE effects into account. Interestingly, we detected emission features at the line core of the Si I 1082.7 nm line in the sunspot umbra. Here we analyze the data in detail and offer a possible explanation for the Si I 1082.7 nm line emission. Methods: Full Stokes measurements of a sunspot near disk center in the near-infrared spectral range were obtained with the GRIS instrument installed at the German GREGOR telescope. A point spread function (PSF) including the effects of the telescope, the Earth's atmospheric seeing, and the scattered light was constructed using prior Mercury observations with GRIS and the information provided by the adaptive optics system of the GREGOR telescope during the observations. The data were then deconvolved from the PSF using a principal component analysis deconvolution method and were analyzed via the NICOLE inversion code, which accounts for NLTE effects in the Si I 1082.7 nm line. The information of the vector magnetic field was included in the inversion process. Results: The Si I 1082.7 nm line seems to be in emission in the umbra of the observed sunspot after the effects of scattered light (stray light coming from wide angles) are removed. We show how the spectral line shape of umbral profiles changes dramatically with the amount of scattered light. Indeed, the continuum levels

  16. Information Properties of Boundary Line Models for N2O Emissions from Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Gareth Hughes

    2013-03-01

    Full Text Available Boundary line models for N2O emissions from agricultural soils provide a means of estimating emissions within defined ranges. Boundary line models partition a two-dimensional region of parameter space into sub-regions by means of thresholds based on relationships between N2O emissions and explanatory variables, typically using soil data available from laboratory or field studies. Such models are intermediate in complexity between the use of IPCC emission factors and complex process-based models. Model calibration involves characterizing the extent to which observed data are correctly forecast. Writing the numerical results from graphical two-threshold boundary line models as 3×3 prediction-realization tables facilitates calculation of expected mutual information, a measure of the amount of information about the observations contained in the forecasts. Whereas mutual information characterizes the performance of a forecaster averaged over all forecast categories, specific information and relative entropy both characterize aspects of the amount of information contained in particular forecasts. We calculate and interpret these information quantities for experimental N2O emissions data.

  17. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    Science.gov (United States)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O iii]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O ii]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  18. Shift and broadening of emission lines in Nd :YAG laser crystal ...

    Indian Academy of Sciences (India)

    the 4F3/2 →4I11/2 transition lines remained constant by increasing the pumping energy. This is attributed to the thermal population as well as one-phonon and multiphonon emission processes in the ground state. This phenomenon degrades the output performance of the lasers. Keywords. Nd3+:YAG crystal; heat ...

  19. FeII/MgII Emission Line Ratio in High Redshift Quasars

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Appenzeller, I.

    2003-01-01

    We present results of the analysis of near infrared spectroscopic observations of 6 high-redshift quasars (z > 4), emphasizing the measurement of the ultraviolet FeII/MgII emission line strength in order to estimate the beginning of intense star formation in the early universe. To investigate the...

  20. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    Science.gov (United States)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  1. Peculiar Emission Line Generation from Ultra-Rapid Quasi-Periodic ...

    Indian Academy of Sciences (India)

    The purpose of this article is to alert astronomers, particularly those using spectroscopic surveys, to the fact that exotic astronomical objects (e.g. quasars or active galactic nuclei) that send ultra-rapid quasi periodic pulses of optical light would generate spectroscopic features that look like emission lines. This gives a simple ...

  2. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    Science.gov (United States)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  3. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  4. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    Science.gov (United States)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; hide

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  5. Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields

    Science.gov (United States)

    2015-10-06

    excited and ground state cross- ings, which have been used for nuclear spin polarization to decrease resonance line width and increase resonance ...into ac- count the zero-field splitting, nuclear and electronic zee- man shifts, stark shifts, hyperfine splitting, and nuclear quadrupole effects: Hgs...describing interactions with local nuclear spins, Pgs is the nuclear electric quadrupole parameter, and Sk is the spin projection onto the k axis with

  6. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  7. Mechanism of the tonal emission from ac high voltage overhead transmission lines

    Science.gov (United States)

    Straumann, Ueli

    2011-02-01

    Foul weather conditions can lead to corona discharges on high voltage overhead transmission lines which are perceivable as an audible broadband crackling and hissing noise. In such situations this noise is often accompanied by a humming noise at twice the mains frequency (2f). While the crackling and hissing noise component was widely investigated in the past, the 2f-component went largely uncommented. Only a scant amount of literature suggests mechanisms explaining the occurrence of this emission, but these suggestions are either vague or controversial. In this paper a mechanism analogous to that of ion loudspeakers is presented, which describes the sound levels of audible 2f-emissions from high voltage model lines quantitatively in a satisfactory manner. While the broadband component of corona noise emissions has its immediate origin in the discharges themselves, the 2f-emissions arise from the drift of ions left behind by the discharges. Due to collisions with gas molecules, these ions cause in the sum a rise of heat in and a force applying on the neutral gas, thus producing the 2f-emissions. Depending on the situation, both can give rise to contributions of similar magnitude.

  8. HST/ACS Emission Line Snapshots of nearby 3CR Radio Galaxies

    Science.gov (United States)

    Tremblay, Grant; Sparks, W. B.; Chiaberge, M.; Baum, S. A.; Allen, M. G.; Axon, D. J.; Capetti, A.; Floyd, D. J. E.; Macchetto, F. D.; Miley, G. K.; O'Dea, C. P.; Perlman, E. S.; Quillen, A. C.

    2008-03-01

    We present the results of a new HST/ACS snapshot program in which we have obtained emission line images of nearby (z successfully for 20 such objects, a sample consisting of both low-power FR I and classical high-power FR II radio galaxies. While only a subset of our initially proposed sample was observed, the newly reduced data we do have are excellent and will serve as an enhancement to an already superb dataset. In future papers, we will use these data to probe fundamental relationships between warm optical line-emitting gas, radio source structure (jets and lobes) and X-ray coronal halos. We will combine our existing UV images with new emission line images to establish quantitative star formation characteristics and their relation to dust and merger scenarios. Through the use of emission-line excitation maps, we will test theories on ionization beam patterns and luminosities from active nuclei, as well as seek areas of jet induced star formation. The resulting database will be an invaluable resource to the astronomical community for years to come.

  9. Polarized Balmer line emission from supernova remnant shock waves efficiently accelerating cosmic rays

    Science.gov (United States)

    Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru

    2018-01-01

    Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.

  10. Emission-Line Galaxies from the HST PEARS Grism Survey Southern Fields

    Science.gov (United States)

    Straughn, Amber; Pirzkal, N.; Meurer, G.; Cohen, S.; Windhorst, R.; Malhotra, S.; Gardner, J.; Rhoads, J.; Hathi, N.; Xu, C.

    2009-01-01

    We have detected a sample of emission-line galaxies (ELGs) from the PEARS (Probing Evolution And Reionization Spectroscopically) HST/ACS grism survey Southern Fields. The PEARS Southern Fields consist of five ACS pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. Using a 2-dimensional detection and extraction procedure, we find 320 emission lines orginating from 230 galaxy ``knots'' within 203 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. Our detection method has allowed us to observe emission lines from distinct giant star-forming regions across individual galaxies at redshifts z 0.5. We find that the radial distances of these HII regions generally reside near the galaxies' optical continuum half-light radii, similar to those of giant HII regions in local galaxies.

  11. Emission line gas in early-type galaxies: Kinematics and physical conditions

    Science.gov (United States)

    Deustua, S. E.; Koratkar, A. P.; Macalpine, G.

    1993-01-01

    Recent studies have found line emission gas in nearby early-type galaxies, but the properties of the emission-line gas in these 'normal' galaxies remain enigmatic. In terms of activity in the nucleus, these LINER-like galaxies form an important link between giant H 2 region galaxies and low-luminosity Seyferts. Despite their large numbers and evolutionary significance, we do not know whether these galaxies form a homogeneous class of objects; nor do we know how the distribution and kinematics of the line emission gas are affected by the host galaxy's environment or by the properties of the central engine, if present. To address these issues we are conducting a magnitude and volume limited survey of nearby early-type galaxies at Lick Observatory and the Michigan-Dartmouth-MIT Observatory. We have selected approximately 100 galaxies from radio catalogs. A large sample is necessary because while studies of individual 'LINERS' have led to a certain understanding of the phenomenon, these studies have not provided a global framework. Here we present results from our first run of medium resolution (approximately 5 A FWHM) spectroscopy. Kinematic data and line ratios determined along the major and minor axes of 6 galaxies are discussed. The information gleaned from spectroscopic data, when combined with data at other wavelengths, will enable a thorough investigation into the nature of low luminosity nuclear activity.

  12. TIME VARIABLE BROAD-LINE EMISSION IN NGC 4203: EVIDENCE FOR STELLAR CONTRAILS

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, Nick, E-mail: devereux@erau.edu [Department of Physics, Embry-Riddle Aeronautical University, Prescott, AZ 86301 (United States)

    2011-12-10

    Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad H{alpha} emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of {approx}1500 AU from the central black hole. There is also a bright core of broad H{alpha} line emission that is not time variable and identified with a large-scale inflow from an outer radius of {approx}1 pc. If the gas number density is {>=}10{sup 6} cm{sup -3}, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is {approx} 2 Multiplication-Sign 10{sup -2} M{sub Sun} yr{sup -1}, which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of {approx}6. The central active galactic nucleus (AGN) is unable to sustain ionization of the broad-line region; the discrepancy is particularly acute in 2010 when the broad H{alpha} emission line is dominated by the contrail of the infalling supergiant star. However, ram pressure shock ionization produced by the interaction of the infalling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN.

  13. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    2003-01-01

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  14. Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs?

    NARCIS (Netherlands)

    Aalto, S.; Spaans, M.; Wiedner, M. C.; Huettemeister, S.

    Context. In recent studies of 3 mm J = 1 - 0 HNC emission from galaxies it is found that the emission is often bright which is unexpected in warm, star forming clouds. We propose that the main cause for the luminous HNC line emission is the extreme radiative and kinematical environment in starburst

  15. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Crank, M.; Harilal, S. S.; Hassan, S. M.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-{alpha} and He-{alpha} are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-{alpha} to He-{alpha} emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  16. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas

    Science.gov (United States)

    Crank, M.; Harilal, S. S.; Hassan, S. M.; Hassanein, A.

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-α and He-α are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-α to He-α emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  17. The MUSE-Wide survey: A first catalogue of 831 emission line galaxies

    Science.gov (United States)

    Herenz, Edmund Christian; Urrutia, Tanya; Wisotzki, Lutz; Kerutt, Josephine; Saust, Rikke; Werhahn, Maria; Schmidt, Kasper Borello; Caruana, Joseph; Diener, Catrina; Bacon, Roland; Brinchmann, Jarle; Schaye, Joop; Maseda, Michael; Weilbacher, Peter M.

    2017-09-01

    We present a first instalment of the MUSE-Wide survey, covering an area of 22.2 arcmin2 (corresponding to 20% of the final survey) in the CANDELS/Deep area of the Chandra Deep Field South. We use the MUSE integral field spectrograph at the ESO VLT to conduct a full-area spectroscopic mapping at a depth of 1 h exposure time per 1 arcmin2 pointing. We searched for compact emission line objects using our newly developed LSDCat software based on a 3D matched filtering approach, followed by interactive classification and redshift measurement of the sources. Our catalogue contains 831 distinct emission line galaxies with redshifts ranging from 0.04 to 6. Roughly one third (237) of the emission line sources are Lyman α emitting galaxies with 3 line (0.3 ≲ z ≲ 1.5), 189 by their [O III] line (0.21 ≲ z ≲ 0.85), and 46 by their Hα line (0.04 ≲ z ≲ 0.42). Comparing our spectroscopic redshifts to photometric redshift estimates from the literature, we find excellent agreement for z 3. Together with the catalogue we also release 1D PSF-weighted extracted spectra and small 3D datacubes centred on each of the 831 sources. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.A-0205.Data products are available via http://muse-vlt.eu/science/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A12 .

  18. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, Masayoshi [Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, 630-8528 (Japan); Uchiyama, Hideki [Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan); Nobukawa, Kumiko K.; Koyama, Katsuji [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamauchi, Shigeo, E-mail: nobukawa@nara-edu.ac.jp [Department of Physics, Nara Women’s University, Kitauoyanishimachi, Nara, 630-8506 (Japan)

    2016-12-20

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand, the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.

  19. BROAD Hβ EMISSION-LINE VARIABILITY IN A SAMPLE OF 102 LOCAL ACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan [Physics Department, California Polytechnic State University, San Luis Obispo CA 93407 (United States); Komossa, S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany); Malkan, Matthew A.; Treu, Tommaso [Department of Physics, University of California, Los Angeles, CA 90095 (United States); Lazarova, Mariana S. [Department of Physics and Physical Science, University of Nebraska Kearney, Kearney, NE 68849 (United States); Auger, Matthew W. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Park, Daeseong, E-mail: jrunco@calpoly.edu, E-mail: mcosens@calpoly.edu, E-mail: vbennert@calpoly.edu, E-mail: malkan@astro.ucla.edu, E-mail: tt@physics.ucsb.edu, E-mail: lazarovam2@unk.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: daeseongpark@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon, 34055 (Korea, Republic of)

    2016-04-10

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses M{sub BH} > 10{sup 7}M{sub ⊙} was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between M{sub BH} and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate M{sub BH}, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  20. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78........32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  1. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  2. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Joseph [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Coriat, Mickaël [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Fender, Rob; Broderick, Jess W. [Department of Physics, Oxford University, Oxford OX1 3RH (United Kingdom); Lee, Julia C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany); Tzioumis, Anastasios K.; Edwards, Philip G., E-mail: neilsenj@bu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  3. Diagnostic Power of Broad Emission Line Profiles in Searches for Binary Supermassive Black Holes.

    Science.gov (United States)

    Nguyen, Khai; Bogdanovic, Tamara

    2015-01-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years we develop a semi-analytic model to describe the spectral emission line signatures of these systems. The goal of this work is to test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this context, we model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk that forms a common envelope about a gravitationally bound binary. We find that emission line profiles tend to have different statistical properties depending on the semi-major axis, mass ratio, eccentricity of the binary, and the alignment of the triple-disk system, and can in principle be used to infer the statistical distribution of these parameters.

  4. Emission line galaxy pairs up to z=1.5 from the WISP survey

    Science.gov (United States)

    Teplitz, Harry I.; Dai, Yu Sophia; Malkan, Matthew Arnold; Scarlata, Claudia; Colbert, James W.; Atek, Hakim; Bagley, Micaela B.; Baronchelli, Ivano; Bedregal, Alejandro; Beck, Melanie; Bunker, Andrew; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Mehta, Vihang; Pahl, Anthony; Rafelski, Marc; Ross, Nathaniel; Rutkowski, Michael J.; Siana, Brian D.; WISPs Team

    2016-01-01

    We present a sample of spectroscopically identified emission line galaxy pairs up to z=1.5 from WISPs (WFC3 Infrared Spectroscopic Parallel survey) using high resolution direct and grism images from HST. We searched ~150 fields with a covered area of ~600 arcmin^2, and a comoving volume of > 400 Gpc^3 at z=1-2, and found ~80 very close physical pairs (projected separation Dp < 50 h^{-1}kpc, relative velocity d_v < 500 kms^{-1}), and ~100 close physical pairs (50 < Dp < 100 h^{-1}kpc, d_v < 1000 kms^{-1}) of emission line galaxies, including two dozen triplets and quadruples. In this poster we present the multi-wavelength data, star formation rate (SFR), mass ratio, and study the merger rate evolution with this special galaxy pair sample.

  5. Emission line galaxies at z~2 from the 3D-HST sample

    Science.gov (United States)

    Bowman, William P.; Zeimann, Greg; Ciardullo, Robin; Gronwall, Caryl; McCarron, Adam

    2018-01-01

    Emission-line surveys probe a much wider range of the high-z galaxy mass function than is possible with continuum selection methods, and upcoming projects such as EUCLID, WFIRST, and HETDEX will identify many millions of such galaxies. However, it is yet to be understood how properties such as the mass function, bias, and reddening distribution of galaxies selected via their Ly-alpha and rest-frame optical emission lines relate to those of systems identified via continuum-selection techniques. As a first step towards understanding the systematics of different selection techniques in the redshift range 1.9 grism frames. We give the distribution of stellar masses, sizes, star-formation rates, and stellar reddening of these objects, along with their rough estimates of their [O III] 5007 and H-beta luminosity functions. These data will be used as a control sample in analyses of Lyman-alpha emitters from the HETDEX survey.

  6. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    Science.gov (United States)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  7. Laboratory Measurements of Fe xxiv Line Emission: 3[r arrow]2 Transitions near Excitation Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M.F.; Kahn, S.M.; Savin, D.W. (Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)); Beiersdorfer, P.; Brown, G.V.; Liedahl, D.A.; Reed, K.J. (Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore CA 94550 (United States)); Bhalla, C.P.; Grabbe, S.R. (Department of Physics, Kansas State University, Manhattan, KS 66506 (United States))

    1999-06-01

    Using the Electron Beam Ion Trap facility at Lawrence Livermore National Laboratory, we have measured relative cross sections for Fe xxiv line emission at electron energies between 0.7 and 3.0 keV. The measurements include line formation by direct electron impact excitation (DE), radiative cascades, resonant excitation (RE), and dielectronic recombination (DR) satellites with captured electrons in n[ge]5 levels. Good agreement with [ital R]-matrix and distorted wave calculations is found. In collisionally ionized plasmas, at temperatures near where the ion abundance peaks (kT[sub e] [approximately]1.7 keV), the RE contributions arefound to be [approx lt]5[percent] of the line emission, while the DR satellites contribute [approx lt]10[percent]. While good agreement with state-of-the-art atomic physics calculations is found, there is less good agreement with existingspectral synthesis codes in common astrophysical use. For the Fe xxiv 3p[sub 3/2] [r arrow]2s[sub 1/2], 3p[sub 1/2] [r arrow]2s[sub 1/2], and 3d[sub 5/2] [r arrow]2p[sub 3/2] transitions, the synthesis code MEKAL underestimates the emissivity in coronal equilibrium by [approximately]20[percent] at temperatures near where the ion abundance peaks. In situations where the ionization balance is not solely determined by the electron temperature, RE and DR satellites may contribute a considerable fraction of the line emission. [copyright] [ital [copyright] 1999.] [ital The American Astronomical Society

  8. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    Science.gov (United States)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  9. First light - II. Emission line extinction, population III stars, and X-ray binaries

    Science.gov (United States)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  10. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  11. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bastian, T. S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Chintzoglou, G.; De Pontieu, B.; Schmit, D. [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Shimojo, M. [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Leenaarts, J. [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Loukitcheva, M., E-mail: tbastian@nrao.edu [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States)

    2017-08-20

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  12. A First Comparison of Millimeter Continuum and Mg II Ultraviolet Line Emission from the Solar Chromosphere

    Science.gov (United States)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.; Shimojo, M.; Schmit, D.; Leenaarts, J.; Loukitcheva, M.

    2017-08-01

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph (IRIS). Both millimeter/submillimeter-λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg II h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T B and the Mg II h line radiation temperature T rad is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg II h line source function includes a scattering component. There is a significant difference (35%) between the mean T B (1.25 mm) and mean T rad (Mg II). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg II h line T rad and the ALMA T B region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  13. Inner Warm Disk of ESO Hα 279a Revealed by NA I and CO Overtone Emission Lines

    Science.gov (United States)

    Lyo, A.-Ran; Kim, Jongsoo; Lee, Jae-Joon; Kim, Kyoung-Hee; Kang, Jihyun; Byun, Do-Young; Mace, Gregory; Sokal, Kimberly R.; Park, Chan; Chun, Moo-Young; Oh, Heeyoung; Yu, Young Sam; Sok Oh, Jae; Jeong, Ueejeong; Kim, Hwihyun; Pak, Soojong; Hwang, Narae; Park, Byeong-Gon; Lee, Sungho; Kaplan, Kyle; Lee, Hye-In; Nguyen Le, Huynh Anh; Jaffe, Daniel; Friends of AASTeX Collaboration

    2017-07-01

    We present an analysis of near-infrared, high-resolution spectroscopy toward the flat-spectrum young stellar object (YSO) ESO Hα 279a (˜1.5M ⊙) in the Serpens star-forming region at a distance of 429 pc. Using the Immersion GRating INfrared Spectrometer (IGRINS; R ≈ 45,000), we detect emission lines originating from the accretion channel flow, jet, and inner disk. Specifically, we identify hydrogen Brackett series recombination, [Fe II], [Fe III], [Fe IV], Ca I, Na I, H2, H2O, and CO overtone emission lines. By modeling five bands of CO overtone emission lines and the symmetric double-peaked line profile for Na I emission lines, we find that ESO Hα 279a has an actively accreting Keplerian disk. From our Keplerian disk model, we find that Na I emission lines originate between 0.04 and 1.00 au, while the CO overtone emission lines are from the outer part of the disk, in the range between 0.22 and 3.00 au. The model reveals that the neutral atomic Na gas is a good tracer of the innermost region of the actively accreting disk. We derive a mass accretion rate of 2-10× 10-7 M ⊙ yr-1 from the measured Brγ emission luminosity of 1.78(±0.31) × 1031 erg s-1.

  14. Hubble space telescope emission line galaxies at z ∼ 2: the Lyα escape fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ciardullo, Robin; Zeimann, Gregory R.; Gronwall, Caryl; Gebhardt, Henry; Schneider, Donald P.; Hagen, Alex; Malz, A. I., E-mail: rbc@astro.psu.edu, E-mail: grzeimann@psu.edu, E-mail: caryl@astro.psu.edu, E-mail: gebhardt@psu.edu, E-mail: dps@astro.psu.edu, E-mail: hagen@psu.edu, E-mail: malz@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); and others

    2014-11-20

    We compare the Hβ line strengths of 1.90 < z < 2.35 star-forming galaxies observed with the near-IR grism of the Hubble Space Telescope with ground-based measurements of Lyα from the HETDEX Pilot Survey and narrow-band imaging. By examining the line ratios of 73 galaxies, we show that most star-forming systems at this epoch have a Lyα escape fraction below ∼6%. We confirm this result by using stellar reddening to estimate the effective logarithmic extinction of the Hβ emission line (c {sub Hβ} = 0.5) and measuring both the Hβ and Lyα luminosity functions in a ∼100, 000 Mpc{sup 3} volume of space. We show that in our redshift window, the volumetric Lyα escape fraction is at most 4.4{sub −1.2}{sup +2.1}%, with an additional systematic ∼25% uncertainty associated with our estimate of extinction. Finally, we demonstrate that the bulk of the epoch's star-forming galaxies have Lyα emission line optical depths that are significantly greater than that for the underlying UV continuum. In our predominantly [O III] λ5007-selected sample of galaxies, resonant scattering must be important for the escape of Lyα photons.

  15. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    Science.gov (United States)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  16. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    Science.gov (United States)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  17. A suborbital experiment to study Circumgalactic Lines in Ultraviolet Emission (CLUE)

    Science.gov (United States)

    Cook, Timothy; Wakker, Bart P.; Finn, Susanna; Martel, Jason F.

    2016-06-01

    We present the design and expected performance of CLUE, a new suborbital mission designed to image OVI emission from the circumgalactic medium of nearby galaxies. CLUE will act as a scientific pathfinder for future far ultraviolet emission missions. It will establish, on three nearby galaxies, the brightness, extent, and morphology of the OVI emission from the circumgalactic medium. These results will be essential in planning and evaluating any future FUV emission mission.The experiment will demonstrate an instrument design, called the monochromatic imager, which provides an all-reflective solution to the "narrow band imaging problem". Narrowband imaging is a staple astronomical technique. It allows observers to map the spatial distribution of ionic, atomic, and molecular features, and to determine the temperature, density, etc. of the emitting gas. Unfortunately, this technique cannot be applied in the far-ultraviolet band where transmissive materials are unavailable and ionic features are closely spaced, requiring a quickly varying spectral response.The monochromatic imager uses a conventional telescope with a grating monochromator to select the wavelength of interest. After passing through the monochromator an image of the target (now monochromatic) is focused on the detector. Unlike a push broom imaging system, CLUE produces a full image in a single emission line. CLUE is able to efficiently devote its observing time and detector area to collecting photons of interest while NOT devoting time and collecting area to recording uninteresting spectral regions.

  18. THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor L. [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Malkan, Matthew A.; Treu, Tommaso [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Pancoast, Anna [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sand, David J. [Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States); Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Bae, Hyun-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Brewer, Brendon J. [Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771 (United States); and others

    2015-04-15

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  19. Hyperfine structure of S-states of muonic tritium

    Directory of Open Access Journals (Sweden)

    Martynenko F.A.

    2017-01-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  20. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Reipurth, B.; Willman, M., E-mail: eelza@konkoly.hu [Institute for Astronomy, University of Hawaii at Manoa, 640 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-10-01

    We present results from an Hα emission line survey in a 1 deg{sup 2} area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples.

  1. Emission Line Properties of Seyfert Galaxies in the 12 μm Sample

    Science.gov (United States)

    Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian

    2017-09-01

    We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable

  2. Electrical detection of hyperfine interactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Felix

    2012-12-15

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of {sup 31}P donors in Si:P with {sup 29}Si nuclear spins. We then apply EDESEEM to P{sub b0} defects at the Si/SiO{sub 2} interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by {sup 29}Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of {sup 31}P nuclear spin hyperfine transitions and the coherent manipulation and readout of the {sup 31}P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity <3000 nuclear spins. We apply EDENDOR to the {sup 31}P-P{sub b0} spin system and the {sup 31}P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the {sup 31}P{sup +} nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 {mu}s for the {sup 31}P{sub 0} nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of {sup 31}P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a {sup 31}P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a

  3. Survey of emission-line galaxies: Universidad Complutense de Madrid list

    Science.gov (United States)

    Zamorano, J.; Rego, Gallego, J.; Gallego, J. G.; Vitores, A. G.RA, R.; Gonzalez-Riestra, R..; Rodriguez-Caderot, G.

    1994-01-01

    A low-dispersion objective-prism survey for low-redshift emission-line galaxies (ELGs) is being carried out by the University Complutense de Madrid with the Schmidt telescope at the German-Spanish Observatory of Calar Alto (Almeria, Spain). A 4 deg full aperture prism, which provides a dispersion of 1950 A/mm, and IIIaF emulsion combination has been used to search for ELGs selected by the presence of H-alpha emission in their spectra. Our survey has proved to be able to recover objects already found by similar surveys with different techniques and, what is more important, to discover new objects not previously cataloged. A compilation of descriptions and positions, along with finding charts when necessary, is presented for 160 extragalactic emission-line objects. This is the first list, which contains objects located in a region of the sky covering 270 sq deg in 10 fields near alpha = 0(sup h) and delta = 20 deg.

  4. Starbursts in cooling flows: blue continua and emission-line nebulae in central cluster galaxies

    Science.gov (United States)

    Allen, S. W.

    1995-10-01

    Optical spectroscopy of X-ray-luminous clusters of galaxies detected in the ROSAT All-Sky Survey provides new evidence for ongoing star formation in the central cluster galaxies (CCGs) of clusters with cooling flows. The CCG spectra, corrected for intrinsic reddening of 0.1~10^6 O stars to be present in the most luminous systems. Large B, A and F star populations are also inferred. Photoionization models show that the observed O stars may be responsible for much of the strong, nebular line emission seen in the galaxies. This is supported by a linear correlation between the number of O stars and the Hα luminosities of the CCGs. No correlation between the emission-line luminosity and radio power is observed. The data presented here are amongst the most compelling yet for massive star formation in cooling flows and suggest that the dominant source of the spatially extended excess UV/blue continua, frequently observed in CCGs, is young stars rather than scattered non-thermal emission from hidden active nuclei.

  5. SOLAR FLARE CHROMOSPHERIC LINE EMISSION: COMPARISON BETWEEN IBIS HIGH-RESOLUTION OBSERVATIONS AND RADIATIVE HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia [University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Dalda, Alberto Sainz [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States); Liu, Wei, E-mail: frubio@stanford.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in Hα 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic Hα profile is fainter in the core than for the observation. This indicates that Hα emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  6. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    Science.gov (United States)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  7. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hurley, Mairead [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Bowen, David V. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States); Meurer, Gerhardt [International Centre for Radio Astronomy Research, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009 (Australia); Sharon, Keren [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Straughn, Amber [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Broadhurst, Tom [Ikerbasque, Basque Foundation for Science, E-48011 Bilbao (Spain); Guhathakurta, Puragra, E-mail: bfrye@as.arizona.edu [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  8. LSDCat: Detection and cataloguing of emission-line sources in integral-field spectroscopy datacubes

    Science.gov (United States)

    Herenz, Edmund Christian; Wisotzki, Lutz

    2017-06-01

    We present a robust, efficient, and user-friendly algorithm for detecting faint emission-line sources in large integral-field spectroscopic datacubes together with the public release of the software package Line Source Detection and Cataloguing (LSDCat). LSDCat uses a three-dimensional matched filter approach, combined with thresholding in signal-to-noise, to build a catalogue of individual line detections. In a second pass, the detected lines are grouped into distinct objects, and positions, spatial extents, and fluxes of the detected lines are determined. LSDCat requires only a small number of input parameters, and we provide guidelines for choosing appropriate values. The software is coded in Python and capable of processing very large datacubes in a short time. We verify the implementation with a source insertion and recovery experiment utilising a real datacube taken with the MUSE instrument at the ESO Very Large Telescope. The LSDCat software is available for download at http://muse-vlt.eu/science/tools and via the Astrophysics Source Code Library at http://ascl.net/1612.002

  9. The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Science.gov (United States)

    Green, Andrew W.; Croom, Scott M.; Scott, Nicholas; Cortese, Luca; Medling, Anne M.; D'Eugenio, Francesco; Bryant, Julia J.; Bland-Hawthorn, Joss; Allen, J. T.; Sharp, Rob; Ho, I.-Ting; Groves, Brent; Drinkwater, Michael J.; Mannering, Elizabeth; Harischandra, Lloyd; van de Sande, Jesse; Thomas, Adam D.; O'Toole, Simon; McDermid, Richard M.; Vuong, Minh; Sealey, Katrina; Bauer, Amanda E.; Brough, S.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goodwin, Michael; Hampton, Elise J.; Hopkins, A. M.; Jones, D. Heath; Konstantopoulos, Iraklis S.; Lawrence, J. S.; Leon-Saval, Sergio G.; Liske, Jochen; López-Sánchez, Ángel R.; Lorente, Nuria P. F.; Mould, Jeremy; Obreschkow, Danail; Owers, Matt S.; Richards, Samuel N.; Robotham, Aaron S. G.; Schaefer, Adam L.; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; Zafar, T.

    2018-03-01

    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < log M*/ M⊙ < 11.6), and star formation rates of ˜10-4 to ˜101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around H α. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central.

  10. MASTER OT J132104.04+560957.8: A Polar with Absorption–Emission Line Reversals

    Science.gov (United States)

    Littlefield, Colin; Garnavich, Peter; Hoyt, Taylor J.; Kennedy, Mark

    2018-01-01

    We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, nonthermal continuum at the time of maximum light, without any individually discernible cyclotron harmonics. Using homogenous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic-field strength to be less than ∼30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the object’s long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.

