WorldWideScience

Sample records for hymotion prius phev

  1. The effects of electricity pricing on PHEV competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shisheng; Hodge, Bri-Mathias S. [School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907 (United States); Taheripour, Farzad [Department of Agricultural Economics, Purdue University, 403W State Street, West Lafayette, IN 47907 (United States); Pekny, Joseph F.; Reklaitis, Gintaras V. [School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907 (United States); Tyner, Wallace E., E-mail: wtyner@purdue.ed [Department of Agricultural Economics, Purdue University, 403W State Street, West Lafayette, IN 47907 (United States)

    2011-03-15

    Plug-in hybrid electric vehicles (PHEVs) will soon start to be introduced into the transportation sector, thereby raising a host of issues related to their use, adoption and effects on the electricity sector. Their introduction has the potential to significantly reduce carbon emissions from the transportation sector, which has led to government policies aimed at easing their introduction. If their widespread adoption is set as a target it is imperative to consider the effects of existing policies that may increase or decrease their adoption rate. In this study, we present a micro level electricity demand model that can gauge the effects of PHEVs on household electricity consumption and the subsequent economic attractiveness of the vehicles. We show that the electricity pricing policy available to the consumer is a very significant factor in the economic competitiveness of PHEVs. Further analysis shows that the increasing tier electricity pricing system used in California will substantially blunt adoption of PHEVs in the state; and time of use electricity pricing will render PHEVs more economically attractive in any state. - Research highlights: {yields} The effect of the California tiered electricity pricing is to render the PHEV uneconomic. {yields} The unintended consequence of tiered pricing is to make the PHEV unattractive to consumers. {yields} PHEVs will be more attractive in states with low electricity prices and flat rate pricing. {yields} Time of day pricing helps make PHEVs more attractive. {yields} PHEVs are not economically competitive either with a similar gasoline vehicle or Prius hybrid.

  2. Toyota Prius HEV neurocontrol and diagnostics.

    Science.gov (United States)

    Prokhorov, Danil V

    2008-01-01

    A neural network controller for improved fuel efficiency of the Toyota Prius hybrid electric vehicle is proposed. A new method to detect and mitigate a battery fault is also presented. The approach is based on recurrent neural networks and includes the extended Kalman filter. The proposed approach is quite general and applicable to other control systems.

  3. PHEV Market Introduction Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adrienne M [ORNL; Sikes, Karen R [ORNL

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  4. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Ayers, C. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Marlino, L. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Chiasson, J. N. [Univ. of Tennessee, Knoxville, TN (United States); Burress, B. A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design

  5. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Ayers, Curtis William [ORNL; Chiasson, J. N. [University of Tennessee, Knoxville (UTK); Burress, Timothy A [ORNL; Marlino, Laura D [ORNL

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  6. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N. (U Tennessee-Knoxville); Burress, B.A. (ORISE); Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  7. Evaluation des performances du véhicule Toyota Prius

    OpenAIRE

    Jeanneret, Bruno; Harel, Fabien; Badin, François; Trigui, Rochdi; DAMEMME, F; LAVY, J.

    1999-01-01

    CVELEC, GRENOBLE, FRANCE, 03-/11/1999 - 04/11/1999; Une action de recherche portant sur l'évaluation des véhicules hybrides a été menée au sein du laboratoire Transport et Environnement de l'INRETS en collaboration avec l'IFP. Le premier véhicule hybride commercialisé depuis le mois de décembre 1997 au Japon, la Toyota Prius, a tout naturellement été le point de départ du projet. La comparaison des émissions et de la consommation du Îhicule Prius par rapport à des Îhicules du parc actuel perm...

  8. Advancing Transportation through Vehicle Electrification - PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  9. Olivines for HEV and PHEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, K.; Charest, P.; Guerfi, A.; Dontigy, M.; Peticlerc, M. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)

    2007-07-01

    The successful commercialization of Lithium-ion gel polymer batteries for portable electronic devices has led to other applications where the thickness and weight of batteries are important. Lower cost cathode materials are required for large size applications such as plug-in hybrid electric vehicles (PHEV) and hybrid electric vehicles (HEV). The lithium iron phosphate (LiFePO{sub 4}) battery is a type of rechargeable lithium ion battery, which uses LiFePO{sub 4} as a cathode material. This paper presented electrochemical performances of several olivine families for HEV and PHEV applications. By using composite based on water soluble binder (WSB) and poly vinylidene fluoride PVDF binder, Li/LiFePO{sub 4}, Li/NG configuration cells, were evaluated. These cells contained a new gel polymer electrolyte with lithium hexafluorophosphate (LiPF{sub 6}) salt in ethylene carbonate/ethyl methyl carbonate electrolytes (EC/EMC). Charge-discharge cycling of the cells was conducting using the galvanostatic method and AC impedance spectroscopy was used to investigate the interface phenomena. The paper discussed the methodology as well as the results of the experimental. It was concluded that there is a good performance of Li/gel polymer/graphite based on WSB. 5 refs., 2 figs.

  10. Planetväxelns funktion i Toyota Prius

    OpenAIRE

    Karlsson, Olof; Robertsson, Tommy

    2008-01-01

    I en tid med ökande användning av allt dyrare fossila bränslen blir låg användning av dessa ett allt viktigare konkurrensmedel för biltillverkare. Toyota har länge legat i ledningen för forskning kring och produktion av hybridbilar. År 1997 lanserades för första gången deras hybridmodell Prius som sedan dess har uppgraderats vid två tillfällen, dels genom att komponenterna i hybridsystemet förbättrats, dels genom att bilen fått en sportigare design för att locka ett bredare spektrum av köpare...

  11. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Burress, Timothy A [ORNL; Campbell, Steven L [ORNL; Coomer, Chester [ORNL; Ayers, Curtis William [ORNL; Wereszczak, Andrew A [ORNL; Cunningham, Joseph Philip [ORNL; Marlino, Laura D [ORNL; Seiber, Larry Eugene [ORNL; Lin, Hua-Tay [ORNL

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  12. Locating PHEV Exchange Stations in V2G

    CERN Document Server

    Pan, Feng; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

  13. Energy Optimal Control Strategy of PHEV Based on PMP Algorithm

    Directory of Open Access Journals (Sweden)

    Tiezhou Wu

    2017-01-01

    Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.

  14. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    Energy Technology Data Exchange (ETDEWEB)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  15. Development of a KT driving cycle for UMT PHEV powertrain

    Science.gov (United States)

    Atiq, W. H.; Haezah, M. N.; Norbakyah, J. S.; Salisa, A. R.

    2015-12-01

    Driving cycles were identified as one of the core sources that contribute to develop the powertrain for vehicle. Plug-in hybrid electric vehicles (PHEVs) are the future transport for next generation. Compared to conventional internal combustion engine vehicle, hybrid and electric vehicle can improve fuel economy and reduce green house gases. This paper describes a development of Kuala Terengganu driving cycle for Universiti Malaysia Terengganu PHEV. Car speed-time data along the two selected fixed route is obtained by using on-board technique which is Global Positioning System, GPS. The developed driving cycle contains a 1050s speed time series, with a distance of 2.17 km, and an average and a maximum speed of 20.67 km/h and 61.47 km/h, respectively. The results obtained from this analysis are within reasonable range and satisfactory.

  16. The Effects of Electricity Pring on PHEV Competitiveness

    OpenAIRE

    Huang, Shisheng; Hodge, Bri-Mathias S.; Taheripour, Farzad; Pekny, Joseph F.; Reklaitis, Gintaras V.; Tyner, Wallace E.

    2010-01-01

    Plug-in Hybrid Electric Vehicles (PHEVs) will soon start to be introduced into the transportation sector, thereby raising a host of issues related to their use, adoption and effects on the electricity sector. Their introduction has the potential to significantly reduce carbon emissions from the transportation sector, which has led to government policies aimed at easing their introduction. If their wide-spread adoption is set as a target it is imperative to consider the effects of existing po...

  17. Évaluation des performances du Îhicule Toyota Prius

    OpenAIRE

    Jeanneret, Bruno; Harel, Fabien; Badin, François; Trigui, Rochdi; DAMEMME, F; LAVY, J.

    1999-01-01

    C VELEC 99, 3ème colloque sur les véhicules électriques, GRENOBLE, FRANCE, 03-/11/1999 - 04/11/1999; Une action de recherche portant sur l'évaluation des Îhicules hybrides a été menée au sein du laboratoire Transport et Environnement de l'INRETS en collaboration avec l'IFP. Le premier Îhicule hybride commercialisé depuis le mois de décembre 1997 au Japon, la Toyota Prius, a tout naturellement été le point de départ du projet. La comparaison des émissions et de la consommation du Îhicule Prius...

  18. Techno-economic analysis and decision making for PHEV benefits to society, consumers, policymakers and automakers

    Science.gov (United States)

    Al-Alawi, Baha Mohammed

    Plug-in hybrid electric vehicles (PHEVs) are an emerging automotive technology that has the capability to reduce transportation environmental impacts, but at an increased production cost. PHEVs can draw and store energy from an electric grid and consequently show reductions in petroleum consumption, air emissions, ownership costs, and regulation compliance costs, and various other externalities. Decision makers in the policy, consumer, and industry spheres would like to understand the impact of HEV and PHEV technologies on the U.S. vehicle fleets, but to date, only the disciplinary characteristics of PHEVs been considered. The multidisciplinary tradeoffs between vehicle energy sources, policy requirements, market conditions, consumer preferences and technology improvements are not well understood. For example, the results of recent studies have posited the importance of PHEVs to the future US vehicle fleet. No studies have considered the value of PHEVs to automakers and policy makers as a tool for achieving US corporate average fuel economy (CAFE) standards which are planned to double by 2030. Previous studies have demonstrated the cost and benefit of PHEVs but there is no study that comprehensively accounts for the cost and benefits of PHEV to consumers. The diffusion rate of hybrid electric vehicle (HEV) and PHEV technology into the marketplace has been estimated by existing studies using various tools and scenarios, but results show wide variations between studies. There is no comprehensive modeling study that combines policy, consumers, society and automakers in the U.S. new vehicle sales cost and benefits analysis. The aim of this research is to build a potential framework that can simulate and optimize the benefits of PHEVs for a multiplicity of stakeholders. This dissertation describes the results of modeling that integrates the effects of PHEV market penetration on policy, consumer and economic spheres. A model of fleet fuel economy and CAFE compliance for

  19. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  20. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  1. Smart procurement of naturally generated energy (SPONGE) for PHEVs

    Science.gov (United States)

    Gu, Yingqi; Häusler, Florian; Griggs, Wynita; Crisostomi, Emanuele; Shorten, Robert

    2016-07-01

    In this paper, we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of plug-in hybrid electric vehicle (PHEVs) to absorb oncoming energy in a smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO (Simulation of Urban MObility) is used to demonstrate the efficacy of the proposed idea.

  2. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  3. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    OpenAIRE

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    This report discusses the development of advanced batteries for plug-in hybrid electric vehicle (PHEV) applications. We discuss the basic design concepts of PHEVs, compare three sets of influential technical goals, and explain the inherent trade-offs in PHEV battery design. We then discuss the current state of several battery chemistries, including nickel-metal hydride (NiMH) and lithium-ion (Li-Ion), comparing their abilities to meet PHEV goals, and potential trajectories for further improve...

  4. Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

    2010-06-24

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

  5. Electro-mechanical power coupling system for PHEV with high price-performance ratio

    Institute of Scientific and Technical Information of China (English)

    Federmann Florian; Yue CHENG; Xin LI; Bo ZHANG; Jia-jia XIE; Yang YU

    2014-01-01

    The price-performance ratio of PHEV determines its market penetration.Besides en-gine and battery,the power coupling system including traction motor and automatic transmission is a key influence factor of system performance and costs.This article introduces an electro-me-chanical power coupling system for PHEV with high price-performance ratio,which integrates an electro-mechanical CVT and a flat traction motor.As an example,a PHEV system is configured to conform the vehicle dynamic specifications.

  6. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  7. FY12 annual Report: PHEV Engine Control and Energy Management Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H [ORNL

    2012-05-01

    The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

  8. Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2012-11-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs have a large potential to reduce greenhouse gases emissions and increase fuel economy and fuel flexibility. PHEVs are propelled by the energy from both gasoline and electric power sources. Penetration of PHEVs into the automobile market affects the electrical grid through an increase in electricity demand. This paper studies effects of the wide spread adoption of PHEVs on peak and base load demands in Ontario, Canada. Long-term forecasting models of peak and base load demands and the number of light-duty vehicles sold were developed. To create proper forecasting models, both linear regression (LR and non-linear regression (NLR techniques were employed, considering different ranges in the demographic, climate and economic variables. The results from the LR and NLR models were compared and the most accurate one was selected. Furthermore, forecasting the effects of PHEVs penetration is done through consideration of various scenarios of penetration levels, such as mild, normal and aggressive ones. Finally, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated for electricity production planning purposes.

  9. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  11. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  12. Economic Scheduling of Residential Plug-In (Hybrid Electric Vehicle (PHEV Charging

    Directory of Open Access Journals (Sweden)

    Maigha

    2014-03-01

    Full Text Available In the past decade, plug-in (hybrid electric vehicles (PHEVs have been widely proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed to reduce the stress on the electric power grid by shaping the load curve. Time of use (TOU rates have been recommended to incentivize PHEV owners to shift their charging patterns. Many utilities are not currently equipped to provide real-time use rates to their customers, but can provide two or three staggered rate levels. To date, an analysis of the optimal number of levels and rate-duration of TOU rates for a given consumer demographic versus utility generation mix has not been performed. In this paper, we propose to use the U.S. National Household Travel Survey (NHTS database as a basis to analyze typical PHEV energy requirements. We use Monte Carlo methods to model the uncertainty inherent in battery state-of-charge and trip duration. We conclude the paper with an analysis of a different TOU rate schedule proposed by a mix of U.S. utilities. We introduce a centralized scheduling strategy for PHEV charging using a genetic algorithm to accommodate the size and complexity of the optimization.

  13. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  14. A conceptual design of main components sizing for UMT PHEV powertrain

    Science.gov (United States)

    Haezah, M. N.; Norbakyah, J. S.; Atiq, W. H.; Salisa, A. R.

    2015-12-01

    This paper presents a conceptual design of main components sizing for Universiti Malaysia Terengganu plug-in hybrid electric vehicle (UMT PHEV) powertrain. In the design of hybrid vehicles, it is important to identify a proper component sizes. Component sizing significantly affects vehicle performance, fuel economy and emissions. The proposed UMT PHEV has only one electric machine (EM) which functions as either a motor or generator at a time and using batteries and ultracapacitors as an energy storage system (ESS). In this work, firstly, energy and power requirements based on parameters, specifications and performance requirements of vehicle are calculated. Then, the parameters for internal combustion engine, EM and ESS are selected based on the developed Kuala Terengganu drive cycle. The results obtained from this analysis are within reasonable range and satisfactory.

  15. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  16. Costate Estimation of PMP-Based Control Strategy for PHEV Using Legendre Pseudospectral Method

    Directory of Open Access Journals (Sweden)

    Hanbing Wei

    2016-01-01

    Full Text Available Costate value plays a significant role in the application of PMP-based control strategy for PHEV. It is critical for terminal SOC of battery at destination and corresponding equivalent fuel consumption. However, it is not convenient to choose the approximate costate in real driving condition. In the paper, the optimal control problem of PHEV based on PMP has been converted to nonlinear programming problem. By means of KKT condition costate can be approximated as KKT multipliers of NLP divided by the LGL weights. A kind of general costate estimation approach is proposed for predefined driving condition in this way. Dynamic model has been established in Matlab/Simulink in order to prove the effectiveness of the method. Simulation results demonstrate that the method presented in the paper can deduce the closer value of global optimal value than constant initial costate value. This approach can be used for initial costate and jump condition estimation of PMP-based control strategy for PHEV.

  17. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  18. Fuzzy Control Strategy of Battery Management for PHEV during Regenerative Braking

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available Based on analyzing the structure of Parallel Hybrid Electric Vehicle (PHEV and its operation during regenerative braking, a fuzzy control strategy of battery management is proposed. Firstly, the state of charging is estimated by establishing the mathematical relationship between open circuit voltage and the internal resistance model. Secondly, the fuzzy logic controller is designed in regenerative braking system. Finally, by modeling and simulation in ADVISOR, it is shown that the rate of energy recovery with the fuzzy control strategy is increased by 12.3, 18.3 and 7.6%, respectively in three different driving cycles, compared with the benchmark control strategy in the same driving cycles.

  19. Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs: A Review

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2013-08-01

    Full Text Available Increasing concerns about global environmental issues have led to the urgent development of green transportation. The enthusiasm of governments should encourage the prosperity of the plug-in hybrid electric vehicles/electric vehicles (PHEVs/EVs industry in the near future. PHEVs/EVs are not only an alternative to gasoline but are also burgeoning units for power systems. The impact of large-scale PHEVs/EVs on power systems is of profound significance. This paper discusses how to use PHEVs/EVs as a useful new tool for system operation and regulation from a review of recent studies and mainly considers two mainstream methods: demand response and economic dispatch. The potential of using PHEVs/EVs to coordinate renewable energy resources is also discussed in terms of accepting more renewable resources without violating the safety and the reliability of power systems or increasing the operation cost significantly.

  20. Three-phase inductive-coupled structures for contactless PHEV charging system

    Science.gov (United States)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  1. Diseño de estrategias con enfoque en el marketing 3.0 para incrementar las ventas de automóviles híbridos de la marca Toyota Prius C sport en la ciudad de Guayaquil.

    OpenAIRE

    Arana Burgos, Kelly Snerlinger; Galarza Calle, Ana Luisa

    2015-01-01

    Este estudio pretente desarrollar un plan de marketing con enfoque en el marketing 3.0 para incrementar las ventas del vehículo híbrido Toyota Prius C Sport, ya que el automóvil cuenta con atributos tecnológicos eco amigables que ayudan al cuidado del medio ambiente evitando la acumulación de gases en la atmosfera previniendo el efecto invernadero. This study intend on developing a marketing plan focusing on marketing to increase sales 3.0 hybrid vehicle Toyota Prius C Sport, as the car ha...

  2. Research on Conflict Decision between Shift Schedule and Multienergy Management for PHEV with Automatic Mechanical Transmission under Special Driving Cycles

    Directory of Open Access Journals (Sweden)

    JunQiang Xi

    2013-01-01

    Full Text Available In order to satisfy the character of parallel hybrid electric vehicle (PHEV in some special driving cycles, a collision decision problem between the shift decision and power split ratio is proposed. Based on a large amount of experimental data the optimal decisions are determined with evidential reasoning theory. The proposed decision strategy has been verified through real road test of Chongqing public transportation line 818 and the fuel economic improvement has also been achieved.

  3. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  4. Performance of a Nonlinear Real-Time Optimal Control System for HEVs/PHEVs during Car Following

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2014-01-01

    Full Text Available This paper presents a real-time optimal control approach for the energy management problem of hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs with slope information during car following. The new features of this study are as follows. First, the proposed method can optimize the engine operating points and the driving profile simultaneously. Second, the proposed method gives the freedom of vehicle spacing between the preceding vehicle and the host vehicle. Third, using the HEV/PHEV property, the desired battery state of charge is designed according to the road slopes for better recuperation of free braking energy. Fourth, all of the vehicle operating modes engine charge, electric vehicle, motor assist and electric continuously variable transmission, and regenerative braking, can be realized using the proposed real-time optimal control approach. Computer simulation results are shown among the nonlinear real-time optimal control approach and the ADVISOR rule-based approach. The conclusion is that the nonlinear real-time optimal control approach is effective for the energy management problem of the HEV/PHEV system during car following.

  5. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  6. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  7. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    D' Annunzio, Julie [Ford Motor Company, Dearborn, MI (United States); Slezak, Lee [U.S. DOE Office of Energy Efficiency & Renewable Energy, Washington, DC (United States); Conley, John Jason [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  8. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  9. A New Method of Reference Signal Generation Applied To UPQC-PHEV For Grid Integration of WECS-SCIG

    Directory of Open Access Journals (Sweden)

    Girish B M

    2017-02-01

    Full Text Available In this paper a new reference signal generation control technique is proposed for integration of Unified Power Quality Conditioner (UPQC with Plug-in Hybrid Electric Vehicle (PHEV for overcoming voltage sag and other voltage fault conditions on wind farms which is connected to grid. The interaction of wind generators and grid causes increased short circuit current which leads to instability during fault conditions. The new control technique which generate reference signals for series active power filter (Series APF and shunt active power filter (Shunt APF of UPQC by using PHEV as an Energy Storage System (ESS which will take care of all types of voltage faults occurred in the system and provide energy storage to DC link between Series APF and Shunt APF parts of UPQC. The control scheme proposed also maintains transaction of active and reactive power of Wind Energy Conversion System based on Squirrel Cage Induction Generators (WECS-SCIG and grid. The fuzzy logic provides fast and dynamic response to clear faults occurred in the system.

  10. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg; Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)], E-mail: richard@vt.edu

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world.

  11. Beyond batteries. An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition - and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. (author)

  12. Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2010-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day by day. Chargers for these vehicles have the ability to make this interaction better for the consumer and for the grid. Vehicle to grid (V2G) power transfer has been under research for more than a decade because of the large energy reserve of an electric vehicle battery and the potential of thousands of these connected to the grid. Rather than discharging the vehicle batteries, reactive power compensation in particular is beneficial for both consumers and for the utility. However, certain adverse effects or requirements of reactive power transfer should be defined before a design stage. To understand the dynamics of this operation, this study investigates the effect of reactive power transfer on the charger system components, especially on the dc-link capacitor and the battery.

  13. Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Gering

    2011-04-01

    Path dependence is emerging as a premier issue of how electrochemical cells age in conditions that are diverse and variable in the time domain. For example, lithium-ion cells in a vehicle configuration will experience a variable combination of usage and rest periods over a range of temperature and state of charge (SOC). This is complicated by the fact that some aging can actually become worse (or better) when a lithium-ion cell is idle for extended periods under calendar-life (calL) aging, as opposed to cycle-life (cycL) conditions where the cell is used within a predictable schedule. The purpose of this study is to bridge the gap between highly idealized and controlled laboratory test conditions and actual field conditions regarding PHEV applications, so that field-type aging mechanisms can be mimicked and quantified in a repeatable laboratory setting. The main parameters are the magnitude and frequency of the thermal cycling, looking at isothermal, mild, and severe scenarios. To date, little is known about Li-ion aging effects caused by thermal cycling superimposed onto electrochemical cycling, and related path dependence. This scenario is representative of what Li-ion batteries will experience in vehicle service, where upon the typical start of a HEV/PHEV, the batteries will be cool or cold, will gradually warm up to normal temperature and operate there for a time, then will cool down after the vehicle is turned off. Such thermal cycling will occur thousands of times during the projected life of a HEV/PHEV battery pack. We propose to quantify the effects of thermal cycling on Li-ion batteries using a representative chemistry that is commercially available. The secondary Li-ion cells used in this study are of the 18650 configuration, have a nominal capacity rating of 1.9 Ah, and consist of a {LiMn2O4 + LiMn(1/3)Ni(1/3)Co(1/3)O2} cathode and a graphite anode. Electrochemical cycling is based on PHEV-relevant cycle-life protocols that are a combination of charge

  14. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  15. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  16. Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

    2007-12-01

    This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

  17. Solution for Benefit Evaluation Model of PHEV Grid Connection Based on MILP and Its Application%基于MILP的PHEV入网效益评估模型求解及应用

    Institute of Scientific and Technical Information of China (English)

    左郑敏; 欧阳邵杰; 杨涛举; 李晨; 曾鸣

    2013-01-01

    Plug in hybrid electric vehicles (PHEV) has become an important means to solve the problems of energy and environment.In order to explore that if network access with a large scale in the future will benefit the grid and users,a new benefit evaluation model of PHEV connected grid is established.This model makes the minimum of the total cost of the power system operation as the objective,and sets the regional energy supply and demand balance,balance of battery power,the unit ramp rate as the constraints.The branches and cut plane algorithm based mixed integer linear programming(MILP) is used to solve the established model.The simulation analysis of the model is verified by an example.The results show that with the V2G technology,the PHEV connection grid can bring significant benefits for the grid and PHEV users.%插入式混合电动汽车(PHEV)已成为解决能源和环境问题的重要手段,为探讨未来大规模入网能否给电网与用户带来额外效益,以电力系统运行总成本最小化为目标,以区域电能供需平衡、电池电量平衡、机组爬坡率等条件为约束,建立了新的PHEV入网效益评估模型,并利用新的混合整数线性规划求解思路,使用分支和分割算法对建立的效益评估模型进行求解,通过算例对模型进行了模拟分析.结果表明,通过V2G技术,PHEV入网可为电网和PHEV用户带来显著效益.