  11. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  12. Emission Lines from the Gas Disk Around TW Hydra and the Origin of the Inner Hole

    Science.gov (United States)

    Gorti, U.; Hollenbach, D.; Najita, J.; Pascucci, I.

    2011-01-01

    We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from approx.10(exp -4) to 10(exp -5) M for 0.06AU 13.6 eV) flux from TW Hya. H2 pure rotational line emission comes primarily from r approx. 1 to 30 AU. [Oi] 63microns, HCO+, and CO pure rotational lines all arise from the outer disk at r approx. 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass approx. 4-7MJ situated at 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4x10(exp -9M)/yr and a remaining disk lifetime of approx.5 million years.

  13. Serendipitous Discovery of an Optical Emission-line Jet in NGC 232

    Science.gov (United States)

    López-Cobá, C.; Sánchez, S. F.; Cruz-González, I.; Binette, L.; Galbany, L.; Krühler, T.; Rodríguez, L. F.; Barrera-Ballesteros, J. K.; Sánchez-Menguiano, L.; Walcher, C. J.; Aquino-Ortíz, E.; Anderson, J. P.

    2017-11-01

    We report the detection of a highly collimated linear emission-line structure in the spiral galaxy NGC 232 through the use of integral field spectroscopy data from the All-weather MUse Supernova Integral field Nearby Galaxies survey. This jet-like feature extends radially from the nucleus and is primarily detected in [O III]λ5007 without clear evidence of an optical continuum counterpart. The length of the radial structure projected on sky reaches ˜3 kpc, which makes NGC 232 the second-longest emission-line jet reported. The ionized gas presents extreme [O III]/Hβ and [N II]/Hα line ratios, increasing along the jet-like structure. We discuss three possible scenarios to explain the observed structure: (I) direct ionization of infalling material from the intergalactic medium by the AGN, (II) photoionization by an undetected optical counterpart of the radio jet, and (III) fast shock ionization due to the lateral expansion of the radio jet across the interstellar medium. Our analysis favors in situ ionization.

  14. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  15. Investigation of ferromagnetic spinel semiconductors by hyperfine interactions of implanted nuclear probes

    CERN Document Server

    Samokhvalov, V; Dietrich, M; Schneider, F; Tiginyanu, I M; Tsurkan, V; Unterricker, S

    2003-01-01

    The semiconducting ferromagnetic spinel compounds CdCr//2Se //4, CdCr //2S//4, HgCr//2Se//4 and CuCr//2Se//4 (metallic) were investigated by the perturbed angular correlations (PAC) method with the radioactive probes **1**1**1In, **1**1**1**mCd, **1**1**1Ag, **1**1**7Cd, **1**9**9**mHg and **7**7Br. The probes were implanted at the ISOLDE on-line separator (CERN-Geneva) into single crystals. From the time dependence of the PAC spectra and the measured hyperfine interaction parameters: electric field gradient and magnetic hyperfine field, the probe positions and the thermal behavior of the probes could be determined. Cd, Ag and Hg are substituted at the A-site, In at the A- and B-site in the semiconducting compounds and Br at the anion position. Electric and magnetic hyperfine fields were used as test quantities for theoretical charge and spin density distributions of LAPW calculations (WIEN97).

  16. Proton structure in the hyperfine splitting of muonic hydrogen

    OpenAIRE

    Hagelstein, Franziska; Pascalutsa, Vladimir

    2015-01-01

    We present the leading-order prediction of baryon chiral perturbation theory for the proton polarizability contribution to the 2S hyperfine splitting in muonic hydrogen, and compare with the results of dispersive calculations.

  17. Measurement of the hyperfine structure of antihydrogen in a beam

    CERN Document Server

    Widmann, E.; Juhasz, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Suzuki, K.; Wunschek, B.; Zmeskal, J.; Federmann, S.; Kuroda, N.; Ulmer, S.; Yamazaki, Y.

    2013-01-01

    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.

  18. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    Science.gov (United States)

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  19. Kossel interferences of proton-induced X-ray emission lines in periodic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiyi; Le Guen, Karine; André, Jean-Michel [Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France); CNRS UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Ilakovac, Vita [Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France); CNRS UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Vickridge, Ian [Sorbonne Universités, UPMC Univ Paris 06, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05 (France); CNRS UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05 (France); Schmaus, Didier [Sorbonne Universités, UPMC Univ Paris 06, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05 (France); CNRS UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05 (France); Université Paris Diderot-P7, F-75205 Paris cedex 13 (France); and others

    2016-11-01

    The Kossel interferences generated by characteristic X-ray lines produced inside a periodic multilayer have been observed upon proton irradiation, by submitting a Cr/B{sub 4}C/Sc multilayer stack to 2 MeV protons and observing the intensity of the Sc and Cr Kα characteristic emissions as a function of the detection angle. When this angle is close to the Bragg angle corresponding to the emission wavelength and period of the multilayer, an oscillation of the measured intensity is detected. The results are in good agreement with a model based on the reciprocity theorem. The combination of the Kossel measurements and their simulation, will be a useful tool to obtain a good description of the multilayer stack and thus to study nanometer-thick layers and their interfaces.

  20. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    Science.gov (United States)

    Krawczynski, H.; Beheshtipour, B.

    2017-11-01

    Observations of the fluorescent Fe Kα emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe Kα emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.

  1. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C.F.; Horton, L.D.; Koenig, R.; Stamp, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H.P. [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  2. On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both ...... and an up to 42-fold spontaneous emission rate enhancement at the zero-phonon line (a ∼7-fold resonance enhancement in addition to a ∼6-fold broadband enhancement) is achieved, revealing the potential of our approach for on-chip realization of quantum-optical networks....

  3. Metal-line emission from the warm-hot intergalactic medium - II. Ultraviolet

    Science.gov (United States)

    Bertone, Serena; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Theuns, Tom; Wiersma, Robert P. C.

    2010-10-01

    Approximately half the baryons in the local Universe are thought to reside in the warm-hot intergalactic medium (WHIM), i.e. diffuse gas with temperatures in the range 105 ~103photons-1cm-2sr-1) comes from relatively dense (ρ > 102ρmean) and metal rich (Z >~ 0.1Zsolar) gas. As such, emission lines are highly biased tracers of the missing baryons and are not an optimal tool to close the baryon budget. However, they do provide a powerful means to detect the gas cooling on to or flowing out of galaxies and groups.

  4. Hubble Space Telescope WFC3 Early Release Science: Emission-Line Galaxies from Infrared Grism Observations

    OpenAIRE

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S H; Gardner, J P; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S; Rhoads, J.; Balick, B.

    2010-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 micron grism data in GOODS-South from the PEARS program, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are ...

  5. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-10-17

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  6. Quark nugget dark matter: no contradiction with 511 keV line emission from dwarf galaxies

    Science.gov (United States)

    Lawson, Kyle; Zhitnitsky, Ariel

    2017-02-01

    The observed galactic 511 keV line has been interpreted in a number of papers as a possible signal of dark matter annihilation within the galactic bulge. If this is the case then it is possible that a similar spectral feature may be observed in association with nearby dwarf galaxies. These objects are believed to be strongly dark matter dominated and present a relatively clean observational target. Recently INTEGRAL observations have provided new constraints on the 511 keV flux from nearby dwarf galaxies [1] motivating further investigation into the mechanism by which this radiation may arise. In the model presented here dark matter in the form of heavy quark nuggets produces the galactic 511 keV emission line through interactions with the visible matter. It is argued that this type of interaction is not strongly constrained by the flux limits reported in [2].

  7. Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud

    Science.gov (United States)

    Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team

    2018-01-01

    We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.

  8. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur (India); Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2016-03-15

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  9. BAT AGN Spectroscopic Survey - IV: Near-Infrared Coronal Lines, Hidden Broad Lines, and Correlation with Hard X-ray Emission

    Science.gov (United States)

    Lamperti, Isabella; Koss, Michael; Trakhtenbrot, Benny; Schawinski, Kevin; Ricci, Claudio; Oh, Kyuseok; Landt, Hermine; Riffel, Rogério; Rodríguez-Ardila, Alberto; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Mushotzky, Richard; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain

    2017-05-01

    We provide a comprehensive census of the near-infrared (NIR, 0.8-2.4 μm) spectroscopic properties of 102 nearby (z X-ray band (14-195 keV) from the Swift-Burst Alert Telescope survey. With the launch of the James Webb Space Telescope, this regime is of increasing importance for dusty and obscured AGN surveys. We measure black hole masses in 68 per cent (69/102) of the sample using broad emission lines (34/102) and/or the velocity dispersion of the Ca II triplet or the CO band-heads (46/102). We find that emission-line diagnostics in the NIR are ineffective at identifying bright, nearby AGN galaxies because [Fe II] 1.257 μm/Paβ and H2 2.12 μm/Brγ identify only 25 per cent (25/102) as AGN with significant overlap with star-forming galaxies and only 20 per cent of Seyfert 2 have detected coronal lines (6/30). We measure the coronal line emission in Seyfert 2 to be weaker than in Seyfert 1 of the same bolometric luminosity suggesting obscuration by the nuclear torus. We find that the correlation between the hard X-ray and the [Si VI] coronal line luminosity is significantly better than with the [O III] λ5007 luminosity. Finally, we find 3/29 galaxies (10 per cent) that are optically classified as Seyfert 2 show broad emission lines in the NIR. These AGN have the lowest levels of obscuration among the Seyfert 2s in our sample (log NH < 22.43 cm-2), and all show signs of galaxy-scale interactions or mergers suggesting that the optical broad emission lines are obscured by host galaxy dust.

  10. Kilohertz quasi-periodic oscillations and broad iron emission lines as a probe of strong-field gravity.

    NARCIS (Netherlands)

    Sanna, Andrea; Mendez, Mariano; Altamirano, Diego; Belloni, Tomaso

    2010-01-01

    Kilohertz quasi-periodic oscillations (kHz QPOs) and broad iron emission lines are thought to be produced at the inner edge of an accretion disk around neutron stars in low mass X-ray binary systems (LMXBs). The frequency of kHz QPOs and the width of iron lines strongly suggest that these phenomena

  11. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  12. Exploring Photometric Methods for Identifying Emission-Line B-Type Stars

    Science.gov (United States)

    Glazier, Amy; Whelan, David

    2017-06-01

    Emission-line B-type stars, or Be stars, are a mysterious class of stars defined by their unique behavior: These stars eject material from their surfaces, forming a disc of gas that surrounds them. Furthermore, the gaseous disc is not necessarily a permanent feature of its host star. Some Be stars’ discs vary in structure over time, and may even disappear only to be regenerated later. Other Be stars may never show appreciable changes in the natures of their discs once they have been formed. The disc’s existence causes the appearance of characteristic emission lines in Be stars’ spectra, making spectroscopy the traditional method for identifying Be stars. However, spectroscopy is an inefficient and time-consuming method of finding Be stars, because it allows for only a single star to be observed in each exposure, and each star may require multiple exposures for durations of many minutes. Photometry, on the other hand, can be used to observe many stars simultaneously, but at the cost of the greater detail afforded by spectroscopy. While photometry has been used to identify Be stars, its success has been limited. In this work, we present a novel photometric technique that enables efficient identification of Be stars.

  13. CONFIRMATION OF SMALL DYNAMICAL AND STELLAR MASSES FOR EXTREME EMISSION LINE GALAXIES AT z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Da Cunha, Elisabete; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia; Patel, Shannon G. [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Skelton, Rosalind E. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Straughn, Amber N., E-mail: maseda@mpia.de [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); and others

    2013-11-20

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (∼50 km s{sup –1}) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (≲ 3 × 10{sup 9} M {sub ☉}). Their large [O III] λ5007 equivalent widths (500-1100 Å) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10{sup 8}-10{sup 9} M {sub ☉}, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  14. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    Science.gov (United States)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.

    2017-11-01

    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ˜ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (I.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  15. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  16. THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Yan, Lin; Capak, Peter; Faisst, Andreas; Masters, Daniel [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125 (United States); Diaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Armus, Lee, E-mail: shemmati@ipac.caltech.edu [Spitzer Science Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2017-01-01

    We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, based on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.

  17. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Science.gov (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs

    Science.gov (United States)

    Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.

    2017-07-01

    Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of

  19. Computer expert system for spectral line simulation and selection in inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Yang, Pengyuan; Ying, Hai; Wang, Xiaoru; Huang, Benli

    1996-07-01

    This paper is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta, Part B (SAB). This hardcopy text, comprising the main body and an appendix, is accompanied by a disk with programs, data files and a brief manual. The main body discusses purpose, design principle and usage of the computer software for the inductively coupled plasma atomic emission spectrometry (ICP-AES) expert system. The appendix provides a brief instruction on the manipulation of the demonstration program and relevant information on accessing the diskette. The computer software of the expert system has been developed in C++ language to simulate spectra and to select analytical lines in ICP-AES. This expert system is based on a comprehensive model of non-LTE ICP-AES, which includes expertise in plasma discharges, analyte ionization and excitation, and spectral-line shapes. The system also provides several databases in which essential elemental and spectral data are stored. A logic reasoning engine is utilized for selection of the best analytical line with a main criterion of minimizing the true detection limit. The system is user-friendly with pop-up menus, an editor for database operation, and a graphic interface for the display of simulated spectra. The system can simulate spectra and predict spectral interferences with good accuracy.

  20. The clouds which form the extended emission line region of NGC 4388

    Science.gov (United States)

    Colina, L.

    1987-09-01

    Observations of the NGC 4388 galaxy (which is classified as Seifert 2 galaxy), performed at the Cassegrain focus of the La Silla 2.2-m telescope, are discussed. Long-slit spectroscopy was obtained at position angles 23 and 152 deg, with the O III line emission observed over a total extension of 24 arcsec symmetric to the nucleus. Contrary to the general behavior observed in the O III line profile of Seyfert galaxies, the NGC 4388 galaxy shows a peculiar red asymmetry. The overall O III line 5007-A profile is composed, both at position angles of 23 and 152 deg, of five clearly distinguishable components, separated by up to 600 km/s: the main component C2, which extends over the central region from 3 arcsec NE to 6 arcsec SE; two other major components, C3 and C4, extending over a region of +/- 6 arcsec symmetrically with respect to the nucleus; and two smaller components, C1 and C5, concentrated at the center. It is suggested that these components could be associated with a system of giant clouds confined to the inner six arcsecs from the nucleus.

  1. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  2. The [CII] 158 μm line emission in high-redshift galaxies

    Science.gov (United States)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the

  3. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nemets, A. R., E-mail: Nemets-AR@nrcki.ru; Krupin, V. A.; Klyuchnikov, L. A., E-mail: lklyuchnikov@list.ru; Korobov, K. V.; Nurgaliev, M. R. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)

    2016-12-15

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurements is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.

  4. Ground-based observations of the [SII] 6731 Å emission lines of the Io plasma torus

    Science.gov (United States)

    Magalhães Fabíola, P.; Gonzalez, Walter; Echer, Ezequiel; Souza-Echer, Mariza P.; Lopes, Rosaly; Morgenthaler, Jeffrey P.; Rathbun, Julie

    2017-10-01

    The Io Plasma Torus (IPT) is a doughnut-shaped structure of charged particles, composed mainly of sulfur and oxygen ions. The main source of the IPT is the moon Io, the most volcanically active object in the Solar System. Io is the innermost of the Galilean moons of Jupiter, the main source of the magnetospheric plasma and responsible for injecting nearly 1 ton/s of ions into Jupiter's magnetosphere. In this work ground-based observations of the [SII] 6731 Å emission lines are observed, obtained at the MacMath-Pierce Solar Telescope. The results shown here were obtained in late 1997 and occurred shortly after a period of important eruptions observed by the Galileo mission (1996-2003). Several outbursts were observed and periods of intense volcanic activity are important to correlate with periods of brightness enhancements observed at the IPT. The time of response between an eruption and enhancement at IPT is still not well understood.

  5. Insights from WISP, an Unbiased Search for Distant Emission-line Galaxies

    Science.gov (United States)

    Malkan, M.; WISP Team

    2013-10-01

    The search for true physical pairs of galaxies at high redshifts has been greatly hindered by the difficulty of obtaining good spectroscopic redshifts. Multi-object near-infrared spectroscopy is especially effective, since it reaches the strongest rest-frame spectral features, especially emission lines. From ground-based telescopes, this is still very difficult to obtain for faint galaxies. However, the near-IR grism spectrographs on Hubble Space Telescope are ideal for a large, unbiased survey for galaxy groups and pairs. Without any pre-selection based on continuum properties, slitless spectroscopic surveys are extremely effective at uncovering large numbers of extreme dwarf galaxies, with very high specific star formation rates, and very low metallicities. We discuss preliminary results on pairs and other properties of galaxies found in the most ambitious of these surveys, the WFC-3 Infrared Spectroscopic Parallels (WISP).

  6. Investigating Quasar Diversity using UV, X-ray, and Emission-line Properties

    Science.gov (United States)

    Briana Rivera, Angelica; Richards, Gordon; Shemmer, Ohad; Gallagher, Sarah

    2018-01-01

    We investigate the diversity of quasars through the analysis of their UV (Sheldon et al, these proceedings), X-ray, and emission-line properties. We concentrate on a sample of 25 radio-quiet SDSS quasars with HST observations that all have similar optical luminosities and redshifts (z~0.5). These objects fill gaps in the sample of “reverberation mapped (RM)” quasars in terms of their CIV parameter space (CIV EQW vs. CIV blueshift). In addition to exploring their UV properties, we use Chandra observations to analyze their X-ray properties (Γ, αox, Δαox), in order to determine how accretion disk winds (which are regulated by αox) contribute to the diversity of UV emission-line properties in quasars. We compare optical and X-ray derived values of L/LEdd , as Γ has been shown to be an indicator of the accretion rate. We are able to determine Γ for 7 quasars from the Chandra sample with over 100 counts. Preliminary data reduction demonstrates that all of the quasars observed with over 100 counts have similar values of αox and Δαox (averaging ~ -1.56 and ~0.42, respectively), while those below 100 counts lie within a wider, weaker range (average αox ~ -1.78, and average Δαox ~0.2). With the combined UV and X-ray data, we explore the differences between quasars and attempt to understand how/when quasars can have high L/LEdd, but show little evidence for strong winds.

  7. Sequentially emission line addressing by microwave driven mercury free low pressure lamps

    Science.gov (United States)

    Ögün, C. M.; Kaiser, Ch.; Kling, R.; Light; Plasma Technologies Team

    2011-10-01

    As the use of mercury vapor lamps for lighting purposes will be banned in the European Union after 2015, finding a replacement for mercury in fluorescent lamps has become a challenge. Several low pressure gas discharge systems containing metal halides have been reported in the last decade. Examples are halides of indium and thallium with argon as auxiliary gas, which generate ultraviolet and visible emission lines. The peak emission intensities are adjustable by variation of plasma parameters, which allows addressing the color temperature of the lamp. In this contribution, we report on the effects of auxiliary gas pressure, cold spot temperatures and power densities for low pressure metal halide lamps filled with indium and thallium with regard to its spectral output. Since the guided surface wave discharge is the only method to increase the lamps power without changing the amplitude of the maintenance electrical field; the lamp discharges are sustained by microwave excited guided surface waves. A surfatron is used as coupling device of microwave energy.

  8. Effects of excitation laser wavelength on Ly-{alpha} and He-{alpha} line emission from nitrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Miloshevsky, G. V.; Sizyuk, T.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-01-15

    Laser-produced nitrogen plasmas emitting radiation at 2.48 nm (Ly-{alpha}) and 2.88 nm (He-{alpha}) are considered potential efficient sources for water-window (WW) microscopy. The atomic and optical properties of nitrogen plasma and influence of the laser wavelength on the line emission in the WW range are investigated. It is found that the optimal temperatures for maximum emission from Ly-{alpha} and He-{alpha} spectral lines are 40-60 eV and 80-100 eV, respectively. The WW line emission and the conversion efficiency (CE) are estimated for three distinct Nd:YAG laser wavelengths (1064 nm, 532 nm, and 266 nm). The calculated CEs are compared with experimentally observed CE values. It is found that 1064 nm wavelength provides the highest CE from laser to Ly-{alpha} and He-{alpha} radiation.

  9. Effects of excitation laser wavelength on Ly-α and He-α line emission from nitrogen plasmas

    Science.gov (United States)

    Harilal, S. S.; Miloshevsky, G. V.; Sizyuk, T.; Hassanein, A.

    2013-01-01

    Laser-produced nitrogen plasmas emitting radiation at 2.48 nm (Ly-α) and 2.88 nm (He-α) are considered potential efficient sources for water-window (WW) microscopy. The atomic and optical properties of nitrogen plasma and influence of the laser wavelength on the line emission in the WW range are investigated. It is found that the optimal temperatures for maximum emission from Ly-α and He-α spectral lines are 40-60 eV and 80-100 eV, respectively. The WW line emission and the conversion efficiency (CE) are estimated for three distinct Nd:YAG laser wavelengths (1064 nm, 532 nm, and 266 nm). The calculated CEs are compared with experimentally observed CE values. It is found that 1064 nm wavelength provides the highest CE from laser to Ly-α and He-α radiation.

  10. Emission Lines of O III in The Optical and Ultraviolet Spectra of Planetary Nebulae

    Science.gov (United States)

    Crawford, F. L.; Keenan, F. P.; Aggarwal, K. M.; Aller, L. H.; Feibelman, W. A.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Recent R-matrix calculations of electron impact excitation rates in 0 III are used to calculate electron temperature and density-dependent emission line ratios R (sub 1) = I(4363 Angstroms)/ I(4960 Angstroms + 5007 Angstroms), R (sub 2) = I(1661 Angstroms + 1667 Angstroms)/ I(4960 Angstroms + 5007 Angstroms) and R (sub 3)= I(2322 Angstroms)/ I(1661 Angstroms + 1667 Angstroms), for a range of electron temperatures (7500 less than or equal to Te less than or equal to 30 000 K) and densities (10 (exp 4) less than or equal to N (sub e) less than or equal to 10 (exp 7) per cubic centimeters) applicable to gaseous nebulae. The ratio-ratio diagrams (R (sub 1), R (sub 2)) and (R (sub 1), R (sub 3)) should, in principle, allow the simultaneous determination of T (sub e) and N (sub e) from measurements of the 0 III features in a spectrum. Plasma parameters derived for a sample of high-excitation planetary nebulae from (R (sub 1), R (sub 2)) and (R (sub 1), R (sub 3)) measurements, produced using a combination of ultraviolet spectra obtained with the International Ultraviolet Explorer (IUE) and optical data from a number of observing runs, are found to show excellent internal consistency. They also show, in general, good agreement with the values of Te and Ne estimated from other line ratios in the nebulae, therefore providing observational support for the accuracy of the theoretical ratios and hence the atomic data adopted in their derivation.

  11. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  12. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Michael J.; Hayes, Matthew [Department of Astronomy, AlbaNova University Centre, Stockholm University, SE-10691 Stockholm (Sweden); Scarlata, Claudia; Mehta, Vihang [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Henry, Alaina; Hathi, Nimish; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Cohen, Seth; Windhorst, Rogier [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Haardt, Francesco [DiSAT, Università dellInsubria, via Valleggio 11, I-22100 Como (Italy); Siana, Brian [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2017-06-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  13. The Lyman Continuum Escape Fraction of Emission Line-selected z ˜ 2.5 Galaxies Is Less Than 15%

    Science.gov (United States)

    Rutkowski, Michael J.; Scarlata, Claudia; Henry, Alaina; Hayes, Matthew; Mehta, Vihang; Hathi, Nimish; Cohen, Seth; Windhorst, Rogier; Koekemoer, Anton M.; Teplitz, Harry I.; Haardt, Francesco; Siana, Brian

    2017-06-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ˜ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O II] nebular emission (N = 208) and, within a narrow redshift range, on [O III]/[O II]. We measure 1σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O II] emitters, f esc ≲ 5.6%, and strong [O III]/[O II] > 5 ELGs, f esc ≲ 14.0%. Our observations are not deep enough to detect f esc ˜ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ˜ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  14. Predicted Fe II Spectra plus UV through sub-mm Emission Line Fluxes for Other Species Arising in Narrow Line Regions of AGNs

    Science.gov (United States)

    Verner, Ekaterina; Bruhweiler, F. C.; Wills, B. J.

    2009-01-01

    Optical and UV spectra indicate pronounced Fe II emission from multitudinous lines superposed on the underlying UV and optical continua of Seyferts and QSOs. Although the intrinsic UV of the these objects exhibit strong Fe II emission arising in higher density Broad Line Region (BLR) gas, observations at visual wavelengths indicate Fe II originating in both BLR and lower density Narrow Line Region (NLR) gas. Our modeling of observed intrinsic UV Fe II emission produces better fits with both BLR and NLR components. We have calculated a grid of photoionization models appropriate for NLR, spanning a range of number density [log (n/cm-3) = 1.0 to 8.0], photoionizing flux [log (Φ/cm-2 s-1) = 10.0-18.0], microturbulence (ξ = 0, 2, 10, and 20 km s-1), and abundance (0.1, 0.5, 1.0 and 5 times solar). These models include the effects of cooling from Fe II. The effects of Fe II cooling and the use of a 371 versus an 830-level atom for Fe II in producing the Fe II emission spectra are explored. We present predicted Fe II spectra from the UV through the IR, plus fluxes of important lines of other species from the UV through the sub-mm wavelength range. These predictions, besides being relevant for studies of Fe II in AGNs, provide predicted fluxes for important lines for upcoming missions such as Herschel and SOPHIA. These results will be made available to researchers via the World Wide Web. We acknowledge the support of the National Science Foundation through grant AST-0607465 to CUA.

  15. Diagnostic Power of Broad Emission Line Profiles in Searches for Binary Supermassive Black Holes: Comparison of Models with Observations

    Science.gov (United States)

    Nguyen, Khai; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn

    2017-01-01

    Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to describe the spectral emission line signatures of these systems. We are particularly interested in modeling the profiles of the broad emission lines, which have been used as a tool to search for SBHBs. The goal of this work is to test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this context, we model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk that forms a common envelope about a gravitationally bound binary. Our first generation model shows that emission line profiles tend to have different statistical properties depending on the semi-major axis, mass ratio, eccentricity of the binary, and the alignment of the triple-disk system, and can in principle be used to constrain the statistical distribution of these parameters. We present the results of a second generation model, which improves upon the treatment of radiative transfer by taking into account the effect of line-driven winds on the properties of the model emission line profiles. This improvement allows a preliminary comparison of the model profiles with the observed SBHB candidates and AGN population in general.

  16. 7P1/2 hyperfine splitting in 206 , 207 , 209 , 213Fr and the hyperfine anomaly

    Science.gov (United States)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.

    2013-05-01

    We perform precision measurements on francium, the heaviest alkali with no stable isotopes, at the recently commissioned Francium Trapping Facility at TRIUMF. A combination of RF and optical spectroscopy allows better than 10 ppm (statistical) measurements of the 7P1 / 2 state hyperfine splitting for the isotopes 206 , 207 , 209 , 213Fr, in preparation for weak interaction studies. Together with previous measurements of the ground state hyperfine structure, it is possible to extract the hyperfine anomaly. This is a correction to the point interaction of the nuclear magnetic moment and the electron wavefunction, known as the Bohr Weisskopf effect. Our measurements extend previous measurements to the neutron closed shell isotope (213) as well as further in the neutron deficient isotopes (206, 207). Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  17. Absorption and emission line shapes in the O(2) atmospheric bands: Theoretical model and limb viewing simulations.

    Science.gov (United States)

    Abreu, V J; Bucholtz, A; Hays, P B; Ortland, D; Skinner, W R; Yee, J H

    1989-06-01

    A multiple scattering radiative transfer model has been developed to carry out a line by line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O(2)((1)Sigma(+)(g)-(3)Sigma(-)(g)) atmospheric bands (A, B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  18. Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations

    Science.gov (United States)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Goosmann, R.

    2017-11-01

    Recent studies have shown that line profile distortions are commonly observed in gravitationally lensed quasar spectra. Often attributed to microlensing differential magnification, line profile distortions can provide information on the geometry and kinematics of the broad emission line region (BLR) in quasars. We investigate the effect of gravitational microlensing on quasar broad emission line profiles and their underlying continuum, combining the emission from simple representative BLR models with generic microlensing magnification maps. Specifically, we considered Keplerian disk, polar, and equatorial wind BLR models of various sizes. The effect of microlensing has been quantified with four observables: μBLR, the total magnification of the broad emission line; μcont, the magnification of the underlying continuum; as well as red/blue, RBI and wings/core, WCI, indices that characterize the line profile distortions. The simulations showed that distortions of line profiles, such as those recently observed in lensed quasars, can indeed be reproduced and attributed to the differential effect of microlensing on spatially separated regions of the BLR. While the magnification of the emission line μBLR sets an upper limit on the BLR size and, similarly, the magnification of the continuum μcont sets an upper limit on the size of the continuum source, the line profile distortions mainly depend on the BLR geometry and kinematics. We thus built (WCI,RBI) diagrams that can serve as diagnostic diagrams to discriminate between the various BLR models on the basis of quantitative measurements. It appears that a strong microlensing effect puts important constraints on the size of the BLR and on its distance to the high-magnification caustic. In that case, BLR models with different geometries and kinematics are more prone to produce distinctive line profile distortions for a limited number of caustic configurations, which facilitates their discrimination. When the microlensing

  19. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...

    Indian Academy of Sciences (India)

    Unknown

    Mössbauer studies using Sn-119 were carried out to investigate the hyperfine fields present at the Sn site in these alloys. The hyperfine field distribution in these alloys as well as X-ray studies point to the chemical disorder present in both alloys. Co-existence of a paramagnetic portion along with the magnetic hyperfine part.

  20. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.

    2007-02-26

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  1. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: final emission line galaxy target selection

    Science.gov (United States)

    Raichoor, A.; Comparat, J.; Delubac, T.; Kneib, J.-P.; Yèche, Ch; Dawson, K. S.; Percival, W. J.; Dey, A.; Lang, D.; Schlegel, D. J.; Gorgoni, C.; Bautista, J.; Brownstein, J. R.; Mariappan, V.; Seo, H.-J.; Tinker, J. L.; Ross, A. J.; Wang, Y.; Zhao, G.-B.; Moustakas, J.; Palanque-Delabrouille, N.; Jullo, E.; Newmann, J. A.; Prada, F.; Zhu, G. B.

    2017-11-01

    We describe the algorithm used to select the emission line galaxy (ELG) sample at z ˜ 0.85 for the extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey IV, using photometric data from the DECam Legacy Survey. Our selection is based on a selection box in the g - r versus r - z colour-colour space and a cut on the g-band magnitude, to favour galaxies in the desired redshift range with strong [O II] emission. It provides a target density of 200 deg-2 on the North Galactic Cap and of 240 deg-2 on the South Galactic Cap (SGC), where we use a larger selection box because of deeper imaging. We demonstrate that this selection passes the extended Baryon Oscillation Spectroscopic Survey requirements in terms of homogeneity. About 50 000 ELGs have been observed since the observations have started in 2016, September. These roughly match the expected redshift distribution, though the measured efficiency is slightly lower than expected. The efficiency can be increased by enlarging the redshift range and with incoming pipeline improvement. The cosmological forecast based on these first data predict σ _{D_V}/D_V = 0.023, in agreement with previous forecasts. Lastly, we present the stellar population properties of the ELG SGC sample. Once observations are completed, this sample will be suited to provide a cosmological analysis at z ˜ 0.85, and will pave the way for the next decade of massive spectroscopic cosmological surveys, which heavily rely on ELGs. The target catalogue over the SGC will be released along with DR14.