  18. Design and Analysis of Double-coupling Power System for PHEV%PHEV双耦合动力系统的设计及分析

    Institute of Scientific and Technical Information of China (English)

    兰凤崇; 王国荣; 陈吉清; 吴为理

    2014-01-01

    基于对插电式混合动力汽车( PHEV)的两种耦合(转矩耦合或转速耦合)方式的结构和运动特性的分析,提出了一种转速耦合与转矩耦合交替工作的动力耦合系统,并根据行星齿轮机构的转速特性的分析计算了系统的结构设计参数。在MATLAB/Simulink平台上对该系统进行了联合仿真,结果表明:其动力性指标满足设计要求,而且与其他单一耦合系统相比,在动力性能指标相同的情况下,能有效减小动力部件的尺寸和质量。%Based on an analysis on the structure and motion characteristics of two coupling modes ( torque coupling and speed coupling) in a plug-in hybrid electric vehicle, a power coupling system is proposed, in which torque coupling and speed coupling are in operation alternately. The design structural parameters are calculated ac-cording to the analysis on the speed characteristics of planetary gear mechanism and a co-simulation on the system is conducted with MATLAB/Simulink platform. The results indicate that the power performance indicators of the cou-pling system proposed meet the design requirements. In addition, compared with single coupling systems in the same condition of power performance indicators, the size and mass of power components with proposed coupling sys-tem can be effectively reduced.

  19. AY 2007-2008 Achieving U.S. Energy Security: Energy Industry Sector Report Seminar 8

    Science.gov (United States)

    2008-01-01

    mpg on the highway.30 PHEV versions of current hybrid vehicles, such as the Toyota Prius and Ford Escape, are undergoing fleet tests and models...China’s Plucky Plug-In Hybrid,” Business Week, January 21, 2008. 29 James Healey, “ Prius Plug-In Displays Battery of Good Points,” USA Today...January 17, 2008. 30 James Healey, “Ford Escape Plug-in Hybrid Shows Potential”, USA Today, January 24, 2008. 31 James Healey, “ Prius Plug-In Displays

  20. The research and design of a novel PHEV energy management controller%Plug_in电动车能量管理控制器研究

    Institute of Scientific and Technical Information of China (English)

    肖铎; 庞文尧; 汪秋婷; 戚伟

    2012-01-01

    The paper proposed an energy management controller of Plug_in hybrid electric vehicle(PHEV)based on fuzzy neural network algorithm. With driving mode, pedal (throttle and brake) position and current wheel torque as input, and the target torque as output, driving behavior was modeling by neural network algorithm. With the type of road, the target torque, battery SOC, and the current wheel torque for the fuzzy input variable, the vehicle power performance and the fuel economy as constraint condition, the power was distributed between the motor and the engine by fuzzy algorithm. The energy distribution and management controller was designed based on the algorithm on DSP hardware platform. The result of testing shows that, in the mileage 40 km equivalent fuel economy was the best, with the increase of the mileage fuel economic declined. In the whole testing process, the power performance is good, and every parts of the hybrid electric vehicle were in good working condition.%基于模糊神经网络算法研究设计Plug_in混合动力汽车整车能量管理控制器.将驾驶行为用神经网络进行建模,驾驶模式、踏板(油门和刹车)位置以及当前车轮力矩作为神经网络输入,目标力矩作为输出;将道路类型、目标力矩、电池SOC、当前车轮力矩为模糊输入变量,以满足整车动力性能、燃油经济性和极限边界极值为约束条件,对混合动力汽车的能量进行分配与管理,并在DSP硬件平台设计实现能量管理控制器.测试表明,行驶里程在40 km内时,样车等价燃油经济性最好,随着行驶里程的增加,燃油经济性下降,整个测试过程中样车动力性能以及各部件工况良好.

  1. PHEVs Park as Virtual UPFC

    National Research Council Canada - National Science Library

    H. R. Pota; F. R. Islam

    2012-01-01

    Unified power flow controllers (UPFCs) are FACTS devices which can fulfil multiple power-flow control objectives, such as the need for reactive shunt compensation, phase shifting and series compensation...

  2. Choice, Conditioned Reinforcement, and the Prius Effect

    Science.gov (United States)

    Fantino, Edmund

    2008-01-01

    Psychologists have long been intrigued with the rationales that underlie our decisions. Similarly, the concept of conditioned reinforcement has a venerable history, particularly in accounting for behavior not obviously maintained by primary reinforcers. The studies of choice and of conditioned reinforcement have often developed in lockstep. Many…

  3. BEVs/PHEVs动态V2B技术在智能电网中的应用%BEVs/PHEVs dynamically V2B technique used in the smart grid

    Institute of Scientific and Technical Information of China (English)

    王晓云; 聂祺昕; 吴限

    2013-01-01

    电动汽车向楼字反向服务(vehicle-to-building,简称V2B)为使用电动汽车自身电池的储能供应电网负荷提供了一个选择.国内外很多研究人员已经证明,电动汽车向电网反向服务(Vehicl-to-grid,简称V2G)有很多潜在的好处.但由于各种实践原因,这一概念被预测在将来5~10年的时间广泛应用.而V2B作为一个新提出的概念,在实践上比V2G要更容易实现,预计3~5年的时间就可实现.提出利用纯电动汽车(BEVs)和可插电混合动力汽车(PHEVs)所携带的电池,作为动态配置的分散储能系统,将交通系统和电力系统通过“智能车库”有机地结合起来,以实现V2B技术.根据智能车库提供的数据,基于BEVs和PHEVs车载电池储能充放电的V2B技术可实现智能电网里的需求侧管理(DSM),并用仿真结果验证了V2B的可行性.%Vehicle-to-building (V2B) provides an option to use the battery energy in electric vehicles to support loads in the power grid. Many researches have proved that vehicle-to-grid (V2G) has many potential benefits. But for various practical reasons, the wide application of this concept is envisioned in 5-10 years. As a new concept, V2B is more practically viable than V2G and may be implemented in 3-5 years. The potential benefits of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) as dynamically configurable dispersed energy storage was demonstrated, acting at the convergence of transportation and power system. A new parking facility as an energy exchange station called "smart garage" was discussed in this paper. Based on the availability analysis of smart garages, the benefits of using BEVs/PHEVs as energy storage for demand side management (DSM) was discussed in detail. A strategy to adopting BEVs/PHEV used in the V2B mode under the peak load and outage condition was studied and demonstrated with test cases.

  4. 基于混沌遗传算法的PHEV能量管理策略优化%Optimization of Energy Management Strategy of PHEV Based on Chaos-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    邓元望; 王兵杰; 张上安; 韩卫

    2013-01-01

    This paper proposed a new Chaos-Genetic Algorithm,which improved the combination between the chaos mapping and genetic algorithm in order to add chaotic search to the population evolution,so that the ergodicity of the genetic algorithm can be enhanced.And the algorithm can effectively overcome the defects of local optimum of the genetic.In the software ADVISOR2002,for a Plug-in Hybrid Electrical Vehicle (PHEV) using fuzzy energy management strategy as the research object,the membership functions and rules of fuzzy EMS were optimized with Chaos-Genetic Algorithm.Simulation results demonstrate that this Chaos-Genetic Algorithm can optimize the fuzzy EMS globally.Compared with the original fuzzy control strategy,the optimized fuel economy increases by 5.15% and the CO emission reduces by 6.39%.%提出了一种新的混沌遗传算法,改进了混沌映射和遗传算法的结合方式,使种群在进化的过程中能够混沌搜索解空间,从而增强遗传算法的遍历性.该算法有效地克服了遗传算法局部收敛的缺陷.在软件ADVISOR2002中,以一辆采用模糊能量管理策略的插电式混合动力电动汽车(Plug-in Hybrid Electrical Vehicle,PHEV)为研究对象,应用该混沌遗传算法对其隶属函数和控制规则进行了优化.仿真结果表明,该算法可以实现对模糊控制器的全局优化.与原模糊控制策略相比,优化后的燃油经济性提高了5.15%,CO排放减少了6.39%.

  5. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from -15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at

  6. Where is the early market for PHEVs?

    NARCIS (Netherlands)

    Santini, D.J.; Passier, G.L.M.; Badin, F.; Brouwer, A.; Conte, F.V.; Smets, S.; Alexander, M.; Bleijs, C.; Brincourt, T.; Vyas, A.; Rousseau, A.

    2008-01-01

    The relative fuel consumption reduction strengths of multiple passenger car powertrains are investigated. These include [A] conventional compression ignition (CI) direct injection (DI) turbocharged (TC) diesel (D) [CI-DI-TC-D]; [B] Atkinson cycle charge sustaining (CS) "split-hybrid" electric vehicl

  7. Where is the early market for PHEVs?

    NARCIS (Netherlands)

    Santini, D.J.; Passier, G.L.M.; Badin, F.; Brouwer, A.; Conte, F.V.; Smets, S.; Alexander, M.; Bleijs, C.; Brincourt, T.; Vyas, A.; Rousseau, A.

    2008-01-01

    The relative fuel consumption reduction strengths of multiple passenger car powertrains are investigated. These include [A] conventional compression ignition (CI) direct injection (DI) turbocharged (TC) diesel (D) [CI-DI-TC-D]; [B] Atkinson cycle charge sustaining (CS) "split-hybrid" electric

  8. Thermal Load Reduction System Development in a Hyundai Sonata PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff

    2017-03-28

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  9. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  10. Development of an effective communication strategy for the prevention of burns in children: the PRIUS project.

    Science.gov (United States)

    Cedri, S; Briguglio, E; Cedri, C; Masellis, A; Crenca, A; Pitidis, A

    2015-06-30

    This study has developed a learning kit for the prevention of domestic burns in childhood. The main objective was to trial an educational package for children (nursery and primary classes), for the prevention of burns, to be implemented through education in schools. The educational kit comprises posters, information leaflets, comic books, and pre and post education evaluation materials for school children, parents and teachers. Recipients of the preliminary study were the students of nine schools in the eight Italian cities where Burn Centers are located. In order to reach the target groups of children, it was necessary to identify the most effective communication strategy to convey the burn prevention message. For nursery school children, it was not possible to use tools with written texts alone, as they were not yet literate. Moreover, even for older children, it was necessary to find an attractive tool to catch their attention and interest, promoting the understanding and memorization of lessons learned. The most suitable means was found to be comic strips, allowing the messages to be conveyed through images as well as words. A total of 370 children (195 from nurseries and 175 from primary schools) participated in the trial of the educational kit. Overall, for every environment represented in the evaluation table, the ability to recognize the dangers among both the pre-school and primary school children increased significantly after the training activity. In conclusion, the educational kit has been positively assessed.

  11. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  12. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.

  13. Design and simulation of liquid cooled system for power battery of PHEV

    Science.gov (United States)

    Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun

    2017-09-01

    Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.

  14. Final Report - Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jagat [3M Company, Maplewood, MN (United States)

    2017-03-22

    Lithium Ion Battery (LIB) technology’s potential to enable a commercially viable high energy density is the key to a lower $/Wh, thereby a low cost battery. The design of a LIB with high energy, high power, safety and long life is a challenge that requires cell design from the ground up and synergy between all components. 3M Company (3M), the Recipient, led by its Principal Investigator, Jagat Singh, pursued this challenging task of a LIB by ‘teaming’ key commercial businesses [General Motors (GM), Umicore and Iontensity] and labs [Army Research Laboratory (ARL) and Lawrence Berkley National Laboratory (LBNL)]. The technology from each team member was complimentary and a close working relationship spanning the value chain drove productivity.The completion of this project is a significant step towards more energy efficient and environmentally friendly vehicles, making America less dependent on imported oil.

  15. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Campbell, Steven L [ORNL

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  16. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Tolbert, Leon M [ORNL

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .

  17. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    Science.gov (United States)

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  18. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.

    2015-06-01

    The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

  19. ?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

    Energy Technology Data Exchange (ETDEWEB)

    DeVault, Robert C [ORNL

    2009-01-01

    Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

  20. Risedronate, an effective treatment for glucocorticoid-induced bone loss in CKD patients with or without concomitant active vitamin D (PRIUS-CKD).

    Science.gov (United States)

    Fujii, Naohiko; Hamano, Takayuki; Mikami, Satoshi; Nagasawa, Yasuyuki; Isaka, Yoshitaka; Moriyama, Toshiki; Horio, Masaru; Imai, Enyu; Hori, Masatsugu; Ito, Takahito

    2007-06-01

    Recent post hoc analysis proved the efficacy and tolerability of risedronate in osteoporotic patients with renal impairment, but the combination of active vitamin D in chronic kidney disease (CKD) patients taking glucocorticoids remains unknown. We conducted a prospective study enrolling 114 CKD patients (creatinine clearance > or =30 ml/min/1.73 m(2)) receiving glucocorticoid therapy for > or =6 months. Eighty-eight subjects who had received active vitamin D (aVD) were randomly assigned to either a group treated with aVD only (group A), or to a group also receiving risedronate 2.5 mg/day (group B). The remaining patients (group C) received risedronate only. After 1 year 100 subjects were analysed. Risedronate was effective on the lumbar spine, but not on the femoral neck. The lumbar bone mineral density (BMD) significantly increased by 2.8 and 2.5% in groups B and C, respectively, but decreased by 1.0% in group A. Serum N-terminal telopeptides of type I collagen (S-NTX) and bone alkaline phosphatase (ALP) fell significantly in groups B and C at 3 and 6 months, respectively, while in group A S-NTX remained unchanged and bone ALP significantly increased. There was no significant difference between groups B and C regarding BMD and bone markers. The reduction rate of S-NTX (bone ALP) at 6 months predicted the increase in lumbar BMD at 1 year with a sensitivity of 73% (34%) and a specificity of 46.2% (100%). Risedronate is effective in increasing BMD with or without aVD in CKD patients receiving long-term glucocorticoid therapy. Bone markers are of some use in predicting the response to anti-resorptive therapy.

  1. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

  2. Oil Vulnerabilities and United States Strategy

    Science.gov (United States)

    2007-02-08

    initially run under electric-only power in the first 40 to 50 miles. “Your 50-mile per gallon Prius now becomes a 100 to 150 mile per gallon Prius . Based...industry to provide greater access and more options, such as E85, at the pump. 14 Conclusion James Woolsey “drives a Toyota Prius with a bumper sticker

  3. Intelligent Hybrid Vehicle Power Control. Part 2. Online Intelligent Energy Management

    Science.gov (United States)

    2012-06-30

    Continuous Power = 33kW  Peak Power = 65kW Battery  Toyota Prius MY04 Battery (ess_nimh_6_168_panasonic_MY04_Prius)  Capacity = 6.5Ah, Cell...in production systems such as the Ford Escape or Toyota Prius , other factors such as drivability, performance, and emissions need to be balanced with

  4. AMC’s Hydrogen Future: Sustainable Air Mobility

    Science.gov (United States)

    2009-06-01

    Aluminum Liner (Left) CFRP Shell (Right) 69 36. Hydrogen Insulated Pressure Tank in Toyota Prius 70 37. Annual Solar Radiation 87...evaporative losses (Aceves, 2006). The insulated pressure tank was placed in a Toyota Prius (see Figure 36). The tank when filled with 10 kilograms of...design. Figure 36 Hydrogen Insulated Pressure Tank in Toyota Prius (Aceves, 2006) 71 Hydrogen storage vessels are advancing rapidly. These

  5. America’s Soft Underbelly: Economic Espionage

    Science.gov (United States)

    2008-12-10

    internal combustion engine” for the Hybrid Synergy Drive (HSD) system which is also used on the Toyota Prius , their flagship hybrid vehicle.26 In addition...to the one-time patent infringement violation fee of $4.3 million, Toyota has been directed to pay Paice LLC a fee of $25 dollars for every Prius ...2008, linked from http://www.autobloggreen.com/tag/paice+llc/ (accessed September 22, 2008). 27 Damon Lavrinc, “Toyota Losses Patent Appeal in Prius

  6. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond

  7. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond

  8. Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems

    Science.gov (United States)

    2010-03-01

    arrival of the Insight, nearly every major automotive manufacturer has released its own hybrid model. The Toyota Prius , released to the US in 2001, has...dominated the hybrid marketplace with US sales topping 1,000,000 in March 2009.17 The Prius features a power-split hybrid system enabling use of an

  9. How Improved Fuel Efficiency May Change U.S. Middle East Policy

    Science.gov (United States)

    2012-03-14

    conservation by 18 encouraging people to travel less and purchase more fuel efficient vehicles, such as a 50 mpg Prius or electric cars such as the...efficiency standards, which is currently achievable with the Prius and Volt, would cut gasoline usage in half and would equate to an overall 25% reduction in

  10. 77 FR 70741 - Agency Information Collection Extension

    Science.gov (United States)

    2012-11-27

    ... code ``EVC-PH'' to capture data on plug-in hybrid electric vehicles (PHEV). PHEVs are considered... propulsion. Currently, EIA collects data on electric battery-powered vehicles with the code ``EVC BP.'' Adding the code ``EVC PH'' will differentiate between straight battery-powered AFVs and PHEVs. EIA...

  11. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  12. 基于最佳制动效果的并联式混合动力汽车再生制动控制策略%Regenerative Braking Control Strategy for PHEV Based on Optimal Braking Effect

    Institute of Scientific and Technical Information of China (English)

    高爱云; 邓效忠; 张明柱; 付主木

    2015-01-01

    Based on the principles of the braking force distribution,a regenerative braking control strategy was proposed on the basis of the optimal braking effect and fuzzy control,where mechanical braking could cooperate with regenerative braking and front and rear wheel braking force were distribG uted reasonably.Taking the braking strength and the state of charge of batteries as inputs,and reG garding the expected regenerative braking force as an output,a fuzzy controller was designed.The control strategy designed was simulated from parts performance,braking energy recovery and braking sense compared with the default control strategy in ADVISOR.At the same time,the hardwareintheloop simulation was developed to prove the simulation results in ADVISOR effective.The results show that the control strategy presented can assure the driver of satisfactory braking sense based on the braking stability,and improve energy efficiency at the same time and at last achieve optimal braG king effect.%在遵循制动力分配原则的基础上,提出了基于最佳制动效果和模糊控制的再生制动控制策略,使机械制动和再生制动可以很好地协同工作,实现前后轮制动力合理分配。设计了以制动强度和蓄电池荷电状态为输入变量,以期望再生制动力为输出变量的模糊控制器。利用仿真软件 ADVISOR,对所设计的控制策略进行了部件性能、制动能量回收、制动感觉三方面仿真分析。同时,为验证ADVISOR仿真结果的有效性,搭建了硬件在环仿真实验平台。结果表明,所设计的控制策略在保证汽车制动稳定性的前提下,能够使驾驶员获得满意的制动感觉,同时有效提高了汽车能量利用率,最终达到了最佳制动效果。

  13. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  14. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  15. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  16. Breaking the Inertia: Moving Beyond America’s Addiction to Foreign Oil

    Science.gov (United States)

    2011-04-05

    U.S.S. Makin Island uses a concept similar to that employed in the Prius , Toyota‘s hybrid car. Two auxiliary propulsion motors powered by the ships...U.S.S. Prius ,‖ New York Times, December 19, 2010, http://www.nytimes.com/2010/12/19/opinion/19friedman.html, (accessed March 20,2011). 19 McFarlane...accessed March 24, 2011). 53 Friedman, ―The U.S.S. Prius ,‖. 54 CNA Military Advisory Board, ―Powering America’s Defense,” 48. 55 James T. Conway

  17. The Role of the Department of Defense (DoD) in Solar Energy Research, Development and Diffusion

    Science.gov (United States)

    2008-06-01

    was against the grain, they began work on the first hybrid electric-gasoline automobile. The Prius was introduced worldwide in 2001, and by 2004...when Prius earned the honor of Motor Trend’s Car of the Year (Esty & Winston, 2006), consumers were willing to wait months to get their hands on one...1. Eco Advantage The success of the Prius can be attributed to what Esty and Winston (2006) refer to as “Eco Advantage.” They propose that the

  18. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D M; Kammen, D M; Farrell, A E [Energy and Resources Group, University of California, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)], E-mail: dlemoine@berkeley.edu, E-mail: kammen@berkeley.edu, E-mail: aef@berkeley.edu

    2008-01-15

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  19. Improving DoD Energy Efficiency: Combining MMOWGLI Social-Media Brainstorming with Lexical Link Analysis (LLA) to Strengthen the Defense Acquisition Process

    Science.gov (United States)

    2013-04-01

    that generate electricity, like a Prius . These could be used to aid in docking/slowing ships and reduce the need for tugs. ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê...job.  Action Plan 7: Install “sea brakes” that generate electricity, like a Prius . These could be used to aid in docking/slowing ships, reduce need

  20. Parametric Matching of Drivetrain For Parallel Hybrid Electric Vehicle

    National Research Council Canada - National Science Library

    Zhang Zhongwei; Yu Hao; Li Yingli

    2013-01-01

    ...; this thesis presents a simulation analysis of the PHEV and the influence on vehicle characteristic by component parameters of drivetrain, and studies the parametric choice and proper parametric...

  1. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Poch, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Mahalik, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  2. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  3. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In transport section, it is necessary to reduce amount of CO2 emissions and Oil dependence. Bio fuels and Fuel Cell Vehicle (FCV), Electric Vehicle (EV) and Plug-in Hybrid Electric Vehicle (PHEV) are expected to reduce CO2 emissions and Oil dependence. We focus on PHEV. PHEV can reduce total energy Consumptions because of its high efficiency and can run with both oil and electricity. Introduction of PHEV reduces oil consumptions, however it also increases electricity demands. Therefore we must evaluate PHEV's CO2 reduction potential, not only in transport section but also in power grid section. To take into account of the distribution of the daily travel distance is also very important. All energy charged in the PHEV's battery cannot always be used. That influences the evaluation. We formulate the total model that combines passenger car model and power utility grid model, and we also consider the distribution of the daily travel distance. With this model, we show the battery cost per kWh at which PHEV begins to be introduced and oil dependence in passenger car section is to be reduced to 80%. We also show PHEV's CO2 reduction potentials and effects on the power supply system.