  2. A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies

    Science.gov (United States)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos-Muñoz, L.; Linden, S. T.; Inami, H.; Larson, K. L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.

    2017-09-01

    We present an analysis of {[{{O}}{{I}}]}63, [O III]88, [N II]122, and {[{{C}}{{II}}]}158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ˜240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines (“deficits”) of line-to-FIR continuum emission for [N II]122, {[{{O}}{{I}}]}63, and {[{{C}}{{II}}]}158 as a function of FIR color and infrared luminosity surface density, {{{Σ }}}{IR}. The median electron density of the ionized gas in LIRGs, based on the [N II]122/[N II]205 ratio, is {n}{{e}} = 41 cm-3. We find that the dispersion in the {[{{C}}{{II}}]}158 deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed {[{{C}}{{II}}]}158 emission, f([{{C}} {{II}}{]}158{PDR}) = [{{C}} {{II}}{]}158{PDR}/{[{{C}}{{II}}]}158, which increases from ˜60% to ˜95% in the warmest LIRGs. The {[{{O}}{{I}}]}63/[{{C}} {{II}}{]}158{PDR} ratio is tightly correlated with the PDR gas kinetic temperature in sources where {[{{O}}{{I}}]}63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, {n}{{H}}, and intensity of the interstellar radiation field, G, in units of {G}0 and find G/{n}{{H}} ratios of ˜0.1-50 {G}0 cm3, with ULIRGs populating the upper end of the distribution. There is a relation between G/{n}{{H}} and {{{Σ }}}{IR}, showing a critical break at {{{Σ }}}{IR}* ≃ 5 × 1010 L ⊙ kpc-2. Below {{{Σ }}}{IR}* , G/{n}{{H}} remains constant, ≃0.32 {G}0 cm3, and variations in {{{Σ }}}{IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above {{{Σ }}}{IR}* , G/{n}{{H}} increases rapidly with {{{Σ }}}{IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.

  3. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described...

  4. Measurements and Models for Complete and Accurate Line Emission Determinations in the Six EUV Channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The understanding of the line emission from heavy ions is still incomplete and often inaccurate, resulting in missing or incorrect line assignments and missing or...

  5. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville (Spain); Dux, R.; Dunne, M. G. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  6. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  7. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam...

  8. c2d Spitzer IRS spectra of embedded low-mass young stars : gas-phase emission lines

    NARCIS (Netherlands)

    Lahuis, F.; van Dishoeck, E. F.; Jorgensen, J. K.; Blake, G. A.; Evans, N. J.

    Context. A survey of mid-infrared gas-phase emission lines of H(2), H(2)O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer "Cores to Disks" (c2d) legacy program. Aims. The environment of

  9. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    CERN Document Server

    Arnold, N D; Banks, G; Bechtold, R; Beczek, K; Benson, C; Berg, S; Berg, W; Biedron, S G; Biggs, J A; Boerste, K; Borland, M; Bosek, M; Brzowski, W R; Budz, J; Carwardine, J A; Castro, P; Chae, Y C; Christensen, S; Clark, C; Conde, M; Crosbie, E A; Decker, G A; Dejus, Roger J; Deleon, H; Den Hartog, P K; Deriy, B N; Dohan, D; Dombrowski, P; Donkers, D; Doose, C L; Dortwegt, R J; Edwards, G A; Eidelman, Y; Erdmann, M J; Error, J J; Ferry, R; Flood, R; Forrestal, J; Freund, H; Friedsam, H; Gagliano, J; Gai, W; Galayda, J N; Gerig, R; Gilmore, R L; Gluskin, E; Goeppner, G A; Goetzen, J; Gold, C; Grelick, A E; Hahne, M W; Hanuska, S; Harkay, K C; Harris, G; Hillman, A L; Hogrefe, R; Hoyt, J; Huang, Z; Jagger, J M; Jansma, W G; Jaski, M; Jones, S J; Keane, R T; Kelly, A L; Keyser, C; Kim, K J; Kim, S H; Kirshenbaum, M; Klick, J H; Knoerzer, K; Knott, M; Koldenhoven, R J; Labuda, S; Laird, R; Lang, J; Lenkszus, F R; Lessner, E S; Lewellen, J W; Li, Y; Lill, R M; Lumpkin, Alex H; Makarov, O A; Markovich, G M; McDowell, M; McDowell, W P; McNamara, P E; Meier, T; Meyer, D; Michalek, W; Milton, S V; Moe, H; Moog, E; Morrison, L; Nassiri, A; Noonan, J R; Otto, R; Pace, J; Pasky, S J; Penicka, J M; Pietryla, A F; Pile, G; Pitts, C; Power, J; Powers, T; Putnam, C C; Puttkammer, A J; Reigle, D; Reigle, L; Ronzhin, D; Rotela, E R; Russell, E F; Sajaev, Vadim; Sarkar, S; Scapino, J C; Schröder, K; Seglem, R A; Sereno, N S; Sharma, S K; Sidarous, J F; Singh, O; Smith, T L; Soliday, R; Sprau, G A; Stein, S J; Stejskal, B; Svirtun, V; Teng, L C; Theres, E; Thompson, K; Tieman, B J; Torres, J A; Trakhtenberg, E; Travish, G; Trento, G F; Vacca, J; Vasserman, I B; Vinokurov, N A; Walters, D R; Wang, J; Wang, X J; Warren, J; Wesling, S; Weyer, D L; Wiemerslage, G; Wilhelmi, K; Wright, R; Wyncott, D; Xu, S; Yang, B X; Yoder, W; Zabel, R B

    2001-01-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  10. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai Jinming, E-mail: wangjm@mail.ihep.ac.cn [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  11. Simulating the emission line radial velocity modulation in discless intermediate polars.

    Science.gov (United States)

    Garlick, M. A.

    1996-04-01

    A code has been developed which simulates the emission line radial velocity modulation expected in a discless intermediate polar, where the bulk of the accretion flow flips from one magnetic pole to the other twice every beat cycle. The situation is found to produce a radial velocity curve which exhibits a modulation at the beat period, although this is not strictly periodic in that it is modified by an intrinsic underlying orbital modulation; i.e., the morphology of the beat modulation over one beat cycle depends on the orbital phase. Interestingly, it is found that, when the resultant velocity curve over one orbital cycle is folded on the beat period and binned coarsely, a quasisinusoidal velocity profile can be reproduced, depending on the values chosen for the various free parameters. An important implication of this result is that the spin period of BG Canis Minoris could indeed be 847 s, and is not necessarily 913 s as the author had previously concluded. The model is also capable of reproducing the modulation seen in the newly discovered system RX J1712.6-2414.

  12. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P., E-mail: grzeimann@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  13. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yiping [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Bolton, Adam S.; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Zheng, Zheng; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Mao, Shude [Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing 100084 (China); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Pérez-Fournon, Ismael; Marques-Chaves, Rui [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 San Cristóbal de La Laguna, Tenerife (Spain); Oguri, Masamune [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ménard, Brice, E-mail: yiping.shu@nao.cas.cn [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-12-20

    We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thorough exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.

  14. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  15. The ultraviolet continuous and emission-line spectra of the Herbig-Haro objects HH 2 and HH 1

    Science.gov (United States)

    Boehm-Vitense, E.; Cardelli, J. A.; Nemec, J. M.; Boehm, K. H.

    1982-01-01

    Recent studies of the continuous spectrum of Herbig-Haro (HH) objects at optical and near-infrared wavelengths and the observation of continuous radiation in the ultraviolet have shown an unexpectedly steep increase of the flux toward shorter wavelengths. The present investigation provides the results of ultraviolet observations of HH 2. The obtained data are compared with the HH 1 data. It is found that HH 2 has an ultraviolet continuous and emission-line spectrum which is similar to that of HH 1. The UV line spectrum of HH 2H indicates an even somewhat larger ionization than does the HH 1 spectrum. As in HH1, the UV emission-line spectrum shows a much higher degree of ionization than that derived from the optical spectrum. Consequently, the same difficulty arises as in the case of HH 1. The complete UV plus optical spectrum cannot be explained by a single plane-parallel shock-wave model.

  16. Neon and [CII] 158 μm Emission Line Profiles in Dusty Starbursts and Active Galactic Nuclei

    Science.gov (United States)

    Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.

    2017-07-01

    Identifying and understanding the initial formation of massive galaxies and quasars in the early universe is a fundamental goal of observational cosmology. A rapidly developing capability for tracing luminosity sources to high redshifts is the observation of the [CII] 158 μm emission line at redshifts z > 4 using ground based submillimeter interferometers, with detections now having been made to z = 7. This has long been known as the strongest far-infrared line in most sources, often carrying about 1% of the total source luminosity, and is thought to be associated with star formation because it should arise within the photodissociation region (PDR) surrounding starbursts. The sample of 382 extragalactic sources has been analysed that have mid-infrared,high resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII] 158 μm line with the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII] 12.81μm , [NeIII] 15.55 μm , and [CII] 158 μm are studied, and intrinsic line widths are determined. All line profiles together with overlays comparing positions of PACS and IRS observations are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from AGN to starburst based on equivalent widths of the 6.2 μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classification for [CII], with median widths of 207 km s-1 for AGN, 248 km s-1 for composites, and 233 km s-1 for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A small number of objects with unusually broad lines or unusual redshift differences in any feature are identified.

  17. Emission-Line Galaxies from the Pears Hubble Ultra Deep Field: a 2d Detection Method and First Results

    Science.gov (United States)

    Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, James; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; di Serego Alighieri, Sperello

    2008-04-01

    The Hubble Space Telescope Advanced Camera for Surveys grism Probing Evolution And Reionization Spectroscopically (PEARS) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS north and south fields. One important subset of objects in these data is emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here, we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [O III] emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [O III] emitters having rest-frame EW>100 Å). There are 12 galaxies with multiple emitting knots—with different knots exhibiting varying flux values, suggesting that the differing star-formation properties across a single galaxy can in general be probed at redshifts gsim0.2-0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  18. Hyperfine splitting in simple ions for the search of the variation of fundamental constants

    Science.gov (United States)

    Oreshkina, Natalia S.; Cavaletto, Stefano M.; Michel, Niklas; Harman, Zoltán; Keitel, Christoph H.

    2017-09-01

    Numerous few-electron atomic systems are considered which can be used effectively for observing a potential variation of the fine-structure constant α and the electron-proton mass ratio me/mp . We examine optical magnetic dipole transitions between hyperfine-structure components in heavy highly charged H-like and Li-like ions with observably high sensitivity to a variation of α and me/mp . The experimental spectra of the proposed systems consist of a strong single line, which simplifies significantly the data analysis and shortens the necessary measurement time. Furthermore, we propose systems for an experimental test of the variation of quark masses and discuss the expected level of accuracy in assessing its limitations. Finally, we establish which constraints on the variation of these fundamental constants could be provided by measurements with a hyperfine-structure highly-charged-ion clock and some reference clock, showing that a significant improvement of the current limitations can be reached.

  19. Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind

    Science.gov (United States)

    Elvis, Martin

    2017-09-01

    The origin of the broad emission line region (BELR) in quasars and active galactic nuclei is still unclear. I propose that condensations form in the warm, radiation-pressure-driven, accretion disk wind of quasars creating the BEL clouds and uniting them with the other two manifestations of cool (˜104 K) gas in quasars, the low ionization phase of the warm absorbers (WAs) and the clouds causing X-ray eclipses. The cool clouds will condense quickly (days to years), before the WA outflows reach escape velocity (which takes months to centuries). Cool clouds form in equilibrium with the warm phase of the wind because the rapidly varying X-ray quasar continuum changes the force multiplier, causing pressure waves to move gas into stable locations in pressure-temperature space. The narrow range of two-phase equilibrium densities may explain the (luminosity){}1/2 scaling of the BELR size, while the scaling of cloud formation timescales could produce the Baldwin effect. These dense clouds have force multipliers of order unity and so cannot be accelerated to escape velocity. They fall back on a dynamical timescale (months to centuries), producing an inflow that rains down toward the central black hole. As they soon move at Mach ˜10-100 with respect to the WA outflow, these “raindrops” will be rapidly destroyed within months. This rain of clouds may produce the elliptical BELR orbits implied by velocity-resolved reverberation mapping in some objects and can explain the opening angle and destruction timescale of the narrow “cometary” tails of the clouds seen in X-ray eclipse observations. Some consequences and challenges of this “quasar rain” model are presented, along with several avenues for theoretical investigation.

  20. A New Model for Iron Emission Lines and Re-Burst in GRB X-Ray Afterglows

    OpenAIRE

    Gao, W. H.; Wei, D. M.

    2005-01-01

    Recently iron emission features have been observed in several X-ray afterglows of GRBs. It is found that the energy obtained from the illuminating continuum which produces the emission lines is much higher than that of the main burst.The observation of SN-GRB association indicates a fallback disk should be formed after the supernovae explosion. The disk is optically thick and advection-dominated and dense. We suggest that the delayed injection energy after the initial main burst, much higher ...

  1. Evidence for the Importance of Resonance Scattering in X-Ray Emission Line Profiles of the O Star Zeta Puppis

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, M.A.; /Columbia U.; Owocki, S.P.; /Bartol Research Inst.; Kahn, S.M.; /KIPAC, Menlo Park; Paerels, F.B.S.; /Columbia U.

    2006-10-10

    We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI in the X-ray spectrum of the O star {zeta} Pup, using XMM-Newton RGS data collected over {approx} 400 ks of exposure. We find that they cannot be well fit if the resonance and intercombination lines are constrained to have the same profile shape. However, a significantly better fit is achieved with a model incorporating the effects of resonance scattering, which causes the resonance line to become more symmetric than the intercombination line for a given characteristic continuum optical depth {tau}{sub *}. We discuss the plausibility of this hypothesis, as well as its significance for our understanding of Doppler profiles of X-ray emission lines in O stars.

  2. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    Science.gov (United States)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  3. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    Science.gov (United States)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  4. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Science.gov (United States)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-03-01

    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.

  5. Differential Performance and Parasitism of Caterpillars on Maize Inbred Lines with Distinctly Different Herbivore-Induced Volatile Emissions

    Science.gov (United States)

    Degen, Thomas; Bakalovic, Nenad; Bergvinson, David; Turlings, Ted C. J.

    2012-01-01

    Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E)-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated. PMID:23112820

  6. Spatially-Resolved HST GRISM Spectroscopy of a Lensed Emission Line Galaxy at Z to approximately 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-01-01

    We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i(sub 775)=27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of approx = 4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M(sub star) approx = 2 x 10(exp 9)Solar Mass) with a high specific star formation rate (approx = 20/ Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O /H)=8.8 +/- O.2). We break the continuous line-emitting region of this giant arc into seven approx 1 kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by -lkpc have a placement on the blue HI! region excitation diagram with f([OIII]/ f(H-Beta) and f([NeIII/ f(H-Beta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  7. Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions.

    Directory of Open Access Journals (Sweden)

    Thomas Degen

    Full Text Available Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.

  8. Fine and hyperfine excitation of C2H by collisions with He at low temperature

    Science.gov (United States)

    Spielfiedel, A.; Feautrier, N.; Najar, F.; Ben Abdallah, D.; Dayou, F.; Senent, M. L.; Lique, F.

    2012-04-01

    Modelling of molecular emission from interstellar clouds requires the calculation of rate coefficients for excitation by collisions with the most abundant species. From a new, highly correlated, two-dimensional potential energy surface, rotational excitation of the C2H(X2Σ+) molecule by collision with He is investigated. State-to-state collisional excitation cross-sections between the 25 first fine structure levels of C2H are calculated for energies up to 800 cm-1 which yields after thermal averaging rate coefficients up to T= 100 K. The exact spin splitting of the energy levels is taken into account. The recoupling technique introduced by Alexander & Dagdigian allows us to deduce the corresponding temperature-dependent hyperfine state-to-state rate coefficients. Propensity rules are discussed.

  9. Electron spin dynamics due to hyperfine coupling in quantum dots

    Science.gov (United States)

    Woods, L. M.; Reinecke, T. L.; Rajagopal, A. K.

    2008-02-01

    The dynamics of spins in semiconductor quantum dots often is controlled by their hyperfine coupling to nuclear spins. We develop a straightforward and efficient approach to describe the dynamics and the effective decoherence of the electron spins due to hyperfine coupling in realistic quantum dots. Systems with a large number of nuclei and an arbitrary initial nuclear polarization for which the number of nuclei initially flipped over is much less than the total number of nuclei are treated. This treatment employs a pole approximation within a Schrödinger equation of motion for the state of the coupled electron and nuclear spin system, and it allows us to treat systems with arbitrary initial conditions. We find that typical time scales for the effective spin decoherence are on the order of tens of microseconds.

  10. The first direct measurement of the hyperfine splitting in positronium

    Energy Technology Data Exchange (ETDEWEB)

    Suehara, T; Ishida, A; Namba, T; Asai, S; Kobayashi, T [Department of Physics and ICEPP, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 33-0033 (Japan); Saitot, H [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 (Japan); Yoshida, M [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Idehara, T; Ogawa, I; Kobayashi, S [FIR Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507 (Japan); Sabchevski, S, E-mail: suehara@icepp.s.u-tokyo.ac.j [Bulgarian Academy of Science, 1, 15 Noemvri Str., 1040 Sofia (Bulgaria)

    2009-03-01

    Positronium is an ideal system for the research of the QED. The hyperfine splitting of positronium (Ps-HFS) is sensitive to the new physics beyond the Standard Model via a vacuum oscillation. Previous experimental results of the Ps-HFS show 3.5 {sigma} discrepancy from the QED calculation, and it might be caused by uncertainties of the indirect method with static magnetic field and a few GHz RF. We developed a new direct measurement system of the Ps-HFS without static magnetic field, using a sub-THz gyrotron and a quasi-optical Fabry-Perot cavity. Status (hopefully the first result) of the direct positronium hyperfine transition observation will be presented.

  11. Measurement of hyperfine structure and isotope shifts in Gd II

    Science.gov (United States)

    Del Papa, Dylan F.; Rose, Christopher D. M.; Rosner, S. David; Holt, Richard A.

    2017-07-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts of 73 optical transitions in the wavelength range 421.5-455.8 nm and the hyperfine structures of 35 even parity and 33 odd parity levels in Gd II. Many of the isotope shifts and hyperfine structure measurements are the first for these transitions and levels. These atomic data can be used to correct for saturation and blending in the analysis of stellar spectra to determine chemical abundances. As a result, they have an important impact on studies of the history of nucleosynthesis in the Universe and on the use of photospheric abundance anomalies in Chemically Peculiar stars to infer indirect information about stellar interiors.

  12. Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    Energy Technology Data Exchange (ETDEWEB)

    X.-H. Guo; P.C. Tandy; A.W. Thomas

    2006-03-01

    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.

  13. Application of prominent spectral lines in the 125-180 nm range for inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, O.; Heitland, P. [Spectro Analytical Instruments GmbH, Kleve (Germany)

    2001-12-01

    A new axially viewed ICP optical emission spectrometer featuring an argon-filled optic and CCD detectors was evaluated for the application of prominent spectral lines in the 125-180 nm range. This wavelength range was investigated for several analytical applications of inductively coupled plasma optical emission spectrometry (ICP-OES). There are different advantages for the application of spectral lines below 180 nm. A number of elements, such as Al, Br, Cl, Ga, Ge, I, In, N, P, Pb, Pt, S and Te, were found to have the most intense spectral lines in the wavelength range from 125-180 nm. Compared with lines above 180 nm higher signal-to-background ratios were found. Low limits of detection using pneumatic nebulization of aqueous solutions for sample introduction were calculated for Al II 167.080 nm (0.04 {mu}g L{sup -1}), Br I 154.065 nm (9 {mu}g L{sup -1}), Cl I 134.724 nm (19 {mu}g L{sup -1}), Ga II 141.444 nm (0.8 {mu}g L{sup -1}), Ge II 164.919 nm (1.3 {mu}g L{sup -1}), I I 142.549 nm (13 {mu}g L{sup -1}), In II 158.583 nm (0.2 {mu}g L{sup -1}), P I 177.500 nm (0.9 {mu}g L{sup -1}), Pb II 168.215 nm (1.5 {mu}g L{sup -1}), Pt II 177.709 nm (2.6 {mu}g L{sup -1}), S I 180.731 nm (1.9 {mu}g L{sup -1}) and Te I 170.00 nm (4.6 {mu}g L{sup -1}). Numerous application examples for the use of those lines and other important spectral lines below 180 nm are given. Because of fewer emission lines from transition elements, such as Fe, Co, Cr, lines below 180 nm often offer freedom from spectral interferences. Additional lines of lower intensity for the determination of higher elemental concentrations are also available in the vacuum ultraviolet spectral range. This is specially useful when the concentrations are not in the linear range of calibration curves obtained with commonly used lines. (orig.)

  14. Hadronic deuteron polarizability contribution the hyperfine structure in muonic deuterium

    Directory of Open Access Journals (Sweden)

    Eskin A.V.

    2017-01-01

    Full Text Available The calculation of the contribution to the polarizability of the nucleus to hyperfine structure of muonic hydrogen is carried out within the unitary isobar model and on the basis of experimental data on the structure functions of deep inelastic lepton-proton and lepton-deuteron scattering. The calculation of virtual absorption cross sections of transversely and longitudinally polarized photons by nucleons in the resonance region is performed in the framework of the program MAID.

  15. Theoretical study of hyperfine structure constants of Ga isotopes

    Science.gov (United States)

    Wang, Q. M.; Li, J. G.; Fritzsche, S.; Godefroid, M.; Chang, Z. W.; Dong, C. Z.

    2012-11-01

    The hyperfine structure constants for the ground 4s24p 2P°3/2 and lowest excited states 4s25s 2S1/2 of 71Ga are calculated using the GRASP2K package based on the multi-configuration Dirac-Hartree-Fock method. Furthermore, the magnetic dipole (μ) and the electric quadrupole (Q) moments of the Ga isotopes from 67Ga to 81Ga are derived.

  16. Calculation of hyperfine structure constants of small molecules using ...

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  17. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  18. Hyperfine structure and g-factor measurements in ion traps

    Science.gov (United States)

    Knab, H.; Knöll, K. H.; Arbes, F.; Becker, O.; Werth, G.

    1992-10-01

    We report about measurements on ground-state hyperfine splitting constants of stable Eu+ isotopes in radio frequency ion traps and experiments on the electronic g-factor of Ba+ in a Penning trap. From the precision of both measurements, which ranges between 3·10-6 and 5·10-7, we conclude that precise determination of the differential Bohr-Weisskopf effect in chains of isotopes will be possible in the near future.

  19. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  20. Hyperfine structure and isotope shift study in singly ionized lead

    Science.gov (United States)

    Wąsowicz, T. J.; Drozdowski, R.; Kwela, J.

    2005-12-01

    Hyperfine structure and isotope shifts in five optical transitions: 424.5 nm (6s^25f ^2textrm{F}_{7/2} 6s^26d^2 textrm{D}_{5/2}), 537.2 nm (6s^25f ^2textrm{F}_{7/2} 6s6p^2 ^4textrm{P}_{5/2}), 554.5 nm (6s^27d ^2textrm{D}_{5/2} 6s^27p ^2textrm{P}_{3/2}), 560.9 nm (6s^27p^2 textrm{P}_{3/2} 6s^27s ^2textrm{S}_{1/2}) and 666.0 nm (6s^27p ^2textrm{P}_{1/2} 6s^27s ^2textrm{S}_{1/2}) of Pb II have been measured. As a light source the discharge tube was used. The hyperfine structure measurements were performed using metallic isotope 207Pb. For isotope shifts measurements natural lead was used. The high resolution spectral apparatus consisted of a silver coated Fabry-Perot etalon and a grating spectrograph combined with a CCD camera used as a detector. In the analysis of the spectra a computer simulation technique was used. The hyperfine structure observations yielded the splitting constants A for seven levels of Pb II. The isotope shift studies enabled to separate the mass and the field shifts and to determine values of changes of the mean square nuclear charge radii.

  1. The hyperfine properties of iron-gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)

    2016-12-15

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  2. Using an artificial neural network to classify multicomponent emission lines with integral field spectroscopy from SAMI and S7

    Science.gov (United States)

    Hampton, E. J.; Medling, A. M.; Groves, B.; Kewley, L.; Dopita, M.; Davies, R.; Ho, I.-T.; Kaasinen, M.; Leslie, S.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Allen, J.; Bland-Hawthorn, J.; Brough, S.; Bryant, J. J.; Croom, S.; Goodwin, M.; Green, A.; Konstantantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Owers, M. S.; Richards, S. N.; Shastri, P.

    2017-09-01

    Integral field spectroscopy (IFS) surveys are changing how we study galaxies and are creating vastly more spectroscopic data available than before. The large number of resulting spectra makes visual inspection of emission line fits an infeasible option. Here, we present a demonstration of an artificial neural network (ANN) that determines the number of Gaussian components needed to describe the complex emission line velocity structures observed in galaxies after being fit with lzifu. We apply our ANN to IFS data for the S7 survey, conducted using the Wide Field Spectrograph on the ANU 2.3 m Telescope, and the SAMI Galaxy Survey, conducted using the SAMI instrument on the 4 m Anglo-Australian Telescope. We use the spectral fitting code lzifu (Ho et al. 2016a) to fit the emission line spectra of individual spaxels from S7 and SAMI data cubes with 1-, 2- and 3-Gaussian components. We demonstrate that using an ANN is comparable to astronomers performing the same visual inspection task of determining the best number of Gaussian components to describe the physical processes in galaxies. The advantage of our ANN is that it is capable of processing the spectra for thousands of galaxies in minutes, as compared to the years this task would take individual astronomers to complete by visual inspection.

  3. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  4. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041 (Russian Federation); Nagorny, Ivan G., E-mail: ngrn@mail.ru [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); Institute for automation and control processes, Vladivostok, Russia 690041 (Russian Federation)

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  5. On-line measurements of emissions and atmospheric fate of compounds from agricultural waste management

    Science.gov (United States)

    Agricultural emissions impact air quality on a local and regional basis. Research on the emissions and reduction of greenhouse gases from agriculture has become commonplace due to concerns about climate but other chemical compounds also impact air quality. These include compounds that are photochemi...

  6. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter; Da Cunha, Elisabete; Meidt, Sharon E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Förster-Schreiber, Natascha M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Patel, Shannon G., E-mail: maseda@mpia.de [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We are able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.

  7. Measuring galaxy [O ii] emission line doublet with future ground-based wide-field spectroscopic surveys

    Science.gov (United States)

    Comparat, Johan; Kneib, Jean-Paul; Bacon, Roland; Mostek, Nick J.; Newman, Jeffrey A.; Schlegel, David J.; Yèche, Christophe

    2013-11-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7 ≤ z ≤ 2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [Oii] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [Oii] (λλ 3727, 3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies for the choice of the resolution for future spectrographs for BAO surveys. For bright [Oii] emitter surveys ([Oii] flux ~30 × 10-17 erg cm-2 s-1 like SDSS-IV/eBOSS), a resolution of R ~ 3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [Oii] emitter surveys ([Oii] flux ~10 × 10-17 erg cm-2 s-1 like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).

  8. CONSTRAINING THE MILKY WAY'S HOT GAS HALO WITH O VII AND O VIII EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Matthew J.; Bregman, Joel N., E-mail: mjmil@umich.edu, E-mail: jbregman@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States)

    2015-02-10

    The Milky Way hosts a hot (≈2 × 10{sup 6} K), diffuse, gaseous halo based on detections of z = 0 O VII and O VIII absorption lines in quasar spectra and emission lines in blank-sky spectra. Here we improve constraints on the structure of the hot gas halo by fitting a radial model to a much larger sample of O VII and O VIII emission line measurements from XMM-Newton/EPIC-MOS spectra compared to previous studies (≈650 sightlines). We assume a modified β-model for the halo density distribution and a constant-density Local Bubble from which we calculate emission to compare with the observations. We find an acceptable fit to the O VIII emission line observations with χ{sub red}{sup 2} (dof) = 1.08 (644) for best-fit parameters of n{sub o}r{sub c}{sup 3β}=1.35±0.24 cm{sup –3} kpc{sup 3β} and β = 0.50 ± 0.03 for the hot gas halo and negligible Local Bubble contribution. The O VII observations yield an unacceptable χ{sub red}{sup 2} (dof) = 4.69 (645) for similar best-fit parameters, which is likely due to temperature or density variations in the Local Bubble. The O VIII fitting results imply hot gas masses of M(<50 kpc) = 3.8{sub −0.3}{sup +0.3}×10{sup 9} M{sub ⊙} and M(<250 kpc) = 4.3{sub −0.8}{sup +0.9}×10{sup 10} M{sub ⊙}, accounting for ≲50% of the Milky Way's missing baryons. We also explore our results in the context of optical depth effects in the halo gas, the halo gas cooling properties, temperature and entropy gradients in the halo gas, and the gas metallicity distribution. The combination of absorption and emission line analyses implies a sub-solar gas metallicity that decreases with radius, but that also must be ≥0.3 Z {sub ☉} to be consistent with the pulsar dispersion measure toward the Large Magellanic Cloud.

  9. Excitation Cross Section Measurement for n=3 to n=2 Line Emission in Fe17+ to Fe23+

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Gu, M F; Beiersdorfer, P; Boyce, K R; Brown, G V; Kahn, S M; Kelley, R L; Kilbourne, C A; Porter, F S; Scofield, J H

    2006-02-08

    The authors report the measurement of electron impact excitation cross sections for the strong iron L-shell 3 {yields} 2 lines of Fe XVIII through Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and a 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture through a sophisticated model analysis which results in the excitation cross section for 48 lines at multiple electron energies. They also studied the electron density dependent nature of the emission lines, which is demonstrated by the effective excitation cross section of the 3d {yields} 2p transition in Fe XXI.

  10. SALT long-slit spectroscopy of quasar HE 0435-4312: fast displacement of the Mg II emission line

    Science.gov (United States)

    Średzińska, J.; Czerny, B.; Hryniewicz, K.; Krupa, M.; Kurcz, A.; Marziani, P.; Adhikari, T. P.; Basak, R.; You, B.; Wang, J.-M.; Hu, C.; Pych, W.; Bilicki, M.

    2017-05-01

    Context. The Mg II emission line is visible in the optical band for intermediate redshift quasars (0.4 frame. The Mg II line shape is clearly non-Gaussian but single-component, and the increase in line equivalent width and line shift is not accompanied with significant evolution of the line shape. We analyse the conditions in the Mg II and Fe II formation region and we note that the very large difference in the covering factor and the turbulent velocity also support the conclusion that the two regions are spatially separated. Conclusions: The measured acceleration of the line systematic shift is too large to connect it with the orbital motion at a distance of the BLR in this source. It may imply a precessing inner disk illuminating the BLR. Further monitoring is still needed to better constrain the variability mechanism. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-2-POL-003 and 2013-1-POL-RSA-002 (PI: B. Czerny).Spectra shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A32

  11. Controlling the Rotational and Hyperfine State of Ultracold $^{87}$Rb$^{133}$Cs Molecules

    CERN Document Server

    Gregory, Philip D; Hutson, Jeremy M; Cornish, Simon L

    2016-01-01

    We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave ?fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.

  12. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  13. Modeling the water line emission from the high-mass star-forming region AFGL 2591

    NARCIS (Netherlands)

    Poelman, D. R.; van der Tak, F. F. S.

    2007-01-01

    Context. Observations of water lines are a sensitive probe of the geometry, dynamics and chemical structure of dense molecular gas. The launch of Herschel with on board HIFI and PACS allows to probe the behaviour of multiple water lines with unprecedented sensitivity and resolution. Aims. We

  14. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Energy Technology Data Exchange (ETDEWEB)

    Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Lie, Tjung Jie; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha,Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.

  15. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wagg, Jeff [European Southern Observatory, Casilla 19001, Santiago (Chile); Pope, Alexandra; Alberts, Stacey [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Armus, Lee; Desai, Vandana [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Brodwin, Mark [Department of Physics, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Bussmann, Robert S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Le Floc' h, Emeric [AIM, CNRS, Universite Paris Diderot, Bat. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Melbourne, Jason [California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel, E-mail: jwagg@eso.org [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-06-20

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factor derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.

  16. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    Science.gov (United States)

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  17. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Najarro, F. [Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón a Ajalvir km 4, E-28850 Torrejón de Ardoz (Spain); Geballe, T. R. [Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720 (United States); Figer, D. F. [Center for Detectors, Rochester Institute of Technology, 74 Lomb Memorial Drive, Rochester, NY 14623 (United States); Fuente, D. de la [Instituto de Astronomía, Unidad Académica en Ensenada, Universidad Nacional Autónoma de México, Ensenada 22860, México (Mexico)

    2017-08-20

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of each of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.

  18. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A

    2006-05-10

    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  19. The absorption effect of the Lα-line Supplement to the paper 'On the Correlation Between the Hα-line emission rate and the ablation rate of a hydrogen pellet in tokamak discharges' – Nuclear Fusion 24 (1984) 697

    DEFF Research Database (Denmark)

    Chang, C. T.; Thomsen, Kenneth

    1985-01-01

    Several assumptions made in a previous study of the correlation between the Hα-line emission rate and the ablation rate of a hydrogen pellet injected into a tokamak discharge showed that the emission layer of the ablatant as optically thin with respect to all levels of the principal quantum numbe...

  20. A study of platinum-supported catalysts through hyperfine interactions

    Science.gov (United States)

    Saitovitch, H.; Silva, P. R. J.; Rodriguez, A. M.; Weberszpil, J.; Passos, F. B.; Schmal, M.

    1994-12-01

    The effect of indium addition on alumina-supported platinum catalysts was investigated by measurements of hyperfine interactions. Via lime differential perturbed angular correlation spectroscopy (TDPAC) on111Cd, Pt/Al2O3 catalysts were studied in the flow of a heptane/H2 gas stream. The results indicate that some amount of indium sticks to platinum which is then dispersed on the support surface. The amount of In that is free from platinum is mobile under reaction conditions, being capable of diluting platinum particles and draining off coke precursors from the platinum surface.

  1. A study of platinum-supported catalysts through hyperfine interactions

    Energy Technology Data Exchange (ETDEWEB)

    Saitovitch, H. (Centro Brasileiro de Pesquisas Fisicas (CBPF/CNPq), Rio de Janeiro, RJ (Brazil)); Silva, P.R.J. (Centro Brasileiro de Pesquisas Fisicas (CBPF/CNPq), Rio de Janeiro, RJ (Brazil)); Rodriguez, A.M. (Centro Brasileiro de Pesquisas Fisicas (CBPF/CNPq), Rio de Janeiro, RJ (Brazil)); Weberszpil, J. (Centro Brasileiro de Pesquisas Fisicas (CBPF/CNPq), Rio de Janeiro, RJ (Brazil)); Passos, F.B. (Dept. Eng. Quimica, Univ. Fed. Fluminense, Niteroi, RJ (Brazil)); Schmal, M. (COPPE/EQ, Univ. Fed. Rio de Janeiro, RJ (Brazil))

    1994-05-01

    The effect of indium addition on alumina-supported platinum catalysts was investigated by measurements of hyperfine interactions. Via time differential perturbed angular correlation spectroscopy (TDPAC) on [sup 111]Cd, Pt/Al[sub 2]O[sub 3] catalysts were studied in the flow of a heptane/H[sub 2] gas stream. The results indicate that some amount of indium sticks to platinum which is then dispersed on the support surface. The amount of In that is free from platinum is mobile under reaction conditions, being capable of diluting platinum particles and draining off coke precursors from the platinum surface. (orig.)

  2. On-Line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor

    OpenAIRE

    Ferge, Thomas

    2005-01-01

    On-Line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor / R. Zimmermann ... - In: Environmental science & technology. 39. 2005. S. 1393-1402

  3. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] Line and Dust Emission in 6

    Science.gov (United States)

    Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.

    2016-12-01

    We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.

  4. Low-energy X-ray line emission from IC 443

    Science.gov (United States)

    Charles, P. A.; Kahn, S. M.; Mason, K. O.; Tuohy, I. R.

    1981-01-01

    HEAO 1 observations of the spectrum of the supernova remnant IC 443 in the energy range of 0.4-3 keV reveal the presence of a complex structure suggestive of emission from Fe XVIII-XX, S XV-XVI, and Si XIII-XIV ions. The best electron temperature in the band for simple model fits is about (6-11) x 10 to the 6th K. Raymond and Smith collisional equilibrium emission models do not adequately fit the data. These results are discussed in terms of possible nonequilibrium effects in the remnant.

  5. Fine and hyperfine collisional excitation of C6H by He

    Science.gov (United States)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  6. High-resolution emission-line imaging of Seyfert galaxies. I - Observations. II - Evidence for anisotropic ionizing radiation

    Science.gov (United States)

    Haniff, Christopher A.; Wilson, Andrew S.; Ward, Martin J.

    1988-01-01

    A CCD direct imaging survey of 11 Seyfert galaxies with a mean seeing of 1.3 arcsec FWHM is presented. It is found that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the second part, this close connection between thermal and relativistic gases is examined. A scenario is proposed in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, with the dominant source of ionization being the nonstellar nuclear UV continuum.

  7. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  8. First on-line results from the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Procter, T. J., E-mail: thomas.procter@postgrad.manchester.ac.uk; Flanagan, K. T. [University of Manchester (United Kingdom); Collaboration: CRIS Collaboration

    2013-04-15

    The CRIS (Collinear Resonant Ionisation Spectroscopy) experiment at the on-line isotope separator facility, ISOLDE, CERN, has been constructed for high-sensitivity laser spectroscopy measurements on radioactive isotopes. The technique determines the magnetic dipole and electric quadrupole moments, nuclear spin and changes in mean-square charge radii of exotic nuclei via measurement of their hyperfine structures and isotope shifts. In November 2011 the first on-line run was performed using the CRIS beam line, when the hyperfine structure of {sup 207}Fr was successfully measured. This paper will describe the technique and experimental setup of CRIS and present the results from the first on-line experiment.

  9. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Anca; Castillo, Christopher A. [Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807 (United States); Shields, Joseph C. [Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Barth, Aaron J. [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-12-01

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.

  10. First-principles investigation of electronic structure and hyperfine properties of heme and nitrosyl-hemoglobin systems

    Science.gov (United States)

    Pujari, Minakhi

    the study of the hyperfine properties of the low spin nitrosyl-hemoglobin system. This system was of major interest in the present work to study the influence of the changes of pH and addition of inositol hexaphosphate on its structure and infer corresponding effects for the deoxy-hemoglobin system. Our results for nitrosyl-hemoglobin provide theoretical support to the model of essential weakening of the Fe- N3 bond that had been proposed in the literature to explain the observed change from nine- to three-line pattern in Electron Paramagnetic Resonance spectra associated with the transition of nitrosyl-hemoglobin from the R (relaxed, Oxy) form to the T(tense, Deoxy) form under the influence of inositol hexaphosphate or changes in pH. At low pH, it is associated with the T state and at high pH, it is associated with the R state. The analysis of Nuclear Quadrupole Coupling Constants of 14NNO and N314 shows that the latter is very sensitive to protonation and deprotonation of Npros. The magnetic hyperfine constants for 57Fe are in reasonably good agreement with experimental Mössbauer results in nitrosyl-hemoglobin. The energies of the free imidazole and nitrosyl-hemoglobin in the R and T forms, have also been analyzed for a better understanding of the physiological functions in different conformations. (Abstract shortened by UMI.)

  11. ASPIICS: a giant, white light and emission line coronagraph for the ESA proba-3 formation flight mission

    Science.gov (United States)

    Lamy, P. L.; Vivès, S.; Curdt, W.; Damé, L.; Davila, J.; Defise, J.-M.; Fineschi, S.; Heinzel, P.; Howard, Russel; Kuzin, S.; Schmutz, W.; Tsinganos, K.; Zhukov, A.

    2017-11-01

    Classical externally-occulted coronagraphs are presently limited in their performances by the distance between the external occulter and the front objective. The diffraction fringe from the occulter and the vignetted pupil which degrades the spatial resolution prevent useful observations of the white light corona inside typically 2-2.5 solar radii (Rsun). Formation flying offers and elegant solution to these limitations and allows conceiving giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at a distance of hundred meters [1, 2]. Such an instrument ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire) has been selected by the European Space Agency (ESA) to fly on its PROBA-3 mission of formation flying demonstration which is presently in phase B (Fig. 1). The classical design of an externally-occulted coronagraph is adapted to the formation flying configuration allowing the detection of the very inner corona as close as 0.04 solar radii from the solar limb. By tuning the position of the occulter spacecraft, it may even be possible to reach the chromosphere and the upper part of the spicules [3]. ASPIICS will perform (i) high spatial resolution imaging of the continuum K+F corona in photometric and polarimetric modes, (ii) high spatial resolution imaging of the E-corona in two coronal emission lines (CEL): Fe XIV and He I D3, and (iii) two-dimensional spectrophotometry of the Fe XIV emission line. ASPIICS will address the question of the coronal heating and the role of waves by characterizing propagating fluctuations (waves and turbulence) in the solar wind acceleration region and by looking for oscillations in the intensity and Doppler shift of spectral lines. The combined imaging and spectral diagnostics capabilities available with ASPIICS will allow mapping the velocity field of the corona both in the

  12. THE SMARTS MULTI-EPOCH OPTICAL SPECTROSCOPY ATLAS (SaMOSA): AN ANALYSIS OF EMISSION LINE VARIABILITY IN SOUTHERN HEMISPHERE FERMI BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Isler, Jedidah C. [Chancellor’s Faculty Fellow, Syracuse University, Department of Physics, Syracuse, NY 13244 (United States); Urry, C. M.; Bailyn, C.; Coppi, P.; Brady, M.; MacPherson, E.; Hasan, I.; Buxton, M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Smith, P. S., E-mail: jcisler@syr.edu [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tuscon, AZ 85721 (United States)

    2015-05-01

    We present multi-epoch optical spectroscopy of seven southern Fermi-monitored blazars from 2008 to 2013 using the Small and Medium Aperture Research Telescope System (SMARTS), with supplemental spectroscopy and polarization data from the Steward Observatory. We find that the emission lines are much less variable than the continuum; four of seven blazars had no detectable emission line variability over the 5 yr observation period. This is consistent with photoionization primarily by an accretion disk, allowing us to use the lines as a probe of disk activity. Comparing optical emission line flux with Fermi γ-ray flux and optical polarized flux, we investigate whether relativistic jet variability is related to the accretion flow. In general, we see no such dependence, suggesting that the jet variability is likely caused by internal processes like turbulence or shock acceleration rather than a variable accretion rate. However, three sources showed statistically significant emission line flares in close temporal proximity to very large Fermi γ-ray flares. While we do not have sufficient emission line data to quantitatively assess their correlation with the γ-ray flux, it appears that in some cases the jet might provide additional photoionizing flux to the broad-line region (BLR), which implies that some γ-rays are produced within the BLR, at least for these large flares.

  13. FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Tavares, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Chavushyan, V.; Patino-Alvarez, V.; Carraminana, A.; Carrasco, L. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Valtaoja, E. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland); Arshakian, T. G. [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Popovic, L. C. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Tornikoski, M.; Laehteenmaeki, A. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FI-02540 Kylmaelae (Finland); Lobanov, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-02-01

    We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, then our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.

  14. Spectra of charmed and bottom baryons with hyperfine interaction

    Science.gov (United States)

    Wang, Zhen-Yang; Qi, Jing-Juan; Guo, Xin-Heng; Wei, Ke-Wei

    2017-09-01

    Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of , the only L = 0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L = 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the “Review of Particle Physics", we find that in the GBE model, there exist some multiplets (Σc(b), and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature. Supported by National Natural Science Foundation of China (11175020, 11575023, U1204115)

  15. A radial-velocity study of 18 emission-line B stars

    Science.gov (United States)

    Jarad, M. M.; Hilditch, R. W.; Skillen, Ian

    1989-06-01

    A total of 647 radial velocities of 18 northern-hemisphere Be stars obtained over two observing seasons (1983-1985) are presented. These velocities have been determined by the cross-correlation technique applied to selected spectral regions avoiding the hydrogen lines and including the He I lines. Analyses of these data via Fourier techniques suggest that three new spectroscopic binaries are discovered and that seven stars show variability in radial velocity which may be attributable to radial or nonradial pulsation. Four known binary orbits are confirmed. Only four stars in the sample are found to have constant radial velocity. These results strengthen and extend the evidence that the Be phenomenon can result from pulsational instability and that the proportion of binary systems among Be stars is about the same as the normal stellar population. Very-high-resolution spectroscopy of those stars found to be variable in velocity should reveal changes in line-profile shape due to nonradial pulsation.

  16. Solar off-limb emission of the O I 7772 Å line

    Science.gov (United States)

    Pazira, H.; Kiselman, D.; Leenaarts, J.

    2017-08-01

    Aims: The aim of this paper is to understand the formation of the O I line at 7772 Å in the solar chromosphere. Methods: We used SST/CRISP observations to observe O I 7772 Å in several places around the solar limb. We compared the observations with synthetic spectra calculated with the RH code in the one-dimension spherical geometry mode. New accurate hydrogen collisional rates were included for the RH calculations. Results: The observations reveal a dark gap in the lower chromosphere, which is caused by variations in the line opacity as shown by our models. The lower level of the 7772 Å transition is populated by a downward cascade from the continuum. We study the effect of Lyman-β pumping and hydrogen collisions between the triplet and quintet system in O i. Both have a small but non-negligible influence on the line intensity.

  17. On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

    OpenAIRE

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2018-01-01

    Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both from a large Purcell factor and from a large radiative efficiency (low quenching rates) [1, 2]. In this work, we present a DLSPPW-based Bragg cavity resonator to direct emission from a single diamond ...

  18. Shift and broadening of emission lines in Nd 3: YAG laser crystal ...

    Indian Academy of Sciences (India)

    Spectroscopic properties of the flashlamp-pumped Nd 3 + :YAG laser as a function of input energy were studied over the range of 18–75 J. The spectral widths and shifts of quasi-three-level and four-level inter-Stark emissions within the respective intermanifold transitions of 4 F 3 / 2 → 4 I 9 / 2 and 4 F 3 / 2 → 4 I 11 / 2 were ...

  19. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr atoms. Keywords. Mössbauer spectroscopy; disordered alloy; magnetic hyperfine fields. PACS Nos 75.50.Bb; 61.18.Fs. 1. Introduction. Heusler alloys are ternary alloys of stoichiometric composition bearing the general for- mula X2YZ.

  20. Detection of the Direct Hyperfine Transition of Positronium Atoms using sub-THz High-power Radiation

    OpenAIRE

    Suehara, T.; Miyazaki, A.; Yamazaki, T; G. Akimoto; Ishida, A; NAMBA, T; Asai, S.; Kobayashi, T; Saito, H.(Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan); Yoshida, M.; IDEHARA, T; Ogawa, I.; Urushizaki, Y.; SABCHEVSKI, S

    2010-01-01

    Hyperfine splitting of positronium is an important parameter for particle physics. This paper gives experimental techniques and results of R&D studies of our experiment to observe direct hyperfine transition of ortho-positronium to para-positronium.

  1. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. ... Laser Plasma Division, Centre for Advanced Technology, Indore 452 013, India; Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 ...

  2. Resolution of hyperfine transitions in metastable 83Kr using Electromagnetically Induced Transparency

    CERN Document Server

    Kale, Y B; Tiwari, V B; Singh, S; Rawat, H S

    2015-01-01

    Narrow linewidth signals of Electromagnetically Induced Transparency (EIT) in the metastable 83Kr have been observed for the first time. Various hyperfine transitions in 4p55s[3/2]2 to 4p55p[5/2]3 manifolds of 83Kr have been identified through the experimentally observed EIT signals. Some unresolved or poorly resolved hyperfine transitions in saturated absorption spectroscopy (SAS) are clearly resolved in the present work. Using the spectral separation of these EIT identified hyperfine transitions, the magnetic hyperfine constant (A) and the electric quadrupole hyperfine constant (B) are determined with improved accuracy for 4p55s[3/2]2 and 4p55p[5/2]3 manifolds.

  3. Radial-velocity study of 18 emission-line B stars

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, M.M.; Hilditch, R.W.; Skillen, Ian (Saint Andrews Univ. (UK). Observatory)

    1989-06-01

    A total of 647 radial velocities of 18 northern-hemisphere Be stars obtained over two observing seasons (1983-1985) are presented. These velocities have been determined by the cross-correlation technique applied to selected spectral regions avoiding the hydrogen lines and including the He I lines. Analyses of these data via Fourier techniques suggest that three new spectroscopic binaries are discovered and that seven stars show variability in radial velocity which may be attributable to radial or non-radial pulsation. Four known binary orbits are confirmed. Only four stars in the sample are found to have constant radial velocity. These results strengthen and extend the evidence that the Be phenomenon can result from pulsational instability and that the proportion of binary systems amongst Be stars is about the same as the normal stellar populations. (author).

  4. Propagation and localization of quantum dot emission along a gap-plasmonic transmission line.

    Science.gov (United States)

    Castro-Lopez, M; Manjavacas, A; García de Abajo, J; van Hulst, N F

    2015-11-16

    Plasmonic transmission lines have great potential to serve as direct interconnects between nanoscale light spots. The guiding of gap plasmons in the slot between adjacent nanowire pairs provides improved propagation of surface plasmon polaritons while keeping strong light confinement. Yet propagation is fundamentally limited by losses in the metal. Here we show a workaround operation of the gap-plasmon transmission line, exploiting both gap and external modes present in the structure. Interference between these modes allows us to take advantage of the larger propagation distance of the external mode while preserving the high confinement of the gap mode, resulting in nanoscale confinement of the optical field over a longer distance. The performance of the gap-plasmon transmission line is probed experimentally by recording the propagation of quantum dots luminescence over distances of more than 4 μm. We observe a 35% increase in the effective propagation length of this multimode system compared to the theoretical limit for a pure gap mode. The applicability of this simple method to nanofabricated structures is theoretically confirmed and offers a realistic way to combine longer propagation distances with lateral plasmon confinement for far field nanoscale interconnects.

  5. Estimating Black Hole Masses in Active Galactic Nuclei Using the Mg II λ2800 Emission Line

    Science.gov (United States)

    Wang, Jian-Guo; Dong, Xiao-Bo; Wang, Ting-Gui; Ho, Luis C.; Yuan, Weimin; Wang, Huiyuan; Zhang, Kai; Zhang, Shaohua; Zhou, Hongyan

    2009-12-01

    We investigate the relationship between the linewidths of broad Mg II λ2800 and Hβ in active galactic nuclei (AGNs) to refine them as tools to estimate black hole (BH) masses. We perform a detailed spectral analysis of a large sample of AGNs at intermediate redshifts selected from the Sloan Digital Sky Survey, along with a smaller sample of archival ultraviolet spectra for nearby sources monitored with reverberation mapping (RM). Careful attention is devoted to accurate spectral decomposition, especially in the treatment of narrow-line blending and Fe II contamination. We show that, contrary to popular belief, the velocity width of Mg II tends to be smaller than that of Hβ, suggesting that the two species are not cospatial in the broad-line region. Using these findings and recently updated BH mass measurements from RM, we present a new calibration of the empirical prescriptions for estimating virial BH masses for AGNs using the broad Mg II and Hβ lines. We show that the BH masses derived from our new formalisms show subtle but important differences compared to some of the mass estimators currently used in the literature.

  6. A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    Science.gov (United States)

    Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark; hide

    2011-01-01

    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  7. A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT z {approx} 2: A MIX OF NUCLEAR ACTIVITY AND LOW-METALLICITY STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Kocevski, Dale D.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Mozena, Mark; Yesuf, Hassen [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Scarlata, Claudia [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Laird, Elise S.; Rangel, Cyprian [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Yan Renbin [Department of Physics, Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Atek, Hakim [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Dickinson, Mark [National Optical Astronomical Observatories, Tucson, AZ 85719 (United States); Donley, Jennifer L.; Ferguson, Henry C.; Grogin, Norman A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Finkelstein, Steven L. [Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843 (United States); and others

    2011-12-20

    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z {approx} 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1{sigma} detections of emission lines to f > 2.5 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}, means that the galaxies in the sample are typically {approx}7 times less massive (median M{sub *} = 10{sup 9.5} M{sub Sun }) than previously studied z {approx} 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/H{beta} ratios which are very similar to previously studied z {approx} 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the H{beta} emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L{sub [OIII]}/L{sub 0.5-10keV} ratio is intermediate between typical z {approx} 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  8. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  9. No “Maunder Minimum” Candidates in M67: Mitigating Interstellar Contamination of Chromospheric Emission Lines

    Science.gov (United States)

    Curtis, Jason Lee

    2017-06-01

    The solar analogs of M67 let us glimpse the probable behavior of the Sun on timescales surpassing the duration of human civilization. M67 can serve as a solar proxy because its stars share a similar age and composition with the Sun. Previous surveys of M67 observed that 15% of its Sun-like stars exhibited chromospheric activity levels below solar minimum, which suggest that these stars might be in activity-minimum states analogous to the Maunder Minimum. The activity diagnostic used, the HK index (relative intensities of the Ca II H & K lines integrated over 1 Å bandpasses), was measured from low-resolution spectra (R ≈ 5000), as is traditional and suitable for nearby, bright stars. However, for stars beyond the Local Bubble, the interstellar medium (ISM) imprints absorption lines in spectra at Ca II H & K, which negatively bias activity measurements when these lines fall within the HK index bandpass. I model the ISM clouds in the M67 foreground with high-resolution spectra of blue stragglers and solar analogs. I demonstrate that ISM absorption varies across the cluster and must be accounted for on a star-by-star basis. I then apply the ISM model to a solar spectrum and broaden it to the lower spectral resolution employed by prior surveys. Comparing HK indices measured from ISM-free and ISM-contaminated spectra, I find that all stars observed below solar minimum can be explained by this ISM bias. I conclude that there is no compelling evidence for Maunder Minimum candidates in M67 at this time.

  10. Predicting emission line fluxes and number counts of distant galaxies for cosmological surveys

    Science.gov (United States)

    Valentino, F.; Daddi, E.; Silverman, J. D.; Puglisi, A.; Kashino, D.; Renzini, A.; Cimatti, A.; Pozzetti, L.; Rodighiero, G.; Pannella, M.; Gobat, R.; Zamorani, G.

    2017-12-01

    We estimate the number counts of line emitters at high redshift and their evolution with cosmic time based on a combination of photometry and spectroscopy. We predict the H α, H β, [O II], and [O III] line fluxes for more than 35 000 galaxies down to stellar masses of ∼109 M⊙ in the COSMOS and GOODS-S fields, applying standard conversions and exploiting the spectroscopic coverage of the FMOS-COSMOS survey at z ∼ 1.55 to calibrate the predictions. We calculate the number counts of H α, [O II], and [O III] emitters down to fluxes of 1 × 10-17 erg cm-2 s-1 in the range 1.4 differential and cumulative H α counts, steeply declining at the brightest fluxes. We expect ∼9300-9700 and ∼2300-2900 galaxies deg-2 for fluxes ≥1 × 10-16 and ≥2 × 10-16 erg cm-2 s-1 over the range of 0.9 < z < 1.8. We show that the observed evolution of the main sequence of galaxies with redshift is enough to reproduce the observed counts variation at 0.2 < z < 2.5. We characterize the physical properties of the H α emitters with fluxes ≥2 × 10-16 erg cm-2 s-1 including their stellar masses, UV sizes, [N II]/H α ratios and H α equivalent widths. An aperture of R ∼ Re ∼ 0.5 arcsec maximizes the signal-to-noise ratio for a detection, whilst causing a factor of ∼2 × flux losses, influencing the recoverable number counts, if neglected. Our approach, based on deep and large photometric data sets, reduces the uncertainties on the number counts due to the selection and spectroscopic samplings whilst exploring low fluxes. We publicly release the line flux predictions for the explored photometric samples.

  11. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    Science.gov (United States)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  12. A source of antihydrogen for in-flight hyperfine spectroscopy

    CERN Document Server

    Kuroda, N; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

  13. Measurement and modeling of hyperfine parameters in ferroic materials

    CERN Document Server

    Gonçalves, João Nuno; Correia, J G

    This thesis presents the results of perturbed angular correlation (PAC) experiments , an experimental technique which measures the hyperfine interaction at probes (radioactive ions implanted in the materials to study), from which one infers local information on an atomic scale. Furthermore, abinitio calculations using density functional theory electronic obtain results that directly complement the experiments, and are also used for theoretical research. These methods were applied in two families of materials. The manganites, with the possible existence of magnetic, charge, orbital and ferroelectric orders, are of fundamental and technological interest. The experimental results are obtained in the alkaline-earth manganites (Ca, Ba, Sr), with special interest due to the structural variety of possible polymorphs. With probes of Cd and In the stability of the probe and its location in a wide temperature range is established and a comparison with calculations allows the physical interpretation of the results. Cal...

  14. Full hyperfine structure analysis of singly ionized molybdenum

    Science.gov (United States)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d01 =-133.37 MHz and a5p01 =-160.25 MHz for 4d45p; a4d01 =-140.84 MHz, a5p01 =-170.18 MHz and a5s10 =-2898 MHz for 4d35s5p; a5s10 =-2529 (2) MHz and a4d01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  15. Water emission towards the chemical rich outflow L1157: the WISH spectral line survey.

    Science.gov (United States)

    Vasta, M.; Codella, C.; Lorenzani, A.; Santangelo, G.; Nisini, B.; Giannini, T.; Tafalla, M.; Liseau, R.; Kristensen, L.; van Dischoeck, E. F.

    2011-05-01

    We present the results of the Herschel-HIFI water line survey performed in two bow shock regions (B2 and R) towards L1157, the prototype of chemically rich outflows. Observations, obtained as part of the WISH key project, cover several H2O ortho and para transitions in the frequency range from 500 to 1700 GHz. We will show the interestingly distinct behaviour of water profiles in the two positions, B2 and R, and how the R clump shows a clear dependence of excitation with velocity. We also compare H_2O line profiles with other molecules that trace different physical conditions (such as CH_3OH, CS, C18O, NH_3). Differently from other species such as ammonia, formaldehyde, and methanol that trace only the lower outflow velocities, water also traces higher velocities suggesting different formation routes. We will exhibit a comparison of H_2O with a standard jet-tracer, SiO, where it is clear that, although both species are tracing the same velocity range, the two profiles display a clear discrepancy challenging present theoretical models. A water LVG analysis, where we constrain the multi component physical conditions, is also provided.

  16. VizieR Online Data Catalog: Broad Hβ emission line in 102 Seyfert galaxies (Runco+, 2016)

    Science.gov (United States)

    Runco, J. N.; Cosens, M.; Bennert, V. N.; Scott, B.; Komossa, S.; Malkan, M. A.; Lazarova, M. S.; Auger, M. W.; Treu, T.; Park, D.

    2018-02-01

    A sample of 102 local (0.02=type-1 Seyfert galaxies was selected from the SDSS data release six (DR6) (Adelman-McCarthy et al. 2008, Cat. II/282). SDSS spectra are obtained from a 2.5 m ground-based telescope with a 3" diameter circular optical fiber and an exposure time of 54 s. SDSS spectra cover a wavelength range of 3800-9200 Å with an instrumental resolution of 170 km/s. The 102 objects selected from SDSS were observed again between 2009 January and 2010 March with the Low Resolution Imaging Spectrometer (LRIS) at the Keck 10 m telescope using a 1"x2" wide rectangular longslit aligned with the major axis of the host galaxy (given by SDSS). For eight objects with significantly weaker or apparently absent broad Hβ emission in the Keck spectra, follow-up observations were conducted in 2013 January and March with the 3 m Shane telescope of Lick observatory using the Kast spectrograph and 60 minutes total exposure time per object. The slit was aligned either along the major axis or perpendicular to it. 1D spectra were extracted using a 4 pixel (~3") width centered on the peak flux to mimic the 3" diameter circular fiber of SDSS. (2 data files).

  17. Flash Spectroscopy: Emission Lines From the Ionized Circumstellar Material Around 10-Day-Old Type II Supernovae

    Science.gov (United States)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; hide

    2016-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.

  18. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    Science.gov (United States)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  19. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  20. Continuum and Line Emission Simulation of Star-Forming Galaxies and Development of a New Sub-mm Inte

    Science.gov (United States)

    Lagache, Guilaine

    2018-01-01

    Nowadays, most of the constraints on the dusty star formation at high z comes from deep continuum surveys. We developed a new simulation of the dusty extragalactic sky with a realistic clustering. The comparison between single-dish and interferometric data showed that the clustering inside the beam of a single-dish instrument can seriously bias their measurements. Fortunately, these simulations also show that the beam of a >30-meter dish in the mm should not be affected by serious multiplicity effects. We will give predictions for important characteristics of future AtLAST surveys (as confusion limit, number of detections, properties of detected galaxies). These simulations can also include line emission to prepare a future sub-mm low-resolution spectroscopic survey at high z with AtLAST. Such a survey could be built on the legacy of the CONCERTO survey, that will map the fluctuations of the CII line intensity in the reionisation and post-reionisation epoch. A "super-CONCERTO" instrument on AtLAST would be a perfect first-light instrument to unveil the gigantic potential of this telescope.

  1. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Document Server

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  2. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  3. Redshift of the Heα emission line of He-like ions under a plasma environment

    Science.gov (United States)

    Fang, T. K.; Wu, C. S.; Gao, X.; Chang, T. N.