  4. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    Science.gov (United States)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems

  5. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  6. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  7. Smart Battery Thermal Management for PHEV Efficiency Une gestion avancée de la thermique de la batterie basse tension de traction pour optimiser l’efficacité d’un véhicule hybride électrique rechargeable

    Directory of Open Access Journals (Sweden)

    Lefebvre L.

    2013-03-01

    Full Text Available A smart battery thermal management is crucial for vehicle performances and battery lifetime targets achievements when electric and plug-in hybrid electric vehicles are concerned. The thermal system needs to be designed and tuned in accordance and compromises with powertrain and vehicle requirements, battery pack architecture, environmental constraints, costs, weight, etc., in a process that will be described in the first part of this paper. Among the portfolio of battery thermal management technologies, these items will be illustrated by two examples: thermal management by cabin air and by refrigerant in a direct cooling, enlightening a decision process. A simplified battery thermo-electric simulation model, which the second part of our work focuses on, has been built, first for both thermal and energetic balance dimensioning of the battery thermal management system. Examples are given on these two perspectives. That simplified simulation model has also identified some promising thermal management strategies for improving vehicle efficiency and performances and battery lifetime. That is the task of the last part of this paper. Battery heating has shown opportunities for improving energy and power availability at cold conditions and, thus, electric drive availability and autonomy. Post-cooling the battery at the end of a journey and its pre-conditioning before the following journey, not only improve vehicle efficiency, electric drive availability and autonomy, but also enhance battery lifetime and compromises with cabin thermal comfort. Others promising strategies optimizing the relation between vehicle performances and battery lifetime are still under investigations. L’atteinte des performances et des prestations requises d’un véhicule électrique ou hybride électrique rechargeable nécessite un thermomanagement intelligent de la batterie basse tension de traction. Ce thermomanagement est incontournable pour respecter dans le même temps la disponibilité d’énergie de traction électrique et la durabilité de la batterie. La conception du système de gestion thermique de la batterie basse tension doit donc prendre en compte les exigences requises de la chaîne de traction et du véhicule, la conception et l’architecture du pack batterie, les contraintes d’environnement, au moindre coût et au moindre poids, etc., tout en optimisant les compromis entre ces paramètres souvent antagonistes. Le processus de conception du thermomanagement de la batterie basse tension de traction fait l’objet de la première partie de cet article. Ce processus sera illustré par deux exemples, l’un mettant en oeuvre l’air en provenance de l’habitacle du véhicule et l’autre, par un refroidissement direct via le circuit de réfrigération du véhicule. Pour une application concrète, le processus de décision doit intégrer l’ensemble des modes de thermomanagement étudiés dans ce contexte et les différents paramètres et exigences pris en compte en tant que données d’entrée. La seconde partie de l’article présente un modèle de simulation thermoélectrique simplifié de la batterie basse tension de traction. Quelques résultats de calculs seront présentés à titre d’exemples dans deux perspectives différentes, d’une part, le dimensionnement thermique du système de thermomanagement, et d’autre part, l’optimisation du bilan énergétique du véhicule. Par ailleurs, ce modèle de simulation simplifié a également permis d’identifier et d’évaluer plusieurs stratégies pertinentes de gestion thermique de la batterie. Ces stratégies visent à améliorer l’efficacité et la performance du véhicule tout en ménageant la durée de vie de la batterie. La troisième partie présente certaines de ces stratégies. Parmi celles-ci, le post-refroidissement et le préconditionnement thermique de la batterie basse tension de traction, en préchauffage par conditions froides et en refroidissement. Ces stratégies ont montré une augmentation de l’énergie et de la puissance électrique alors disponibles. La disponibilité et l’autonomie de la mobilité tout électrique s’en trouvent d’autant améliorées. Le post-refroidissement et le préconditionnement thermique de la batterie basse tension de traction permettent aussi un gain sensible sur la durabilité de la batterie basse tension. D’autres stratégies prometteuses optimisant le compromis entre performances du véhicule et durabilité de la batterie de traction sont encore en cours d’investigation.

  8. Analysis of Plug-in Hybrid Electric Vehicles Based on PEST Analysis Method——BYD PHEV as an Example%基于类PEST分析法的插电式混合动力汽车的分析——以比亚迪PHEV为例

    Institute of Scientific and Technical Information of China (English)

    曾宪军

    2015-01-01

    The analysis and comparison of the use of traditional fuel vehicles and plug-in hybrid in the political and legal, economic, social and technical aspects of, pure electric vehicles and total cost of ownership by building plug-in hybrids cost model, taking into account prices of gasoline and electricity price factor changes, analyze the strengths and plug-in hybrid of economic weakness. The results show that the plug-in hybrid with a plurality of different applications on the wider economy.%首先简要分析了基于类PEST分析法的插电式混合动力汽车发展的政治和法律环境、经济环境、社会环境、技术环境,然后通过建立插电式混合动力汽车成本计算模型,分析了插电式混合动力汽车应用的经济优势,旨在为该类型新能源汽车的快速发展奠定坚实的基础.

  9. An Investigation into the Optimal Control of Power Distribution for PHEV and the Appropriate Performance Indicator for Dynamic Programming%并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究

    Institute of Scientific and Technical Information of China (English)

    欧阳易时; 金达锋; 罗禹贡

    2006-01-01

    研究了并联混合动力汽车功率分配的最优控制方法,应用动态规划方法求解功率分配的最优解,并着重分析了其性能指标.该指标融入了电池(电机)功率和整车需求功率,同时建立了燃油消耗和荷电状态变化量之间的物理关系.仿真结果表明,动态规划方法可以大幅度提高混合动力汽车的燃油经济性,并且功率损失型性能指标的效果更加显著.

  10. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and

  11. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing [Lamar University; Dong, Jing [Iowa State University; Lin, Zhenhong [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  12. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  13. Environmental and energy implications of plug-in hybrid-electric vehicles.

    Science.gov (United States)

    Stephan, Craig H; Sullivan, John

    2008-02-15

    We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the shortterm and new base-load capacity in the long term. Nationwide, there is currently ample spare night-time utility capacityto charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The shortterm fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs.

  14. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Learning Curve on Battery and Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    Plug-in Hybrid Electric Vehicle (PHEV) is one of the technologies to reduce amount of CO2 emissions in transport section. This paper presents one of the scenarios that shows how widely used the PHEVs will be in the future. And this paper also presents how amount of CO2 will be reduced by the introduction of PHEVs, and whether there are any serious effects on power supply system in those scenarios. PHEV can run with both gasoline and electricity. Therefore we evaluate CO2 emissions not only from gasoline consumption but also from electricity consumption. To consider a distribution of daily-trip-distance is important for evaluating the economical merit and CO2 emissions by introducing of PHEV. Also, the battery cost in the future is very important for making a PHEV's growth scenario. The growth of the number of PHEV makes battery cost lower. Then, we formulate the total model that combines passenger car sector and power supply sector with considering a distribution of daily-trip-distance and Learning Curve on battery costs. We use the iteration method to consider a Learning Curve that is non- linear. Therefore we set battery cost only in the first year of the simulation. Battery costs in the later year are calculated in the model. We focus on the 25-year time frame from 2010 in Japan, with divided in 5 terms (1st∼5th). And that model selects the most economical composition of car type and power sources.

  15. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-09-01

    Full Text Available An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.

  16. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Christian-Simon, E-mail: ernst@ika.rwth-aachen.de [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany); Hackbarth, Andre; Madlener, Reinhard [Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Lunz, Benedikt; Uwe Sauer, Dirk [Institute for Power Generation and Storage Systems (PGS), E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Eckstein, Lutz [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany)

    2011-10-15

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO{sub 2} emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: > Total cost of ownership of a PHEV and a conventional car are compared for the average German car user. > PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.> Even with a small battery, PHEVs emit about 40% less CO{sub 2} emissions than the average conventional car.

  17. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets

    Science.gov (United States)

    Lan, Yungang; Zhao, Kui; Lv, Xiaoling; Lu, Huijun; Ding, Ning; Zhang, Jing; Shi, Junchao; Shan, Changjian

    2016-01-01

    An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development. PMID:27672502

  18. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Brooker, A.; Gonder, J.; O' Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  19. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  20. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  1. Rare earths & climate change,new energy,energy conservation and pollution reduction(continued)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Ⅲ.Contribution of rare earths to energy conservation Rechargeable batteries and rare earth permanent magnetic motor matching with batteries in every Prius car consume approximately 10 kg of rare-earth hydro-gen storage materials and 2 kg of rare earth permanent magnetic materials respectively.

  2. The Impact of Hybrid Vehicles on Street Crossings

    Science.gov (United States)

    Wiener, William; Naghshineh, Koorosh; Salisbury, Brad; Rozema, Randall

    2006-01-01

    The authors had three purposes: (a) to compare the sound output of a Toyota Corolla, a vehicle powered by an internal combustion engine (ICE) with that of a hybrid vehicle (Prius) under conditions of acceleration and approach in relation to the potential decision of a pedestrian who is visually impaired to begin to cross the street, (b) to…

  3. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  4. FY2009 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  5. Hybrid Electric Power Train and Control Strategies Automotive Technology Education (GATE) Program

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Frank

    2006-05-31

    Plug-in hybrid electric vehicles (PHEV) offer societal benefits through their ability to displace the use of petroleum fuels. Petroleum fuels represent a polluting and politically destabilizing energy carrier. PHEV technologies can move transportation away from petroleum fuel sources by enabling domestically generated electricity and liquids bio-fuels to serve as a carrier for transportation energy. Additionally, the All-Electric-Range (AER) offered by PHEVs can significantly reduce demand for expensive and polluting liquid fuels. The GATE funding received during the 1998 through 2004 funding cycle by the UC Davis Hybrid Electric Vehicle Center (HEVC) was used to advance and train researchers in PHEV technologies. GATE funding was used to construct a rigorous PHEV curriculum, provide financial support for HEVC researchers, and provide material support for research efforts. A rigorous curriculum was developed through the UC Davis Mechanical and Aeronautical Engineering Department to train HEVC researchers. Students' research benefited from this course work by advancing the graduate student researchers' understanding of key PHEV design considerations. GATE support assisted HEVC researchers in authoring technical articles and producing patents. By supporting HEVC researchers multiple Master's theses were written as well as journal articles and publications. The topics from these publications include Continuously Variable Transmission control strategies and PHEV cross platform controls software development. The GATE funding has been well used to advance PHEV systems. The UC Davis Hybrid Electric Vehicle Center is greatly appreciative for the opportunities GATE funding provided. The goals and objectives for the HEVC GATE funding were to nourish engineering research in PHEV technologies. The funding supplied equipment needed to allow researchers to investigate PHEV design sensitivities and to further optimize system components. Over a dozen PHEV

  6. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  7. FY2010 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-28

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.

  8. The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle

    OpenAIRE

    Shankar, R; Marco, James; Assadian, Francis

    2012-01-01

    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integ...

  9. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  10. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    OpenAIRE

    REDELBACH Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emissions (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. Th...

  11. Optimizing the charge profile: Considering users' driving profiles

    OpenAIRE

    Kley, Fabian; Dallinger, David; Wietschel, Martin

    2010-01-01

    PHEVs are discussed controversially. On the one hand, the evolutionary approach of a hybrid vehicle helps the consumer to adopt to electric driving, using the range extender when driving longer distances. On the other hand, PHEVs have a more complex propulsion system and a potentially low emission impact due to a low electric driving share. These factors, however, strongly depend on the consumers' driving and charging behavior. Therefore, this paper simulates realistic driving based on the na...

  12. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and

  13. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  14. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  15. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  16. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  17. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  18. Distributed Energy Resources and Dynamic Microgrid: An Integrated Assessment

    Science.gov (United States)

    Shang, Duo Rick

    The overall goal of this thesis is to improve understanding in terms of the benefit of DERs to both utility and to electricity end-users when integrated in power distribution system. To achieve this goal, a series of two studies was conducted to assess the value of DERs when integrated with new power paradigms. First, the arbitrage value of DERs was examined in markets with time-variant electricity pricing rates (e.g., time of use, real time pricing) under a smart grid distribution paradigm. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage over a five-year period. The optimization process involves two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with different assumptions on technology performance, electricity market and PHEV owner types. The simulation results indicate that expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services without more favorable policy and PHEV battery technologies. Subsidy or change in electricity tariff or both are needed. Second, it examined the concept of dynamic microgrid as a measure to improve distribution resilience, and estimates the prices of this emerging service. An economic load dispatch (ELD) model is developed to estimate the market-clearing price in a hypothetical community with single bid auction electricity market. The results show that the electricity market clearing price on the dynamic microgrid is predominantly decided by power output and cost of electricity of each type of DGs. At circumstances where CHP is the only source, the electricity market clearing price in the island is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs in the dynamic microgrid will increase electricity market clearing prices. It demonstrates that dynamic microgrid is an economically viable alternative to enhance grid resilience.

  19. Simulating the potential effects of plug-in hybrid electric vehicles on the energy budget and tax revenues for Onondaga County, New York

    Science.gov (United States)

    Balogh, Stephen B.

    My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy

  20. Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles

    Science.gov (United States)

    Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo

    2015-01-01

    This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

  1. Comparisons of air quality impacts of fleet electrification and increased use of biofuels

    Science.gov (United States)

    Alhajeri, Nawaf S.; McDonald-Buller, Elena C.; Allen, David T.

    2011-04-01

    The air quality impacts of the partial electrification of the transportation fleet and the use of biofuels (E85) were modeled for the Austin Metropolitan Statistical Area, based on a 2030 vision of regional development. Changes in ozone precursor emissions and predicted ozone, carbon monoxide and aldehyde concentrations were estimated for multiple electrification and biofuel scenarios. Maximum changes in hourly ozone concentration from the use of plug-in hybrid electric vehicles (PHEVs) for 17% of the vehicle miles traveled ranged from - 8.5 to 2.2 ppb, relative to a base case with no electrification and minimal biofuel use, depending on time of day and location. Differences in daily maximum 1 h ozone concentration ranged from - 2.3 to 0.004 ppb. Replacement of all gasoline fuels with E85 had a smaller effect than PHEVs on maximum daily ozone concentrations. Maximum ozone changes for this scenario ranged from - 2.1 to 2.8 ppb and the difference in daily maximum 1 h ozone concentrations ranged from - 1.53 to 0 ppb relative to the base case. The smaller improvements in maximum ozone concentrations associated with extensive (100%) use of biofuels, compared to a smaller (17%) penetration of PHEVs, suggests that higher levels of PHEV penetration may lead to even greater improvements; however, the higher penetration would require expansion of the electrical grid capacity. The air quality impacts of the PHEVs would then depend on the emissions associated with the added generation.

  2. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2016-02-11

    In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgrid system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.

  3. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  4. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2015-10-06

    In this paper, an economic dispatch model with probabilistic modeling is developed for microgrid. Electric power supply in microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Due to the fluctuation of solar and wind plants' output, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar plants, the parameters for probabilistic distribution are further adjusted individually for both power plants. On the other hand, with the growing trend of Plug-in Electric Vehicle (PHEV), an integrated microgrid system must also consider the impact of PHEVs. Not only the charging loads from PHEVs, but also the discharging output via Vehicle to Grid (V2G) method can greatly affect the economic dispatch for all the micro energy sources in microgrid. This paper presents an optimization method for economic dispatch in microgrid considering conventional, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in modern microgrid.

  5. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  6. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad

    The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.

  7. Life-Cycle Cost Modeling to Determine whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue can Generate a Viable Case for Plug-in Electric Drive Vehicles

    Science.gov (United States)

    2013-06-30

    and present V2G pilot programs, both government and private, are typically OEM gliders, provided by entrepreneurial conversion shops , that are stripped... shopping -_- googlebase-_-D27X-_-203013921 J.D. Power. (2012). Toyota Prius sedan: Ratings. Retrieved from http://autos.jdpower.com/research/Toyota...the Pearl Harbor MK-48 Intermediate Maintenance Activity  Pallet Management System  PBL (4)  Privatization-NOSL/NAWCI  RFID (6)  Risk

  8. Electric Traction Machine Design for an E-RWD Unit

    OpenAIRE

    Marquez, Francisco

    2014-01-01

    Since the first generation of the Toyota Prius was introduced in December 1997, the number of Hybrid Electric Vehicles (HEVs) and pure Electric Vehicles (EVs) available in the market has increased substantially. The growing competition existent puts high demands on the electric system as well as the rest of the vehicle. As a consequence, substantial design effort is devoted to optimize both at system and component level, with respect to different parameters such as fuel efficiency, power dens...

  9. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  10. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL

    2007-09-01

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  11. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    Science.gov (United States)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  12. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  13. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  14. Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing

    Science.gov (United States)

    Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo

    2016-06-01

    This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.

  15. Battery Sizing for Serial Plug-in Hybrid Vehicles: A Model-Based Economic Analysis for Germany

    OpenAIRE

    Ernst, Christian-Simon; Hackbarth, André; Madlener, Reinhard; Lunz, Benedikt; Sauer, Dirk Uwe; Eckstein, Lutz

    2010-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the pure electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortiz...

  16. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, Edward [Taratec Corporation; Mueller, Howard [Taratec Corporation; Smith, Brett [Center for Automotive Research

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the

  17. New Transportation Technology : Norm Activation Processes and the Intention to Switch to an Electric/Hybrid Vehicle

    OpenAIRE

    Nordlund, A.; Jansson, J.; Westin, K.

    2016-01-01

    Since humans' activities contribute to climate change it is important to change behavior. Switching to a hybrid/plugin/electric vehicle (HEV/PHEV/EV) for personal transport can be one way. In this study the intention to switch to a HEV/PHEV/EV is studied from the theoretical framework of the moral norm-activation theory of altruism (Schwartz, 1977) and the Value-Belief-Norm (VBN) Theory of environmentalism (Stern et al., 1999). Data was collected using a survey to three groups, alternative fu...

  18. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  19. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  20. 77 FR 38278 - Collection Revision

    Science.gov (United States)

    2012-06-27

    ... propulsion. Currently, EIA collects data on electric battery-powered vehicles with the code ``EVC BP''. EIA would like to add the code ``EVC PH'' to differentiate between PHEVs and AFVs that are powered exclusively by battery. EIA would continue to use the code ``EVC BP'' to identify vehicles that are...

  1. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-02

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  2. Electrothermal Impedance Spectroscopy as a Cost Efficient Method for Determining Thermal Parameters of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (HEV, PHEV, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates...

  3. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Nygaard, Rie; Hansen, Louise Valentin;

    2010-01-01

    simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial...

  4. U.S. Army Hybrid Propulsion System R&D Overview ATA/Technology & Maintenance Council 2011 Fall Meeting, Hybrid Powertrain Task Force Session

    Science.gov (United States)

    2011-09-19

    Mode Two Engine Drive Train Architecture – Hybrid powertrain systems – Sonex Controlled Auto Ignition (SCAI) – PHEV drivetrains , control algorithms...130 • Diesel-electric (ProPulse®) powered, Series hybrid drivetrain • 20% improvement in fuel economy (mpg) • Exports 1 OOI<w of military grade NC

  5. HIL Development and Validation of Lithium-ion Battery Packs (SAE 2014-01-1863)

    Science.gov (United States)

    A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pa...

  6. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  7. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  8. Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhang

    2016-10-01

    Full Text Available In this paper, the uncertainty of wind, solar and load; smart charging and discharging of plug-in hybrid electric vehicles (PHEVs to and from various energy sources; and the coordination of wind, solar power, PHEVs and cost-emission are considered in the smart grid unit commitment (UC. First, a multi-scenario simulation is used in which a set of valid scenarios is considered for the uncertainties of wind and solar energy sources and load. Then the UC problem for the set of scenarios is decomposed into the optimization of interactive agents by multi-agent technology. Agents’ action is represented by a genetic algorithm with adaptive crossover and mutation operators. The adaptive co-evolution of agents is reached by adaptive cooperative multipliers. Finally, simulation is implemented on an example of a power system containing thermal units, a wind farm, solar power plants and PHEVs. The results show the effectiveness of the proposed method. Thermal units, wind, solar power and PHEVs are mutually complementarily by the adaptive cooperative mechanism. The adaptive multipliers’ updating strategy can save more computational time and further improve the efficiency.

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  10. 76 FR 48758 - 2017-2025 Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental Notice of...

    Science.gov (United States)

    2011-08-09

    ...-stop, solar roof panels for battery charging on EV, PHEV or HEV with at least 100 watts, active... more recently sought extensive input from automobile manufacturers regarding design elements for the MY... designed specifically for law enforcement purposes, which have the effect of raising their GHG emissions. 8...

  11. Economic Value of LFC Substitution by Charge Control for Plug-in Hybrid Electric Vehicles

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    There are lots of global warming countermeasures. In the power sector, nuclear power plants play an important role because they do not produce CO2 emissions during production of electricity. However, if the generation share of nuclear is too high at nighttime, it becomes difficult to keep enough capacity of Load Frequency Control (LFC) because nuclear power plants do not change the output (i.e., without load following operation) in Japan. On the other hand, in the transport sector, Plug-in Hybrid Electric Vehicle (PHEV) is being developed as an environmentally friendly vehicle. The electric energy of PHEV is charged mainly during nighttime when the electricity price is low. Therefore, we have proposed a charging power control of PHEVs to compensate LFC capacity in nighttime. In this study, we evaluated the economic value of charging power control by using an optimal generation planning model, and obtained the following results. Charging power control is effective in reduction of CO2 emissions and enhancement of economic efficiency of power system. Particularly, even in the low market share of PHEVs, the charge control has a high economic value because it substitutes nuclear power plant, base-load provider with low fuel cost, for LNG-CC, LEC provider with high fuel cost.

  12. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Eric Wood, Clément Rames, Matteo Muratori, Sesha Raghavan, and Marc Melaina

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  13. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

    Science.gov (United States)

    Kim, Hyung Chul; Wallington, Timothy J

    2016-10-18

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 Le/(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.

  14. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    bases.) Qualifying advanced propulsion vehicles for this initiative are battery electric vehicles (BEV), hybrid electric vehicles (HEV), hybrid...hydraulic vehicles (HHV), plug-in hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV). The AVPI integrates use of renewable energy at

  15. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  16. Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique

    CSIR Research Space (South Africa)

    Kunjuzwa, Niki

    2016-11-01

    Full Text Available -developed for portable electronic devices (like cellphones, laptops, iPads, etc.) which have been widely used. However, to implement LIBs for large-scale high-power systems such as plug-in hybrid electric vehicles (PHEVs) or plug-in electric vehicles (PEVs), there is a...

  17. The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2012-11-01

    Full Text Available  The adoption of Plug-in Hybrid Electric Vehicles (PHEVs is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable.

  18. Future Users of Plug-in Hybrids and Battery Electric Vehicles. Characteristics of the future early adopters and early majority in the Netherlands

    NARCIS (Netherlands)

    Velthuis, Martin

    2012-01-01

    SUMMARY One approach to reduce the greenhouse gas emissions in the transport sector is to change transportation modes to become more electric. The scope of this research is on the Plug-in Hybrid Electric Vehicle (PHEV), the Electric Vehicle with a Range

  19. Investigation of path dependence in commercial lithium-ion cells chosen for plug-in hybrid vehicle duty cycle protocols

    Science.gov (United States)

    Gering, Kevin L.; Sazhin, Sergiy V.; Jamison, David K.; Michelbacher, Christopher J.; Liaw, Bor Yann; Dubarry, Matthieu; Cugnet, Mikael

    There is a growing need to explore path dependence of aging processes in batteries developed for long-term usage, such as lithium-ion cells used in hybrid electric vehicle (HEV) or plug-in hybrid vehicle (PHEV) applications that may then be "retired" to be utilized in grid applications. To better understand the foremost influences on path dependence in the PHEV context, this work aims to bridge the gap between ideal laboratory test conditions and PHEV field conditions by isolating the predominant aging factors in PHEV service, which would include, for example, the nature and frequency of duty cycles, as well as the frequency and severity of thermal cycles. These factors are studied in controlled and repeatable laboratory conditions to facilitate mechanistic evaluation of aging processes. This work is a collaboration between Idaho National Laboratory (INL) and the Hawaii Natural Energy Institute (HNEI). Commercial lithium-ion cells of the Sanyo Y type (18650 configuration) are used in this work covering two initial independent studies of path dependence issues. The first study considers how the magnitude of power pulses and charging rates affect the aging rate, while the second seeks to answer whether thermal cycling has an accelerating effect on cell aging. While this work is in early stages of testing, initial data trends show that cell aging is indeed accelerated under conditions of high discharge pulse power, higher charge rates, and thermal cycling. Such information is useful in developing accurate predictive models for estimating end-of-life conditions.

  20. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and

  1. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  2. Plug-in Hybrid Electric Vehicles in the Smart Grid Environment: An Economic Model of Load Management by Demand Response

    Directory of Open Access Journals (Sweden)

    Poudineh R.

    2012-10-01

    Full Text Available Environmental concern regarding the consumption of fossil fuels is among the most serious challenges facing the world. As a result, utilisation of more renewable resources and promotion of a clean transport system such as the use of Plug in Hybrid Electric Vehicles (PHEVs became the forefront of the new energy policies. However, the breakthrough of PHEVs in the automotive fleet increases concerns around the stability of power system and in particular, the power network. This research simulates the aggregate load profile of the UK with presence of PHEVs based upon different price scenarios. The results show that under the fixed rate and time of use programmes in the current grid, the extra load of the electric vehicles intensifies the consumption profile and also creates new critical points. Thus, there should always be excess standby capacity to satisfy peak demand even for a short period of time. On the other hand, when the consumers do not pay the price based on the actual cost of supply, those who consume less in peak hours subsidise the ones who consume more and this cross subsidy raises a regulatory issue. On the contrary, a smart grid can accommodate PHEVs without creating technical and regulatory problems. This positive consequence is the result of demand response to the real time pricing. From a technical point of view, the biggest chunk of PHEVs' load will be shifted to the late evening and the hours of minimum demand. Besides, from a welfare analysis standpoint, real time pricing creates no deadweight losses and corresponding demand response will limit the ability of suppliers to increase the spot market clearing price above its equilibrium level.

  3. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  4. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  5. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  6. Impact of Plug-in Hybrid Electric Vehicle Charging on Power Distribution Network%插电式混合电动汽车充电对配电网的影响

    Institute of Scientific and Technical Information of China (English)

    宫鑫; 林涛; 苏秉华

    2012-01-01

    The rapid development of plug-in hybrid electric vehicle (PHEV) will greatly affect on distribution network. A charging model is established to analyze the affect of PHEV charging on distribution network and a coordinated charging strategy to mitigate the affect of PHEV charging on distribution network is proposed. The probability distribution of two key random factors influencing PHEV charging is analyzed and taking random factors into account a probabilistic model of PHEV charging load, whose charging power varies with charging curve, is built. There are different affections on distribution network while PHEV is charged by free charging mode or load valley charging mode, for this reason, a coordinated charging strategy, in which random factors are taken into account and the minimized load variance is taken as objective function, is put forward. Taking IEEE 40-bus radial distribution system as the case and through the simulation based on Matlab, the affects of the charging of different number of PHEV on load curve, network loss and nodal voltage deviation of distribution network under three kind of charging modes are analyzed. Analysis results show that adopting the proposed coordinated charging strategy the network loss and nodal voltage deviation can be reduced and the affects on PHEV charging on distribution network can be effectively mitigated.%插电式混合电动汽车(plug-in hybrid electric vehicle,PHEV)的快速发展将对配电网产生重要影响.在此背景下,建立了用于分析PHEV充电对配电网影响的充电负荷模型,提出了用于改善PHEV充电对配电网影响的优化充电策略.分析了影响PHEV充电的2个关键随机因素的概率分布,并计及随机因素,建立了充电功率按照充电曲线变化的PHEV充电负荷的概率模型.PHEV采用自由充电方式和负荷低谷充电方式时对配电网有不同程度的影响,为此提出了考虑随机因素,以负荷方差最小化为目

  7. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  8. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

    Science.gov (United States)

    Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis

    2008-06-01

    The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.

  9. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  10. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  11. OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    GU Yanchun; YIN Chengliang; ZHANG Jianwu

    2007-01-01

    In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving sinoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.

  12. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  13. Controlling Torque Distribution for Parallel Hybrid Vehicle Based on Hierarchical Structure Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    HuangMiao-hua; JinGuo-dong

    2003-01-01

    The Hierarchical Structure Fuzzy Logic Control(HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mocle of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver's experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.

  14. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the

  15. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  16. Intégration optimale des Véhicules Electriques Hybrides Rechargeables dans un réseau Résidentiel

    OpenAIRE

    2014-01-01

    International audience; Ce papier présente une approche linéaire pour calculer les tensions de chaque nœud sur un réseau résidentiel, basé sur la charge instantanée de chaque maison en présence des voitures électriques hybrides rechargeables (Plug-in Hybrid Electric Vehicles - PHEV). Sur la base de ce fonctionnement, le papier propose une formulation de programmation linéaire détaillée du problème de la charge des PHEVs, et ce, tout en offrant un service de support de tension au réseau. Plusi...

  17. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  18. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  19. Shifting Control Algorithm for a Single-Axle Parallel Plug-In Hybrid Electric Bus Equipped with EMT

    Directory of Open Access Journals (Sweden)

    Yunyun Yang

    2014-01-01

    Full Text Available Combining the characteristics of motor with fast response speed, an electric-drive automated mechanical transmission (EMT is proposed as a novel type of transmission in this paper. Replacing the friction synchronization shifting of automated manual transmission (AMT in HEVs, the EMT can achieve active synchronization of speed shifting. The dynamic model of a single-axle parallel PHEV equipped with the EMT is built up, and the dynamic properties of the gearshift process are also described. In addition, the control algorithm is developed to improve the shifting quality of the PHEV equipped with the EMT in all its evaluation indexes. The key techniques of changing the driving force gradient in preshifting and shifting compensation phases as well as of predicting the meshing speed in the gear meshing phase are also proposed. Results of simulation, bench test, and real road test demonstrate that the proposed control algorithm can reduce the gearshift jerk and the power interruption time noticeably.

  20. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  1. Transmission network-based energy and environmental assessment of plug-in hybrid electric vehicles

    Science.gov (United States)

    Valentine, Keenan; Acquaviva, Jonathan; Foster, E. J.; Zhang, K. Max

    2011-03-01

    The introduction of plug-in hybrid electric vehicles (PHEVs) is expected to have a significant impact on regional power systems and pollutant emissions. This paper analyzes the effects of various penetrations of PHEVs on the marginal fuel dispatch of coal, natural gas and oil, and on pollutant emissions of CO2, NOx, SO2 in the New York Metropolitan Area for two battery charging scenarios in a typical summer and winter day. A model of the AC transmission network of the Northeast Power Coordinating Council (NPCC) region with 693 generators is used to realistically incorporate network constraints into an economic dispatch model. A data-based transportation model of approximately 1 million commuters in NYMA is used to determine battery charging pattern. Results show that for all penetrations of PHEVs network-constrained economic dispatch of generation is significantly more realistic than unconstrained cases. Coal, natural gas and oil units are on the margin in the winter, and only natural gas and oil units are on the margin in the summer. Hourly changes in emissions from transportation and power production are dominated by vehicular activity with significant overall emissions reductions for CO2 and NOx, and a slight increase for SO2. Nighttime regulated charging produces less overall emissions than unregulated charging from when vehicles arrive home for the summer and vice versa for the winter. As PHEVs are poised to link the power and transportation sectors, data-based models combining network constraints and economic dispatch have been shown to improve understanding and facilitate control of this link.

  2. Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO 2 Emissions and Operating Costs

    OpenAIRE

    2014-01-01

    Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO 2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO 2 production related to battery recharge which, on the contrary, is curr...

  3. Hybrid Technologies for Clandestine Electric Reconnaissance Vehicles (CERV)

    Science.gov (United States)

    2011-08-01

    of other on board equipment. The OPC and high voltage Energy Storage system operate in concert with the Motor-Generator and Controller to form...the Vehicle DC Bus. When operating in PHEV mode from external power, the OPC provides power to the Vehicle DC Bus if either the Energy Storage System...commercial electric and hybrid buses. He has designed several motor drives including a 500 HP drive for sonar pulse power using a flywheel for energy

  4. miR-142-5p Disrupts Neuronal Morphogenesis Underlying Porcine Hemagglutinating Encephalomyelitis Virus Infection by Targeting Ulk1

    Directory of Open Access Journals (Sweden)

    Zi Li

    2017-05-01

    Full Text Available Porcine hemagglutinating encephalomyelitis virus (PHEV invades the central nervous system (CNS and causes neurodegenerative disease in suckling piglets, but the understanding of its neuropathogenicity for neurological dysfunction remains limited. Here, we report that miR-142-5p is localized to neurons and negatively regulates neuronal morphogenesis in porcine hemagglutinating encephalomyelitis (PHE. This phenotype was mediated by miR-142-5p inhibition of an mRNA encoding unc-51-like-kinase1 (Ulk1, which controls axon outgrowth and dendrite formation. Modulating miR-142-5p activity by microRNA mimics or inhibitors induced neurodegeneration, including stunted axon elongation, unstable dendritic spine formation, and irregular swelling and disconnection in neurites. Relieving Ulk1 mRNA repression in primary cortical neurons by miR-142-5p antagomirs or replication-deficient adenoviruses encoding Ulk1 (Ad5-Ulk1, which improved rescue of nerve injury, restricted viral replication, and increased survival rate in mice underlying PHEV infection. In contrast, disrupting Ulk1 in RNAi-expressing neurons mostly led to significantly shortened axon elongation and/or an abnormally large number of branched dendrites. Taken together, we demonstrated that the abnormal neuronal morphogenesis underlying PHEV infection was mainly caused by functional mRNA repression of the miR-142-5p target Ulk1. Our data revealed that PHEV adapted to use spatiotemporal control of host microRNAs to invade CNS, and provided new insights into the virus-associated neurological dysfunction microenvironment.

  5. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    OpenAIRE

    Hanho Son; Hyunsoo Kim

    2016-01-01

    A near-optimal rule-based mode control (RBC) strategy was proposed for a target plug-in hybrid electric vehicle (PHEV) taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG), bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded s...

  6. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DEFF Research Database (Denmark)

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina;

    2015-01-01

    to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired...

  7. Hybrid and Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  8. A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2017-09-01

    Full Text Available To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market, a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the driving plan may not be very accurate. To address this problem, in this paper, we analyze energy demands according to a PHEV owner’s historical driving records and build a personalized statistic driving model. Based on the model and the electricity spot prices, a rolling optimization strategy is proposed to help make a charging decision in the current time slot. On one hand, by employing a heuristic algorithm, the schedule is made according to the situations in the following time slots. On the other hand, however, after the current time slot, the schedule will be remade according to the next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate that the proposed method is feasible to help owners save charging costs and also meet requirements for driving.

  9. Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO2 Emissions and Operating Costs

    Directory of Open Access Journals (Sweden)

    Federico Millo

    2014-07-01

    Full Text Available Plug-in hybrid electric vehicles (pHEVs could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO2 production related to battery recharge which, on the contrary, is currently only partially considered by the European regulation to foster the diffusion of pHEVs. Therefore, this paper aims to assess, through numerical simulation, the real performance of a test case pHEV, the energy management system (EMS of which is targeted to the minimization of its overall CO2 emissions. The paper highlights, at the same time, the relevance of the CO2 production related to the battery recharge from the power grid. Different technologies mixes used to produce the electricity required for the battery recharge are also taken into account in order to assess the influence of this parameter on the vehicle CO2 emissions. Finally, since the operating cost still represents the main driver in orienting the customer’s choice, an alternative approach for the EMS, targeted to the minimization of this variable, is also analyzed.

  10. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  11. A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kyuhyun Sim

    2017-07-01

    Full Text Available The mode transition from electric propulsion mode to hybrid propulsion mode is important with regard to the power management strategy of plug-in hybrid electric vehicles (PHEVs. This is because mode transitions can occur frequently depending on the power management strategies and driving cycles, and because inadequate mode transitions worsen the fuel efficiency and drivability. A pre-transmission parallel PHEV uses a clutch between the internal combustion engine (ICE and the electric motor (EM to connect or disconnect the power source of the ICE for a mode transition. The mode transition requires additional energy consumption for clutch speed synchronization, and is accompanied by a drivetrain shock due to clutch engagement. This paper proposes a control strategy for the mode transition with gear-shifting to resolve the problems of energy consumption and drivetrain shock. Through the development of a PHEV performance simulator, we analyze the mode transition characteristics and propose a control strategy considering the vehicle acceleration and gear state. The control strategy reduces the duration required for the mode transition by moving the start time of the mode transition. This helps to improve energy efficiency while maintaining adequate drivability.

  12. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.

    Science.gov (United States)

    Scown, Corinne D; Taptich, Michael; Horvath, Arpad; McKone, Thomas E; Nazaroff, William W

    2013-08-20

    Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation-related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technical challenges. This paper explores potential GHG emissions reductions attainable in the United States through 2050 with a county-level scenario analysis that combines ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050, phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced crop residues and dedicated crops, we project that the United States could supply the liquid fuels needed for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If electricity for PHEV charging could be supplied by a combination of renewables and natural-gas combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO2e per vehicle-kilometer traveled, a 71% reduction relative to 2013.

  13. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    Directory of Open Access Journals (Sweden)

    Cong Hou

    2014-08-01

    Full Text Available This paper proposes a total cost of ownership (TCO model for battery sizing of plug-in hybrid electric vehicles (PHEVs. The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal battery size for PHEVs in Beijing is 6–8 kWh. Several additional scenarios are also analyzed: (1 10% increase in battery price or discount rate leads to an optimal battery size of 6 kWh, and 10% increase in fuel price shifts the optimal battery size to 8 kWh; (2 the longer and more dispersive daily range distribution in the U.S. increases the optimal battery size to 14 kWh; (3 the subsidy in China results in an optimal battery size of 13 kWh, while that in the U.S. results in 17 kWh, and a fuel savings rate based subsidy policy is innovatively proposed; (4 the optimal battery size with Li4Ti5O12 batteries is 2 kWh, but the TCO of Li4Ti5O12 batteries is higher than that of LiFePO4 batteries.

  14. The energy consumption and cost savings of truck electrification for heavy duty vocational applications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Lin, Zhenhong [ORNL; Franzese, Oscar [ORNL

    2017-01-01

    This paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the E-Trucks for local delivery and utility bucket applications were investigated. The results show that the E-Truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery E-Trucks, the results show that periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of on-route charging is typically lacking at the work sites of bucket trucks; hence, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.

  15. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  16. A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Arturo Valdivia-Gonzalez

    2017-01-01

    Full Text Available Recently, many researchers have proved that the electrification of the transport sector is a key for reducing both the emissions of green-house pollutants and the dependence on oil for transportation. As a result, Plug-in Hybrid Electric Vehicles (or PHEVs are receiving never before seen increased attention. Consequently, large-scale penetration of PHEVs into the market is expected to take place in the near future, however, an unattended increase in the PHEVs needs may cause several technical problems which could potentially compromise the stability of power systems. As a result of the growing necessity for addressing such issues, topics related to the optimization of PHEVs’ charging infrastructures have captured the attention of many researchers. Related to this, several state-of-the-art swarm optimization methods (such as the well-known Particle Swarm Optimization (PSO or the recently proposed Gravitational Search Algorithm (GSA approach have been successfully applied in the optimization of the average State of Charge (SoC, which represents one of the most important performance indicators in the context of PHEVs’ intelligent power allocation. Many of these swarm optimization methods, however, are known to be subject to several critical flaws, including premature convergence and a lack of balance between the exploration and exploitation of solutions. Such problems are usually related to the evolutionary operators employed by each of the methods on the exploration and exploitation of new solutions. In this paper, the recently proposed States of Matter Search (SMS swarm optimization method is proposed for maximizing the average State of Charge of PHEVs within a charging station. In our experiments, several different scenarios consisting on different numbers of PHEVs were considered. To test the feasibility of the proposed approach, comparative experiments were performed against other popular PHEVs’ State of Charge maximization approaches

  17. 基于智能电网的动态经济调度研究%Research on Dynamic Economic Dispatch Based on Smart Grid

    Institute of Scientific and Technical Information of China (English)

    李惠玲; 白晓民; 谭闻; 董伟杰; 栗楠

    2013-01-01

    Connecting large-scale plug-in hybrid electric vehicles (PHEVs) and renewable energy resources (RES) to smart grid makes the traditional top-down control mode of power grid turned into distributed control model, and the unidirectional power flow is turned into bidirectional power flow, so the power output of traditional generating units is directly impacted. PHEVs can provide ancillary services to the grid (vehicle to grid, V2G) that changes genco’s single interest mode under traditional economic dispatching. The random charging behavior of PHEV owners and intermittence of renewable energy generation makes the demand on power grid regulation ability stronger. In this paper a smart grid based dynamic economic dispatching model is constructed, in which the PHEV and RES are contained and the minimization of power generation costs (including V2G service cost), the lowest charging cost of PHEV owners, least air pollution, and maximization of synthetic load ratio are taken as objectives, and under the premise of meet the demand of power consumption the charging/discharging time and power of PHEV is dynamically regulated to match with the fluctuations of loads and renewable energy generation. Simulation results of a 10-generating unit system show that the proposed model is reasonable and effective.%  智能电网中大规模电动汽车(plug-in hybrid electric vehicle,PHEV)和可再生能源(renewable energy resource, RES)发电的接入,使得电网由传统的自上而下的集中控制转变为分布式控制,潮流也从单一流动转变为双向流动,直接影响传统发电机组的功率输出。电动汽车能够向电网提供辅助服务(vehicle to grid,V2G),改变了传统经济调度单一的发电商利益模式。车主充电行为的随机性和可再生能源发电的间歇性也加大了对电网调节能力的要求。为此文章构建了基于智能电网的动态经济调度模型,该模型包含电动汽车和可再生能源

  18. Аналіз гібридного приводу автомобіля Тoyota Рrius

    OpenAIRE

    Миськів, Т. Г.; Данілова, Ж. Д.; Жовнич, В. І.

    2016-01-01

    Розглянуто структуру і взаємозв’язок між різними елементами гібридного приводу автомобіля Toyota Prius, отримано кінематичні та силові залежності. Отримано робочі характеристики двигуна внутрішнього згоряння та електричного мотора на підставі їх технічних даних. Розраховано тягову характеристику і показано ефективність гібридного приводу автомобіля Toyota Prius. Considered the structure and relationship betwen different elements of the hybrid drive car Toyota Prius, received kinematic and pow...

  19. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  20. АНАЛИЗ ГИБРИДНОЙ СИЛОВОЙ УСТАНОВКИ «СПЛИТ» НА ПРИМЕРЕ АВТОМОБИЛЯ «TOYOTA PRIUS»

    OpenAIRE

    ШЕВЧУК В.П.; ПОПОВ А.В.; КЛЕВИН А.В.

    2014-01-01

    В статье рассматривается анализ гибридной силовой установки «Сплит». Были проведены исследования на примере автомобиля «ToyotaPrius».

  1. [Physician from Constance doctor of medicine Georg Vogelin (1508-1542), an early follower of Copernicus].

    Science.gov (United States)

    Burmeister, K H

    1999-01-01

    Georg Vogelin was born in Constance as the son of the town clerk. He studied the artes liberales and medicine at Wittenberg (since 1523) and Montpellier (since 1527). From 1531 onwards he practiced as a medical doctor in Constance. In 1542 Vogelin died of the plague in Constance. Vogelin was very close friends with the medical doctor Achilles Pirmin Gasser (1505-1577) and Georg Joachim Rheticus (1514-1574), a well known pupil of Copernicus. He was amongst the first supporters of the teachings of Copernicus. Gasser, who published the second edition of Rheticus' "Narratio prima" (Basle 1541), dedicated this edition to Georg Vogelin. In this book Vogelin published a poem in Latin. In the poem he described the teachings of Copernicus ("Terraque iam currit, credita stare prius") and recommended the academic community to approve Copernicus' theory.

  2. 18 autoga jääl & lumes / Tapio Koisaari

    Index Scriptorium Estoniae

    Koisaari, Tapio

    2010-01-01

    Suur talveautode võrdlus: Alfa Romeo Mito 1,4 MultiAir; BMW 535i Gran Turismo; Citroën C3 Picasso VTi 120; Dacia Logan MCV 1,6 16V; Ford Ka 1,2 Titanium; Honda Insight 1,3 Elegance; Hyundai i20 1,4 Comfort; Kia Soul 1,6 EX; Mazda3 1,6; Mercedes-Benz E 200 CGI; Opel Astra Sport 1,4 Turbo; Peugeot 3008 Premium 1,6 THP; Seat Exeo 2,0 TSI Style; Škoda Yeti 1,2 TSI Experience; Subaru Legacy 2,0 R; Suzuki Alto 1,0 GL; Toyota Prius 1,8 HSD Premium; Volkswagen Polo 1,2 TSI

  3. 18 autoga jääl & lumes / Tapio Koisaari

    Index Scriptorium Estoniae

    Koisaari, Tapio

    2010-01-01

    Suur talveautode võrdlus: Alfa Romeo Mito 1,4 MultiAir; BMW 535i Gran Turismo; Citroën C3 Picasso VTi 120; Dacia Logan MCV 1,6 16V; Ford Ka 1,2 Titanium; Honda Insight 1,3 Elegance; Hyundai i20 1,4 Comfort; Kia Soul 1,6 EX; Mazda3 1,6; Mercedes-Benz E 200 CGI; Opel Astra Sport 1,4 Turbo; Peugeot 3008 Premium 1,6 THP; Seat Exeo 2,0 TSI Style; Škoda Yeti 1,2 TSI Experience; Subaru Legacy 2,0 R; Suzuki Alto 1,0 GL; Toyota Prius 1,8 HSD Premium; Volkswagen Polo 1,2 TSI

  4. Veículos elétricos: história e perspectivas no Brasil

    OpenAIRE

    Baran, Renato; Legey, Luiz Fernando Loureiro

    2011-01-01

    Vistos por muitos como um grande avanço tecnológico, os automóveis híbridos e elétricos não são novidade no mercado. Já foram fortes concorrentes dos automóveis convencionais, mas, por razões que serão explicadas a seguir, foram preteridos e tiveram desde os anos 1930 participação marginal na história do automóvel. No entanto, desde o lançamento do Toyota Prius, em 1997, o mercado norte-americano tem assistido a um grande número de lançamentos de automóveis híbridos e, mais recentemente, de v...