    2017-11-01

    By carefully following the spatial and temporal criteria of the Debye-Hückel (DH) approximation, we present a detailed theoretical study on the redshifts of the spectroscopically isolated Heα lines corresponding to the 1 s 2 p 1P →1 s21S emission from two-electron ions embedded in external dense plasma. We first focus our study on the ratio R =Δ ωα/ωo between the redshift Δ ωα due to the external plasma environment and the energy ωo of the Heα line in the absence of the plasma. Interestingly, the result of our calculation shows that this ratio R turns out to vary as a nearly universal function of a reduced Debye length λD(Z ) =(Z -1 ) D . Since the ratio R dictates the necessary energy resolution for a quantitative measurement of the redshifts and, at the same time, the Debye length D is linked directly to the plasma density and temperature, the dependence of R on D should help to facilitate the potential experimental efforts for a quantitative measurement of the redshifts for the Heα line of the two-electron ions. In addition, our study has led to a nearly constant redshift Δ ωα at a given D for all He-like ions with Z between 5 and 18 based on our recent critical assessment of the applicability of the DH approximation to atomic transitions. These two general features, if confirmed by observation, would offer a viable and easy alternative in the diagnostic efforts of the dense plasma.

  4. DUST ATTENUATION OF THE NEBULAR REGIONS OF z ∼ 2 STAR-FORMING GALAXIES: INSIGHT FROM UV, IR, AND EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, S.; Reddy, N.; Shivaei, I., E-mail: stephane.debarros@oabo.inaf.it [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ∼ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M{sub ⊙} yr{sup −1} > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ∼ 2 from previous studies.

  5. DETERMINATION OF THE SPONTANEOUS EMISSION PROBABILITIES AND THE COLLISION SELF-BROADENING COEFFICIENTS OF THE СО2 SPECTRAL LINES

    Directory of Open Access Journals (Sweden)

    K. I. Arshinov

    2013-01-01

    Full Text Available The technique of simultaneous determination of the spontaneous emission probabilities Аmn and the collision self-broadening coefficients γmn of the СО2 spectral lines is presented. The dependence of the absorption coefficient on the gas pressure, obtained for the СО210R22 line at temperature 300 K was measured. Using the data, the spontaneous emission probability Аmn and the collision self-broadening coefficient γmn were calculated.

  6. Spatial distribution of far-infrared rotationally excited CH+ and OH emission lines in the Orion Bar photodissociation region

    Science.gov (United States)

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2017-03-01

    Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas ( 500-1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation. Aims: Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms. Methods: We present spatially sampled maps of the CH+J = 3-2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of the CH+J = 2-1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations. Results: The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides

  7. Identification of S VIII through S XIV emission lines between 17.5 and 50 nm in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; García, R.; Hernández Sánchez, J.; Navarro, M.; Panadero, N.; Pastor, I.; Soleto, A.; the TJ-II Team

    2018-03-01

    43 spectral emission lines from F-like to Li-like sulphur ions have been identified in the wavelength range from 17.5 to 50 nm in spectra obtained following tracer injection into plasmas created in a magnetically confined plasma device, the stellarator TJ-II. Plasmas created and maintained in this heliac device with electron cyclotron resonance heating achieve central electron temperatures and densities up to 1.5 keV and 8 × 1018 m‑3, respectively. Tracer injections were performed with ≤6 × 1016 atoms of sulphur contained within ∼300 μm diameter polystyrene capsules, termed tracer encapsulated solid pellets, using a gas propulsion system to achieve velocities between 250 and 450 m s‑1. Once ablation of the exterior polystyrene shell by plasma particles is completed, the sulphur is deposited in the plasma core where it is ionized up to S+13 and transported about the plasma. In order to aid line identification, which is made using a number of atomic line emission databases, spectra are collected before and after injection using a 1 m focal length normal incidence spectrometer equipped with a CCD camera. This work is motivated by the need to clearly identify sulphur emission lines in the vacuum ultraviolet range of magnetically confined plasmas, as sulphur x-ray emission lines are regularly observed in both tokamak and stellarator plasmas.

  8. Development of a non-delay line constant fraction discriminator based on the Padé approximant for time-of-flight positron emission tomography scanners

    Science.gov (United States)

    Kim, S. Y.; Ko, G. B.; Kwon, S. I.; Lee, J. S.

    2015-01-01

    In positron emission tomography, the constant fraction discriminator (CFD) circuit is used to acquire accurate arrival times for the annihilation photons with minimum sensitivity to time walk. As the number of readout channels increases, it becomes difficult to use conventional CFDs because of the large amount of space required for the delay line part of the circuit. To make the CFD compact, flexible, and easily controllable, a non-delay-line CFD based on the Padé approximant is proposed. The non-delay-line CFD developed in this study is shown to have timing performance that is similar to that of a conventional delay-line-based CFD in terms of the coincidence resolving time of a fast photomultiplier tube detector. This CFD can easily be applied to various positron emission tomography system designs that contain high-density detectors with multi-channel structures.

  9. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals.

    Science.gov (United States)

    Chen, X; Rinkevicius, Z; Ruud, K; Ågren, H

    2013-02-07

    By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.

  10. The Dust Sublimation Radius as an Outer Envelope to the Bulk of the Narrow Fe Kalpha Line Emission in Type 1 AGNs

    Science.gov (United States)

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-01

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (RFe) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (Rdust) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. RFe matches Rdust well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, RFe is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of RFe, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  11. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Poshak; Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Kishimoto, Makoto [Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  12. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    Science.gov (United States)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  13. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    DEFF Research Database (Denmark)

    Riis, E.; Sinclair, A. G.; Poulsen, Ove

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz, or better are reported for transitions among the 1s2s S-3(1)-1s2p P-3(J) hyperfine manifolds for each of J = 0, 1, and 2 in both Li-6(+) and Li-7(+). A detailed analysis of hyperfine structure is performed for both the S and P st...

  14. Study of the evolution of the hyperfine parameters in nanostructured Fe-Mn-Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, M., E-mail: mizrahi@fisica.unlp.edu.ar; Cabrera, A. F.; Desimoni, J. [Facultad de Ciencias Exactas UNLP, Departamento de Fisica (Argentina)

    2007-09-15

    Hyperfine parameters evolution with the Cu content obtained by Moessbauer spectroscopy from mechanical milled (Fe{sub 79}Mn{sub 21}){sub 1-x}Cu{sub x} (x = 0.00 to 0.30) are presented. Results indicate that the Cu addition favors the formation of a FCC phase with two different magnetic states at room temperature. The trend of the hyperfine parameters with Cu composition suggests the incorporation of the Cu atoms at the regular FCC lattice sites.

  15. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    Science.gov (United States)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  16. Physical properties of emission-line galaxies at z ∼ 2 from near-infrared spectroscopy with Magellan fire

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Siana, Brian; Mobasher, Bahram; Domínguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, Patrick; Blanc, Guillermo; Dressler, Alan [Carnegie Observatories, Pasadena, CA 91101 (United States); Malkan, Mathew; Ross, Nathaniel R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Atek, Hakim [Laboratoire d' Astrophysique Ecole Polytechnique Fédérale, CH-1290 Sauverny (Switzerland); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Martin, Crystal L. [Department of Physics, Universitey of California, Santa Barbara, CA 93106 (United States); Rafelski, Marc; Colbert, James [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bunker, Andrew J. [Department of Physics, University of Oxford (United Kingdom); Bedregal, Alejandro G. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Teplitz, Harry [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States)

    2014-04-20

    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ∼ 2.2 and z ∼ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 ≲ z ≲ 2.3. Our FIRE follow-up spectroscopy (R ∼ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ∼ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ∼5-100 M {sub ☉} yr{sup –1} with a mean of 29 M {sub ☉} yr{sup –1}. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ∼0.45 Z {sub ☉}. The estimated stellar masses range from ∼10{sup 8.5}-10{sup 9.5} M {sub ☉}, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ –2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ∼100-400 cm{sup –3}. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z ≳ 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which

  17. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Ofek, E. O.; Horesh, A. [Benoziyo Center for Astrophysics, Faculty of Physics, The Weizmann Institute for Science, Rehovot 76100 (Israel); Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.; Perley, D. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arcavi, I.; Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Sollerman, J. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Sullivan, M. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Filippenko, A. V.; Nugent, P. E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Ebeling, H. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2016-02-10

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.

  18. Hyperfine coupling constants from internally contracted multireference perturbation theory

    CERN Document Server

    Shiozaki, Toru

    2016-01-01

    We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed ...

  19. SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

    Science.gov (United States)

    Zhang, Kai; Yan, Renbin; Bundy, Kevin; Bershady, Matthew; Haffner, L. Matthew; Walterbos, René; Maiolino, Roberto; Tremonti, Christy; Thomas, Daniel; Drory, Niv; Jones, Amy; Belfiore, Francesco; Sánchez, Sebastian F.; Diamond-Stanic, Aleksandar M.; Bizyaev, Dmitry; Nitschelm, Christian; Andrews, Brett; Brinkmann, Jon; Brownstein, Joel R.; Cheung, Edmond; Li, Cheng; Law, David R.; Roman Lopes, Alexandre; Oravetz, Daniel; Pan, Kaike; Storchi Bergmann, Thaisa; Simmons, Audrey

    2017-04-01

    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S II]/Hα, [N II]/Hα, [O II]/Hβ and [O I]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H II regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H II region models can only shift line ratios slightly relative to H II region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N II]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H II region models that fail to describe the DIG.

  20. Investigating the Threshold and Strength of Emission Lines Generated by Magnetized Stimulated Brillouin Scatter (MSBS) using HAARP facilities

    Science.gov (United States)

    Mahmoudian, A.; Scales, W.; Bernhardt, P. A.

    2011-12-01

    The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska provides effective radiated powers in the megawatt range that have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. In recent HAARP heating experiments, it has been shown that during the Magnetized Stimulated Brillouin Scattering MSBS instability, the pumped electromagnetic wave may decay into an electromagnetic wave and a low frequency electrostatic wave (either ion acoustic IA wave or electrostatic ion cyclotron EIC wave). According to the matching conditions, the O-mode electromagnetic wave can excite either an ion-acoustic wave with a frequency less than the ion cyclotron frequency that propagates along the magnetic field or an electrostatic ion cyclotron (EIC) wave with frequency just above the ion cyclotron frequency that propagates at an angle with respect to the magnetic field. Using Stimulated Electromagnetic Emission (SEE) spectral features, side bands which extend above and below the pump frequency can yield significant diagnostics for the modified ionosphere. It has been shown that the IA wave frequency offsets can be used to measure electron temperature in the heated ionosphere and EIC wave offsets can be used as a sensitive method to determine the ion species by measuring ion mass using the ion gyro-frequency offset. In this presentation the results of SEE experiment at 2010 PARS summer school and 2011 SSRC will be discussed. The experiment was performed at the 3rd electron gyro harmonic with frequency sweeping, power stepping and beam angle variation. Three diagnostics were implemented to study the SEE. There were 1) A 4 channel spectrum analyzer SEE receiver, 2) the University of Alaska SuperDARN radar facility and, 3) the MUIR incoherent scatter radar. The experimental results aimed to show the threshold for transmitter power

  1. Black hole mass estimates and emission-line properties of a sample of redshift z > 6.5 quasars

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, Gisella; Peterson, Bradley M.; Frank, Stephan [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Venemans, Bram P.; Decarli, Roberto; Walter, Fabian [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gennaro, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Simcoe, Robert A. [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Dietrich, Matthias [Department of Physics and Astronomy, Ohio University, Clippinger Lab 251B, Athens, OH 45701 (United States); McMahon, Richard G.; Hewett, Paul C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Mortlock, Daniel J. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ (United Kingdom); Simpson, Chris [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom)

    2014-08-01

    We present the analysis of optical and near-infrared spectra of the only four z > 6.5 quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys. Our data set consists of new Very Large Telescope/X-Shooter and Magellan/FIRE observations. These are the best optical/NIR spectroscopic data that are likely to be obtained for the z > 6.5 sample using current 6-10 m facilities. We estimate the black hole (BH) mass, the Eddington ratio, and the Si IV/C IV, C III]/C IV, and Fe II/Mg II emission-line flux ratios. We perform spectral modeling using a procedure that allows us to derive a probability distribution for the continuum components and to obtain the quasar properties weighted upon the underlying distribution of continuum models. The z > 6.5 quasars show the same emission properties as their counterparts at lower redshifts. The z > 6.5 quasars host BHs with masses of ∼10{sup 9} M{sub ☉} that are accreting close to the Eddington luminosity ((log(L{sub Bol}/L{sub Edd})) = –0.4 ± 0.2), in agreement with what has been observed for a sample of 4.0 < z < 6.5 quasars. By comparing the Si IV/C IV and C III]/C IV flux ratios with the results obtained from luminosity-matched samples at z ∼ 6 and 2 ≤ z ≤ 4.5, we find no evidence of evolution of the line ratios with cosmic time. We compare the measured Fe II/Mg II flux ratios with those obtained for a sample of 4.0 < z < 6.4 sources. The two samples are analyzed using a consistent procedure. There is no evidence that the Fe II/Mg II flux ratio evolves between z = 7 and z = 4. Under the assumption that the Fe II/Mg II traces the Fe/Mg abundance ratio, this implies the presence of major episodes of chemical enrichment in the quasar hosts in the first ∼0.8 Gyr after the Big Bang.

  2. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc' h, Émeric; Pannella, Maurilio; Schreiber, Corentin [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Charlot, Stéphane; Lehnert, M. D.; Pacifici, Camilla [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Trump, Jonathan R. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dickinson, Mark, E-mail: stephanie.juneau@cea.fr [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-06-10

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  3. The luminous infrared composite Seyfert 2 galaxy NGC 7679 through the [O III] λ 5007 emission line

    Science.gov (United States)

    Yankulova, I. M.; Golev, V. K.; Jockers, K.

    2007-07-01

    Context: NGC 7679 (Mrk 534) is a nearby (z = 0.0177) nearly face-on SB0 luminous infrared Sy2 galaxy in which starburst and AGN activities co-exist. The ionization structure is maintained by both the AGN power-law continuum and starburst. The galaxy is a bright X-ray source possessing a low X-ray column density NH Ukraine National Astronomical Observatory at peak Terskol, Caucasus, Russia. The observations were carried out in October 1996 with the Focal Reducer of the Max-Planck-Institut für Sonnensystemforschung, Germany. All observations were taken with tunable Fabry-Perot narrow-band imaging with spectral FWHM of the Airy profile δλ between 3 and 4 Å depending on the used wavelength. Results: The [O III]λ5007 emission-line image of the circumnuclear region of NGC 7679 shows elliptical isophotes extended along the PA ≈ 80° in the direction of the counterpart galaxy NGC 7682. There is a maximum of this emission which is shifted ~4 arcsec from the center as defined by the continuum emission. The maximum of ionization by the AGN power-law continuum traced by [O III]λ5007/Hα ratio is displaced by ~13 arcsec eastward from the nucleus. The direction where high ionization is observed at PA ≈ 80° ± 10° coincides with the direction to the companion galaxy NGC 7682 (PA ≈ 72°). On the contrary, at PA ~ 0° the ionization in the circumnuclear region is entirely due to hot stars. Conclusions: Both the ratio (N_ph/N_ion)hν > 55 eV ≈ 0.2-20 of the number N_ph of photons traced by [O III] to the number N_ion of high-energy ionizing photons and the presence of weak and elusive Hα broad wings indicate a hidden AGN. We conclude that the dust and gas in the high ionization direction PA ≈ 80° has a direct view to the central AGN engine. This possibly results in dust/star-formation decay. A large fraction of the unabsorbed Compton-thin Sy2s with [O III] luminosity ⪆1041 erg s-1 possesses a hidden AGN source. Based on observations obtained at the Peak Terskol

  4. LINE EMISSION AND ANISOTROPY EFFECTS IN C6+ ELECTRON-CAPTURE FROM LI(2S), LI-ASTERISK(2P) AND H-ASTERISK(N=2)

    NARCIS (Netherlands)

    OLSON, RE; HOEKSTRA, R

    Line emission cross sections for visible transitions after electron capture collisions of C6+ With Li(2s), Li-*(2p), and H-*(n = 2) are calculated for energies up to 50 keV/u; the values agree with available Li(2s) data. Anisotropy parameters are also given for aligned Li-*(2p). The results were

  5. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  6. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  7. Searching for the influence radius of AGN in nearby narrow emission-line galaxies using the CALIFA survey

    Science.gov (United States)

    Robleto-Orús, A. C.; Torres-Papaqui, J. P.; Coziol, R.; Morales-Vargas, A.; Romero-Cruz, F. J.; Ortega-Minakata, R. A.; Chow-Martinez, M.; Trejo-Alonso, J. J.

    2017-07-01

    In narrow emission-line galaxies, one important problem consists in discriminating gas ionization due to an AGN and gas ionization due to OB stars in active star-forming regions. This problem becomes more acute in case of AGNs classified as transition-type objects (TO), where star formation is relatively intense, and for LINERs, where the AGN is very weak. Thanks to the integral field spectroscopy, we have a new way to attack this problem. By definition, OB stars ionize a definite portion of space, the Strömgren's sphere, which size depends on the total luminosity of the star, its temperature, and the density of the surrounding gas. Therefore one expects gas ionized by OB stars to cover limited areas in a galaxy. On the other hand, due to the huge amount of ionizing photons emitted by an AGN, its "influence radius" is expected do be much more extended, in the order of kpc. Using a sample of galaxies from included in the CALIFA survey DR3, we will test a new way to measure the characteristic "influence radius" of AGN with different intensities.

  8. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z 330 times weaker than...... expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL...... quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three...

  9. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  10. The Effects of S/N on Measuring CIV Broad Emission Line Widths in Quasars - An Early Science Result from the Sloan Digital Sky Survey Reverberation Mapping Project

    Science.gov (United States)

    Denney, Kelly; SDSS-RM Team

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) Project spectroscopically monitored ~850 quasars over a seven square degree field for approximately six months with the BOSS spectrograph. While the time series analysis of the quasar continuum and emission-line variability, and thereby the potential to measure reverberation time delays from this sample, is still underway, we have used the subset (roughly half) of this sample containing the CIV 1549A broad emission line to investigate the effects of S/N on measuring this broad emission line width. Line width measurements are necessary for inferring the broad line region gas velocities used to determine the quasar black hole mass. However, literature studies have suggested line width measurements, and therefore black hole mass estimates, may be biased by the use of relatively low S/N, typical survey-quality, data, compared to the high S/N data that calibrate single-epoch black hole mass scaling relations. The SDSS-RM data set provides a unique opportunity to search for any systematic uncertainties in CIV line width measurements through a comparison of line widths measured from the single-epoch spectra, which are roughly equivalent to other SDSS/BOSS quasar spectra (though still twice the exposure time) to those measured from the high-S/N, campaign co-added spectra, which contain more than 30 epochs of each source. Here we present results from this investigation, which have implications for estimating CIV single-epoch black hole masses from the SDSS/BOSS and other surveys.

  11. Application of an on-line measurement system for HF emission control (1. part); Application d'un systeme de mesure en ligne pour la controle des emissions de fluor (1. partie)

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Celades, I.; Gomart, S.; Gazulla, F. [Instituto de Tecnologia Ceramica (ITC), Asociacion de Investigacion de las Industrias Ceramicas, Universitat Jaume 1, Castellon (Spain); Adams, H. [Boreal Laser Limited, Alberta (Canada); Tulip, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Electrical Engineering

    2004-12-01

    The present study describes the adaptation of an on-line HF analyser in real time, based on laser technology, for control of emissions from ceramic tile manufacturing kilns. The operation of the equipment was verified in several industrial facilities. The verification method consisted of comparing the on-line measuring system data with the results obtained in batch gas samplings (chemical method). For the batch determination of the fluorine concentration, an internal method developed by the Instituto de Tecnologia Ceramica (hereafter ITC), based on standard methods, has been used. ITC is accredited by the Spanish National Accreditation Body (ENAC) for the performance of this type of sampling. The on-line HF measurement system has been used to study the behaviour of HF emissions in standard ceramic tile firing kiln operating conditions and on implementing different actions in these kilns. (authors)

  12. Herschel/PACS Survey of protoplanetary disks in Taurus/ Auriga- Investigating the source of [OI] 63 μm line emission

    Science.gov (United States)

    Howard, Christian D.; Sandell, G.{ö.}ran; Vacca, William

    2012-03-01

    GASPS is a large Herschel Open time Key project studying the evolution of gas in protoplanetary disks. We target about 240 nearby objects in Taurus and young associations covering stellar ages between 0.3 - 30 Myr. We use the PACS instrument to observe continuum and selected gas tracers, like [{O}{I}] at 63 and 145 μm, [{C}{II}] at 158 μm as well as several molecular lines like OH, H_2O and CO. The strongest line we see is the [{O}{I}] at 63 μm. However, although it is clear that [{O}{I}] 63 μm traces gas in the disk, it is also strong in jets and outflows. Using the sources observed so far (42 sources detected in both line and continuum of 75 sources observed in spectroscopy and 92 in photometry) in Taurus/Auriga we explore how the [{O}{I}] 63 μm line strength correlates with 63 μm continuum, disk mass, accretion rate, stellar luminosity, and strength of the [{O}{I}] 6300 Å emission for both outflow and non-outflow sources. We find a clear, tight correlation between the strength of the [{O}{I}] 63 μm line emission and 63 μm continuum for non-outflow sources and a weaker correlation for outflow sources. In outflow sources the line can be up to 20 times stronger than in non-outflow sources, indicating that the [{O}{I}] 63 μm emission from the outflow will dominate over the disk emission. For the few sources where we also detect the [{O}{I}] 145 μm line, we find line ratios of 145 to 63 μm of 0.04 - 0.05, suggesting optically thin lines originating from gas with a temperature of a few 100 K, which suggests that the emission comes from the inner part/surface layers of the disk or from the shock regions in the outflow.

  13. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  14. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 = 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  15. Emission-Line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. I. The South Fields

    Science.gov (United States)

    Straughn, Amber N.; Pirzkal, Norbert; Meurer, Gerhardt R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; Gardner, Jonathan P.; Hathi, Nimish P.; Jansen, Rolf A.; Grogin, Norman; Panagia, Nino; di Serego Alighieri, Sperello; Gronwall, Caryl; Walsh, Jeremy; Pasquali, Anna; Xu, Chun

    2009-10-01

    We present results of a search for emission-line galaxies (ELGs) in the southern fields of the Hubble Space Telescope Probing Evolution And Reionization Spectroscopically (PEARS) grism survey. The PEARS South Fields consist of five Advanced Camera for Surveys pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. ELGs are one subset of objects that are prevalent among the grism spectra. Using a two-dimensional detection and extraction procedure, we find 320 emission lines originating from 226 galaxy "knots" within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission-line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the Hβ and [O III] doublet are blended. However, by fitting two Gaussian components to the Hβ and [O III] features, we find that many of the PEARS ELGs have high [O III]/Hβ ratios compared to other galaxy samples of comparable luminosities. The star formation rates of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z ~ 0.1-0.5 across individual galaxies. We find that the radial distances of these H II regions in general reside near the galaxies' optical continuum half-light radii, similar to those of giant H II regions in local galaxies.

  16. Metallicities of Emission-line Galaxies from HST ACS PEARS and HST WFC3 ERS Grism Spectroscopy at 0.6 < z < 2.4

    Science.gov (United States)

    Xia, Lifang; Malhotra, Sangeeta; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Kümmel, Martin; Walsh, Jeremy; Windhorst, Rogier A.; O'Connell, Robert

    2012-07-01

    Galaxies selected on the basis of their emission-line strength show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 < z < 2.4, selected by their prominent emission lines in low-resolution grism spectra in the optical with the Advanced Camera for Surveys on the Hubble Space Telescope and in the near-infrared using Wide-Field Camera 3. Using a sample of 11 emission-line galaxies at 0.6 < z < 2.4 with luminosities of -22 <~ MB <~ -19 which have [O II], Hβ, and [O III] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 < 12 + log (O/H) < 8.5. The galaxy stellar masses are derived using Bayesian-based Markov Chain Monte Carlo (πMC2) fitting of their spectral energy distribution, and span the mass range 8.1 < log (M */M ⊙) < 10.1. These galaxies show mass-metallicity (M-Z) and luminosity-metallicity (L-Z) relations, which are offset by -0.6 dex in metallicity at given absolute magnitude and stellar mass relative to the local Sloan Digital Sky Survey galaxies, as well as continuum-selected DEEP2 samples at similar redshifts. The emission-line-selected galaxies most resemble the local "green peas" galaxies and Lyα galaxies at z ~= 0.3 and z ~= 2.3 in the M-Z and L-Z relations and their morphologies. The G - M 20 morphology analysis shows that 10 out of 11 show disturbed morphology, even as the star-forming regions are compact. These galaxies may be intrinsically metal poor, being at early stages of formation, or the low metallicities may be due to gas infall and accretion due to mergers.

  17. Aperture corrections for disk galaxy properties derived from the CALIFA survey. Balmer emission lines in spiral galaxies

    Science.gov (United States)

    Iglesias-Páramo, J.; Vílchez, J. M.; Galbany, L.; Sánchez, S. F.; Rosales-Ortega, F. F.; Mast, D.; García-Benito, R.; Husemann, B.; Aguerri, J. A. L.; Alves, J.; Bekeraité, S.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; de Amorim, A. L.; de Lorenzo-Cáceres, A.; Ellis, S.; Falcón-Barroso, J.; Flores, H.; Florido, E.; Gallazzi, A.; Gomes, J. M.; González Delgado, R. M.; Haines, T.; Hernández-Fernández, J. D.; Kehrig, C.; López-Sánchez, A. R.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Monreal-Ibero, A.; Mourão, A.; Papaderos, P.; Rodrigues, M.; Sánchez-Blázquez, P.; Spekkens, K.; Stanishev, V.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.; Zibetti, S.; Ziegler, B.

    2013-05-01

    This work investigates the effect of the aperture size on derived galaxy properties for which we have spatially-resolved optical spectra. We focus on some indicators of star formation activity and dust attenuation for spiral galaxies that have been widely used in previous work on galaxy evolution. We investigated 104 spiral galaxies from the CALIFA survey for which 2D spectroscopy with complete spatial coverage is available. From the 3D cubes we derived growth curves of the most conspicuous Balmer emission lines (Hα, Hβ) for circular apertures of different radii centered at the galaxy's nucleus after removing the underlying stellar continuum. We find that the Hα flux (f(Hα)) growth curve follows a well-defined sequence with aperture radius that shows a low dispersion around the median value. From this analysis, we derived aperture corrections for galaxies in different magnitude and redshift intervals. Once stellar absorption is properly accounted for, the f(Hα)/f(Hβ) ratio growth curve shows a smooth decline, pointing toward the absence of differential dust attenuation as a function of radius. Aperture corrections as a function of the radius are provided in the interval [0.3, 2.5]R50. Finally, the Hα equivalent-width (EW(Hα)) growth curve increases with the size of the aperture and shows a very high dispersion for small apertures. This prevents us from using reliable aperture corrections for this quantity. In addition, this result suggests that separating star-forming and quiescent galaxies based on observed EW(Hα) through small apertures will probably result in low EW(Hα) star-forming galaxies begin classified as quiescent.

  18. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    Science.gov (United States)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  19. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  20. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    Science.gov (United States)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  1. Laser Spectroscopic Measurements of Isotope Shift and Hyperfine Structure in BISMUTH-207 and BISMUTH-208.

    Science.gov (United States)

    Fang, Zuyun

    1988-12-01

    Measurements of the hyperfine spectra of 38-yr ^{207}Bi and 3.7 times 10^5-yr ^{208}Bi in the 6p^3 ^4S_{3/2} - 6p^27s ^4P_{1/2} 306.7-nm resonance line were made using laser spectroscopic methods. The atomic excitation was produced with use of the frequency doubled output of a tunable ring dye laser. Laser absorption spectroscopy was used for the ^ {208}Bi measurement, while fluorescence spectroscopy, with photon counting detection, was used for ^{208}Bi. The experiments of ^{207}Bi were performed in both zero and high (0.7515 T) magnetic fields. The latter also provided a reliable measurement of the nuclear spin of ^{207}Bi. The results obtained from the ^ {208}Bi spectra are: A(^4P _{1/2}) = 4911(17)MHz and B( ^4S_{3/2}) = -314(92)MHz. These give the values: mu = 4.523(16) mu_{N} and Q = - 0.39(12)b. The measured isotope shift is: IS( ^{208}Bi-^{209 }Bi) = 1870(63)MHz. The results for ^{207} Bi are: I = 9/2, A(^4P_{1/2 }) = 4900.0(8.1)MHz, A(^4S_ {1/2}) = -444.6(1.5)MHz and B(^4S_{1/2}) = -443(17)MHz. These give the values: mu = 4.062(8)mu_ {N} and Q = -0.55(2)b. The measured isotope shift is: IS(^{207 }Bi-^{209}Bi) = 2997(10)MHz. The isotope shift odd-even staggering parameter for ^{208}Bi, gamma = 0.752(43), was derived and used for an isotonic comparison. The measured nuclear magnetic moments are in agreement with theoretical predictions. An improved calculation of the isotope shift constant using a diffuse nuclear charge model is given and a weak, but significant, model dependence of the isotope shifts was found.

  2. Study of Unwanted Emissions in the CENELEC-A Band Generated by Distributed Energy Resources and Their Influence over Narrow Band Power Line Communications

    Directory of Open Access Journals (Sweden)

    Noelia Uribe-Pérez

    2016-11-01

    Full Text Available Distributed Energy Resources might have a severe influence on Power Line Communications, as they can generate interfering signals and high frequency emissions or supraharmonics that may cause loss of metering and control data. In this paper, the influence of various energy resources on Narrowband Power Line Communications is described and analyzed through several test measurements performed in a real microgrid. Accordingly, the paper describes the effects on smart metering communications through the Medium Access Control (MAC layer analysis. Results show that the switching frequency of inverters and the presence of battery chargers are remarkable sources of disturbance in low voltage distribution networks. In this sense, the results presented can contribute to efforts towards standardization and normative of emissions at higher frequencies higher, such as CENELEC EN 50160 and IEC/TS 62749.

  3. Hyperfine electric parameters calculation in Si samples implanted with {sup 57}Mn→{sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Y., E-mail: yabreu@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Cruz, C.M.; Piñera, I.; Leyva, A.; Cabal, A.E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Van Espen, P. [Departement Chemie, Universiteit Antwerpen, Middelheimcampus, G.V.130, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van Remortel, N. [Departement Fysica, Universiteit Antwerpen, Middelheimcampus, G.U.236, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-15

    Nowadays the electronic structure calculations allow the study of complex systems determining the hyperfine parameters measured at a probe atom, including the presence of crystalline defects. The hyperfine electric parameters have been measured by Mössbauer spectroscopy in silicon materials implanted with {sup 57}Mn→{sup 57}Fe ions, observing four main contributions to the spectra. Nevertheless, some ambiguities still remain in the {sup 57}Fe Mössbauer spectra interpretation in this case, regarding the damage configurations and its evolution with annealing. In the present work several implantation environments are evaluated and the {sup 57}Fe hyperfine parameters are calculated. The observed correlation among the studied local environments and the experimental observations is presented, and a tentative microscopic description of the behavior and thermal evolution of the characteristic defects local environments of the probe atoms concerning the location of vacancies and interstitial Si in the neighborhood of {sup 57}Fe ions in substitutional and interstitial sites is proposed.