  5. АНАЛИЗ ГИБРИДНОЙ СИЛОВОЙ УСТАНОВКИ «СПЛИТ» НА ПРИМЕРЕ АВТОМОБИЛЯ «TOYOTA PRIUS»

    Directory of Open Access Journals (Sweden)

    ШЕВЧУК В.П.

    2014-01-01

    Full Text Available В статье рассматривается анализ гибридной силовой установки «Сплит». Были проведены исследования на примере автомобиля «ToyotaPrius».

  6. Noise and vibration reduction technology in hybrid vehicle development; Hybrid sha kaihatsu ni okeru shindo soon teigen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioa, T.; Sugita, H. [Toyota Motor Corp., Aichi (Japan)

    2000-03-01

    Accomplishing both environmental protection and good NVH performance has become a significant task in automotive development The first-in-the-world hybrid passenger car of mass production. 'Prius', has achieved superior NV performance compared with conventional vehicles with a 1.5-liter engine along with 50% reduction of fuel consumption and CO{sub 2} emissions. low HC, CO and NO{sub x} emissions. This paper describes NV reduction technology for solving problems peculiar to the hybrid vehicle such as engine start/stop vibration, drone noise at low engine speed and motor/generator noise and vibration. It also mentions application technology of low rolling resistance tires with light weight wheels and recycled material for sound proofing. (author)

  7. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.

    Science.gov (United States)

    Eichelberger, Angela H; McCartt, Anne T

    2016-02-01

    Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and

  8. Qualitative analysis of emergency department reports applied to a pilot project for the prevention of pediatric burns.

    Science.gov (United States)

    Longo, E; Masellis, M; Fondi, G; Cedri, C; Debbia, C; Pitidis, A

    2015-12-31

    Accidents and burns are a major problem in Italy and in industrialized countries, due to the consequences they have on health, especially in children aged 0-4 years. In Italy, about 400 people die each year from burns, with over 70% of these occurring in the home. In the European Union, burns are one of the top five causes of death from accidents, accounting for 3% of all deaths from accidents and violence in those age groups. One percent of all deaths in children are due to burns. In this paper, we illustrate the results of qualitative analysis, conducted according to the methodology of content analysis, on narratives included in the anamnesis of clinical papers at the ED in 738 cases of burns in children (0-14 years) observed in a sample of Emergency Departments in the years 2005-2009. The results of content analysis show that the most frequent mechanism that leads to burns is contact with hot liquids and heating surfaces. Much of preventive action should be directed at controlling the child. The accidental event descriptions for the younger age group (0-4 years) reveal an unequivocal responsibility of the parents. The qualitative analysis of narratives was carried out to produce scientific evidence to identify the more frequent and severe burn accidents for specific target/age groups and to establish specific preventive measures. The study of qualitative analysis of burns observed at the ED was introductory to the pilot project PRIUS (Preventing burns among school-aged children). The objective of PRIUS is to increase awareness of the risks of burns in children and adults through a learning path tailored towards their prevention, and the promotion of appropriate standards of personal safe behaviour and first aid actions.

  9. Development of nickel/metal-hydride batteries for EVs and HEVs

    Science.gov (United States)

    Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira

    This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.

  10. A Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles Based on a Permanent Magnet Electric Variable Transmission

    Directory of Open Access Journals (Sweden)

    Shumei Cui

    2012-04-01

    Full Text Available The major contribution of this paper is to propose a Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles (HEVs that are driven by the PM-EVT (PM machine—Electric Variable Transmission powertrain, such that the PM-EVT will have superior advantages over other types of powertrains, including the current Toyota Prius powertrain for series-parallel HEVs. This has been investigated throughout three aspects. The first is the optimum power splitting between the Internal Combustion Engine (ICE and the PM-EVT. The second is maximizing the vehicle’s energy capture during the braking process. Finally, sustaining the State of Charge (SOC of the battery is adopted by a robust ON/OFF controller of the ICE. These goals have been accomplished by developing three fuzzy logic (FL controllers. The FL controllers are designed based on the state of charge of the battery, vehicle’s velocity, traction torque, and the vehicle’s requested power. The integration of the studied system is accomplished via the Energetic Macroscopic Representation (EMR simulation model strategy based on the software Matlab/Simulink. The PM-EVT based HEV system with the proposed power management strategy is validated by comparing to the Toyota Prius HEV. The vehicle’s performances have been analyzed throughout a combined long-trip driving cycle that represents the normal and the worst operating conditions. The simulation results show that global control system is effective to control the engine’s operating points within the highest efficiency region, exploiting of EVT machines for capturing maximum braking energy, as well as to sustain the SOC of the battery while satisfy the drive ability. The proposed control strategy for the studied HEVs sounds interesting and feasible as supported by a large amount of simulation results.

  11. France tests 100 and orders 50,000 electric cars; Frankrijk test honderd en bestelt vijftigduizend elektrische auto's

    Energy Technology Data Exchange (ETDEWEB)

    Hemel, C.

    2010-06-15

    The French 'Plan Voiture Electrique' (Plan for electric Vehicles), which was launched in October 2009, explains the French ambitions in the field of electric vehicles. In 2015 900,000 load points must have been realised for private use and 75,000 for general use. In 2020 these numbers must have increased to 4 million and 400,000 respectively. In 2020 about 2 million electric and hybrid vehicles will be driving on the French roads. Two developments in April 2010 are aimed at implementing this plan. First the 'Charte pour le deploiement d'infrastructures publiques de recharge de vehicules electriques' (Charter for the deployment of public infrastructure for recharging electric vehicles) was signed on 13 April 2010, which is a framework contract between the French government, car manufacturers PSA and Renault, twenty purchasing businesses and twelve cities. Secondly, EDF and Toyota started a large-scale test of Toyota Prius Plug-in hybrids in Strasbourg on 27 April 2010. [Dutch] Het Franse 'Plan Voiture Electrique', gelanceerd in oktober 2009, geeft de Franse ambities weer op het gebied van elektrisch vervoer: In 2015 moeten 900.000 oplaadpunten zijn gerealiseerd voor particulieren en 75.000 voor algemeen gebruik. In 2020 moeten deze aantallen respectievelijk 4 miljoen en 400.000 bedragen. In 2020 rijden er 2 miljoen elektrische en hybride auto's op de Franse wegen. Twee ontwikkelingen in april 2010 geven uitvoering aan dit plan. Ten eerste werd op 13 april 2010 de 'Charte pour le deploiement d'infrastructures publiques de recharge de vehicules electriques' getekend, een raamovereenkomst tussen de Franse staat, de autoproducenten PSA en Renault, twintig afnemende bedrijven en twaalf steden. Ten tweede startten EDF en Toyota op 27 april 2010 een grootschalige test van Toyota Prius Plug-in hybrides in Straatsburg.

  12. Totally laparoscopic hepatectomy exposing the vessels around the tumor intended to secure the surgical margin.

    Science.gov (United States)

    Honda, Goro; Kurata, Masanao; Okuda, Yukihiro; Kobayashi, Shin; Sakamoto, Katsunori

    2014-04-01

    Anatomical hepatectomy (AH) is basically not required for metastatic tumors in terms of oncology, but is required for hepatocellular carcinoma [1-5]; however, the surgeon cannot secure the surgical margin by palpation via a laparoscopic approach. Therefore, AH or partial hepatectomy exposing the vessels around the tumor (PHev) is often better for deep-seated or invisible lesions [6, 7] because unexpected exposure of the tumor on the cutting plane can be avoided by creating a cutting plane on the side of exposed vessels. From August 2008 to December 2012, we performed totally laparoscopic AH or PHev for 29 patients (AH in 21 patients and PHev in 8 patients) to secure the surgical margin of metastatic tumors [8, 9]. The median operative time was 329 (range 147-519) min, with median blood loss of 141 (range 5-430) g. Conversion was performed for one patient whose stump of the Glissonean branch was positive in a frozen section. Additional hepatectomy was performed via an open approach. Postoperative morbidity rate was 20.7 % (peroneal palsy in two patients, ileus in one patient, biloma in one patient, and pulmonary embolism in one patient). Mortality was zero. The median length of hospital stay after surgery was 9 (range 4-21) days. Only one patient, who underwent extended posterior sectorectomy for a 4.2-cm tumor developing close to the right main Glissonean pedicle, had a microscopically positive margin, because the tumors were exposed on the cutting plane. The embedded video demonstrates hepatectomy of the dorsal half-segment of the right anterior sector, during which the liver was divided at the anterior fissure [10] and the border between the anterior and posterior sector. Totally laparoscopic hepatectomy exposing the vessels around the tumor can be performed safely and is useful to secure the surgical margin in patients with a metastatic tumor.

  13. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    Science.gov (United States)

    Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F.

    2015-01-01

    We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery and pack designs for electric vehicle applications. We develop models of power capability and manufacturing operations to identify the minimum cost cell and pack designs for a variety of plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) requirements. We find that economies of scale in battery manufacturing are reached quickly at a production volume of ∼200-300 MWh annually. Increased volume does little to reduce unit costs, except potentially indirectly through factors such as experience, learning, and innovation. We also find that vehicle applications with larger energy requirements are able to utilize cheaper cells due in part to the use of thicker electrodes. The effect on cost can be substantial. In our base case, we estimate pack-level battery production costs of ∼545 kWh-1 for a PHEV with a 10 mile (16 km) all-electric range (PHEV10) and ∼230 kWh-1 for a BEV with a 200 mile (320 km) all-electric range (BEV200). This 58% reduction, from 545 kWh-1 to 230 kWh-1, is a larger effect than the uncertainty represented by our optimistic and pessimistic scenarios. Electrodes thicker than about 100 or 125 microns are not currently used in practice due to manufacturing and durability concerns, but relaxing this constraint could further lower the cost of larger capacity BEV200 packs by up to an additional 8%.

  14. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns.

    Science.gov (United States)

    Cai, Hua; Xu, Ming

    2013-08-20

    Environmental implications of fleet electrification highly depend on the adoption and utilization of electric vehicles at the individual level. Past research has been constrained by using aggregated data to assume all vehicles with the same travel pattern as the aggregated average. This neglects the inherent heterogeneity of individual travel behaviors and may lead to unrealistic estimation of environmental impacts of fleet electrification. Using "big data" mining techniques, this research examines real-time vehicle trajectory data for 10,375 taxis in Beijing in one week to characterize the travel patterns of individual taxis. We then evaluate the impact of adopting plug-in hybrid electric vehicles (PHEV) in the taxi fleet on life cycle greenhouse gas emissions based on the characterized individual travel patterns. The results indicate that 1) the largest gasoline displacement (1.1 million gallons per year) can be achieved by adopting PHEVs with modest electric range (approximately 80 miles) with current battery cost, limited public charging infrastructure, and no government subsidy; 2) reducing battery cost has the largest impact on increasing the electrification rate of vehicle mileage traveled (VMT), thus increasing gasoline displacement, followed by diversified charging opportunities; 3) government subsidies can be more effective to increase the VMT electrification rate and gasoline displacement if targeted to PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with the current grid in Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km. Although the results are based on a specific public fleet, this study demonstrates the benefit of using large-scale individual-based trajectory data (big data) to better understand environmental implications

  15. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    Science.gov (United States)

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  16. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  17. Bi-Directional Fast Charging Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  18. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  19. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  20. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  1. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  2. Computer-Aided Engineering and Secondary Use of Automotive Batteries (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Kim, G. H.; Smith, K.; Newbauer, J.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  3. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging......, including nonlinearities. In this work, modeling, simulation and testing of the demand profile of a battery-EV are conducted. Realistic work conditions for a lithium-ion EV battery and battery charger are considered as the base for the modeling. Simulation results show that EV charging generates different...

  4. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi;

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...... of output DC voltage. Moreover, the involved DC/DC buck conversion stage may only need to convert partial input power rather than full scale of input power, and therefore the system overall efficiency can be much improved. Through proper control of the buck converter, it is also possible to mitigate...

  5. Electric Vehicles Parking (EVP) Sitting Considering GIS Information and the Extent of Urban Areas

    OpenAIRE

    Mohammad R. Aghaebrahimi; Mahdi Tourani; Mohammad M. Ghasemipour

    2015-01-01

    energy resources, such as wind and solar, are increased. Also, the use of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV), known as V2G, is under development. Due to the widespread use of these vehicles in the near future, Electric Vehicles Parking (EVP) is considered as a source of Distributed Generation (DG) and Electric Energy Storage. The location of parking lot is important for power utilities to reduce power losses, and to municipalities of the urban areas from constr...

  6. Efficient Simulation and Abuse Modeling of Mechanical-Electrochemical-Thermal Phenomena in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lamb, Joshua [Sandia National Laboratories; Abraham, Daniel [Argonne National Laboratory; Dees, Dennis [Argonne National Laboratory; Yao, Pierre [Argonne National Laboratory

    2017-08-08

    NREL's Energy Storage team is exploring the effect of mechanical crush of lithium ion cells on their thermal and electrical safety. PHEV cells, fresh as well as ones aged over 8 months under different temperatures, voltage windows, and charging rates, were subjected to destructive physical analysis. Constitutive relationship and failure criteria were developed for the electrodes, separator as well as packaging material. The mechanical models capture well, the various modes of failure across different cell components. Cell level validation is being conducted by Sandia National Laboratories.

  7. A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Ayers, Curtis William [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Ozpineci, Burak [ORNL

    2014-01-01

    With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  10. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  11. Impact of Battery Ageing on an Electric Vehicle Powertrain Optimisation

    Directory of Open Access Journals (Sweden)

    Daniel J. Auger

    2014-12-01

    Full Text Available An electric vehicle’s battery is its most expensive component, and it cannot be charged and discharged indefinitely. This affects a consumer vehicle’s end-user value. Ageing is tolerated as an unwanted operational side-effect; manufacturers have little control over it. Recent publications have considered trade-offs between efficiency and ageing in plug-in hybrids (PHEVs but there is no equivalent literature for pure EVs. For PHEVs, battery ageing has been modelled by translating current demands into chemical degradation. Given such models it is possible to produce similar trade-offs for EVs. We consider the effects of varying battery size and introducing a parallel supercapacitor pack. (Supercapacitors can smooth current demands, but their weight and electronics reduce economy. We extend existing EV optimisation techniques to include battery ageing, illustrated with vehicle case studies. We comment on the applicability to similar EV problems and identify where additional research is needed to improve on our assumptions.

  12. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  13. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Kosowski, Mark [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  14. Analyzing The Impacts of the Biogas-to-Electricity Purchase Incentives on Electric Vehicle Deployment with the MA3T Vehicle Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Podkaminer, Kara [U.S. Department of Energy (DOE); Xie, Fei [ORNL; Lin, Zhenhong [ORNL

    2017-01-01

    This analysis represents the biogas-to-electricity pathway under the Renewable Fuel Standard (RFS) as a point of purchase incentive and tests the impact of this incentive on EV deployment using a vehicle consumer choice model. The credit value generated under this policy was calculated in a number of scenarios based on electricity use of each power train choice on a yearly basis over the 15 year vehicle lifetime, accounting for the average electric vehicle miles travelled and vehicle efficiency, competition for biogas-derived electricity among electric vehicles (EVs), the RIN equivalence value and the time value of money. The credit value calculation in each of these scenarios is offered upfront as a point of purchase incentive for EVs using the Market Acceptance of Advanced Automotive Technologies (MA3T) vehicle choice model, which tracks sales, fleet size and energy use over time. The majority of the scenarios use a proposed RIN equivalence value, which increases the credit value as a way to explore the analysis space. Additional model runs show the relative impact of the equivalence value on EV deployment. The MA3T model output shows that a consumer incentive accelerates the deployment of EVs for all scenarios relative to the baseline (no policy) case. In the scenario modeled to represent the current biogas-to-electricity generation capacity (15 TWh/year) with a 5.24kWh/RIN equivalence value, the policy leads to an additional 1.4 million plug-in hybrid electric vehicles (PHEVs) and 3.5 million battery electric vehicles (BEVs) in 2025 beyond the no-policy case of 1.3 million PHEVs and 2.1 million BEVs when the full value of the credit is passed on to the consumer. In 2030, this increases to 2.4 million PHEVs and 7.3 million BEVs beyond the baseline. This larger impact on BEVs relative to PHEVs is due in part to the larger credit that BEVs receive in the model based on the greater percentage of electric vehicle miles traveled by BEVs relative to PHEVs. In this

  15. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  16. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  17. Development of a software platform for a plug-in hybrid electric vehicle simulator

    Science.gov (United States)

    Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon

    2012-03-01

    Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.

  18. Models for evaluation of energy technology and policy options to maximize low carbon source penetration in the United States energy supply.

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, Paul S.; Kataoka, Dawn; Reno, Marissa Devan; Malczynski, Leonard A.; Peplinski, William J.; Roach, Jesse D.; Brainard, James Robert; West, Todd H.; Schoenwald, David Alan

    2009-12-01

    An initial version of a Systems Dynamics (SD) modeling framework was developed for the analysis of a broad range of energy technology and policy questions. The specific question selected to demonstrate this process was 'what would be the carbon and import implications of expanding nuclear electric capacity to provide power for plug in hybrid vehicles?' Fifteen SNL SD energy models were reviewed and the US Energy and Greenhouse gas model (USEGM) and the Global Nuclear Futures model (GEFM) were identified as the basis for an initial modeling framework. A basic U.S. Transportation model was created to model U.S. fleet changes. The results of the rapid adoption scenario result in almost 40% of light duty vehicles being PHEV by 2040 which requires about 37 GWy/y of additional electricity demand, equivalent to about 25 new 1.4 GWe nuclear plants. The adoption rate of PHEVs would likely be the controlling factor in achieving the associated reduction in carbon emissions and imports.

  19. Single-Phase PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers

    Directory of Open Access Journals (Sweden)

    Shakil Ahamed Khan

    2012-06-01

    Full Text Available In this paper, a front end ac–dc power factor correction topology is proposed for plug-in hybrid electric vehicle (PHEV battery charging. The topology can achieve improved power quality, in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output. Within this context, this paper introduces a boost converter topology for implementing digital power factor correction based on low cost digital signal controller that operates the converter in continuous conduction mode, thereby significantly reducing input current harmonics. The theoretical analysis of the proposed converter is then developed, while an experimental digital control system is used to implement the new control strategy. A detailed converter operation, analysis and control strategy are presented along with simulation and experimental results for universal ac input voltage (100–240V to 380V dc output at up to 3.0 kW load and a power factor greater than 0.98. Experimental results show the advantages and flexibilities of the new control method for plug-in hybrid electric vehicle (PHEV battery charging application.

  20. Optimal Energy Management Strategy of a Plug-in Hybrid Electric Vehicle Based on a Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-04-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs have been recognized as one of the most promising vehicle categories nowadays due to their low fuel consumption and reduced emissions. Energy management is critical for improving the performance of PHEVs. This paper proposes an energy management approach based on a particle swarm optimization (PSO algorithm. The optimization objective is to minimize total energy cost (summation of oil and electricity from vehicle utilization. A main drawback of optimal strategies is that they can hardly be used in real-time control. In order to solve this problem, a rule-based strategy containing three operation modes is proposed first, and then the PSO algorithm is implemented on four threshold values in the presented rule-based strategy. The proposed strategy has been verified by the US06 driving cycle under the MATLAB/Simulink software environment. Two different driving cycles are adopted to evaluate the generalization ability of the proposed strategy. Simulation results indicate that the proposed PSO-based energy management method can achieve better energy efficiency compared with traditional blended strategies. Online control performance of the proposed approach has been demonstrated through a driver-in-the-loop real-time experiment.

  1. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  2. Electric vehicles’ influence on Smart Grids

    Directory of Open Access Journals (Sweden)

    Marta R. Jabłońska

    2012-06-01

    Full Text Available Aim of the paper is to demonstrate evolution of Electric Vehicles (EV and their infl uence on the Smart Grid (SG. Starting from USA defi nition of the SG considering the fi fth- and sixth- properties of the SG: It accommodates all generation and storage options and it enables new products, services and markets. We can determine EV role in the SG operation. Contemporary we can distinguish following types of the EV: HEVS – hybrid electric vehicles with motor and use batteries with no using electricity from external source, Pure EVs – running on electric motor powered by batteries that are recharged by plugging in the vehicle, Plug-in PHEVs – can be charged with electricity like engine power EVs and run under engine like HEVs. The most interesting for electric power there are Pure EVs and PHEVs that are consumers and also kind of electricity storage devices (very important in SG. These types may be charged “in home”, using special station with diff erent time of charging; there is also considered charging during the time waiting for change of lights on road nodes (junctions. It is important to mention that EV development infl uence not only on SG, social- and climate- environment but also on development of new branch of industries producing equipment necessary for EV operation.

  3. Price-based Energy Control for V2G Networks in the Industrial Smart Grid

    Directory of Open Access Journals (Sweden)

    Rong Yu

    2015-08-01

    Full Text Available The energy crisis and global warming call for a new industrial revolution in production and distribution of renewable energy. Distributed power generation will be well developed in the new smart electricity distribution grid, in which robust power distribution will be the key technology. In this paper, we present a new vehicle-to-grid (V2G network for energy transfer, in which distributed renewable energy helps the power grid balance demand and supply. Plug-in hybrid electric vehicles (PHEVs will act as transporters of electricity for distributed renewable energy dispatching. We formulate and analyze the V2G network within the theoretical framework of complex network. We also employ the generalized synchronization method to study the dynamic behavior of V2G networks. Furthermore, we develop a new price-based energy control method to stimulate the PHEV's behavior of charging and discharging. Simulation results indicate that the V2G network can achieve synchronization and each region is able to balance energy supply and demand through price-based control.

  4. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  5. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    Directory of Open Access Journals (Sweden)

    Hanho Son

    2016-05-01

    Full Text Available A near-optimal rule-based mode control (RBC strategy was proposed for a target plug-in hybrid electric vehicle (PHEV taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG, bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded state. To evaluate the effect of the drivetrain losses on the operating mode control strategy, backward simulations were performed using dynamic programming (DP. DP selects the operating mode, which provides the highest efficiency for given driving conditions. It was found that the operating mode selection changes when drivetrain losses are included, depending on driving conditions. An operating mode schedule was developed with respect to the wheel power and vehicle speed, and based on the operating mode schedule, a RBC was obtained, which can be implemented in an on-line application. To evaluate the performance of the RBC, a forward simulator was constructed for the target PHEV. The simulation results show near-optimal performance of the RBC compared with dynamic-programming-based mode control in terms of the mode operation time and fuel economy. The RBC developed with drivetrain losses taken into account showed a 4%–5% improvement of the fuel economy over a similar RBC, which neglected the drivetrain losses.

  6. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    Energy Technology Data Exchange (ETDEWEB)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  7. Kansas Consortium Plug-in Hybrid Medium Duty

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  8. 插电式混合动力汽车换挡规律及转矩分配策略%Shifting Schedule and Torque Distribution Strategy for the Plug-in Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    杨伟斌; 陈全世; 田光宇; 吴光强; 秦大同

    2013-01-01

    提出插电式混合动力汽车自动变速器的换挡规律设计方法,以及发动机和电动机之间的转矩分配策略.该策略通过对变速器挡位、发动机输出转矩和电动机输出转矩的调节,可使发动机沿着最佳燃油经济性曲线运行、电动机工作于高效率区,并且确保蓄电池组的充放电电流限制在额定容量的两倍以内:实现自动变速器、发动机、电动机和电池的集成最优控制.利用仿真分析方法,对控制策略的性能进行仿真测试,测试结果表明该方法可使每个部件均工作于理想状态,提高车辆在城市工况行驶时的燃油经济性.%A shift schedule for automatic transmission of the plug-in hybrid electric vehicle(PHEV),and a torque distribution strategy between engine and motor are devised.By adjusting the gear of the automatic transmission and the output torque of the engine and motor,the control strategy allows the engine run along the best fuel economy curve,electric motors work in the high efficiency area,and ensure the charge or discharge current of the battery are less than twice the rated capacity.Therefore,the integrated optimal control for automatic transmission,engine,motor and battery is realized.The performance of the control strategy is tested by the PHEV simulation model,the simulation results show that this method guarantees each component can work in the optimal state and can improve the fuel economy when PHEV drove in the city cycle.

  9. 配电系统中电动汽车与可再生能源的随机协同调度%Stochastic Optimization Dispatching of Plug-in Hybrid Electric Vehicles in Coordination with Renewable Generation in Distribution Systems

    Institute of Scientific and Technical Information of China (English)

    王贵斌; 赵俊华; 文福拴; 薛禹胜; 辛建波

    2012-01-01

    电动汽车和可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及可入网混合动力电动汽车(PHEV)和风电、光伏发电系统出力不确定性的随机协同优化调度模型。首先,分析了PHEV的行驶耗电和随机充放电行为。之后,在假设风速服从Rayleigh分布、光照服从Beta分布的前提下,导出了风电机组和光伏发电系统出力的期望、方差及二阶原点矩的表达式。在此基础上,发展了以平抑可再生能源出力波动为目标的电力系统随机协同优化调度模型,并应用交叉熵算法进行求解。最后,以33节点配电系统为例说明了所提出的随机协同优化调度模型的基本特征。%The rapid development of plug-in hybrid electric vehicles(PHEVs) and renewable generation brings new challenges to the secure and economic operation of power systems.A stochastic optimization based dispatching model,capable of accommodating uncertain outputs of PHEVs and renewable generation,is developed.The probability distributions of energy consumption and charging/discharging behaviors of PHEVs are first studied.The probability distributions of the wind and photovoltaic generation outputs are derived assuming that the wind speed follows the Rayleigh distribution and solar irradiance follows the Beta distribution.The mathematical expectations,second order expectations and variances of the power outputs of wind and photovoltaic generation are derived analytically.On this basis,a stochastic optimization dispatching model with the objective of reducing the fluctuations of renewable generation outputs is finally established.The well-established cross-entropy method is employed to solve this optimization problem.The feasibility and efficiency of the dispatching model and the cross-entropy method are demonstrated by a 33-bus distribution system.

  10. Electric and hydrogen consumption analysis in plug-in road vehicles

    Directory of Open Access Journals (Sweden)

    João P. Ribau, Carla M. Silva, Tiago L. Farias

    2010-03-01

    Full Text Available The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg ratio (0.044 to 0.150 were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle’s power train components (including energy regeneration along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC. The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per kilometer, except

  11. Fabrication of Hybrid Petroelectric Vehicle

    Directory of Open Access Journals (Sweden)

    G. Adinarayana

    2014-10-01

    Full Text Available In automobile sector, the need for alternative fuel as a replacement of conventional fossil fuel, due to its depletion and amount of emission has given way for new technologies like Fuel cells vehicles, Electric vehicles. Still a lot of advancement has to take place in these technologies for commercialization. The gap between the current fossil fuel technology and zero emission vehicles can be bridged by hybrid technology. Hybrid vehicles are those which can run on two or more powering sources/fuels. Feasibility of this technology is been proved in four wheelers and automobile giants like Toyota, Honda, and Hyundai have launched successful vehicles like Toyota prius, Honda insight etc. This technology maximizes the advantages of the two fuels and minimizes the disadvantages of the same. The best preferred hybrid pair is electric and fossil fuel. This increases the mileage of the vehicle twice the existing and also reduces the emission to half. At present, we like to explore the hybrid technology in the two wheeler sector and its feasibility on road. This paper deals with an attempt to make a hybrid with electric start and petrol run. Further a design of basic hybrid elements like motor, battery, and engine. As on today, hybrid products are one of the best solutions for all pollution hazards at a fairly nominal price. An investment within the means of a common man that guarantees a better environment to live in.

  12. A Study on Magnetic Decoupling of Compound-Structure Permanent-Magnet Motor for HEVs Application

    Directory of Open Access Journals (Sweden)

    Qiwei Xu

    2016-10-01

    Full Text Available The compound-structure permanent-magnet (CSPM motor is used for an electrical continuously-variable transmission (E-CVT in a hybrid electric vehicle (HEV. It can make the internal combustion engine (ICE independent of the road loads and run in the high efficiency area to improve the fuel economy and reduce the emissions. This paper studies the magnetic coupling of a new type of CSPM motor used in HEVs. Firstly, through the analysis of the parameter matching with CSPM in the HEV, we receive the same dynamic properties’ design parameters between the CSPM motor and the THS (Toyota Hybrid System of the Toyota Prius. Next, we establish the equivalent magnetic circuit model of the overall and the secondary model considering the tangential and radial flux distribution in the outer rotor of the CSPM motor. Based on these two models, we explore the internal magnetic coupling rule of the CSPM motor. Finally, finite element method analysis in 2D-ansoft is used to analyze the magnetic field distribution of the CSPM motor in different operation modes. By the result of the finite element method analysis, the internal magnetic decoupling scheme is put forward, laying the theoretical foundation for the further application of the CSPM motor in HEVs.

  13. Test Facility Construction for Flow Visualization on Mixing Flow inside Subchannels of PWR Rod Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Jeon, Byong-Guk; Youn, Young-Jung; Choi, Hae-Seob; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Flow inside rod bundles has a similarity with flow in porous media. To ensure thermal performance of a nuclear reactor, detailed information of the heat transfer and turbulent mixing flow phenomena taking place within the subchannels is required. The subchannel analysis is one of the key thermal-hydraulic calculations in the safety analysis of the nuclear reactor core. At present, subchannel computer codes are employed to simulate fuel elements of nuclear reactor cores and predict the performance of cores under normal operating and hypothetical accident conditions. The ability of these subchannels codes to predict both the flow and enthalpy distribution in fuel assemblies is very important in the design of nuclear reactors. Recently, according to the modern tend of the safety analysis for the nuclear reactor, a new component scale analysis code, named CUPID, and has been developed in KAERI. The CUPID code is based on a two-fluid and three-field model, and both the open and porous media approaches are incorporated. The PRIUS experiment has addressed many key topics related to flow behaviour in a rod bundle. These issues are related to the flow conditions inside a nuclear fuel element during normal operation of the plant or in accident scenarios. From the second half of 2016, flow visualization will be performed by using a high speed camera and image analysis technique, from which detailed information for the two-dimensional movement of single phase flow is quantified.

  14. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles

    Science.gov (United States)

    White, Allen R.; Allen, James; Devasher, Rebecca B.

    2011-06-01

    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  15. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    Science.gov (United States)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  16. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    Science.gov (United States)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  17. Q/SdR.04.896-2008 SQR7130A217/Model A Car

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    1.Background As the development of global economy demands an increasingly large quantity of energy,the energy crisis is getting more severe.Auto manufacturers in Japan,America,and Europe have all began to develop hybrid power vehicles or its technology platform since 1990s,so as to save energy.Relied on its THS system which consists of the planet wheel and e-CVT,TOYOTA developed a series of strong hybrid power vehicles,such as Prius,Lexus,Highlander,Camry,etc.Based on its IMA system,HONDA developed a series of mild hybrid power vehicles,such as Insight,Civic,Accord,etc.On the basis of its Belt-driven Starter Generator (BSG) system,French SPA Group developed a series of weak hybrid power vehicles,such as Citroen C3,Citroen C2,Citroen 1007,Citroen 207,etc.In America the research of hybrid power vehicle is being done actively by a group of relevant parties consisting of Department of Transport,Department of Defense,major auto companies and relevant organizations under the leadership of Department of Energy and with the large quantity ofinvestment from GE Motors Co.and CHRYSLER.

  18. Toyota's heat management system - coolant heat storage for mass production today, new technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, Hiroki; Takaoka, Toshifumi; Kobayashi, Hideo [Toyota Motor Corporation (Japan)

    2004-07-01

    There has been pressing needs for the protection of metropolitan environment and the challenge of global warming. A heat management system prevails to meet such requirements. In actual driving condition, only about 30% of the total fuel energy is consumed for propulsion and air conditioner. At the same time 60% of fuel energy is wasted as exhaust gas, thermal loss and warm up loss. It is important to manage total thermal energy as a whole vehicle to improve thermal efficiency. The principle is to reduce heat loss in order to increase exhaust gas temperature and recover heat energy for pre-heating at the next cold start. Further developed versions may include thermal management strategies including turbocharger and thermal exchanger using exhaust gas heat energy. Toyota has developed the Coolant Heat Storage system (CHSS) for one of heat management systems to reduce cold emission and improve cabin comfort. The system enables to store hot coolant at the warmed up condition in a heat storage tank. At the next cold start, it is possible for CHSS to reduce unburned hydrocarbon by preheating intake port quickly with the hot coolant in the tank. CHSS was adopted in hybrid vehicle Prius for the US model in 2003. This vehicle achieved to meet the ATPZEV,the most stringent emission regulation in the US. This paper describes a total heat management focusing on the newly developed CHSS.

  19. Applying a Dynamic Resource Supply Model in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Kaiyu Wan

    2014-09-01

    Full Text Available Dynamic resource supply is a complex issue to resolve in a cyber-physical system (CPS. In our previous work, a resource model called the dynamic resource supply model (DRSM has been proposed to handle resources specification, management and allocation in CPS. In this paper, we are integrating the DRSM with service-oriented architecture and applying it to a smart grid (SG, one of the most complex CPS examples. We give the detailed design of the SG for electricity charging request and electricity allocation between plug-in hybrid electric vehicles (PHEV and DRSM through the Android system. In the design, we explain a mechanism for electricity consumption with data collection and re-allocation through ZigBee network. In this design, we verify the correctness of this resource model for expected electricity allocation.

  20. Electric Vehicles Parking (EVP Sitting Considering GIS Information and the Extent of Urban Areas

    Directory of Open Access Journals (Sweden)

    Mohammad R. Aghaebrahimi

    2015-03-01

    Full Text Available energy resources, such as wind and solar, are increased. Also, the use of Electric Vehicles (EV and Plug-in Hybrid Electric Vehicles (PHEV, known as V2G, is under development. Due to the widespread use of these vehicles in the near future, Electric Vehicles Parking (EVP is considered as a source of Distributed Generation (DG and Electric Energy Storage. The location of parking lot is important for power utilities to reduce power losses, and to municipalities of the urban areas from construction point of view. In this paper, sitting of EVP considering GIS information and the extent of urban areas will be discussed for rapid determination of parking locations using different evolutionary algorithms. The goal is to reduce the candidate locations, to analyze and to compare the performance of these algorithms as well as increasing the satisfaction of power utilities and municipalities.

  1. Plug-in Hybrid Power Platform for Technology Development%插电式混合动力轿车动力平台技术开发

    Institute of Scientific and Technical Information of China (English)

    韩友国; 王若飞

    2015-01-01

    本文以某款PHEV轿车为研究对象,对混合动力平台进行开发研究,研究前桥混合动力驱动系统的集成及优化,对后桥电子驱动系统的设计及布置合理性进行分析讨论,并对整车安全性能进行研究分析,最终得出确定此混合动力平台技术可行。%Based on chery G3 PHEV cars as the research object, research on hybrid platform for development, research front axle hybrid drive system integration and optimization, the rear axle of electronic drive system design and arrangement of rationality analysis discussion, and through analyzing the performance of the vehicle safety, ultimately determine the hybrid platform technology is feasible.

  2. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Gary [Miltec UV International, LLC, Stevensville, MD (United States); Arnold, John [Miltec UV International, LLC, Stevensville, MD (United States)

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  3. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant

  4. Battery Technology Life Verification Test Manual Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  5. Optimal Strategy of Efficiency Power Plant with Battery Electric Vehicle in Distribution Network

    Science.gov (United States)

    Ma, Tao; Su, Su; Li, Shunxin; Wang, Wei; Yang, Tiantian; Li, Mengjuan; Ota, Yutaka

    2017-05-01

    With the popularity of electric vehicles (EVs), such as plug-in electric vehicles (PHEVs) and battery electric vehicles (BEVs), an optimal strategy for the coordination of BEVs charging is proposed in this paper. The proposed approach incorporates the random behaviours and regular behaviours of BEV drivers in urban environment. These behaviours lead to the stochastic nature of the charging demand. The optimal strategy is used to guide the coordinated charging at different time to maximize the efficiency of virtual power plant (VPP). An innovative peer-to-peer system is used with BEVs to achieve the goals. The actual behaviours of vehicles in a campus is used to validate the proposed approach, and the simulation results show that the optimal strategy can not only maximize the utilization ratio of efficiency power plant, but also do not need additional energies from distribution grid.

  6. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  7. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  8. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  9. Energy storage research and development

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    In 2007, US consumers experienced the highest sustained gasoline prices in recent history, in real terms, including those seen in the early 1980s1. Partially as a result of the $3/gallon gasoline prices, sales of hybrid electric vehicles (HEVs) increased almost 60% in 20072, and several automakers announced plans to develop plug-in hybrid electric vehicles (PHEVs)3. However, total sales of HEVs remained in the 2-3 percent range of all vehicle sales. An important step for continued HEV market penetration, as well as electrifying the nation's personal transportation, is the development of cost effective, long lasting, and abuse tolerant Li-ion batteries.

  10. Grid regulation services for energy storage devices based on grid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  11. How Do The EV Project Participants Feel About Their EVS?

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle (BEV) or Chevrolet Volt extended range electric vehicle (EREV) and were among the first to explore this new electric drive technology. Collectively, BEV, EREV, and plug-in hybrid electric vehicles (PHEVs) are called plug-in electric vehicles (PEVs). The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  12. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  13. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua;

    2017-01-01

    . In generator driving mode, the battery bank is employed to elevate the phase voltage for fast excitation and demagnetization. In battery driving mode, the converter is reconfigured as a four-level converter, and the capacitor is used as an additional charge capacitor to produce multilevel voltage outputs......, which enhances the torque capability. The operating modes of the proposed drive are explained and the phase current and voltage are analyzed in details. The battery charging is naturally achieved by the demagnetization current in motoring mode and by the regenerative current in braking mode. Moreover......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  14. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  15. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  16. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  17. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  18. Factors Making Engine Works Within the Efficient Operation Region of Parallel Hybrid Electric Vehicle%影响并联混合动力电动汽车发动机在高效区工作的因素

    Institute of Scientific and Technical Information of China (English)

    黄妙华; 喻厚宇

    2005-01-01

    通过对并联混合动力电动汽车(PHEV)的仿真和对发动机工作点在发动机效率map图中分布情况的分析,研究了影响PHEV的发动机在高效区工作的因素.研究表明:驱动系统能量管理和控制策略对PHEV的发动机在高效区工作的影响最为显著,其次是换挡策略、循环工况以及发动机高效区的位置和分布的影响.

  19. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  20. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant

  1. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for United States Coast Guard Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ) could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.

  3. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, Jim [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Carlson, Richard [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Garretson, Thomas [Electric Applications Incorporated, Phoenix, AZ (United States); Gourley, LauraLee [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Karner, Donal [Electric Applications Incorporated, Phoenix, AZ (United States); McGuire, Patti [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kirkpatrick, Mindy [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Shrik, Matthew [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Schey, Stephen [Electric Applications Incorporated, Phoenix, AZ (United States); Smart, John [Idaho National Laboratory (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Wishard, Jeffery [Intertek Center for the Evaluation of Clean Energy Technology, Phoenix, AZ (United States)

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  4. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  5. Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market

    Energy Technology Data Exchange (ETDEWEB)

    Camus, C., E-mail: ccamus@deea.isel.ipl.pt [Superior Institute of Engineering/Polytechnical Institute of Lisbon, Conselheiro Emidio Navarro, 1, Lisbon (Portugal); Farias, T. [Technical Superior Institute/Technical University of Lisbon, Av. Rovisco Pais, Lisbon (Portugal); Esteves, J. [Superior Institute of Engineering/Polytechnical Institute of Lisbon, Conselheiro Emidio Navarro, 1, Lisbon (Portugal); National Energy Regulator (ERSE) R. D Cristovao Gama, 1 3o C, Lisbon (Portugal)

    2011-10-15

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. In this research, scenarios for 2020 EVs penetration and charging profiles are studied integrated with different hypotheses for electricity production mix. The impacts in load profiles, spot electricity prices and emissions are obtained for the Portuguese case study. Simulations for year 2020, in a scenario of low hydro production and high prices, resulted in energy costs for EVs recharge of 20 cents/kWh, with 2 million EVs charging mainly at evening peak hours. On the other hand, in an off-peak recharge, a high hydro production and low wholesale prices' scenario, recharge costs could be reduced to 5.6 cents/kWh. In these extreme cases, EV's energy prices were between 0.9 Euro to 3.2 Euro per 100 km. Reductions in primary energy consumption, fossil fuels use and CO{sub 2} emissions of up to 3%, 14% and 10%, respectively, were verified (for a 2 million EVs' penetration and a dry year's off-peak recharge scenario) from the transportation and electricity sectors together when compared with a BAU scenario without EVs. - Highlights: > EVs and PHEVs impacts in energy, power profiles and spot electricity prices. > Reductions in primary energy consumption, fossil fuels use and CO{sub 2} emissions. > Electricity production with more % of fossil fuels technologies and renewable ones. > Comparison between extreme charging profiles, peak and off-peak, in charging cost.

  6. Repurposing of Batteries from Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  7. Effects on CO2 Reduction Potential of the Accelerated Introduction of Plug-in Hybrid Electric Vehicle in the Market

    Science.gov (United States)

    Shinoda, Yukio; Yabe, Kuniaki; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In this paper we consider that there are two economical social behaviors when new technologies are introduced. One is on the short-term economic basis, the other one is on the long-tem economic basis. If we consider a learning curve on the technology, it is more economical than short-term behavior to accelerate the introduction of the technology much wider in the earlier term than that on short-term economic basis. The costs in the accelerated term are higher, but the introduction costs in the later terms are cheaper by learning curve. This paper focuses on the plug-in hybrid electric vehicles (PHEVs). The ways to derive the results on short-term economic basis and the results on long-term economic basis are shown. The result of short-term behaviors can be derived by using the iteration method in which the battery costs in every term are adjusted to the learning curve. The result of long-term behaviors can be derived by seeking to the way where the amount of battery capacity is increased. We also estimate that how much subsidy does it need to get close to results on the long-term economic basis when social behavior is on the short-term economic basis. We assume subsidy for PHEV's initial costs, which can be financed by charging fee on petroleum consumption. In that case, there is no additional cost in the system. We show that the greater the total amount of money to that subsidy is, the less the amount of both CO2 emissions and system costs.

  8. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  9. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  10. Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    Directory of Open Access Journals (Sweden)

    F. Reyes

    2006-01-01

    Full Text Available A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm−1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a extit{Pitot} tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km of both criteria and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO and some NMHC, during predetermined driving cycles. The advantages and disadvantages of increasing the measurement frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. To test and evaluate the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA on a Toyota Prius hybrid vehicle. This car is an example of recent marketed automotive technology dedicated to reduced emissions, increasing the need for sensitive detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV. The emissions of HC's, NOx, CO and CO2 obtained here were compared to experiments performed in other locations with the same model vehicle. The proposed technique provides a tool for future studies comparing in detail the emissions of vehicles using alternative fuels and emission control systems.

  11. Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    Science.gov (United States)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-11-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a textit{Pitot} tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of both criteria and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO and some NMHC, during predetermined driving cycles. The advantages and disadvantages of increasing the measurement frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. To test and evaluate the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent marketed automotive technology dedicated to reduced emissions, increasing the need for sensitive detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here were compared to experiments performed in other locations with the same model vehicle. The proposed technique provides a tool for future studies comparing in detail the emissions of vehicles using alternative fuels and emission control systems.

  12. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    Science.gov (United States)

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives

  13. An evaluation of the hybrid car technology for the Mexico Mega City

    Science.gov (United States)

    Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole

    The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.

  14. The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H. K.; Santini, D. J.; Vyas, A. D.

    1999-07-22

    The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.