  4. The Theory of ESR Hyperfine-Structure Narrowing as Applied to Wide-Gap Semimagnetic Semiconductors

    Science.gov (United States)

    Aliev; Tagirov; Tagiev

    1996-11-01

    The theory of ESR hyperfine-structure exchange narrowing is developed. The kinetic equations describing the nonequilibrium magnetization dynamics of hyperfine components of ESR spectra are derived by using the nonequilibrium statistical-operator method. Numerical solution of these general equations is applied to the simulation of the experimental spectra of (Cd, Mn)Te crystals with a Mn2+ ion content of between 0.05 and 0.5%. The hyperfine-splitting constant, homogeneous ESR linewidth, and mean-square value of the exchange fluctuation frequency are obtained from the fitting of the spectra for different concentrations of manganese ions. The concentration dependence of the latter quantity is discussed in relation to the spatial dependence of magnetic-ion exchange interaction and the gap value in the band structure of semimagnetic semiconductors.

  5. Direct observation of the hyperfine transition of ground-state positronium.

    Science.gov (United States)

    Yamazaki, T; Miyazaki, A; Suehara, T; Namba, T; Asai, S; Kobayashi, T; Saito, H; Ogawa, I; Idehara, T; Sabchevski, S

    2012-06-22

    We report the first direct measurement of the hyperfine transition of the ground state positronium. The hyperfine structure between ortho-positronium and para-positronium is about 203 GHz. We develop a new optical system to accumulate about 10 kW power using a gyrotron, a mode converter, and a Fabry-Pérot cavity. The hyperfine transition has been observed with a significance of 5.4 standard deviations. The transition probability is measured to be A = 3.1(-1.2)(+1.6) × 10(-8) s(-1) for the first time, which is in good agreement with the theoretical value of 3.37 × 10(-8) s(-1).

  6. Intracavity frequency converted Raman laser producing 10 deep blue to cyan emission lines with up to 0.94  W output power.

    Science.gov (United States)

    Geskus, Dimitri; Jakutis-Neto, Jonas; Pask, Helen M; Wetter, Niklaus U

    2014-12-15

    Here we report 10 laser emission lines in the attractive deep blue to cyan spectral region from an intracavity frequency doubled Raman laser. The fundamental laser field that drives the Raman laser is based on the three-level transition of Nd:YLF. A maximum extracted quasi-continuous wave (qcw) output power of 0.94 W is achieved in the deep blue to cyan spectral regime.

  7. The HST/ACS Grism Parallel Survey: II. First Results and a Catalog of Faint Emission-Line Galaxies at z < 1.6

    OpenAIRE

    Drozdovsky, Igor; Yan, Lin; Chen, Hsiao-Wen; Stern, Daniel; Kennicutt Jr., Robert; Spinrad, Hyron; Dawson, Steve

    2005-01-01

    We present the first results from the HST/ACS Grism Parallel Survey, a large program obtaining deep, slitless ACS grism spectroscopy of high-latitude HST parallel fields. We report on 11 high Galactic latitude fields here, each with grism integration times >12 ks. We identify 601 compact emission line galaxies at z 5 E-18 ergs/cm^2/s (3 sigma). We determine redshifts by cross correlation of the target spectra with template spectra, followed ...

  8. The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: a supergiant/hypergiant candidate and a kinematically cold nucleus

    Science.gov (United States)

    Menezes, R. B.; Steiner, J. E.

    2017-04-01

    NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.

  9. Hyperfine frequency shift of atomic hydrogen in the presence of helium buffer gas

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Berlinsky, A.J. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-02-01

    A quantum mechanical thermal average is performed to obtain the temperature dependence of the hyperfine frequency shift (HFS) of hydrogen atoms in the presence of He buffer gas. The calculations are based on existing ab initio calculations of the hyperfine frequency shift as a function of internuclear separation and of the interatomic potential. We find that the HFS changes sign at fairly low temperature and has a small negative value at T = 1 K in agreement with recent measurements. The overall temperature dependence is shown to be quite sensitive to the interatomic potential.

  10. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements; Etude du couplage hyperfin dans les alliages gadolinium-praseodyme par mesures de chaleur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [French] Nous avons etudie le couplage hyperfin d'alliages de gadolinium-praseodyme par des mesures de chaleur specifique jusqu'a 0.3 K. Dans la premiere partie de cette etude nous decrivons le dispositif experimental. La deuxieme partie est consacree a des considerations theoriques. Nous avons etudie en detail le cas du praseodyme qui est une exception dans la serie des terres rares. La troisieme partie est consacree aux resultats experimentaux. (auteur)

  11. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    Science.gov (United States)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  12. Long-term profile variability of double-peaked emission lines in active galactic nuclei, and, Follow-up observations of candidate tidal disruption events

    Science.gov (United States)

    Gezari, Suvi T. K.

    2005-11-01

    We present the results of over 15 years of spectroscopic monitoring of the broad, double-peaked Ha lines in a sample of seven broad-line radio galaxies with extremely broad, double-peaked line profiles that are well modeled by emission from photoionized gas in a relativistic Keplerian accretion disk around a central black hole. We use the long-term profile variability of the broad Ha lines to rule out alternative "non-accretion disk" scenarios for the source of the broad double peaked line emission, test models for dynamical processes in the accretion disk, and measure physical parameters of the accretion disk and its central black hole. Luminous UV/X-ray flares are predicted to occur in the nuclei of inactive galaxies when a star is tidally disrupted by the galaxy's central supermassive black hole, and the bound fraction of the tidal debris is accreted. The ROSAT All-Sky Survey detected several large amplitude, soft X-ray flares from galaxies with no previous evidence for AGN activity, which were best explained as tidal disruption events. We obtained follow-up optical spectroscopy of three of the flaring galaxies a decade later with the STIS and a narrow slit to search for or place stringent limits on the presence of any persistent Seyfert- like emission in their nuclei. Two of the galaxies, RX J1624.9+7554 and RX J1242.6-1119, show no evidence for emission lines or a non-stellar continuum in their HST nuclear spectra, consistent with their ground-based classification as inactive galaxies. They remain the most convincing examples of tidal disruption events to date. The GALEX Ultra-Deep Imaging Survey (UDIS) has the ideal depth, wavelength coverage, and temporal sampling for detecting flares from tidal disruption events in the nuclei of galaxies over a large range of redshifts. We describe an analysis of the capability of GALEX to detect tidal disruption events, and describe our Chandra target-of-opportunity rapid follow-up X-ray imaging program to catch the early

  13. The ALMA Frontier Fields Survey. III. 1.1 mm emission line identifications in Abell 2744, MACSJ 0416.1-2403, MACSJ 1149.5+2223, Abell 370, and Abell S1063

    Science.gov (United States)

    González-López, J.; Bauer, F. E.; Aravena, M.; Laporte, N.; Bradley, L.; Carrasco, M.; Carvajal, R.; Demarco, R.; Infante, L.; Kneissl, R.; Koekemoer, A. M.; Muñoz Arancibia, A. M.; Troncoso, P.; Villard, E.; Zitrin, A.

    2017-12-01

    Context. Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Aims: Our aim is to detect emission lines present in continuum oriented observations. The detection of these lines provides spectroscopic redshift information and yields important properties of the galaxies. Methods: We perform a search for emission lines in the Atacama Large Millimeter/submillimeter Array observations of five clusters which are part of the Frontier Fields and assess the reliability of our detection. We additionally investigate plausibility by associating line candidates with detected galaxies in deep near-infrared imaging. Results: We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy kms-1and velocity dispersions (FWHM) of 25-600kms-1. Nine of these candidates lie in close proximity to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications, and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a so-called jellyfish galaxy that is strongly affected by ram pressure stripping, while another two are consistent with being main sequence galaxies based in their depletion times. Conclusions: This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be

  14. Changes in the pulse phase dependence of X-ray emission lines in 4U 1626-67 with a torque reversal

    Science.gov (United States)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab C.

    2018-03-01

    We report results from an observation with the XMM-Newton observatory of a unique X-ray pulsar 4U 1626-67. European Photon Imaging Camera-pn data during the current spin-up phase of 4U 1626-67 have been used to study pulse phase dependence of low-energy emission lines. We found strong variability of low-energy emission line at 0.915 keV with the pulse phase, varying by a factor of 2, much stronger than the continuum variability. Another interesting observation is that behaviour of one of the low-energy emission lines across the pulse phase is quite different from that observed during the spin-down phase. This indicates that the structures in the accretion disc that produce pulse phase dependence of emission features have changed from spin-down to spin-up phase. This is well supported by the differences in the timing characteristics (like pulse profiles, quasi periodic oscillations, etc.) between spin-down and spin-up phases. We have also found that during the current spin-up phase of 4U 1626-67, the X-ray pulse profile below 2 keV is different compared to the spin-down phase. The X-ray light curve also shows flares which produce a feature around 3 mHz in power density spectrum of 4U 1626-67. Since flares are dominant at lower energies, the feature around 3 mHz is prominent at low energies.

  15. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    Science.gov (United States)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  16. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data

    Science.gov (United States)

    Anderson, D. E.; Ehlmann, B. L.; Forni, O.; Clegg, S. M.; Cousin, A.; Thomas, N. H.; Lasue, J.; Delapp, D. M.; McInroy, R. E.; Gasnault, O.; Dyar, M. D.; Schröder, S.; Maurice, S.; Wiens, R. C.

    2017-04-01

    Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. We performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate salts found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. Data indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from 20 wt % carbonate (2 wt % C), 5-30 wt % sulfate (1-8 wt % S), and 5-10 wt % chloride (3-6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. These results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.

  17. Towards Measuring the Ground State Hyperfine Splitting of Antihydrogen -- A Progress Report

    CERN Document Server

    Sauerzopf, C.

    2016-06-20

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  18. ENDOR study of nitrogen hyperfine and quadrupole tensors in vanadyl porphyrins of heavy crude oil

    Directory of Open Access Journals (Sweden)

    Gracheva I.N., Gafurov M.R., Mamin G.V., Biktagirov T.B., Rodionov A.A., Galukhin A.V., Orlinskii S.B.

    2016-11-01

    Full Text Available We report the observation of pulsed electron-nuclear double resonance (ENDOR spectrum caused by interactions of the nitrogen nuclei 14N with the unpaired electron of the paramagnetic vanadyl complexes VO2+ of vanadyl porphyrins in natural crude oil. We provide detailed experimental and theoretical characterization of the nitrogen hyperfine and quadrupole tensors.

  19. Hyperfine contributions to spin-exchange frequency shifts in the hydrogen maser

    NARCIS (Netherlands)

    Verhaar, B.J.; Koelman, J.M.V.A.; Stoof, H.T.C.; Luiten, O.J.; Crampton, S.B.

    1987-01-01

    We have rigorously included hyperfine interactions during electron-spin-exchange collisions between ground state hydrogen atoms. We predict additional frequency shifts which are not compensated for by the usual methods of tuning maser cavities. These shifts are large compared to the potential

  20. Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen

    CERN Document Server

    Malbrunot, C.; Diermaier, M.; Dilaver, N.; Friedreich, S.; Kolbinger, B.; Lehner, S.; Lundmark, R.; Massiczek, O.; Radics, B.; Sauerzopf, C.; Simon, M.; Widmann, E.; Wolf, M.; Wünschek, B.; Zmeskal, J.

    2014-02-04

    The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the antihydrogen production setup (CUSP).

  1. Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sauerzopf, C., E-mail: clemens.sauerzopf@oeaw.ac.at; Capon, A. A.; Diermaier, M. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Dupré, P. [Atomic Physics Laboratory, RIKEN (Japan); Higashi, Y. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Kaga, C. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan); Kolbinger, B. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Leali, M. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Lehner, S. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Rizzini, E. Lodi [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Malbrunot, C. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Mascagna, V. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Massiczek, O. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Murtagh, D. J.; Nagata, Y.; Radics, B. [Atomic Physics Laboratory, RIKEN (Japan); Simon, M. C.; Suzuki, K. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Tajima, M. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Ulmer, S. [Ulmer Initiative Research Unit, RIKEN (Japan); and others

    2016-12-15

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  2. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2017-01-01

    ions. We find that both methods lead to very similar deviations from the experimental values for the [ReF6]2- complex, i.e. ~20% for the coupling constant using hybrid functionals. None of the methods is, however, able to reproduce the large anisotropy of the [ReF6]2- hyperfine tensor. For [IrF6...

  3. Hyperfine Quenching of the 2s2p 3P0 State of Berylliumlike Ions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K T; Chen, M H; Johnson, W R

    2008-03-13

    The hyperfine-induced 2s2p {sup 3}P{sub 0}-2s{sup 2} {sup 1}S{sub 0} transition rate for Be-like {sup 47}Ti{sup 18+} was recently measured in a storage-ring experiment by Schippers et al. [Phys. Rev. Lett. 98, 033001 (2007)]. The measured value of 0.56(3) s{sup -1} is almost 60% larger than the theoretical value of 0.356 s{sup -1} from a multiconfiguration Dirac-Fock calculation by Marques et al. [Phys. Rev. A 47, 929 (1993)]. In this work, we use a large-scale relativistic configuration-interaction method to calculate these hyperfine-induced rates for ions with Z = 6-92. Coherent hyperfine-quenching effects between the 2s2p {sup 1,3}P{sub 1} states are included in a perturbative as well as a radiation damping approach. Contrary to the claims of Marques et al., contributions from the {sup 1}P{sub 1} state are substantial and lead to a hyperfine-induced rate of 0.67 s{sup -1}, in better agreement with, though larger than, the measured value.

  4. Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-09-01

    Nuclear radiative recoil corrections of order α( Zα)5 to the hyperfine splitting of S-states in muonic hydrogen are calculated on the basis of quasipotential method in quantum electrodynamics. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the proton form factors are used.

  5. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...

  6. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    Science.gov (United States)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  7. METALLICITIES OF EMISSION-LINE GALAXIES FROM HST ACS PEARS AND HST WFC3 ERS GRISM SPECTROSCOPY AT 0.6 < z < 2.4

    Energy Technology Data Exchange (ETDEWEB)

    Xia Lifang; Malhotra, Sangeeta; Rhoads, James; Cohen, Seth; Windhorst, Rogier A. [School of Earth and Space Exploration, Arizona State University, AZ 85287-1404 (United States); Pirzkal, Nor [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Straughn, Amber [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, Steven [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching (Germany); O' Connell, Robert, E-mail: lifang.xia@asu.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2012-07-15

    Galaxies selected on the basis of their emission-line strength show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 < z < 2.4, selected by their prominent emission lines in low-resolution grism spectra in the optical with the Advanced Camera for Surveys on the Hubble Space Telescope and in the near-infrared using Wide-Field Camera 3. Using a sample of 11 emission-line galaxies at 0.6 < z < 2.4 with luminosities of -22 {approx}< M{sub B} {approx}< -19 which have [O II], H{beta}, and [O III] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 < 12 + log (O/H) < 8.5. The galaxy stellar masses are derived using Bayesian-based Markov Chain Monte Carlo ({pi}MC{sup 2}) fitting of their spectral energy distribution, and span the mass range 8.1 < log (M{sub *}/M{sub Sun} ) < 10.1. These galaxies show mass-metallicity (M-Z) and luminosity-metallicity (L-Z) relations, which are offset by -0.6 dex in metallicity at given absolute magnitude and stellar mass relative to the local Sloan Digital Sky Survey galaxies, as well as continuum-selected DEEP2 samples at similar redshifts. The emission-line-selected galaxies most resemble the local 'green peas' galaxies and Ly{alpha} galaxies at z {approx_equal} 0.3 and z {approx_equal} 2.3 in the M-Z and L-Z relations and their morphologies. The G - M{sub 20} morphology analysis shows that 10 out of 11 show disturbed morphology, even as the star-forming regions are compact. These galaxies may be intrinsically metal poor, being at early stages of formation, or the low metallicities may be due to gas infall and accretion due to mergers.

  8. Precision measurement of the 87Rb tune-out wavelength in the hyperfine ground state F =1 at 790 nm

    Science.gov (United States)

    Schmidt, Felix; Mayer, Daniel; Hohmann, Michael; Lausch, Tobias; Kindermann, Farina; Widera, Artur

    2016-02-01

    We report on a precision measurement of the D line tune-out wavelength of 87 in the hyperfine ground state |F =1 ,mF=0 ,±1 > manifold at 790 nm , where the scalar ac Stark shifts of the D1 and the D2 lines cancel. This wavelength is sensitive to usually neglected contributions from vector and tensor ac Stark shifts, transitions to higher principle quantum numbers, and core electrons. The ac Stark shift is probed by Kapitza-Dirac scattering of a rubidium Bose-Einstein condensate in a one-dimensional optical lattice in free space and controlled magnetic environment. The tune-out wavelength of the magnetically insensitive mF=0 state was determined to 790.01858 (23 )n m with sub-pm accuracy. An in situ absolute polarization, and magnetic background field measurement is performed by employing the ac vector Stark shift for the mF=±1 states. Comparing our findings to theory, we get quantitative insight into atomic physics beyond commonly used two-level atom approximations or the neglect of inner shell contributions.

  9. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    Science.gov (United States)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.

    2017-06-01

    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  10. A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1

    Science.gov (United States)

    Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto

    2018-01-01

    We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.

  11. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

    2007-08-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  12. Optical Alignment Techniques for Line-Imaging Velocity Interferometry and Line-Imaging Self-Emission of Targets at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R M; Celeste, J R; Celliers, P M; Frogget, B .; Guyton, R L; Kaufman, M I; Lee, T L; MacGowan, B J; Ng, E W; Reinbachs, I P; Robinson, R B; Tunnell, T W; Watts, P W

    2007-07-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 meters. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  13. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    Energy Technology Data Exchange (ETDEWEB)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M. [Indian Institute of Astrophysics, Koramangala, Bengaluru (India); Stenflo, J. O., E-mail: ksowmya@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scattering atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.

  14. Star formation rates from [C II] 158 μm and mid-infrared emission lines for starbursts and active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, L.; Lebouteiller, V.; Weedman, D.; Barry, D.; Spoon, H. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Samsonyan, A. [Byurakan Astrophysical Observatory, Byurakan 0213 (Armenia); Bernard-Salas, J. [Department of Physical Sciences, Open University, Milton Keynes MK7 6AA (United Kingdom); Houck, J., E-mail: sargsyan@isc.astro.cornell.edu, E-mail: dweedman@isc.astro.cornell.edu [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States)

    2014-07-20

    A summary is presented for 130 galaxies observed with the Herschel Photodetector Array Camera and Spectrometer instrument to measure fluxes for the [C II] 158 μm emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic aromatic hydrocarbon strength measured with the Spitzer Infrared Spectrograph. Redshifts from [C II] and line to continuum strengths (equivalent width (EW) of [C II]) are given for the full sample, which includes 18 new [C II] flux measures. Calibration of L([C II)]) as a star formation rate (SFR) indicator is determined by comparing [C II] luminosities with mid-infrared [Ne II] and [Ne III] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([C II)]) – 7.0, for SFR in M{sub ☉} yr{sup –1} and L([C II]) in L{sub ☉}. We conclude that L([C II]) can be used to measure SFR in any source to a precision of ∼50%, even if total source luminosities are dominated by an active galactic nucleus (AGN) component. The line to continuum ratio at 158 μm, EW([C II]), is not significantly greater for starbursts (median EW([C II]) = 1.0 μm) compared to composites and AGNs (median EW([C II]) = 0.7 μm), showing that the far-infrared continuum at 158 μm scales with [C II] regardless of classification. This indicates that the continuum at 158 μm also arises primarily from the starburst component within any source, giving log SFR = log νL{sub ν}(158 μm) – 42.8 for SFR in M{sub ☉} yr{sup –1} and νL{sub ν}(158 μm) in erg s{sup –1}.

  15. A TENTATIVE DETECTION OF AN EMISSION LINE AT 1.6 {mu}m FOR THE z {approx} 12 CANDIDATE UDFj-39546284

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, Gabriel B. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Van Dokkum, Pieter G.; Momcheva, Ivelina [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Illingworth, Garth D.; Oesch, Pascal A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Bouwens, Rychard J.; Labbe, Ivo; Franx, Marijn, E-mail: gbrammer@eso.org [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands)

    2013-03-01

    We present deep WFC3 grism observations of the candidate z {approx} 12 galaxy UDFj-39546284 in the Hubble Space Telescope (HST) Ultra Deep Field (UDF), by combining spectroscopic data from the 3D-HST and CANDELS surveys. The total exposure time is 40.5 ks and the spectrum covers 1.10 < {lambda} < 1.65 {mu}m. We search for faint emission lines by cross-correlating the two-dimensional G141 spectrum with the observed H{sub 160} morphology, a technique that is unique to slitless spectroscopy at HST resolution. We find a 2.7{sigma} detection of an emission line at 1.599 {mu}m-just redward of the JH{sub 140} filter-with flux 3.5 {+-} 1.3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}. Assuming that the line is real, it contributes 110% {+-} 40% of the observed H{sub 160} flux and has an observed equivalent width >7300 A. If the line is confirmed, it could be Ly{alpha} at z = 12.12. However, a more plausible interpretation, given current results, could be a lower redshift feature such as [O III]{lambda}4959,5007 at z = 2.19. We find two other 3D-HST [O III] emitters within 1000 km s{sup -1} of that redshift in the GOODS-South field. Additional support for this interpretation comes from the discovery of a bright ''[O III] blob'' with a secure G141 grism redshift of z = 1.605. This object has a strikingly large observed equivalent width of nearly 9000 A that results in similar ''dropout''colors as UDFj-39546284.

  16. Constraints on Porosity and Mass Loss in O-star Winds from the Modeling of X-ray Emission Line Profile Shapes

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-01-01

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (40%) are allowed if moderate porosity effects (h(sub infinity) less than approximately R(sub *)) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

  17. Lyman α emission from the first galaxies: signatures of accretion and infall in the presence of line trapping

    NARCIS (Netherlands)

    Latif, M. A.; Schleicher, Dominik R. G.; Spaans, M.; Zaroubi, S.

    The formation of the first galaxies is accompanied by large accretion flows and virialization shocks, during which the gas is shock heated to temperatures of similar to 10(4) K, leading to potentially strong fluxes in the Lyman alpha line. Indeed, a number of Lyman alpha blobs have been detected at

  18. Multidimensional Models of Type Ia Supernova Nebular Spectra: Strong Emission Lines from Stripped Companion Gas Rule Out Classic Single-degenerate Systems

    Science.gov (United States)

    Botyánszki, János; Kasen, Daniel; Plewa, Tomasz

    2018-01-01

    The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.

  19. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  20. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue; Hyperfeinstruktur-Analyse in der Magnetresonanzspektroskopie: von astrophysikalischen Messungen zu endogenen Biosensoren in menschlichem Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry

    2007-07-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  1. On-line monitoring of pine needles combustion emissions in the presence of fire retardant using a "thermogravimetry (TG)-bridge/mass spectrometry method".

    Science.gov (United States)

    Tzamtzis, N; Karma, S; Pappa, A; Statheropoulos, M

    2006-07-28

    In this work a new method called TG-bridge/mass spectrometry is presented, for the on-line monitoring of the pine needles combustion emissions in a common lab furnace. The TG-bridge (thermogravimetry-bridge) system has been developed in-house as a TG-MS (thermogravimetry-mass spectrometry) interface, for TG-MS analysis. In this work, TG-bridge was used for directly sampling of the combustion emissions from the inside of the furnace and transferring them into the mass spectrometer (MS), without disturbing the sub-pressure conditions inside the MS ion source. The effect of Fire-Trol 931 (a long-term fire retardant) on the emissions, produced during the combustion of pine needles, is tested in the lab for future application in the field. It was shown that in treated samples, increased evolution of ammonia and aromatic compounds took place, compared to untreated samples. Maximum concentrations of specific compounds, such as benzene and toluene, evolved during the combustion experiments in the furnace, were determined.

  2. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  3. Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions

    Directory of Open Access Journals (Sweden)

    Rachpon Kalra

    2014-06-01

    Full Text Available We present two strategies for performing two-qubit operations on the electron spins of an exchange-coupled pair of donors in silicon, using the ability to set the donor nuclear spins in arbitrary states. The effective magnetic detuning of the two electron qubits is provided by the hyperfine interaction when the two nuclei are prepared in opposite spin states. This can be exploited to switch SWAP operations on and off with modest tuning of the electron exchange interaction. Furthermore, the hyperfine detuning enables high-fidelity conditional rotation gates based on selective resonant excitation. The latter requires no dynamic tuning of the exchange interaction at all and offers a very attractive scheme to implement two-qubit logic gates under realistic experimental conditions.

  4. Towards isotope shift and hyperfine structure measurements of the element nobelium

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, Premaditya; Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, D-64289 Darmstadt (Germany); Laatiaoui, Mustapha [Helmholtz Institut Mainz, D-55099 Mainz (Germany); Block, Michael; Hessberger, Fritz-Peter [Helmholtz Institut Mainz, D-55099 Mainz (Germany); GSI, D-64291 Darmstadt (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, D-55122 Mainz (Germany); Kunz, Peter [TRIUMF, D-V6T2A3 Vancouver (Canada)

    2014-07-01

    Laser spectroscopy on the heaviest elements is of great interest as it allows the study of the evolution of relativistic effects on their atomic structure. In our experiment we exploit the Radiation Detected Resonance Ionization Spectroscopy technique and use excimer-laser pumped dye lasers to search for the first time the {sup 1}P{sub 1} level in {sup 254}No. Etalons will be used in the forthcoming experiments at GSI, Darmstadt, to narrow down the bandwidth of the dye lasers to 0.04 cm{sup -1}, for the determination of the isotope shift and hyperfine splitting of {sup 253,} {sup 255}No. In this talk results from preparatory hyperfine structure studies in nat. ytterbium and the perspectives for future experiments of the heaviest elements are discussed.

  5. AB-INITIO SIMULATION OF ELECTRONIC FEATURES OF HYPERFINE RARE EARTH OXIDE FILMS FOR SENSORY NANOSYSTEMS

    Directory of Open Access Journals (Sweden)

    A. V. Gulay

    2014-01-01

    Full Text Available Ab-Initio simulation of electronic features of sensoring nanomaterials based on rare earth oxides has been made by the example of yttrium oxide. The simulation method for thin films of nanometer scale consisted in the simulation of the material layer of the thickness equal to unit crystal cell size has been proposed within the VASP simulation package. The atomic bond breakdown in the crystal along one of the coordinate axes is simulated by the increase of a distance between the atomic layers along this axis up to values at which the value of free energy is stabilized. It has been found that the valence and conductivity bands are not revealed explicitly and the band gap is not formed in the hyperfine rare earth oxide film (at the film thickness close to 1 nm. In fact the hyperfine rare earth oxide film loses dielectric properties which were exhibited clear enough in continuum.

  6. Measurement of the excited-state transverse hyperfine coupling in NV centers via dynamic nuclear polarization

    Science.gov (United States)

    Poggiali, F.; Cappellaro, P.; Fabbri, N.

    2017-05-01

    Precise knowledge of a quantum system's Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the nonsecular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.

  7. Development of atomic spectroscopy technologies - Hyperfine structure of 2 period atoms using optogalvanic effects

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)

    2000-03-01

    The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)

  8. Electronic structure and hyperfine parameters of substitutional Al and P impurities in silica

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2002-01-01

    The electronic structure of substitutional Al and P impurities in silica is investigated using supercell calculations within the framework of density functional theory (DFT). Evaluation of hyperfine matrices for the magnetic nuclei facilitates comparison to experimental data. It is found that the......The electronic structure of substitutional Al and P impurities in silica is investigated using supercell calculations within the framework of density functional theory (DFT). Evaluation of hyperfine matrices for the magnetic nuclei facilitates comparison to experimental data. It is found......, there is an "asymmetry" between electrons and holes in the electronic states of the silica network: The hole present at the Al impurity goes into a nonbonding O orbital while the extra electron present at the P impurity goes into a P-O antibonding state....

  9. Effect of line-mixing on the emissions in the infrared CO2 bands in the middle and upper atmosphere of Earth

    Science.gov (United States)

    Ogibalov, Vladimir

    Radiative transfer in the infrared (IR) ro-vibrational bands of CO2 molecules under non-local thermodynamic equilibrium (NLTE) conditions is an important factor in establishing the global heat balance, structure, and dynamical properties of the mesosphere and lower thermosphere (MLT) of Earth. Moreover, the emissions in the IR bands of CO2 are used for remote sensing of the kinetic temperature and the CO2 abundance in the MLT altitude interval. These reasons require developing both more sophisticated models for estimating the values of non-equilibrium populations of the excited vibrational states of CO2 in the MLT and more detailed radiative transfer schemes. The validity of estimating the cooling rate in the 15 µm CO2 band depends on various input data used. In particular, spectroscopic parameters and a shape of absorption coefficient adopted for lines of the IR CO2 bands are of great importance. Till present time in the NLTE models developed to calculate IR emissions in the CO2 bands, it has been supposed that the absorption coefficient in the band is a simple sum of absorption coefficients of lines included at the given frequency and that the spectral shape of the absorption coefficient in every line is described by the Voigt function. However, it is known, when lines overlap in frequency (especially, in Q-branches of CO2 bands), the spectral band shape calculated according to this approximation could deviate to a large extent from the experimental one due to the effect of line-mixing (LM). This makes the LM-effect be potentially important for solving the NLTE problem of the CO2 bands. In the present study, the current version of computer code realizing the NLTE model for the IR emissions of CO2 in the MLT [1-2] has been further improved to incorporate the LMeffect. The Adjusted Branch Coupling method has been applied to simulate the experimental shape of the absorption coefficient within the spectral interval of the 15 µm band [3]. For a set of atmospheric

  10. New precise measurement of muonium hyperfine structure interval at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y., E-mail: yueno@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Aoki, M. [Osaka University, Graduate School of Science (Japan); Fukao, Y. [KEK (Japan); Higashi, Y.; Higuchi, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Iinuma, H.; Ikedo, Y. [KEK (Japan); Ishida, K. [RIKEN (Japan); Ito, T. U. [Japan Atomic Energy Agency (Japan); Iwasaki, M. [RIKEN (Japan); Kadono, R. [KEK (Japan); Kamigaito, O. [RIKEN (Japan); Kanda, S. [University of Tokyo, Department of Physics (Japan); Kawall, D. [University of Massachusetts, Amherst, Department of Physics (United States); Kawamura, N.; Koda, A.; Kojima, K. M. [KEK (Japan); Kubo, M. K. [International Christian University, Graduate School of Arts and Science (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Mibe, T. [KEK (Japan); and others

    2017-11-15

    MuSEUM is an international collaboration aiming at a new precise measurement of the muonium hyperfine structure at J-PARC (Japan Proton Accelerator Research Complex). Utilizing its intense pulsed muon beam, we expect a ten-fold improvement for both measurements at high magnetic field and zero magnetic field. We have developed a sophisticated monitoring system, including a beam profile monitor to measure the 3D distribution of muonium atoms to suppress the systematic uncertainty.

  11. Hyperfine interactions of {beta}-emitter {sup 12}N in TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukiko [Osaka Univ., Toyonaka (Japan). Faculty of Science; Izumikawa, Takuji; Tanigaki, Minoru [and others

    1997-03-01

    Hyperfine interactions of {beta}-emitter {sup 12}N (I{sup {pi}} = 1{sup -}, T{sub 1/2} 11ms) in TiO{sub 2} has been studied. A {beta}-NMR spectrum on the polarized {sup 12}N implanted in TiO{sub 2} shows that {sup 12}N are located at two different sites and maintain about 100% of initial polarization. These are the first phenomena observed in ionic crystals. (author)

  12. EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. II. THE COMPLETE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Grogin, Norman A.; Dahlen, Tomas; Noeske, Kai G.; Bellini, Andrea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21210 (United States); Malhotra, Sangeeta; Rhoads, James E.; Cohen, Seth H.; Mechtley, Matthew; Windhorst, Rogier A. [School of Earth And Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Meurer, Gerhardt R. [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Walsh, Jeremy R. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hathi, Nimish P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2013-07-20

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on board Hubble Space Telescope. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations complemented by the spectroscopic results. Using the PEARS data, we are able to identify star-forming galaxies (SFGs) within the redshift volume 0 < z < 1.5. Star-forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission-line regions (ELRs) within a single galaxy. We identified a total of 1162 H{alpha}, [O III], and/or [O II] emission lines in the PEARS sample of 906 galaxies to a limiting flux of {approx}10{sup -18} erg s{sup -1} cm{sup -2}. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis, we find three key results: (1) the computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; (2) the star-forming systems show evidence of complex morphologies with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass. (3) Also, the number density of SFGs with M{sub *} {>=} 10{sup 9} M{sub Sun} decreases by an order of magnitude at z {<=} 0.5 relative to the number at 0.5 < z < 0.9, supporting the argument of galaxy downsizing.

  13. Investigation of hyperfine interactions in DNA nitrogenous bases using perturbed angular correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andreia dos Santos; Carbonari, Artur Wilson; Lapolli, Andre Luis; Saxena, Rajendra Narain [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saitovitch, Henrique, E-mail: asilva@usp.br [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Perturbed γγ angular correlations (PAC) spectroscopy has been used to study the DNA nitrogenous bases (adenine, cytosine, guanine, thymine), using {sup 111}In→{sup 111}Cd and {sup 111m}Cd→{sup 111}Cd probe nuclei. One of the advantages of applying PAC technique to biological molecules is that the experiments can be carried out on molecules in aqueous solution [1], approaching the function of molecules under conditions that are close to in vivo conditions. The measurements were carried out for DNA nitrogenous bases molecules at 295 K and 77 K in order to investigate dynamic and static hyperfine interactions, respectively. The interpretation of the results was based on the measurements of dynamic interaction characterized by the decay constant from which valuable information on the macroscopic behavior of the molecules was obtained [2; 3]. On the other hand, PAC measurements at low temperature showed interaction frequency (ν{sub Q}), asymmetry parameter (η) and the distribution of the quadrupole frequency (δ). These parameters provide a local microscopic description of the chemical environment in the neighborhood of the probe nuclei. Results showed differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depended on the type of biomolecule and the results also showed that the probe nuclei bounded at the molecules in some cases and at others did not. (author)

  14. Tests of star formation metrics in the low-metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

    Science.gov (United States)

    Bendo, G. J.; Miura, R. E.; Espada, D.; Nakanishi, K.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.

    2017-11-01

    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low-metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9 ± 0.3) × 1052 s-1 and an SFR of 0.087 ± 0.013 M⊙ yr-1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on a previously published version of the H α flux that was extinction corrected using Paα and Paβ lines was lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on H α and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFRs lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1σ-2σ of each other. While further analysis on a broader range of galaxies is needed, these results are instructive of the best and worst methods to use when measuring SFR in low-metallicity dwarf galaxies like NGC 5253.

  15. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  16. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    Science.gov (United States)

    Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  17. Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M⊙ one-dimensional neutrino-driven explosion

    Science.gov (United States)

    Jerkstrand, A.; Ertl, T.; Janka, H.-T.; Müller, E.; Sukhbold, T.; Woosley, S. E.

    2018-03-01

    A large fraction of core-collapse supernovae (CCSNe), 30-50 per cent, are expected to originate from the low-mass end of progenitors with MZAMS = 8-12 M⊙. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here, we calculate synthetic nebular spectra of a 9 M⊙ Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM ˜ 1000 km s-1, including signatures from each deep layer in the metal core. We compare this model to the observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs and SN 2008bk. The predictions of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parametrized study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58Ni/56Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.

  18. The Effects of Protostellar Disk Turbulence on CO Emission Lines: A Comparison Study of Disks with Constant CO Abundance versus Chemically Evolving Disks

    Science.gov (United States)

    Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.

    2017-12-01

    Turbulence is the leading candidate for angular momentum transport in protoplanetary disks and therefore influences disk lifetimes and planet formation timescales. However, the turbulent properties of protoplanetary disks are poorly constrained observationally. Recent studies have found turbulent speeds smaller than what fully-developed MRI would produce (Flaherty et al.). However, existing studies assumed a constant CO/H2 ratio of 10-4 in locations where CO is not frozen-out or photo-dissociated. Our previous studies of evolving disk chemistry indicate that CO is depleted by incorporation into complex organic molecules well inside the freeze-out radius of CO. We consider the effects of this chemical depletion on measurements of turbulence. Simon et al. suggested that the ratio of the peak line flux to the flux at line center of the CO J = 3-2 transition is a reasonable diagnostic of turbulence, so we focus on that metric, while adding some analysis of the more complex effects on spatial distribution. We simulate the emission lines of CO based on chemical evolution models presented in Yu et al., and find that the peak-to-trough ratio changes as a function of time as CO is destroyed. Specifically, a CO-depleted disk with high turbulent velocity mimics the peak-to-trough ratios of a non-CO-depleted disk with lower turbulent velocity. We suggest that disk observers and modelers take into account the possibility of CO depletion when using line profiles or peak-to-trough ratios to constrain the degree of turbulence in disks. Assuming that {CO}/{{{H}}}2={10}-4 at all disk radii can lead to underestimates of turbulent speeds in the disk by at least 0.2 km s-1.

  19. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sneden, C. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Cowan, J. J., E-mail: mpwood@wisc.edu, E-mail: jelawler@wisc.edu, E-mail: eadenhar@wisc.edu, E-mail: chris@verdi.as.utexas.edu, E-mail: cowan@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  20. 3D-HST emission line galaxies at z ∼ 2: discrepancies in the optical/UV star formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Schneider, Donald P.; Hagen, Alex; Bridge, Joanna S.; Trump, Jonathan R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Feldmeier, John [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States)

    2014-08-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered when measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z ∼ 2 sample is consistent with that observed in the local universe.

  1. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    Science.gov (United States)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  2. Plasma-wall interactions in the presence of plasma fluctuations—interpretation of line emission from sputtered tungsten in PSI-2

    Science.gov (United States)

    Reiser, D.; Borodin, D.; Brezinsek, S.; Eksaeva, A. A.; Kirschner, A.; Kreter, A.; Romazanov, J.; Schlummer, T.

    2017-12-01

    The analysis in this work essentially addresses the general question to what extent the temporal average of a particular quantity which is a highly nonlinear function of fluctuating quantities can be approximated by using the averages of the fluctuating quantities for its evaluation. The concrete case considered is the line emission intensity from sputtered impurities being a function of fluctuating electron density and temperature in a plasma beam of the PSI-2 device. A three-dimensional fluid model is employed to study the impact of plasma fluctuations on the distribution of particles and line emission in PSI-2 discharges and its interpretation in long-term measurements. In the model presented the solution of a vorticity equation to obtain a self-consistent electric field is avoided and a synthetic turbulent velocity field is included instead. This approach is based on a Langevin model including advection and allows numerically efficient parameter scans by controlling amplitude, correlation length and correlation time of plasma fluctuations known from extended 3D simulations and/or experiment. The synthetic turbulence model considered is an extension of established stochastic models used for studies of passive scalar advection and therefore, it is described in detail in a general framework. Numerical examples of PSI-2 applications show that a double log-normal probability density function for the electrons and impurity ions is likely to occur and that this supports the conclusion that very high levels of intermittency are required to find a significant impact on the experimental evaluation method which is based on temporal averages only. Consequently, for typical PSI-2 experiments the method of evaluation based on averaged plasma parameters is justified.

  3. On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor.

    Science.gov (United States)

    Ferge, T; Maguhn, J; Hafner, K; Mühlberger, F; Davidovic, M; Warnecke, R; Zimmermann, R

    2005-03-15

    The emission of particulate matter and gaseous compounds during combustion of wood and refuse-derived fuel in a small batch reactor is investigated by laser mass-spectrometric on-line measurement techniques for gas-phase analysis and simultaneous registration of physical aerosol properties (number size distribution). The gas-phase composition is addressed by a laser-based mass spectrometric method, namely, vacuum-UV single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS). Particle-size distributions are measured with a scanning mobility particle sizer. Furthermore, a photoelectric aerosol sensor is applied for detection of particle-bound polycyclic aromatic hydrocarbons. The different phases of wood combustion are distinguishable by both the chemical profiles of gas-phase components (e.g., polycyclic aromatic hydrocarbons, PAH) and the particle-size distribution. Furthermore, short disturbances of the combustion process due to air supply shortages are investigated regarding their effect on particle-size distribution and gas-phase composition, respectively. It is shown that the combustion conditions strongly influence the particle-size distribution as well as on the emission of particle-bound polycyclic aromatic hydrocarbons.

  4. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions

    Directory of Open Access Journals (Sweden)

    Francesco eCavarretta

    2014-10-01

    Full Text Available The possible cognitive effects of low frequency external electric fields, such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with a realistic model of hippocampal CA1 pyramidal neurons. The model suggests how and why external electric fields, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration.

  5. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine.

    Science.gov (United States)

    Banasek, J T; Engelbrecht, J T; Pikuz, S A; Shelkovenko, T A; Hammer, D A

    2016-11-01

    We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with a return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.

  6. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine

    Energy Technology Data Exchange (ETDEWEB)

    Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A. [Cornell University, Ithaca, New York 14850 (United States)

    2016-11-15

    We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with a return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.

  7. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine

    Science.gov (United States)

    Banasek, J. T.; Engelbrecht, J. T.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2016-11-01

    We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with a return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.

  8. Models of Emission-Line Profiles and Spectral Energy Distributions to Characterize the Multi-Frequency Properties of Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Giovanni La Mura

    2017-11-01

    Full Text Available The spectra of active galactic nuclei (AGNs are often characterized by a wealth of emission lines with different profiles and intensity ratios that lead to a complicated classification. Their electromagnetic radiation spans more than 10 orders of magnitude in frequency. In spite of the differences between various classes, the origin of their activity is attributed to a combination of emitting components, surrounding an accreting supermassive black hole (SMBH, in the unified model. Currently, the execution of sky surveys, with instruments operating at various frequencies, provides the possibility to detect and to investigate the properties of AGNs on very large statistical samples. As a result of the spectroscopic surveys that allow the investigation of many objects, we have the opportunity to place new constraints on the nature and evolution of AGNs. In this contribution, we present the results obtained by working on multi-frequency data, and we discuss their relations with the available optical spectra. We compare our findings with the AGN unified model predictions, and we present a revised technique to select AGNs of different types from other line-emitting objects. We discuss the multi-frequency properties in terms of the innermost structures of the sources.

  9. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    Science.gov (United States)

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  10. Photon-dominated region modeling of the [C I], [C II], and CO Line Emission From A Boundary In The Taurus molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Matthew E. [Physics and Astronomy Department, University of Southern California, Los Angeles, CA 90089 (United States); Pineda, Jorge L.; Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)

    2014-11-01

    We present [C I] and [C II] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric photon-dominated region (PDR) exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C I], {sup 3} P {sub 1} → {sup 3} P {sub 0} (492 GHz), [C I] {sup 3} P {sub 2} → {sup 3} P {sub 1} (809 GHz), and [C II] {sup 2} P {sub 3/2} → {sup 2} P {sub 1/2} (1900 GHz) transitions, as well as the lowest rotational transitions of {sup 12}CO and {sup 13}CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, {sup 12}C/{sup 13}C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the role of suprathermal chemistry and density inhomogeneities. We find good agreement between the model and observations, and that the integrated line intensities can be explained by a PDR model with an external FUV field of 0.05 G {sub 0}, a low ratio of {sup 12}C to {sup 13}C ∼43, a highly depleted sulfur abundance (by a factor of at least 50), a cosmic ray ionization rate (3-6) × 10{sup –17} s{sup –1}, and without significant effects from inclination, clumping or suprathermal chemistry.

  11. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    Science.gov (United States)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  12. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik

    2011-07-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)

  13. {sup 57}Fe emission Mössbauer spectroscopy following dilute implantation of {sup 57}Mn into In {sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mokhles Gerami, A.; Johnston, K.; Gunnlaugsson, H. P., E-mail: Haraldur.p.gunnlaugsson@cern.ch [PH Div, CERN (Switzerland); Nomura, K. [Tokyo University of Science, Photocatalysis International Research Center (Japan); Mantovan, R. [IMM-CNR, Laboratorio MDM (Italy); Masenda, H. [University of the Witwatersrand, School of Physics (South Africa); Matveyev, Y. A. [Moscow Institute of Physics and Technology (Russian Federation); Mølholt, T. E. [PH Div, CERN (Switzerland); Ncube, M. [University of the Witwatersrand, School of Physics (South Africa); Shayestehaminzadeh, S. [University of Iceland, Science Institute (Iceland); Unzueta, I. [Euskal Herriko Unibertsitatea (UPV/EHU), BCMaterials & Elektrizitate eta Elektronika Saila (Spain); Gislason, H. P. [University of Iceland, Science Institute (Iceland); Krastev, P. B. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Langouche, G. [Instituut voor Kern-en Stralings Fysika, KU Leuven (Belgium); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Ólafsson, S. [University of Iceland, Science Institute (Iceland); Collaboration: the ISOLDE collaboration

    2016-12-15

    Emission Mössbauer spectroscopy has been utilised to characterize dilute {sup 57}Fe impurities in In {sub 2}O{sub 3} following implantation of {sup 57}Mn (T{sub 1/2} = 1.5 min.) at the ISOLDE facility at CERN. From stoichiometry considerations, one would expect Fe to adopt the valence state 3 + , substituting In {sup 3+}, however the spectra are dominated by spectral lines due to paramagnetic Fe{sup 2+}. Using first principle calculations in the framework of density functional theory (DFT), the density of states of dilute Fe and the hyperfine parameters have been determined. The hybridization between the 3d-band of Fe and the 2p band of oxygen induces a spin-polarized hole on the O site close to the Fe site, which is found to be the cause of the Fe{sup 2+} state in In {sub 2}O{sub 3}. Comparison of experimental data to calculated hyperfine parameters suggests that Fe predominantly enters the 8b site rather than the 24d site of the cation site in the Bixbyite structure of In {sub 2}O{sub 3}. A gradual transition from an amorphous to a crystalline state is observed with increasing implantation/annealing temperature.

  14. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  15. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    Science.gov (United States)

    Modi, K. B.; Raval, P. Y.; Dulera, S. V.; Kathad, C. R.; Shah, S. J.; Trivedi, U. N.; Chandra, Usha

    2015-06-01

    Two specimens of copper ferrite, CuFe2O4, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO2) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  16. Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne

    2017-05-15

    The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.

  17. Variations of 57Fe hyperfine parameters in medicaments containing ferrous fumarate and ferrous sulfate

    Science.gov (United States)

    Oshtrakh, M. I.; Novikov, E. G.; Dubiel, S. M.; Semionkin, V. A.

    2010-04-01

    Several commercially available medicaments containing ferrous fumarate (FeC4H2O4) and ferrous sulfate (FeSO4), as a source of ferrous iron, were studied using a high velocity resolution Mössbauer spectroscopy. A comparison of the 57Fe hyperfine parameters revealed small variations for the main components in both medicaments indicating some differences in the ferrous fumarates and ferrous sulfates. It was also found that all spectra contained additional minor components probably related to ferrous and ferric impurities or to partially modified main components.

  18. Cryogenic tunable microwave cavity at 13 GHz for hyperfine spectroscopy of antiprotonic helium

    CERN Document Server

    Sakaguchi, J; Hayano, R S; Ishikawa, T; Suzukia, K; Widmann, E; Yamaguchi, H; Caspers, Friedhelm; Eades, John; Horib, M; Barna, D; Horváth, D; Juhász, B; Torie, H A; Yamazakif, T

    2004-01-01

    For the precise measurement of the hyperfine structure of antiprotonic helium, microwave radiation of 12.9 GHz frequency is needed, tunable over . A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of with Q values of 2700?3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines.

  19. Cryogenic Tunable Microwave Cavity at 13 GHz for Hyperfine Spectroscopy of Antiprotonic Helium

    CERN Document Server

    Barna, D; Eades, John; Gilg, H; Hayano, R S; Hori, Masaki; Horváth, M; Hayano, R S; Ishikawa, T; Juhász, B; Sakaguchi, J; Suzuki, K; Torii, H A; Widmann, E; Yamaguchi, H; Yamazaki, T

    2004-01-01

    For the precise measurement of the hyperfine structure of antiprotonic helium microwave radiation of 12.9 GHz frequency is needed, tunable over ±100 MHz. A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of 300 MHz with Q values of 2700-3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines.

  20. PROBING THE GASEOUS DISK OF T Tau N WITH CN 5-4 LINES

    Energy Technology Data Exchange (ETDEWEB)

    Podio, L.; Codella, C. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence (Italy); Kamp, I.; Meijerink, R.; Spaans, M. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Nisini, B. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone (Italy); Aresu, G. [INAF-Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047, Selargius (Italy); Brittain, S. [Department of Physics and Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States); Cabrit, S.; Dougados, C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Grady, C. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Sandell, G. [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); White, G. J. [Department of Physical Sciences, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Woitke, P. [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom)

    2014-03-10

    We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H{sub 2}O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s{sup –1} with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R{sub out}=110{sub −20}{sup +10} AU) and its inclination (i = 25°± 5°). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.

  1. P31-NMR study of hyperfine interactions and magnetic fluctuations in the neptunium-based filled skutterudite NpFe4P12

    Science.gov (United States)

    Tokunaga, Y.; Kambe, S.; Sakai, H.; Chudo, H.; Matsuda, T. D.; Haga, Y.; Yasuoka, H.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Ōnuki, Y.

    2009-02-01

    P31-NMR measurements have been performed on a single crystal of the neptunium-based filled skutterudite NpFe4P12 . The compound undergoes a ferromagnetic phase transition at TC=23K . From the field-orientation dependence of the P31-NMR line splitting, the angular dependence of the hyperfine interactions between Np5f spin and P31 nuclear moments has been investigated. We have observed anisotropic transferred hyperfine interactions at the P sites, which lead to an estimate of the local spin density in the P3p orbitals. It is shown that a fraction of the Np5f spin moments is transferred mostly into the P3p orbitals extending toward the inside of a P cage. The weak hybridization between Np5f and P3p orbitals suggests a localized character for Np5f electrons in NpFe4P12 . We have also measured the field and temperature dependences of the nuclear spin-lattice relaxation rate (1/T1) in several magnetic fields between 18.5 and 78.0 kOe. The 1/T1 data reveal that the low-energy spin fluctuations of Np5f spin moments are strongly suppressed by applied fields over a relatively wide temperature range up to 4TC . In this compound, a large and negative magnetoresistance has been known to occur in the same temperature range. The present NMR results demonstrate that the negative magnetoresistance comes from a reduction in the magnetic scattering from Np5f spin moments by an applied field.

  2. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  3. Precision measurement of the +25Mg ground-state hyperfine constant

    Science.gov (United States)

    Xu, Z. T.; Deng, K.; Che, H.; Yuan, W. H.; Zhang, J.; Lu, Z. H.

    2017-11-01

    We report an experimental determination of the ground-state hyperfine constant A of the +25Mg ions by measuring the | S1 /2,F =2 ,m =0 〉 to | S1 /2,F =3 ,m =0 〉 transition (0-0 transition) frequency of the two ground-state hyperfine energy levels. The frequency is measured by rf resonant method in a Paul trap under a magnetic field of about 0.1 mT. The result is A =-596.254 248 7(42) MHz. Different frequency shifts and uncertainties are evaluated. The main effect is quadratic Zeeman shift. Since the Paul trap is driven by rf on the electrodes, ac magnetic field can be induced by the rf at the site of the ion. The ac magnetic field causes quadratic Zeeman shift for ion frequency standards and also reduces the coherence time when the ion acts as a quantum bit. Precision measurement of this ac magnetic field can help evaluating the related uncertainty when a single-ion optical clock is established on the trap.

  4. High resolution spectroscopy of the hyperfine structure splitting in 97,99Tc

    Science.gov (United States)

    Raeder, Sebastian; Kron, Tobias; Heinke, Reinhard; Henares, Jose L.; Lecesne, Nathalie; Schönberg, Pascal; Trümper, Marcel; Wendt, Klaus

    2017-11-01

    Resonance ionization mass spectrometry is an efficient tool for detecting trace amounts of long-lived radio-isotopes in environmental samples. For absolute quantification a tracer with identical atomic properties and chemical behavior is needed to prevent a possible dependency onto the absolute efficiency for the analytical method. For an application in 99Tc, the isotope 97Tc could serve as a potential tracer. Therefore the optical transitions of an efficient ionization scheme for technetium were investigated for the two odd mass isotopes 97,99Tc, both with a nuclear spin of I={9}/{2}. Using a pulsed, single mode laser with narrow bandwidth, the hyperfine structures (HFS) of two transitions were fully resolved. The observed isotope shift is small in comparison to the width of the hyperfine structure splitting. This is ideal for the application of 97Tc as tracer isotope for 99Tc quantification. The evaluation of the observed HFS splitting results in a first experimental value for the magnetic dipole for 97Tc of μ=+5.82(9) μ N .

  5. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    Energy Technology Data Exchange (ETDEWEB)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa [Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS (Brazil); Grupe, Dirk [Space Science Center, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Peterson, Bradley M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Baldwin, Jack A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48864 (United States); Nemmen, Rodrigo S. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Winge, Cláudia, E-mail: silva.schimoia@ufrgs.br [Gemini South Observatory, c/o AURA Inc., Casilla 603, La Serena (Chile)

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  6. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  7. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  8. Hyperfine and Spin-Orbit Coupling Effects on Decay of Spin-Valley States in a Carbon Nanotube

    Science.gov (United States)

    Pei, T.; Pályi, A.; Mergenthaler, M.; Ares, N.; Mavalankar, A.; Warner, J. H.; Briggs, G. A. D.; Laird, E. A.

    2017-04-01

    The decay of spin-valley states is studied in a suspended carbon nanotube double quantum dot via the leakage current in Pauli blockade and via dephasing and decoherence of a qubit. From the magnetic field dependence of the leakage current, hyperfine and spin-orbit contributions to relaxation from blocked to unblocked states are identified and explained quantitatively by means of a simple model. The observed qubit dephasing rate is consistent with the hyperfine coupling strength extracted from this model and inconsistent with dephasing from charge noise. However, the qubit coherence time, although longer than previously achieved, is probably still limited by charge noise in the device.

  9. Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system

    Science.gov (United States)

    Liu, G.; Zakharov, V.; Collins, T.; Gould, P.; Malinovskaya, S. A.

    2014-04-01

    We implement a four-level semiclassical model of a single pulse interacting with the hyperfine structure in ultracold rubidium aimed at control of population dynamics and quantum state preparation. We discuss a method based on pulse chirping to achieve population inversion between hyperfine states of the 5S shell. The results may prove useful for quantum operations with ultracold atoms.

  10. SHAPEMOL: a 3D code for calculating CO line emission in planetary and protoplanetary nebulae. Detailed model-fitting of the complex nebula NGC 6302

    Science.gov (United States)

    Santander-García, M.; Bujarrabal, V.; Koning, N.; Steffen, W.

    2015-01-01

    Context. Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA has reached unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far-infrared ranges are only accessible from space) for probing molecular warm gas (~50-1000 K). On the other hand, the software SHAPE has emerged in the past few years as a standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Aims: Being aware of the growing importance of the development of tools for simplifying the analyses of molecular data from new-era observatories, we introduce the computer code shapemol, a complement to SHAPE, with which we intend to fill the so-far under-developed molecular niche. Methods: shapemol enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of excitation and radiative transfer in CO lines. Currently, it allows radiative transfer solving in the 12CO and 13CO J = 1-0 to J = 17-16 lines, but its implementation permits easily extending the code to different transitions and other molecular species, either by the code developers or by the user. Used along SHAPE, shapemol allows easily generating synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations. Results: We give a full description of how shapemol works, and we discuss its limitations and the sources of uncertainty to be expected in the final synthetic profiles or maps. As an example of the power and versatility of shapemol, we build a model of the molecular envelope of the planetary nebula NGC 6302 and compare it with 12CO and 13CO J = 2-1 interferometric maps from SMA and high-J transitions from Herschel/HIFI. We find the

  11. A methodology to address mixed AGN and starlight contributions in emission line galaxies found in the RESOLVE survey and ECO catalog

    Science.gov (United States)

    Richardson, Chris T.; Kannappan, Sheila; Bittner, Ashley; Isaac, Rohan; RESOLVE

    2017-01-01

    We present a novel methodology for modeling emission line galaxy samples that span the entire BPT diagram. Our methodology has several advantages over current modeling schemes: the free variables in the model are identical for both AGN and SF galaxies; these free variables are more closely linked to observable galaxy properties; and the ionizing spectra including an AGN and starlight are handled self-consistently rather than empirically. We show that our methodology is capable of fitting the vast majority of SDSS galaxies that fall within the traditional regions of galaxy classification on the BPT diagram. We also present current results for relaxing classification boundaries and extending our galaxies into the dwarf regime, using the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog, with special attention to compact blue E/S0s. We compare this methodology to PCA decomposition of the spectra. This work is supported by National Science Foundation awards AST-0955368 and CISE/ACI-1156614.

  12. Experimental Study on the Sensitive Emission Lines Intensities of Metal Samples Using Laser Ablation Technique and Its Comparison to Arc Discharge Technique

    Directory of Open Access Journals (Sweden)

    Eko Susilowati

    2004-05-01

    Full Text Available An experimental study has been carried out to measure the sensitive emission lines intensities of several metal samples (copper, zinc, silver, gold, gallium, nickel, silicone and iron using laser ablation technique conducted in low pressure surrounding gas by means of Laser Induced Shock Wave Plasma Spectroscopy (LISPS and in atmospheric pressure region using Laser Induced Breakdown Spectroscopy (LIBS. In both cases the Nd-YAG laser was operated at its fundamental wavelength of 1,064 nm with pulse duration of 8 ns and its intensity tightly focused on the metal samples in helium or air as an ambient gas. The laser energy was fixed at approximately 100 mJ using a set of neutral density filters placed tilted in front of the laser output window. The result of the intensity measurements showed a good agreement which those obtained using arc discharge technique as shown in Massachusetts Institute of Technology Wavelength Table. Further evaluation of these results on the basis of standard deviation leads to the conclusion that LISPS is more favorable for quantitative analysis compared to LIBS. It was further shown that replacing air by helium gas at low pressure improve to some extent the LISPS reproducibility and sensitivity.

  13. Hyperfine interactions in nanocrystallized NANOPERM-type metallic glass containing Mo

    Energy Technology Data Exchange (ETDEWEB)

    Cesnek, M., E-mail: martin.cesnek@fjfi.cvut.cz [Czech Technical University in Prague, Department of Nuclear Reactors, Faculty of Nuclear Science and Physical Engineering (Czech Republic); Kubániová, D.; Kohout, J.; Křišťan, P.; Štěpánková, H.; Závěta, K. [Charles University, Department of Low Temperature Physics, Faculty of Mathematics and Physics (Czech Republic); Lančok, A. [Institute of Inorganic Chemistry AS CR (Czech Republic); Štefánik, M.; Miglierini, M. [Czech Technical University in Prague, Department of Nuclear Reactors, Faculty of Nuclear Science and Physical Engineering (Czech Republic)

    2016-12-15

    NANOPERM-type alloy with chemical composition Fe{sub 76}Mo{sub 8}CuB{sub 15} was studied by combination of {sup 57}Fe Mössbauer spectroscopy and {sup 57}Fe({sup 10}B, {sup 11}B) nuclear magnetic resonance in order to determine distribution of hyperfine magnetic fields and evolution of relative concentration of Fe-containing crystalline phases within the surface layer and the volume of the nanocrystallized ribbons with annealing temperature. Differential scanning calorimetry revealed two crystallization stages at T{sub x1} ∼ 510 {sup ∘}C and T{sub x2} ∼ 640 {sup ∘}C, connected to precipitation of α-Fe and Fe(Mo,B) nanocrystals, respectively. The amorphous and partially crystalline state was obtained by annealing at several temperatures in the range 510-650 {sup ∘}C. The combination of conversion electron (CEMS) and transmission Mössbauer spectrometry (TMS) showed that annealing induces crystallization starting from both surfaces of the ribbons. For the as-quenched sample, scanning electron microscopy (SEM) and CEMS revealed significant differences in the “air” and “wheel” sides of the ribbons, crystallites were preferentially formed at the latter. While SEM micrographs of annealed samples showed various mean diameters of the crystals at opposite sides of the ribbons, the amounts of crystalline volume derived from the CEMS spectra approximately equaled. Mössbauer spectra of annealed samples contained narrow sextet ascribed to crystalline α-Fe phase, three sextets with distribution of hyperfine field assigned to the interface regions of the nanocrystals and the contribution of the amorphous phases. In-field TMS performed at 4.2 K with magnetic moments aligned by external magnetic field enabled to properly determine in particular the contribution of the amorphous phases in the samples. Resulting distributions of the hyperfine fields were compared with {sup 57}Fe({sup 10}B, {sup 11}B) nuclear magnetic resonance (NMR) spectra.

  14. Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency (17)O-Hyperfine EPR Spectroscopies and Density Functional Theory.

    Science.gov (United States)

    Rapatskiy, Leonid; Ames, William M; Pérez-Navarro, Montserrat; Savitsky, Anton; Griese, Julia J; Weyhermüller, Thomas; Shafaat, Hannah S; Högbom, Martin; Neese, Frank; Pantazis, Dimitrios A; Cox, Nicholas

    2015-10-29

    Multifrequency pulsed EPR data are reported for a series of oxygen bridged (μ-oxo/μ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-μ-oxo bridged complex and a bent, bis-μ-oxo-μ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the μ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle.