  15. Safety and interaction of patients with implantable cardiac defibrillators driving a hybrid vehicle.

    Science.gov (United States)

    Tondato, Fernando; Bazzell, Jane; Schwartz, Linda; Mc Donald, Bruce W; Fisher, Robert; Anderson, S Shawn; Galindo, Arcenio; Dueck, Amylou C; Scott, Luis R

    2017-01-15

    Electromagnetic interference (EMI) can affect the function of implantable cardioverter defibrillators (ICD). Hybrid electric vehicles (HEV) have increased popularity and are a potential source of EMI. Little is known about the in vivo effects of EMI generated by HEV on ICD. This study evaluated the in vivo interaction between EMI generated by HEV with ICD. Thirty patients (73±9 y/o; 80% male) with stable ICD function were exposed to EMI generated by a Toyota Prius Hybrid®. The vehicle was lifted above the ground, allowing safe changes in engine rotation and consequent variations in electromagnetic emission. EMI was measured (NARDA STS® model EHP-50C) and expressed in A/m (magnetic), Volts/m (electrical), and Hertz (frequency). Six positions were evaluated: driver, front passenger, right and left back seats, outside, at the back and front of the car. Each position was evaluated at idle, 30 mph, 60 mph and variable speeds (acceleration-deceleration-brake). All ICD devices were continuously monitored during the study. The levels of EMI generated were low (highest mean levels: 2.09A/m at right back seat at 30 mph; and 3.5V/m at driver seat at variable speeds). No episode of oversensing or inadvertent change in ICD programming was observed. It is safe for patients with ICD to interact with HEV. This is the first study to address this issue using an in vivo model. Further studies are necessary to evaluate the interaction of different models of HEV or electric engine with ICD or unipolar pacemakers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. High-density automotive hydrogen storage with cryogenic capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-792, Livermore, CA 94551 (United States); Brunner, Tobias C.; Kircher, Oliver [BMW Group, Knorrstr. 147, 80788 Munich (Germany)

    2010-02-15

    LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH{sub 2}) tanks that can eliminate evaporative losses in routine usage of (L)H{sub 2} automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH{sub 2}), LH{sub 2} or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH{sub 2}). When filled with LH{sub 2} or CcH{sub 2}, these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H{sub 2} vessels. LLNL has demonstrated fueling with LH{sub 2} onboard two vehicles. The generation 2 vessel, installed onboard an H{sub 2}-powered Toyota Prius and fueled with LH{sub 2} demonstrated the longest unrefueled driving distance and the longest cryogenic H{sub 2} hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (author)

  17. Electric Vehicle Service Personnel Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  18. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These

  19. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  20. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs)

    Science.gov (United States)

    Banerjee, Abhik; Upadhyay, Kush Kumar; Puthusseri, Dhanya; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2014-03-01

    Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li4Ti5O12 as the anode for high performance Li-HECs. The energy density of the cell is ~65 W h kg-1 which is significantly higher than that achievable with commercially available activated carbon (~36 W h kg-1) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ~20 W h kg-1). The MOF-DC/Li4Ti5O12 Li-HEC assembly also shows good cyclic performance with ~82% of the initial value (~25 W h kg-1) retained after 10 000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration.Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li4Ti5O12 as the anode for high performance Li-HECs. The energy density of the cell is ~65 W h kg-1 which is significantly higher than that achievable with commercially available activated carbon (~36 W h kg-1) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ~20 W h kg-1). The MOF-DC/Li4Ti5O12 Li-HEC assembly also shows good cyclic performance with ~82% of the initial value (~25 W h kg-1) retained after 10 000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration. Electronic supplementary information

  1. Efficiency improvements in transport

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Christensen, Linda; Jensen, Thomas C. [Technical Univ. of Denmark. DTU Transport, Kgs. Lyngby (Denmark)

    2012-11-15

    (HEV) has two different power sources: an electric motor and a small combustion engine to extend the operating range. Plug-in hybrid electric vehicles (PHEVs) add the ability to charge the battery from the mains. Many experts see PHEVs as a necessary transition to future EVs. The challenge for transport researchers and professionals will be to achieve dramatic efficiency improvements in modes of transport based on fossil fuels. At the same time it is necessary to promote research and demonstration of new power train technologies which can be used beyond 2050. (LN)

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-06-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

  3. Battery Pack Life Estimation through Cell Degradation Data and Pack Thermal Modeling for BAS+ Li-Ion Batteries. Cooperative Research and Development Final Report, CRADA Number CRD-12-489

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    Battery Life estimation is one of the key inputs required for Hybrid applications for all GM Hybrid/EV/EREV/PHEV programs. For each Hybrid vehicle program, GM has instituted multi-parameter Design of Experiments generating test data at Cell level and also Pack level on a reduced basis. Based on experience, generating test data on a pack level is found to be very expensive, resource intensive and sometimes less reliable. The proposed collaborative project will focus on a methodology to estimate Battery life based on cell degradation data combined with pack thermal modeling. NREL has previously developed cell-level battery aging models and pack-level thermal/electrical network models, though these models are currently not integrated. When coupled together, the models are expected to describe pack-level thermal and aging response of individual cells. GM and NREL will use data collected for GM's Bas+ battery system for evaluation of the proposed methodology and assess to what degree these models can replace pack-level aging experiments in the future.

  4. Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2012-11-01

    Full Text Available PHEVs and BEVs make use of battery cells optimized for high energy rather than for high power. This means that the power abilities of these batteries are limited. In order to enhance their performance, a hybrid Rechargeable Energy Storage System (RESS architecture can be used combining batteries with electrical-double layer capacitors (EDLCs. Such a hybridized architecture can be accomplished using passive or active systems. In this paper, the characteristics of these topologies have been analyzed and compared based on a newly developed hybridization simulation tool for association of lithium-ion batteries and EDLCs. The analysis shows that the beneficial impact of the EDLCs brings about enhanced battery performances in terms of energy efficiency and voltage drops, rather than extension of vehicle range. These issues have been particularly studied for the passive and active hybrid topologies. The classical passive and active topologies being expensive and less beneficial in term of cost, volume and weight, a new hybrid configuration based on the parallel combination of lithium-ion and EDLCs on cell level has been proposed in this article. This topology allows reducing cost, volume, and weight and system complexity in a significant way. Furthermore, a number of experimental setups have illustrated the power of the novel topology in terms of battery capacity increase and power capabilities during charging and discharging. Finally, a unique cycle life test campaign demonstrated that the lifetime of highly optimized lithium-ion batteries can be extended up to 30%–40%.

  5. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  6. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  7. Global energy and environmental issues, reflected in Toyota's advanced powertrain development

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshiaki [Toyota Motor Corporation, Aichi (Japan)

    2013-08-01

    Energy diversification is proceeding due to environmental issues and need for energy security. At the same time, the environmental challenges for the automobile are becoming more and more severe due to the requirement for low fuel consumption and air pollution. While the alternative fuels are expanding due to concerns on future oil supply, automakers need to promote multi-directional developments. However it is considered that oil will remain as the main fuel source in the next few decades. Thus, the development of internal combustion engine (ICE) and of high efficiency vehicle systems will remain an important challenge. Furthermore hybrid vehicle (HV) technology and plug-in hybrid electric vehicle (PHEV) technology are expected to be one effective technology to save oil usage. For that purpose, promoting electricity production which emits low CO{sub 2} and the development of a high energy density battery is important. In addition to the energy issue, air pollution issue is also an important matter. Although the emission regulations are continuously becoming more stringent to respond to the air pollution issue, many areas have a mismatch between emission regulation and suitable fuel quality. Therefore automakers are taking action for resolving the contradiction. Since it will take time until fuel quality meets the required specification, developing the technologies to prevent the major matters for consumers can't be avoided. Coordination of fuel properties and quality over a wide area is essential for improving air quality locally and globally. (orig.)

  8. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  9. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.

    Science.gov (United States)

    Demirocak, Dervis Emre; Bhushan, Bharat

    2014-06-01

    Li-ion batteries offer great promise for future plug-in hybrid electric vehicles (PHEVs) and pure electric vehicles (EVs). One of the challenges is to improve the cycle life of Li-ion batteries which requires detailed understanding of the aging phenomenon. In situ techniques are especially valuable to understand aging since it allows monitoring the physical and chemical changes in real time. In this study, in situ atomic force microscopy (AFM) is utilized to study the changes in morphology and particle size of LiFePO4 cathode during discharge. The guidelines for in situ AFM cell design for accurate and reliable measurements based on different designs are presented. The effect of working electrode to counter electrode surface area ratio on cycling data of an in situ cell is also discussed. Analysis of the surface area change in LiFePO4 particles when the cell was cycled between 100% and 70% state of charge is presented. Among four particles analyzed, surface area increase of particles during Li intercalation of LiFePO4 spanned from 1.8% to 14.3% indicating the inhomogeneous nature of the cathode surface.

  10. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  11. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  12. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  13. 锂离子电池研究与发展的最新态势——第215届电化学会议评述%Updated research and development status of Li-ion batteries——Report on the 215th Electrochemical Society Meeting

    Institute of Scientific and Technical Information of China (English)

    郑洪河

    2009-01-01

    介绍了2009年5月24-29日在美国旧金山举行的第215届电化学会议的情况,对本次会议中有关锂离子电池的学术发展与最新动态进行了分析.新材料的开发和电池系统的设计与模拟是本届会议的主要亮点,会议报道了一些达到混联式动力汽车(PHEV)用锂离子电池标准的锂离子电池体系,如LiNi1/3Co1/3Mn1/3O2/C、LiFePO4/C和LiMn2O4/C等.总体来看,围绕提高电池比能量、循环寿命、储存寿命和安全性的研究仍将是今后的研究热点.

  14. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing

    Science.gov (United States)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.

    2016-08-01

    Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.

  15. The International Energy Agency's implementing agreement on hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, C. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2007-07-01

    This presentation discussed implementing agreements and programs developed by the International Energy Agency (IEA) for hybrid and electric vehicles. The agreement was designed to provide an international platform for the coordination of ideas, themes, and technologies related to hybrid and electric vehicles. Industries, governments, and users must also communicate to ensure the successful deployment of new technologies, laws and incentives. International collaboration programs will lower the cost for implementing new technologies in addition to enhancing information exchange. The IEA's Hybrid Electric Vehicles (IA-HEV) program was designed to promote pre-competitive research projects and provide information on hybrid vehicles and their impacts on energy efficiency and the environment. Annex groups related to the program include: (1) an information exchange on HEV technologies and programs; (2) an annex on hybrid electric vehicles; (3) clean city vehicles; (4) electrochemical systems; (5) electric cycles; (6) heavy-duty hybrid vehicles; (7) fuel cells for vehicles; and (8) deployment of HEVs. The Hybrid and Electric Vehicles Annex Group was established in 1994 to exchange information and prepare a series of reports on subjects related to components for hybrid vehicles, as well as on topics related to plug-in hybrid electric vehicles (PHEV). A new annex group has been proposed to study advanced battery technologies, policy issues, charging, marketability, and group administration. It was concluded that the group will report on progress and make all its research and findings available. Details of the IEA structure and governing board were provided. 6 figs.

  16. Development of V2G and G2V Power Profiles and Their Implications on Grid Under Varying Equilibrium of Aggregated Electric Vehicles

    Science.gov (United States)

    Jain, Prateek; Jain, Trapti

    2016-04-01

    The objective of this paper is to examine the vehicle-to-grid (V2G) power capability of aggregated electric vehicles (EV) in the manner that they are being adopted by the consumers with their growing infiltration in the vehicles market. The proposed modeling of V2G and grid-to-vehicle (G2V) energy profiles blends the heterogeneous attributes namely, driven mileages, arrival and departure times, travel and parking durations, and speed dependent energy consumption of mobility trends. Three penetration percentages of 25 %, 50 % and 100 % resulting in varied compositions of battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) in the system, as determined by the consumers' acceptance, have been considered to evaluate the grid capacity for V2G. Distinct charge-discharge powers have been selected as per charging standards to match contemporary vehicles and infrastructure requirements. Charging and discharging approaches have been devised to replicate non-linear characteristics of Li-ion battery. Effects of simultaneous conjunction of V2G and G2V power curves with daily conventional load profile are quantified drawn upon workplace-discharging home-charging scheme. Results demonstrated a marked drop in load and hence in market price during morning hours which is hurriedly overcompensated by the hike during evening hours with rising penetration level and charge-discharge power.

  17. Nanostructured metal sulfides for energy storage.

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  18. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  19. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs).

    Science.gov (United States)

    Banerjee, Abhik; Upadhyay, Kush Kumar; Puthusseri, Dhanya; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2014-04-21

    Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li₄Ti₅O₁₂ as the anode for high performance Li-HECs. The energy density of the cell is ∼65 W h kg(-1) which is significantly higher than that achievable with commercially available activated carbon (∼36 W h kg(-1)) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ∼20 W h kg(-1)). The MOF-DC/Li₄Ti₅O₁₂ Li-HEC assembly also shows good cyclic performance with ∼82% of the initial value (∼25 W h kg(-1)) retained after 10,000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration.

  20. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2013-11-01

    Full Text Available Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventional petrol and diesel vehicles. The assessments are done from a life cycle perspective. The effect on human health, resources and ecosystems is considered when calculating the environmental impact. The total cost of ownership (TCO model includes the purchase price, registration and road taxes, insurance, fuel or electricity cost, maintenance, tires replacement, technical control, battery leasing and battery replacement. In the presented analysis different vehicle technologies and fuels are compared (petrol, diesel, hybrid electric vehicles (HEVs, battery electric vehicles (BEVs and plug-in hybrid electric vehicles (PHEVs on their level of environmental impact and cost per kilometer. The analysis shows a lower environmental impact for electric vehicles. However, electric vehicles have a higher total cost of ownership compared to conventional vehicles, even though the fuel operating costs are significantly lower. The purchase cost of electric vehicles is highly linked to the size of the battery pack, and not to the size of the electric vehicle. This explains the relative high cost for the electric city cars and the comparable cost for the medium and premium cars.

  1. Well-to-wheel greenhouse gas emissions and energy use analysis of hypothetical fleet of electrified vehicles in Canada and the U.S

    Science.gov (United States)

    Maduro, Miguelangel

    The shift to strong hybrid and electrified vehicle architectures engenders controversy and brings about many unanswered questions. It is unclear whether developed markets will have the infrastructure in place to support and successfully implement them. To date, limited effort has been made to comprehend if the energy and transportation solutions that work well for one city or geographic region may extend broadly. A region's capacity to supply a fleet of EVs, or plug-in hybrid vehicles with the required charging infrastructure, does not necessarily make such vehicle architectures an optimal solution. In this study, a mix of technologies ranging from HEV to PHEV and EREV through to Battery Electric Vehicles were analyzed and set in three Canadian Provinces and 3 U.S. Regions for the year 2020. Government agency developed environmental software tools were used to estimate greenhouse gas emissions and energy use. Projected vehicle technology shares were employed to estimate regional environmental implications. Alternative vehicle technologies and fuels are recommended for each region based on local power generation schemes.

  2. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  3. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  4. A Kind of Design and Optimization of Gear Ratio for Hybrid Electric Vehicle%一种混合动力电动汽车速比设计与优化方法

    Institute of Scientific and Technical Information of China (English)

    沈雨霏; 陈辛波

    2012-01-01

    针对一种PHEV混合动力电动汽车,在动力源功率一定并且需要保证整车动力性要求的前提下,对其传动系速比进行合理的设计与优化.仿真结果表明,可以通过调整速比与电机的最大扭矩,满足车辆动力性要求,达到减小电机体积及改善整车安装性能的目的;同时还可降低离合器的滑磨功损失,提高离合器使用寿命.%For a PHEV hybrid electric vehicle, we design and optimize the gear ratio reasonably when the engine power is unchanged as well as the motor power. In this way, we can guarantee the dynamic performance of the vehicle. The simulation results show that the vehicle can meet the dynamic performance requirements by adjusting the gear ratio and the maximal torque of the motor. Also we can downsize the motor volume to make the installation of the motor much more convenient. Meanwhile, the slipping frictional power of clutch can be reduced through the optimization of gear ratio so that the service life of clutch can be extended.

  5. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  6. Can Electricity Powered Vehicles Serve Traveler Needs?

    Directory of Open Access Journals (Sweden)

    Jianhe Du

    2013-06-01

    Full Text Available Electric vehicles (EV, Hybrid Electric Vehicles (HEV or Plug-in Hybrid Electric Vehicles (PHEV are believed to be a promising substitute for current gas-propelled vehicles. Previous research studied the attributes of different types of EVs and confirmed their advantages. The feasibility of EVs has also been explored using simulation, retrospective survey data, or a limited size of field travel data. In this study, naturalistic driving data collected from more than 100 drivers during one year are used to explore naturalistic driver travel patterns. Typical travel distance and time and qualified dwell times (i.e., the typical required EV battery recharging time between travels as based on most literature findings are investigated in this study. The viability of electric cars is discussed from a pragmatic perspective. The results of this research show that 90 percent of single trips are less than 25 miles; approximately 70 percent of the average annual daily travel is less than 60 miles. On average there are 3.62 trips made between four-hour dwell times as aggregated to 60 minutes and 50 miles of travel. Therefore, majority of trips are within the travel range provided by most of the currently available EVs. A well-organized schedule of recharging will be capable of covering even more daily travels.

  7. The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Wishart

    2012-02-01

    This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

  8. Bench Testing Results for the Electrical PCM-Assisted Thermal Heating System (ePATHS)

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gao, Zhiming [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-20

    Bench testing of the Electrical PCM-Assisted Thermal Heating System (ePATHS) was completed at the Building Technologies Research and Integration Center (BTRIC) at the Oak Ridge National Laboratory (ORNL). The ePATHS is a thermal energy storage device designed to reduce the energy required from the battery for cabin heating of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). ORNL s testing of the ePATHS assessed three main aspects of operation of the device: 1.ePATHS charging evaluation: measure the time to charge and the energy input needed to fully charge the PCM for a range of different ambient conditions. 2.ePATHS Discharge Evaluations: measure the energy provided by the PCM HX, both during mode 1 and mode 2 operation, and confirm the cabin heating duration that can be provided by the ePATHS. This is the primary evaluation to validate the system performance, and an array of multiple ambient conditions and operating scenarios were tested. 3.Evaluation of Thermal Losses from the ePATHS during Cold Soak: this test will evaluate the performance of the insulation system for the ePATHS. The charged ePATHS undergoes a long-term soak in cold ambient temperature conditions, and the heat losses will be evaluated to validate that the performance meets the maximum energy loss requirement.

  9. Recovery Act Final Project Report -- Transportation Electrification

    Energy Technology Data Exchange (ETDEWEB)

    Gogineni, Kumar

    2013-12-31

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

  10. Clean Cities 2015 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reports and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.

  11. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  12. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  13. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  14. Multiobjective Synergistic Scheduling Optimization Model for Wind Power and Plug-In Hybrid Electric Vehicles under Different Grid-Connected Modes

    Directory of Open Access Journals (Sweden)

    Liwei Ju

    2014-01-01

    Full Text Available In order to promote grid’s wind power absorptive capacity and to overcome the adverse impacts of wind power on the stable operation of power system, this paper establishes benefit contrastive analysis models of wind power and plug-in hybrid electric vehicles (PHEVs under the optimization goal of minimum coal consumption and pollutant emission considering multigrid connected modes. Then, a two-step adaptive solving algorithm is put forward to get the optimal system operation scheme with the highest membership degree based on the improved ε constraints method and fuzzy decision theory. Thirdly, the IEEE36 nodes 10-unit system is used as the simulation system. Finally, the sensitive analysis for PHEV’s grid connected number is made. The result shows the proposed algorithm is feasible and effective to solve the model. PHEV’s grid connection could achieve load shifting effect and promote wind power grid connection. Especially, the optimization goals reach the optimum in fully optimal charging mode. As PHEV’s number increases, both abandoned wind and thermal power generation cost would decrease and the peak and valley difference of load curve would gradually be reduced.

  15. Modeling Framework and Results to Inform Charging Infrastructure Investments

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    The plug-in electric vehicle (PEV) market is experiencing rapid growth with dozens of battery electric (BEV) and plug-in hybrid electric (PHEV) models already available and billions of dollars being invested by automotive manufacturers in the PEV space. Electric range is increasing thanks to larger and more advanced batteries and significant infrastructure investments are being made to enable higher power fast charging. Costs are falling and PEVs are becoming more competitive with conventional vehicles. Moreover, new technologies such as connectivity and automation hold the promise of enhancing the value proposition of PEVs. This presentation outlines a suite of projects funded by the U.S. Department of Energy's Vehicle Technology Office to conduct assessments of the economic value and charging infrastructure requirements of the evolving PEV market. Individual assessments include national evaluations of PEV economic value (assuming 73M PEVs on the road in 2035), national analysis of charging infrastructure requirements (with community and corridor level resolution), and case studies of PEV ownership in Columbus, OH and Massachusetts.

  16. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  17. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  18. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  19. DC Smart Grid Connected with Fuel Charging Station and AC Load by Hybrid MLI

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-07-01

    Full Text Available This paper presents the Solar (photo voltaic power Plant and Windmill plant with DC Smart Grid connected with an DC Fuel Charging Station For Electric Vehicle (EV, Plug in Hybrid Electric Vehicle (PHEV and converted to AC load for Consumer single or Three phase ac load by means of Hybrid Multilevel Inverter (MLI. Solar Energy which store energy in lithium-ion battery and connected to Smart Grid .Wind Energy which get stored in Lithium-ion battery that Fixed DC Voltage connected with DC Smart Grid. Smart Grid which are Connected with DC Fuel Charging Station in Ring Topology with a certain distance for charging of Electric Vehicle (EV and Plug-in Hybrid Electric Vehicle with On-Board (Integrated Charger for faster charging of EV. In Power demand for Consumer the DC load from smart grid converted into an ac load by Hybrid Multilevel Inverter. In Consumers Place the small wind mill and PV panel are installed that energy can be used for consumers load at peak time or power Shutdown .Other than the power shutdown or peak time in the consumers place, stored DC Energy can be fed to Smart Grid. A major development in distribution automation is deployment of smart meters as a gateway between the utility and customer. With such capabilities the smart meter becomes not only a point of measurement of consumed kWh but also a controller capable of bidirectional communications with both the customer and utility.

  20. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  1. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tang, Lixin [ORNL; Chambon, Paul H [ORNL; Ozpineci, Burak [ORNL; Smith, David E [ORNL

    2016-06-20

    , ORNL and Toyota TEMA worked closely on the vehicle integration plans, compatibility, and the interoperability of the wireless charging technology developed by ORNL for the vehicles manufactured by Toyota. These vehicles include a Toyota Prius Plug-in Hybrid electric vehicle, a Scion iQ electric vehicle, and two Toyota RAV4 electric vehicles. The research include not only the hardware integration but also the controls and communication systems development to control and automate the charging process for these vehicles by utilizing a feedback channel from vehicle to the stationary unit for power regulation.

  2. Bescheidung, Unterscheidung, Entscheidung. Zur Philosophie als Weisheit in Schellings “Einleitung in die Philosophie der Offenbarung”

    Directory of Open Access Journals (Sweden)

    Jonas Francesco Erulo

    2016-09-01

    Philosophie ist, soll die positive Philosophie den aposteriorischen Erweis der Übereinstimmung ihres Prius (das rein Existierende, mit dem Gottesbegriff der negativen Philosophie leisten und so, aposteriorisch, die Verbindung zum Denken stiften.