  15. Hyperfine splitting in positronium to O({alpha}{sup 7}m{sub e}). One-photon annihilation contribution

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M. [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Penin, A.A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Piclum, J. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Steinhauser, M. [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik

    2014-02-15

    We present the complete result for the O({alpha}{sup 7}m{sub e}) one-photon annihilation contribution to the hyperfine splitting of the ground state energy levels in positronium. Numerically it increases the prediction of quantum electrodynamics by 217{+-}1 kHz.

  16. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    Science.gov (United States)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  17. Hyperfine interactions in soybean and lupin oxy-leghemoglobins studied using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Kumar, A.; Alenkina, I. V.; Zakharova, A. P.; Oshtrakh, M. I.; Semionkin, V. A.

    2015-04-01

    A comparative study of monomeric soybean and lupin leghemoglobins in the oxy-form was carried out using Mössbauer spectroscopy with a high velocity resolution at 90 K. The 57Fe hyperfine parameters of measured spectra were evaluated and compared with possible structural differences in the heme Fe(II)-O 2 bond.

  18. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  19. Hyperfine interactions in soybean and lupin oxy-leghemoglobins studied using Mössbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [University of Delhi South Campus, Department of Biochemistry (India); Alenkina, I. V. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Zakharova, A. P. [Ural Federal University, Department of Experimental Physics, Institute of Physics and Technology (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@gmail.com; Semionkin, V. A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation)

    2015-04-15

    A comparative study of monomeric soybean and lupin leghemoglobins in the oxy-form was carried out using Mössbauer spectroscopy with a high velocity resolution at 90 K. The {sup 57}Fe hyperfine parameters of measured spectra were evaluated and compared with possible structural differences in the heme Fe(II)–O {sub 2} bond.

  20. Structural, electronic, and hyperfine properties of pure and Ta-doped m-ZrO2

    DEFF Research Database (Denmark)

    Taylor, M.A.; Alonso, R.E.; Errico, L.A.

    2012-01-01

    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine electronic, structural, and hyperfine interactions in pure and Ta-doped zirconium dioxide in its monoclinic phase (m-ZrO2). From the theoretical point of view, the full-potential linear augmente...

  1. Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery

    Science.gov (United States)

    Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.

    2017-12-01

    Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.

  2. Hyperfine anomalies in Fr: boundaries of the spherical single particle model

    CERN Document Server

    Zhang, J; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R; Sprouse, G D

    2015-01-01

    We have measured the hyperfine splitting of the $7P_{1/2}$ state at the 100 ppm level in Fr isotopes ($^{206g,206m, 207, 209, 213, 221}$Fr) near the closed neutron shell ($N$ = 126 in $^{213}$Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the $7S_{1/2}$ splittings, reveal the spatial distribution of the nuclear magnetization, i.e. the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes ($^{207-213}$Fr). Also, we find near-constant proton anomalies for several even-$ N$ isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity non-conservation studies.

  3. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model

    Science.gov (United States)

    Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.; FrPNC Collaboration

    2015-07-01

    We have measured the hyperfine splitting of the 7 P1 /2 state at the 100 ppm level in Fr isotopes (206g,206m,207,209,213,221Fr) near the closed neutron shell (N =126 in 213Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7 S1 /2 splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (207-213Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  4. Toward the measurement of the hyperfine splitting in the ground state of muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Adamczak, Andrzej [Polish Academy of Sciences, Institute of Nuclear Physics (Poland); Stoilov, Mihail [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy)

    2015-08-15

    The recent Lamb shift experiment at PSI and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen and extracting the proton Zemach radius. The efficiency of the experimental method depends on the energy dependence of the muon transfer rate to higher-Z gases in the near epithermal energy range. As long as the available experimental data only give the average transfer rate in the whole epithermal range, and the detailed theoretical calculations have not yet been verified, an experiment has been started for the measurement of the transfer rate in thermalized gas target at different temperatures and extracting from the data an estimate of the transfer rate for arbitrary energies. We outline the underlying mathematical method and estimate its accuracy.

  5. Calculation of Radiative Corrections to Hyperfine Splitting in p3/2 States

    Energy Technology Data Exchange (ETDEWEB)

    Sapirstein, J; Cheng, K T

    2008-07-15

    A recent calculation of the one-loop radiative correction to hyperfine splitting (hfs) of p{sub 1/2} states that includes binding corrections to all orders is extended to p{sub 3/2} states. Nuclear structure plays an essentially negligible role for such states, which is highly advantageous, as difficulties in controlling the Bohr-Weisskopf effect complicate the isolation of QED contributions for both s{sub 1/2} and p{sub 1/2} states. Three cases are studied. We first treat the hydrogen isoelectronic sequence, which is completely nonperturbative in Z{alpha} for high Z. Secondly the lowest lying p{sub 3/2} states of the neutral alkalis are treated, and finally lithium-like bismuth, where extensive theoretical and experimental studies of the hfs of 2s and 2p{sub 1/2} states have been made, is addressed.

  6. Transitions between hyperfine-structure states of the 2s metastable muonic hydrogen in collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Czaplinski, W.

    1992-12-31

    Hyperfine effects in the symmetric collisions of the 2s metastable muonic hydrogen with hydrogen atoms: (p{mu}){sub 2s} + H, (d{mu}){sub 2s} + D, (t{mu}){sub 2s} + t are presented. Elastic and spin-flip cross sections for the scattering of The 2s muonic atoms are calculated in the two-level approximation as a function of collision energy. The corresponding formulae are derived with inclusion of electron screening and Lamb-shift between 2s and 2p energy levels of the muonic atom. The obtained spin-flip cross sections are about two orders of magnitude higher than their ground state counterparts and are much more influenced by electron screening. The rates of the spin-flip transitions are also calculated and are found to be about three orders of magnitude higher than the decay rate of the 2s state. (author). 65 refs, 15 figs, 4 tabs.

  7. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  8. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  9. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  10. Calibration of the WFC3 Emission-Line Filters and Application of the Results to the Greatest Source of Uncertainties in Determining Abundances in Gase

    Science.gov (United States)

    O'Dell, C.

    2010-09-01

    The WFC3 is arguably the most powerful camera that has been used on the HST. This capability arises in part from the uniquely complete set of narrow-band filters that were incorporated for making images of nebulae in emission-lines. Turning these oft-times beautiful images into scientifically useful information requires accurate flux calibration of the filters, which is the first subject of this proposal. The present plan is that WFC3 calibration will be done from pre-launch properties of the filters and observations of stars. The WFC3 filters transmission profiles were measured pre-launch in a different optical configuration and temperature than applies within the WFC3, thus rendering uncertain any flux calibrations tied to those pre-launch measurements. We propose to perform a ?ground-truth? calibration of the WFC3 narrow-band filters using NGC 6720 as a reference source, in much the same manner that the PI did when calibrating similar filters in the WFPC2 and the ACS.These new calibrations will then be used to address the t^2 problem in Gaseous Nebulae. This is the source of uncertainties in the relative abundances of factors 1.1 to 10 and undermines efforts to trace the abundance variations within our Galaxy and other galaxies. The t^2 problem remains unresolved after four decades and the NGC 6720 images used for the filter calibration may resolve the problem if they show that regions of small-scale temperature fluctuations arise from low-temperature shadow-zones behind knots that are known to exist within the nebula or from high-temperature shocks that have been posited. Unlike the case of the Orion Nebula, where we have addressed this problem with fewer diagnostic filters, the geometry of NGC 6720 is ideally favorable for seeing these temperature variations and identifying their cause.

  11. Hyperfine and magnetic properties of a Y{sub x}La{sub 1−x}FeO{sub 3} series (0 ≤ x ≤ 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cristóbal, A.A.; Botta, P.M. [Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET-UNMdP, Av. J.B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Bercoff, P.G., E-mail: bercoff@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física (FaMAF), Universidad Nacional de Córdoba. IFEG (CONICET), Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Ramos, C.P. [CONICET and Centro Atómico Constituyentes (CAC), CNEA, Av. Gral. Paz 1499, 1650 San Martín (Argentina)

    2015-04-15

    Highlights: • Y{sub x}La{sub 1−x}FeO{sub 3} (0 ≤ x ≤ 1) was synthesized by mechanochemistry. • Two magnetic contributions were identified in the series. • A paramagnetic state is associated with a fraction of the smallest particles. • A ferromagnetic state is attributed to the larger particles. • Annealing of samples favored the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities. - Abstract: A series of orthoferrites Y{sub x}La{sub 1−x}FeO{sub 3} in the entire range of composition was synthesized at room temperature by mechanochemical activation of oxide mixtures. Phase composition, structure and microstructure of the obtained powder materials were characterized by X-ray diffraction and field-emission scanning electron microscopy. Hyperfine interactions and magnetic properties were determined by Mössbauer spectroscopy, SQUID and vibrating sample magnetometry. Two magnetic contributions could be identified in the series of materials: a paramagnetic state, associated with a fraction of the smallest particles and a ferromagnetic state, attributed to the larger particles. The results showed that the relative proportion of both contributions is very dependent on x, the Y content of samples. From M vs T measurements, it was possible to estimate the blocking temperature distribution for the end members of the series. Annealing of samples produced the elimination of the superparamagnetic behavior and the formation of Y{sub 3}Fe{sub 5}O{sub 12} impurities.

  12. OPTICAL SPECTROSCOPY OF SDSS J004054.65-0915268: THREE POSSIBLE SCENARIOS FOR THE CLASSIFICATION. A z ∼ 5 BL LACERTAE, A BLUE FSRQ, OR A WEAK EMISSION LINE QUASAR

    Energy Technology Data Exchange (ETDEWEB)

    Landoni, M.; Zanutta, A.; Bianco, A.; Tavecchio, F.; Bonnoli, G.; Ghisellini, G. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy)

    2016-02-15

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ∼ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C iv broad emission line. Therefore, the nature of the object is then discussed, building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.

  13. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: binhu@whu.edu.cn; Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-08-25

    A new method for the determination of inorganic Sb species by on-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) is presented and evaluated. The method is based on the complexation of Sb(III) with pyrrolidine dithiocarbamate (PDC) which form an hydrophobic complex at pH 5.5 and subsequently enter surfactant-rich phase at pH 5.5, whereas Sb(V) remained in aqueous solutions. The preconcentration step is mediated by micelles of the non-ionic surfactant Triton X-114 with ammonium pyrrolidine dithiocarbamate (APDC). The micellar system containing the complex was loaded into the FIA manifold at a flow rate of 2.5 mL min{sup -1}, and the surfactant-rich phase was retained in a microcolumn packed with absorbent cotton, at pH 5.5. After the surfactant-rich phase was eluted with 100 {mu}L acetonitrile, it was determined by ETV-ICP-AES. Sb(V) is reduced to Sb(III) by L-cysteine prior to determined total Sb, and its assay is based on subtracting Sb(III) from total antimony. The main factors affecting separation/preconcentration and the vaporization behavior of analyte in graphite tube were investigated in detail. Under the optimized conditions, the precision relative standard deviation (R.S.D.) for eight replicate measurements of 0.2 {mu}g mL{sup -1} Sb(III) was 4.3%. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETV-ICP-AES detection and in the initial solution, was 872 for Sb(III). The limit of detection (LOD) for Sb(III) was 0.09 {mu}g L{sup -1}. The proposed method was successfully applied for the speciation of inorganic antimony in different water samples and urine sample with satisfactory results.

  14. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Measurement of a strong atomic hyperfine field allowing the determination of nuclear g-factors in (sub)nanosecond states

    CERN Document Server

    Vyvey, K; Cottenier, S; Balabanski, D L; Coulier, N; Coussement, R; Georgiev, G; Lépine-Szily, A; Ternier, S; Teughels, S

    2001-01-01

    An extension of the time-integrated atomic decoupling technique to measure g-factors of (sub)nanosecond isomers and/or the magnetic hyperfine field induced by highly excited atomic electrons on nuclei recoiling into vacuum is discussed. A high average field B sub h sub f =1080 sub - sub 1 sub 7 sub 5 sup + sup 2 sup 7 sup 0 T and an average atomic spin J=2.7(2) is deduced using the known magnetic moment of a 4.05(7) mu s isomer in sup 6 sup 9 Ge. Such high magnetic fields allow g-factor measurements of (sub)nanosecond states. Ab initio calculations show that the combination of a high average magnetic hyperfine field and a high average atomic spin is only possible if a considerable fraction of the ions is in a metastable excited state.

  16. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  17. ENDOR investigations of the Ce.sup.3+./sup. ions in YAG: Transferred hyperfine interaction with nearest aluminum ions

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Feng, D.H.; Lančok, Ján; Jastrabík, Lubomír; Dejneka, Alexandr; Baranov, P. G.; Yakovlev, D.R.; Bayer, M.

    2017-01-01

    Roč. 122, č. 24 (2017), s. 1-3, č. článku 243903. ISSN 0021-8979 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : laser materials * magnetic resonance imaging * electron nuclear double resonance * hyperfine structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  18. Hyperfine Interactions in the Electron Paramagnetic Resonance Spectra of Point Defects in Wide-Band-Gap Semiconductors

    Science.gov (United States)

    2014-09-18

    between the 5s electron and the silver nucleus. Breit and Rabi [5] described this hyperfine interaction in the context of the Stern-Gerlach...experiment, and Rabi et al. [6] were the first to directly measure nuclear magnetic moments with this beam technique [7]. 1 quantum angular momentum or spin...is an interruption in the periodicity of a crystal lattice that is localized within a few lattice sites. A crystal lattice is composed of a Bravais

  19. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  20. Analysis of () Line Shape

    Indian Academy of Sciences (India)

    The line shape is also simulated by the Monte–Carlo method, the molecular dissociation contributes to 57% neutral atoms and 53% emission intensity in front of the limiter, and 85% neutral atoms and 82% emission intensity in front of the wall. The processes of atoms and molecules influence on the energy balance is ...

  1. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    Science.gov (United States)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  2. Measurements of neutral hydrogen profiles on the EXTRAP-T2 reversed-field pinch from time-resolved ? line emission

    Science.gov (United States)

    Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.

    1998-09-01

    The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.

  3. Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites

    Science.gov (United States)

    Aakash; Nordblad, Per; Rajendra Mohan; Mukherjee, Samrat

    2017-11-01

    In our present work, we have synthesized a series of Cd-Zn doped nickel ferrite ((Cd0.5-xZnx)Ni0.5Fe2O4; x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) through standard chemical co-precipitation method to study the influence of diamagnetic ions (Cd, Zn) on the magnetic properties of ferrites. XRD and Raman spectroscopy were employed for the structural characterizations. The refinement of the X-ray diffractogram data augmented by the Williamson-Hall plots showed the presence of Cd2+ vacancies and a strained crystal structure. The vibrational spectroscopy indicated the presence of lower space-group symmetry and a distorted crystal structure. Magnetic measurements showed the samples possessed low magnetic anisotropy along with a canted spin structure. The Mössbauer measurements confirmed the cation distribution and gave evidence of super transferred hyperfine interactions arising due to canted spin structure of the system.

  4. Experiment for the first direct measurement of the hyperfine splitting of positronium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, A; Ishida, A; Asai, S [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033 (Japan); Suehara, T; Namba, T; Kobayashi, T [International Center for Elementary Particle Physics (ICEPP), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Saito, H [Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 (Japan); Yoshida, M [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Idehara, T; Ogawa, I; Urushizaki, Y [Research Center for Development of Far-Infrared Region, University of Fukui (FIR-FU), 3-9-1 Bunkyo, Fukui, Fukui, 910-8507 (Japan); Sabchevski, S, E-mail: miyazaki@icepp.s.u-tokyo.ac.j [Bulgarian Academy of Science, 1, 15 Noemvri Str., 1040 Sofia (Bulgaria)

    2010-04-01

    Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS: about 203 GHz) is a good tool to test QED and also sensitive to new physics beyond the Standard Model via a quantum oscillation between an ortho-Ps and a virtual photon. Previous experimental results show 3.9 {sigma} (15 ppm) discrepancy from the QED calculation. All previous experiments used an indirect method with static magnetic field to cause Zeeman splitting (a few GHz) between triplet states of ortho-Ps, from which the HFS value was derived. One possible systematic error source of the indirect method is non-uniformity of the static magnetic field. We are developing a new direct Ps-HFS measurement system without static magnetic field. In this measurement we use a gyrotron, a novel sub-THz light source, with a high-finesse Fabry-Perot cavity to obtain enough radiation power at 203 GHz. The present status of the optimization studies and current design of the experiment are described.

  5. Evolution of the quadrupole hyperfine interaction while milling a Si-HfO{sub 2} blend

    Energy Technology Data Exchange (ETDEWEB)

    Chain, C.Y., E-mail: yamil@fisica.unlp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Ferrari, S.; Damonte, L.C. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Martinez, J.A.; Pasquevich, A.F. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC-PBA) (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Perturbed angular correlations and X-ray diffraction studies in equimolar Si-HfO{sub 2}. Black-Right-Pointing-Pointer Mixture subjected to progressive mechanical milling and a final annealing. Black-Right-Pointing-Pointer Short milling distorts monoclinic hafnia to tetragonal forms. Black-Right-Pointing-Pointer Long milling forms hafnon precursor. Black-Right-Pointing-Pointer Moderate temperature annealing ends in hafnon. - Abstract: As HfO{sub 2} appears as a good candidate to replace SiO{sub 2} in Si complementary metal-oxide-semiconductor devices, a refined knowledge of the possible solid-state reactions between Si and HfO{sub 2} is valuable. Being the Perturbed Angular Correlations technique a very sensitive method to detect small changes in solid state, the goal of this work is to follow the different stages that occur while ball milling a blend Si-HfO{sub 2} by inspecting the hyperfine quadrupole interaction at Hf sites. The characterization is complemented by X-ray diffraction analysis. For comparison, a similar study on pure m-HfO{sub 2} is carried out. The results seem to reveal a gradual incorporation of Si in a tetragonal defective phase of hafnia with milling time. In addition, the formation of precursor arrays of the HfSiO{sub 4} structure takes place. After an annealing at 1000 Degree-Sign C an important amount of crystalline hafnon appears.

  6. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    Science.gov (United States)

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-06-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  7. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    Science.gov (United States)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  8. Systematic model calculations of the hyperfine structure in light and heavy ions

    CERN Document Server

    Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G

    2003-01-01

    Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...

  9. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    Science.gov (United States)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  10. Leggett-Garg inequalities violation via the Fermi contact hyperfine interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lobejko, Marcin; Dajka, Jerzy [Institute of Physics, University of Silesia, Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow (Poland)

    2017-06-15

    In this paper we examine theoretically how the spin-spin interaction between a nuclei and an electron in the atom affects violation of the Leggett-Garg inequalities. We consider the simplest case of atoms in the {sup 2}S{sub 1/2} state that in the valence shell have just a single electron and the evolution in time of the spin is dictated only by the Fermi contact hyperfine interaction. We found that for special initial conditions and a particular measured observable the high spin nucleus couple to the valence electron such that violation of Leggett-Garg inequalities increases with total spin of states. Consequently, our results show that for the Hydrogen, the smallest atom in Nature, the violation of the Leggett-Garg inequalities is the smallest whereas for the largest atom, the Cesium, the violation is the largest. Moreover, this violation does not depend on a principal quantum number, thus our model can be used for Rydberg atoms in order to test macrorealism for 'almost macroscopic' objects. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Excitation Cross Section Measurement for n=3 to n=2 Line Emission in Fe{sup 20+} to Fe{sup 23+}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Beiersdorfer, P; Scofield, J; Brown, G; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Gu, M F; Kahn, S M

    2004-08-25

    Electron impact excitation cross sections have been measured for iron L-shell 3 {yields} 2 lines of FeXXI to FeXXIV at the EBIT-II electron beam ion trap using a crystal spectrometer and a 6 x 6-element array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture and a summary of calculated energy dependent radiative recombination cross sections for electron capture into the ground state fine structure levels of Fe{sup 16+} to Fe{sup 23+} ions is given. The measurement results for 17 lines and their comparison with model calculations are presented. While agreement of the model calculations with experiment is good for most measured lines, significant discrepancies were found for a few lines, including the strongest line in Fe XXI.

  12. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  13. LBT observations of compact star-forming galaxies with extremely high [O III]/[O II] flux ratios: He I emission-line ratios as diagnostics of Lyman continuum leakage

    Science.gov (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.

    2017-10-01

    We present Large Binocular Telescope spectrophotometric observations of five low-redshift (z logO/H = 7.46-7.79 and low masses M⋆ ˜ 106-107 M⊙, much lower than the M⋆ for known low-redshift LyC leaking galaxies, but probably more typical of the hypothetical population of low-luminosity dwarf LyC leakers at high redshifts. A broad H α emission line is detected in the spectra of all CSFGs, possibly related to expansion motions of supernova remnants. Such rapid ionized gas motions would facilitate the escape of the resonant Ly α emission from the galaxy. We show that a high O32 may not be a sufficient condition for LyC leakage and propose new diagnostics based on the He I λ3889/λ6678 and λ7065/λ6678 emission-line flux ratios. Using these diagnostics, we find that three CSFGs in our sample are likely to have density-bounded H II regions and are thus leaking large amounts of LyC radiation. The amount of leaking LyC radiation is probably much lower in the other two CSFGs.

  14. Extended calculations of energy levels, radiative properties, AJ, BJ hyperfine interaction constants, and Landé gJ-factors for oxygen-like Kr XXIX

    Science.gov (United States)

    Wang, K.; Jönsson, P.; Ekman, J.; Si, R.; Chen, Z. B.; Li, Y. G.; Chen, C. Y.; Yan, J.

    2017-06-01

    Using the multiconfiguration Dirac-Fock method and the second-order many-body perturbation theory method, highly accurate calculations are performed for the lowest 344 fine-structure levels arising from the 2s2 2p4 , 2s2 2p5 , 2p6 , 2s2 2p3 3 s , 2s2 2p3 3 p , 2s2 2p3 3 d , 2s2 2p4 3 s , 2s2 2p4 3 p , 2s2 2p4 3 d , 2p5 3 s , 2p5 3 p , 2p5 3 d , 2s2 2p3 4 s , 2s2 2p3 4 p , 2s2 2p3 4 d , 2s2 2p3 4 f , and 2s 2p4 4 s configurations in O-like Kr XXIX. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors, and E1, M1, E2, M2 transition rates, line strengths, and oscillator strengths among these 344 levels are obtained. Comparisons are made between our two different sets of results, as well as with the other available experimental and theoretical values. For O-like Kr only a few levels have been experimentally established. The accuracy of our calculated energies is however high enough to facilitate identifications of observed lines involving the n=3,4 levels. The calculated data are also useful for modeling and diagnosing fusion plasmas.

  15. Metallicities of Emission-Line Galaxies from HST ACS PEARS and HST WFC3 ERS Grism Spectroscopy at 0.6 is less than z is less than 2.4

    Science.gov (United States)

    Xia, Lifang; Malhotra, Sangetta; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Walsh, Jeremy; Windhorst, Rogier A.; hide

    2012-01-01

    Galaxies selected on the basis of their emission line strength. show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 grism spectra in the optiCa.i with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) and in the near-infrared using Wide-Field Camera 3 (WFC3). Using a sample of 11 emission line galaxies (ELGs) at 0.6 grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 <12+log(0/H)<8.5. The galaxy stellar masses are derived using Bayesian based Markov Chain Monte Carlo (pi MC(exp 2)) fitting of their Spectral Energy Distribution (SED), and span the mass range 8.1 < log(M(stellar)/M(solar)) < 10.1. These galaxies show a mass-metal1icity (M-L) and Luminosity-Metallicity (LZ) relation, which is offset by -emission-line selected galaxies most resemble the local "green peas" galaxies and Lyman-alpha galaxies at z approx = 0.3 and z approx = 2.3 in the M-Z and L-Z relations and their morphologies. The G - M(sub 20) morphology analysis shows that 10 out of 11 show disturbed morphology, even as the star-forming regions are compact. These galaxies may be intrinsically metal poor, being at early stages of formation, or the low metallicities may be due to gas infall and accretion due to mergers.

  16. Herschel-PACS Observations of Far-IR CO Line Emission in NGC 1068: Highly Excited Molecular Gas in the Circumnuclear Disk

    Science.gov (United States)

    2012-08-10

    20375, USA 3 Sackler School of Physics & Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel 4 Departamento de Fisica, Universidad de Alcalá de...superb sensitivity of Herschel-PACS to conduct the first extragalac- tic study of FIR CO emission, from the prototypical Seyfert 2 galaxy NGC 1068. NGC

  17. A comparison of theoretical CIV emission line strengths with active region observations obtained with the solar EUV rocket telescope and spectrograph (SERTS)

    Science.gov (United States)

    Keenan, F. P.; Thomas, R. J.; Neupert, W. M.; Conlon, E. S.; Burke, V. M.

    1993-01-01

    Theoretical line ratios involving 2s 2S - 3p 2P, 2p 2p - 3s 2S, and 2p 2S - 3d 2D transitions in C IV between 312 and 420 A are presented. A comparison of these with solar active region observational data obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals good agreement between theory and experiment, with discrepancies that average only 22 percent. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on board Skylab. The potential usefulness of the C IV line ratios as electron temperature diagnostics for the solar transition region is briefly discussed.

  18. Decision support system on line to minimize the NO{sub x} emission. Results from Oerebro Energi; Beslutsstoed on line foer minimering av NO{sub x}. Resultat fraan Oerebro Energi

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, B.G.; Liao, B.; Sieurin, J. [EuroSim AB, Nykoeping (Sweden)

    1996-05-01

    A Decision Support System to reduce NO{sub x} emission from combustion processes with SNCR system have been developed and tested in full scale at Oerebro Energy. The boiler is a 165 MWh{sub th} CFB and have been fired with a mixture of biomass, peat and coal. The results proves that the EuroSim method works to calculate the derivative included in the Decision Support System. The Decision Support System is a tool for the operator of the plant, he will be informed of the advantage of making an increase or decrease of the ammonia flow or excess air. The trend curves that are presented to the operator includes information about the economic value to make an adjustment of the ammonia flow. The derivative dNO{sub x}/dO{sub 2} shows the advantage of making a reduction in the excess air level, concerning the fee for NO{sub x}. In this case it is important to take into consideration the risk for understoichiometric combustion and corrosion. The results from the full scale test in the Oerebro Plant shows that during some time periods it is economical to shut off the ammonia flow. The derivative dNO{sub x}/dAF is under the profitability limit. This indicate that the cost for the ammonia is higher than the fee for the NO{sub x} emission. If the ammonia flow is added in excess, the emission of ammonia and N{sub 2}O will increase. During other time periods the Decision Support System shows that it is profitable to increase the ammonia flow, the derivative is lower than -0,2. The derivative dNO{sub x}/dO{sub 2} is normally between 10 and 20 (ppm/%). This indicate that it is a great potential to reduce the NO{sub x} fee by decreasing the excess air level in the boiler. 3 refs, 23 figs

  19. Impact of silica environment on hyperfine interactions in ε-Fe{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kubíčková, Lenka, E-mail: sagittaria.64@gmail.com; Kohout, Jaroslav [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic); Brázda, Petr; Veverka, Miroslav [Institute of Physics of the AS CR, v.v.i. (Czech Republic); Kmječ, Tomáš; Kubániová, Denisa [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic); Bezdička, Petr [Institute of Inorganic Chemistry of the AS CR, v.v.i. (Czech Republic); Klementová, Mariana; Šantavá, Eva [Institute of Physics of the AS CR, v.v.i. (Czech Republic); Závěta, Karel [Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2016-12-15

    Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of ε-Fe{sub 2}O{sub 3} nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ∼20 nm and the thickness of silica coating ∼5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of ε-Fe{sub 2}O{sub 3} with admixtures of ∼1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ∼2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the ε-Fe{sub 2}O{sub 3} nanoparticles spread between ∼85 K and ∼150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

  20. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Yu, G.; Gupta, J. A. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Payette, C.; Austing, D. G. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 rue University, Montreal, Quebec H3A 2T8, Canada and National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  1. The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron Kα line

    DEFF Research Database (Denmark)

    Marinucci, A.; Matt, G.; Bianchi, S.

    2015-01-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suz......We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM...... is found and, by using temporal information collected over more than a decade, we investigate variations of the iron Kα line on time-scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable...

  2. Multiconfiguration Dirac-Hartree-Fock energy levels, oscillator strengths, transition probabilities, hyperfine constants and Landé g-factor of intermediate Rydberg series in neutral argon atom

    Science.gov (United States)

    Salah, Wa'el; Hassouneh, Ola

    2017-04-01

    We computed the energy levels, oscillator strengths f_{ij}, the radiative transition rates A_{ij}, the Landé g -factor, the magnetic dipole moment and the electric quadrupole hyperfine constants of the intermediate Rydberg series ns [k]J ( 4 ≤ n ≤ 6), nd [k]J (3 ≤ n ≤ 4), np [k]J (4 ≤ n ≤ 5) relative to the ground state 3p6 1S0 for neutral argon atom spectra. The values are obtained in the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) approach. In this approach, Breit interaction, leading quantum electrodynamics (QED) effects and self-energy correction are taken into account. Moreover, these spectroscopic parameters have been calculated for many levels belonging to the configuration 3p54s, 3p55s, 3p56s, 3p53d, 3p54d, 3p54p, 3p55p as well as for transitions between levels 3p54s-3p54p, 3p54p-3p53d, 3p54p-3p55s, 3p55s-3p55p and 3p55p-3p56s. The large majority of the lines from the 4p-5s and 4p-3d, 5s-5p and 5p-6s transition arrays have been observed and the calculations are consistent with the J -file-sum rule. The obtained theoretical values are compared with previous experimental and theoretical data available in the literature. An overall satisfactory agreement is noticed allowing assessing the reliability of our data.

  3. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Batoo, Khalid Mujasam, E-mail: khalid.mujasam@gmail.com [King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Salah, Dina [Department of Physics, Ain Shams University, Khalifa El-Maamon, Street, 11566 Cairo (Egypt); Kumar, Gagan; Kumar, Arun; Singh, Mahavir [Department of Physics, Himachal Pradesh University, Summer Hill, Shimla 171005 (India); Abd El-sadek, M. [Nanomaterials Lab, Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Mir, Feroz Ahmad [University Science Instrumentation Centre, University of Kashmir, Srinagar 190006 (India); Imran, Ahamad [King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Jameel, Daler Adil [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center, University of Nottingham, NG7 2RD (United Kingdom)

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu{sup 2+} substitution effect in CoFe{sub 2−x}O{sub 4} Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu{sup 2+} ion substitution. The anisotropy constant, K{sub 1,} is found strongly dependent on the composition of Cu{sup 2+} ions. The variation of saturation magnetization with increasing Cu{sup 2+} ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu{sup 2+} ion concentration have been discussed. - Highlights: • Synthesis of the nanoparticles of Cu doped CoFe{sub 2}O{sub 4} ferrite nanoparticles. • The samples were characterized for the structural, morphological and magnetic studies using XRD, TEM, VSM and Mossbauer spectroscopy. • It has been found that the all the magnetic and Mossbauer parameters are diluted with the addition of Cu content in the CoFe{sub 2}O{sub 4} matrix. • The Mossbauer and magnetic properties were studied in the light of size of nanoparticles and also with respect to the doping composition.