  3. Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    Science.gov (United States)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-07-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a Pitot tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, during predetermined driving routines. The advantages and disadvantages of increasing the acquisition frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. With the aim of testing and evaluating the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles of the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent automotive technology to reach the market dedicated to reduce emissions and therefore pressing the need of low detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here are similar to experiments performed in other locations with the same vehicle model. Some differences suggest that an inefficient combustion process and type of gasoline used in the MCMA may be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction of NO emission to very low values is observed after cold ignition, giving rise to

  4. Comprehending Consumption: The Behavioral Basis and Implementation of Driver Feedback for Reducing Vehicle Energy Use

    Science.gov (United States)

    Stillwater, Tai

    A large body of evidence suggests that drivers who receive real-time fuel economy information can increase their vehicle fuel economy by 5%, a process commonly known as ecodriving. However, few studies have directly addressed the human side of the feedback, that is, why drivers would (or would not) be motivated to change their behavior and how to design feedback devices to maximize the motivation to ecodrive. This dissertation approaches the question using a mixed qualitative and quantitative approach to explore driver responses and psychology as well as to quantify the process of behavior change. The first chapter discusses the use of mile-per-gallon fuel economy as a metric for driver feedback and finds that an alternative energy economy metric is superior for real-time feedback. The second chapter reviews behavioral theories and proposes a number of practical solutions for the ecodriving context. In the third chapter the theory of planned behavior is tested against driver responses to an existing feedback system available in the 2008 model Toyota Prius. The fourth chapter presents a novel feedback design based on behavioral theories and drivers' responses to the feedback. Finally, chapter five presents the quantitative results of a natural-driving study of fuel economy feedback. The dissertation findings suggest that behavior theories such as the Theory of Planned Behavior can provide important improvements to existing feedback designs. In addition, a careful analysis of vehicle energy flows indicates that the mile-per-gallon metric is deeply flawed as a real-time feedback metric, and should be replaced. Chapters 2 and 3 conclude that behavior theories have both a theoretical and highly practical role in feedback design, although the driving context requires just as much care in the application. Chapters 4 and 5 find that a theory-inspired interface provides drivers with engaging and motivating feedback, and that integrating personal goal into the feedback is

  5. Close Look at Hybrid Vehicle Loyalty and Ownership

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Chin, Shih-Miao [ORNL; Wilson, Daniel W [ORNL; Oliveira Neto, Francisco Moraes [ORNL; Taylor, Rob D [ORNL

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk

  6. Construction of Permanent-Magnet Electric Variable Transmissions for Hybrid Electric Vehicles%混合动力汽车用永磁式电气变速器的构建

    Institute of Scientific and Technical Information of China (English)

    程远; Christophe ESPANET; Rochdi TRIGUI; Alain BOUSCAYROL; 崔淑梅

    2011-01-01

    This paper presents a novel permanent-magnet electric variable transmission (PM-EVT) with an appropriate structure for hybrid electric vehicle (HEV) applications. Such a PM-EVT is similar to the wellknown series-parallel HEV (SP-HEV) of Toyota Prius, but with more integrated functions and simpler structures, with the planetary gear also eliminated. By analyzing four possible mechanical connections and different PM positions, a simplest structure of PM-EVT was finally chosen which has one stator, one inner rotor and one outer rotor, with the stator and inner rotor having independent windings, and the PMs located on the outer rotor. The results show that different PM arrangements on the outer rotor regard the machine performances and controllabilities.%提出了一种用于混合动力汽车(HEV)动力传动系统的新型结构的永磁式电气变速器(PM-EVT)。PM—EVT是一种与Toyota Prius混合动力汽车功能相似的串并联HEY传动系统,但是功能更加集成,结构更加简单,省去了用于功率分配的行星齿轮机构。分析了PM-EVT的4种可能的机械结构组合和永磁体配置,并选择其中最简单的一种作为最终方案:具有一个外定子、一个内转子、一个外转子;外定子和内转子分别有独立的三相绕组;永磁体分布在外转子上。分析结果表明:不同的永磁体配置形式具有不同的电机性能和控制性能。

  7. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  8. User-specific mobile sensing system and energy storage system for plug-in hybrid electric vehicles%混合动力电动汽车的特定用户移动传感器和能量存储系统

    Institute of Scientific and Technical Information of China (English)

    伍捷; 孙义和

    2012-01-01

    针对新兴混合插拔式电动汽车(plug-in hybrid electric vehicle,PHEV)应用,已有的车用能量存储系统存在笨重和可靠性差等缺点,同时驾驶人的驾驶行为严重地影响能量存储系统的性能和使用寿命,因此有效地对特定用户驾驶行为进行分析,并对大规模混合能量存储系统进行优化设计,将为未来新兴电驱动混合动力汽车的应用与实践打下坚实基础.该文提出特定用户传感器系统框架,分析其驾驶行为对混合能量存储系统(hybrid energy storage system,HESS)如锂电池和超级电容集成的影响,并设计了一个基于大规模HESS的优化架构.它综合考虑工艺制造的差异性和实时驾驶行为的多变性等因素影响,在满足能量需求条件下优化HESS成本和使用寿命.实验结果表明:该优化架构与只采用单一锂电池作为存储资源的架构相比,在达到使用寿命年限15a前提下,混合能量存储系统的成本代价平均降低了51.3%.同时,该架构的求解速度快,有利于实际实现.%Existing in-vehicle hybrid energy storage systems (HESS) in plug-in hybrid electric vehicles (PHEVs) are bulky and unreliable. In addition, the user-specific driving behavior substantially impacts the HESS performance and lifetime. Therefore, user-centric driving behavior analyses and energy storage system design and optimization are essential for hybrid vehicles. This paper presents a personalized mobile sensing system framework to analyze the user's driving behavior and characterize its impact on the HESS performance. An integrated hybrid energy storage system (e. g. , a Li-ion battery and an ultra-capacitor) design and optimization architecture are then given for plug-in hybrid electric vehicles. This architecture statistically optimizes the HESS cost and lifetime considering variances in the HESS system due to manufacturing tolerances and user-specific use. Tests show that this HESS design and optimization

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in

  10. Assessment by Simu ation of Benefits of New HEV Powertrain Configurations Évaluation par simulation des bénéfices de nouvelles chaînes de traction hybrides

    Directory of Open Access Journals (Sweden)

    Kim N.

    2013-05-01

    Full Text Available During the past couple of years, numerous powertrain configurations for Hybrid Electric Vehicles (HEV have been introduced into the marketplace. The current dominant architecture is the power-split configuration with the input split (single-mode from Toyota and Ford. General Motors (GM recently introduced a two-mode power-split configuration for applications in sport utility vehicles. Also, the first commercially available Plug-In Hybrid Electric Vehicle (PHEV — the GM Volt — was introduced into the market in 2010. The GM Volt uses a series-split powertrain architecture, which provides benefits over the series architecture, which typically has been considered for Electric-Range Extended Vehicles (E-REV. This paper assesses the benefits of these different powertrain architectures (single-mode versus multi-mode for HEV (series versus GM Voltec for PHEV by comparing component sizes, system efficiency and fuel consumption over several drive cycles. On the basis of dynamic models, a detailed component control algorithm was developed for each configuration. The powertrain components were sized to meet all-electric-range, performance and grade-capacity requirements. This paper presents and compares the impact of these different powertrain configurations on component size and fuel consumption. Durant les dernières années, de nombreuses configurations de motorisation pour véhicules hybrides ont été introduites sur le marché. La solution dominante est actuellement la dérivation de puissance en configuration ‘input split’ simple mode utilisée par Toyota et Ford. General Motors (GM a récemment introduit une configuration basée sur la dérivation de puissance avec deux modes pour application sur des SUV (Sport Utility Vehicle. Par ailleurs, le premier véhicule hybride rechargeable la Volt de GM a été introduite sur le marché en 2010. La Volt utilise une architecture qui autorise plusieurs modes : électrique, série et dérivation de

  11. Smart Grid il ruolo dell’ICT nella sfida green del futuro

    Directory of Open Access Journals (Sweden)

    Tomaso Bertoli

    2012-04-01

    Full Text Available Una introduzione alle Smart Grid ove vengono mostrate le opportunità, le criticità e i vantaggi nella sfida green delfuturo, attraverso la visione degli autori che hanno maturato una particolare esperienza in Dedagroup ICT Networke nella controllata Sinergis, specialista di sistemi GIS.Smart Grid: the role of ICT in the green challenge of the futureDrawing on his experience designing and  implementing  Enterprise  Geo-graphic Network Information Systems with  Italian  Multi  Utilities  the  author provides  a  simplified  description  of what is changing in the Electric Distri-bution System and explains the main drivers and challenges that are behind the revolution generally called “Smart Grid”. A simple prose and real world examples  help  explain  the  complex meaning  and  unexpected  implica-tions of the buzz words and acronyms used by the Industry: AMI Advanced Metering  Infrastructure,  MDM  Meter Data Management, DMS Distribution Management  System,  DR  Demand-Response,  DG  Distributed  Genera-tion,  PHEV  Plug-in  Hybrid  Electric Vehicles, and Energy Dispatching and Storage.

  12. Implementation Approach for Electric Vehicles at Marine Corps Base Camp Lejeune. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Marine Corps Base Camp Lejeune (MCBCL) located in North Carolina. Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the MCBCL fleet. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  13. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    Science.gov (United States)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikaël; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn 1/3Ni 1/3Co 1/3O 2 + LiMn 2O 4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  14. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Matthieu Dubarry; Cyril Truchot; Mikael Cugnet; Bor Yann Liaw; Kevin Gering; Sergiy Sazhin; David Jamison; Christopher Michelbacher

    2011-12-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  15. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  16. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  17. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  18. Control Strategy on Plug-in Hybrid Electric Vehicle Regenerative Braking%插电式混合动力汽车再生制动控制策略

    Institute of Scientific and Technical Information of China (English)

    刘闪闪; 韩震; 业德明; 乔曌

    2012-01-01

    Regenerative braking control strategy directly influenced fuel economy of Plug-in hybrid electric vehicles. A style of a control strategy based on ideal braking force is proposed in this paper. This strategy can ensure braking stability, at the meantime reclaim the braking energy as much as possible. And the control strategy model of regenerative brake system is built based on Simulink. The control strategy model is imbedded in Cruise and simulated. The simulation results show that compared with PHEV with no braking energy recovery and traditional vehicles fuel economy is improved and the control strategy of regenerative braking system are proved to be appropriate.%由于再生制动控制策略直接影响了插电式混合动力汽车(PHEV)的经济性,文章提出了一种基于理想制动力分配的再生制动控制策略,这种策略能在保证制动稳定性的同时,尽可能多地回收制动能量,在Simulink平台上建立再生制动控制策略模型,并嵌入到Cruise软件中进行仿真。仿真结果表明,此模型相比没有制动能量回收的PHEV和传统汽车,都有效地提高了经济性,验证了再生制动控制策略的合理性。

  19. Phylogenetic and molecular analysis of food-borne shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Hauser, Elisabeth; Mellmann, Alexander; Semmler, Torsten; Stoeber, Helen; Wieler, Lothar H; Karch, Helge; Kuebler, Nikole; Fruth, Angelika; Harmsen, Dag; Weniger, Thomas; Tietze, Erhard; Schmidt, Herbert

    2013-04-01

    Seventy-five food-associated Shiga toxin-producing Escherichia coli (STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding gene sabA was examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE), selC, pheU, and pheV, as well as the Stx phage integration sites yehV, yecE, wrbA, z2577, and ssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagic E. coli (HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogenic eae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strain E. coli O104:H4 were found in cluster A. Cluster B comprises only eae-negative food-borne STEC strains as well as mainly eae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection.

  20. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  1. Direct-Cooled Power Electronics Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, R.; Ayers, C.; Wereszczak, A.

    2008-12-23

    The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

  2. Electricity as Transportation ``Fuel''

    Science.gov (United States)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  3. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  4. Improved Wide Operating Temperature Range of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  5. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  6. Driver trust in five driver assistance technologies following real-world use in four production vehicles.

    Science.gov (United States)

    Kidd, David G; Cicchino, Jessica B; Reagan, Ian J; Kerfoot, Laura B

    2017-05-29

    Information about drivers' experiences with driver assistance technologies in real driving conditions is sparse. This study characterized driver interactions with forward collision warning, adaptive cruise control, active lane keeping, side-view assist, and lane departure warning systems following real-world use. Fifty-four Insurance Institute for Highway Safety employees participated and drove a 2016 Toyota Prius, 2016 Honda Civic, 2017 Audi Q7, or 2016 Infiniti QX60 for up to several weeks. Participants reported mileage and warnings from the technologies in an online daily-use survey. Participants reported their level of agreement with five statements regarding trust in an online post-use survey. Responses were averaged to create a composite measure of trust ranging from -2 (strongly disagree) to +2 (strongly agree) for each technology. Mixed-effect regression models were constructed to compare trust among technologies and separately among the study vehicles. Participants' free-response answers about what they liked least about each system were coded and examined. Participants reported driving 33,584 miles during 4 months of data collection. At least one forward collision warning was reported in 26% of the 354 daily reports. The proportion of daily reports indicating a forward collision warning was much larger for the Honda (70%) than for the Audi (18%), Infiniti (15%), and Toyota (10%). Trust was highest for side-view assist (0.98) and lowest for active lane keeping (0.20). Trust in side-view assist was significantly higher than trust in active lane keeping and lane departure warning (0.53). Trust in active lane keeping was significantly lower than trust in adaptive cruise control (0.67) and forward collision warning (0.71). Trust in adaptive cruise control was higher for the Audi (0.72) and Toyota (0.75) compared with the Honda (0.30), and significantly higher for the Infiniti (0.93). Trust in Infiniti's side-view assist (0.58) was significantly lower than

  7. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been

  8. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle

  9. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Directory of Open Access Journals (Sweden)

    Xue Ying

    2006-07-01

    Full Text Available Abstract Background Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401 and compared it with S. flexneri 2a (Sf301. Results The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI. Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS. There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. Conclusion Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri.

  10. Electrochemical insertion of lithium into polymer derived silicon oxycarbide and oxycarbonitride ceramics

    Science.gov (United States)

    Ahn, Dongjoon

    There has recently been great interest in lithium storage at the anode of Li-ion rechargeable battery in order to replace the carbon-based anode. Over the last two decades, carbon-based anode, especially graphite, was utilized as anode in lithium ion batteries because of its cyclic stability and coulombic efficiency. However, low capacity and the thermal runaway resulted from the solid electrolyte interface (SEI) formation on the graphite anode during charging and discharging cycles. This inhibited the further development of lithium ion batteries for Plug-in Hybrid Electrical Vehicle (PHEV) or Electrical Vehicle (EV) which demand both high energy and high power density. The goal of this research was to develop the anode material, Silicon Oxycarbide (SixOyCz) and Silicon Carbonitride (SixCyNz), from Polymer Derived Ceramics (PDCs) for lithium-ion batteries application and to understand the thermodynamics and kinetics of intercalation mechanism in the host material. This includes as three main categories: (1) Characterization of PDCs, (2) measurement of electrochemical phenomena of PDCs anode in half-cell which used lithium foil as anode, (3) analysis of the lithium intercalation mechanism and diffusion coefficient in PDCs. In this thesis, the first objective was to synthesize possible anode materials and construct the proper battery structure to experiment its intercalation and deintercalation behaviors. Also, various experiments such as cyclic stability, capacity retention and C-rate capability were performed in order to estimate the feasibility of PDCs as new anode materials for the next generation. The second objective was to determine the reversible and irreversible capacity from different fraction of Si, C, O and N composition. Based on this analysis, the mixed bond sites in SixOyCz had higher reversible and irreversible capacity than the free carbon sites. The third objective was to examine the hysteretic response of lithium intercalation to SiCO. According to

  11. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electric vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely

  12. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  13. Gear Decision for Regenarative Brake in Single Shaft Parallel Hybrid Electric Transmitting Bus%单轴并联式混合动力城市客车再生制动挡位决策

    Institute of Scientific and Technical Information of China (English)

    陈泳丹; 席军强; 陈慧岩

    2012-01-01

    Mathmalic model of regenerative brake for single shaft parallel hybrid electric vehicle (PHEV) was established and a series-parallel multi-brake pedal was correspondingly designed. To ensure the brake stability, a new brake torque distribution similar to the atomic transition was proposed. The factors of generator efficiency, battery charging efficiency and braking stability, which restrict the increase in regenerative efficiency, were analyzed and the sequential quadratic programming (SQP) algorithm was used to optimize the gear decision and regenerative brake torque ouput. The model of hybrid propulsion system has been built under the Cruise and Matlab/Simulink joint simulation platforms. According to the rule of UDC drive cycle simulation, the experimental data indicate that, compared with traditional dual parameters shift decision, the final state of charge (SOC) could be increased by 1.5% and the regenerative efficiency be 11. 00% more than that in the normal brake pattern. Three typical cycle road tests have been implemented and the results well fit in with the simulation ones.%设计一种串并混联式复合制动踏板方案,并针对该方案制订再生制动阶跃式制动力分配曲线.分析了影响再生制动效率的多种因素,提出运用序列二次规划(SQP)算法优化挡位决策和电机输出扭矩以解决再生制动中回收效率与制动力分配曲线和电机转速的矛盾.在Cruise和Matlab/Simulink联合仿真平台下,建立了单轴并联式混合动力传动系统整车模型,基于欧洲公交客车循环工况(UDC)进行了仿真研究.结果表明,电池荷电状态(SOC)比采用传统双参数换挡规律提高了近1.5%.进行了三种典型制动工况下实车试验,取得了与仿真结果相吻合的试验结果,其中正常制动工况下的能量回收率比传统双参数换挡策略提高了近11.00%.

  14. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    Energy Technology Data Exchange (ETDEWEB)

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  15. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  16. Potential of a range extender concept for inner city scooters. An alternative to pure electric mobility?; Potenzial eines REX Konzeptes fuer Stadtscooter. Eine Alternative zur rein elektrischen Mobilitaet?

    Energy Technology Data Exchange (ETDEWEB)

    Kirchberger, Roland; Schacht, Hans-Juergen; Eichlseder, Helmut [Technische Univ. Graz (Austria). Inst. fuer Verbrennungskraftmaschinen und Thermodynamik

    2012-11-01

    Nowadays the scooter market class L1e (<50cm{sup 3}, speed limited to 45km/h) is dominated by low-cost two-stroke carburetted engines. With the implementation of the new EURO 3 regulation, obligatory for new type approval by 2014 and for all newly licenced types by 2015, the market will suffer the loss of these low cost vehicles due to the requested durability of exhaust gas after treatment systems. More complex drive units, like lambda controlled 4-stroke engines or 2-stroke engines with direct injection will have to follow. Pure electric scooters pose a further possibility to fill the resulting gap. A significant cost increase is common to all of these approaches. Necessary additional system components will cause the increase for ICE variants, whereas battery costs are responsible for the electric variant. The goal is to find an alternative to be able to comply with the requirements of emission legislation and to keep the product price as low as possible at the same time. A technological comparison of different approaches revealed the serial hybrid variant as most promising. The evaluated system and the derived concept consist of a combination of an electric scooter with a halved battery size (cost reduction) and a Range Extender with the possibility to extend, if necessary, the range to the standard of conventional ICE variants. This alternative is able to offer electro-mobility and therewith local zero emissions without the immanent ''range anxiety'' usually caused by pure electric vehicles [8]. Having defined the system layout as plug-in hybrid-electric vehicle (PHEV) and checked the characteristics of single components in numerous preliminary investigations, a longitudinal backward simulation was carried out. It permits the testing of different operational strategies in combination with a subsequent evaluation of the fuel consumption reduction potential [16]. A packaging analysis could verify the constructive feasibility. Finally, the

  17. Battery management system of type hybrid heavy sanitation vehicle%基于SX5256DH434PHEV型混合动力重型环卫车的电池管理系统浅谈

    Institute of Scientific and Technical Information of China (English)

    宋少飞

    2014-01-01

    In the global energy crisis, with the implementation of the international carbon export agreement, green vehicle has become the development direction of the automotive technology in developed countries, the developed countries the majority of the lithium ion batteries as new energy EV, HEV, PHEV. Because of complicated and lithium ion battery electrochemical characteristics, needs the perfect battery management system BMS (BATTERY MANAGEMENT SYSTEM), and its role is insulated and other parameters of the battery of lithium ion battery voltage, current, temperature, capacity, battery state of charge measurement, SOC battery and the vehicle body by CAN communication mode and vehicle control computer real-time information exchange, ensure the battery energy into full play, so that the driver can at any time to master the working status of the battery, in order to ensure the safety of the battery. BMS is not only the central nervous digital smart battery system, the key component is the new energy automotive essential.%在全球能源危机的情况下,随着国际碳排放出口协定的实施,绿色清洁汽车已经成为发达国家当前汽车技术的发展方向,发达国家多数把锂离子电池作为EV、HEV、PHEV的新能源。由于汽车的复杂工况和锂离子电池电化学特性,一般需要完善的电池管理系统BMS(BATTERY MANAGEMENT SYSTEM),其作用是对锂离子电池电压、电流、温度、容量、电池的 SOC 荷电状态计量、电池与车体的绝缘状态等多种电池参数以 CAN 通讯的方式与车控电脑实时进行信息交换,确保电池的能量发挥到极致,使驾驶者能够随时掌握电池的工作状态,以保证电池的安全。BMS不仅是数字化智能电池系统的中枢神经,也是新能源汽车必不可少的关键部件。

  18. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    Science.gov (United States)

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  19. Energy management and control of active distribution systems

    Science.gov (United States)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  20. Energy use, cost and CO{sub 2} emissions of electric cars

    Energy Technology Data Exchange (ETDEWEB)

    van Vliet, Oscar [International Institute of Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre [Copernicus Institute for Sustainable Development, Utrecht University (Netherlands)

    2011-02-15

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km{sup -1} (using renewables) and 155 g km{sup -1} (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO{sub 2} {sub eq} km{sup -1}. We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year{sup -1}. TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh{sup -1}, even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh{sup -1} in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug

  1. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  2. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    Denmark by about 300-600 MW, corresponding to the size of a large power plant. This can be achieved when investing in socio-economically feasible heat storages complementing the heat pumps. The potential for reducing the required investments in peak/reserve capacities is crucial for the feasibility of the heat storages. Intelligent heat storage in the building structure is identified as socio-economically feasible in 20-75 % of the houses with heat pump installations, depending on the cost of control equipment in particular. Investment in control equipment, enabling utilisation of existing hot water tanks for flexible heat pump operation, is found socio-economically feasible in about 20-70 % of the houses. In contrast, heat accumulation tanks are not competitive, due to their higher investments costs. Further analyses investigate the system effects of a gradual large-scale implementation of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) in Denmark, Finland, Norway, Sweden, and Germany towards 2030. When charged/discharged intelligently, the electric vehicles can, in the long term, facilitate larger wind power investments, while they in the short term in many cases are likely to result in increased coal-based electricity generation. The electric vehicles can contribute significantly to reducing CO{sub 2} emissions, while system costs are generally increased, due to assumed investments in the costly BEVs. The need for peak/reserve capacities can be reduced through the use of vehicle-to-grid capability. Competing flexibility measures, such as large heat pumps, electric boilers, and thermal storages in the district heating system, have also been included in the energy systems analyses. These technologies can together facilitate increased wind power investments and reduce CO{sub 2} emissions in the same order of magnitude as a large-scale implementation of electric vehicles. Overall, it is concluded that individual heat pumps, flexibility

  3. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  4. Drive Electric Vermont Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Fred [Energetics Incorporated, Columbia, MD (United States); Roberts, Dave [Vermont Energy Investment Corporation (VEIC), Burlington, VT (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    that support charging infrastructure deployment and PEV purchases. Future plans include an additional round of consumer/dealer PEV incentives, continuation of the marketing campaign, and utilization of consumer surveys to develop new campaign themes and to optimize information distribution channels. In Vermont, the number of PEVs grew from 88 in July 2012 to 1,113 in January 2016, with a high percentage of the PEVs being plug-in hybrids (i.e., 865) versus all electric vehicles (i.e., 248). The most popular PEVs are Toyota’s Prius Plug-in and Ford’s C-Max Energi, which make up a combined 48% of the total PEV ownership in the state. The PEVs are predominantly clustered in four counties: Lamoille, Caledonia, Washington, and Chittenden. There is no evident correlation between community size and PEV penetration; however, over 70% of PEV owners are in communities of 1,000 to 10,000 people. On the other hand, there is a close correlation between where PEVs are registered and where they publically charge. The number of PEV charging stations in Vermont grew from 17 in January 2013 to 111 in January 2016, at a variety of charging venues, including retail, parking (short term and long term), workplace, dealerships, hotels, education, leisure, and hospitals. The vast majority of the charging venues contain Level 2 electric vehicle supply equipment (EVSE) solely or combined with Level 1 EVSE or direct current fast charging. The average power transferred per charging event for communities across Vermont ranged from 4.8 to 13.8 kWh for direct current fast charging and 1.0 to 11.9 kWh for and Level 2 EVSE. Over half the charging locations offer free charging. For those that do require payment, different pricing models are employed, including monthly memberships, hourly payment (where there is often a higher fee for the first hour followed by a lower hourly fee for the remaining hours), and energy use based on kWh drawn from the EVSE. There is no correlation between pricing models

  5. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle

  6. Drive Electric Vermont Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Fred [Energetics Incorporated, Columbia, MD (United States); Roberts, Dave [Vermont Energy Investment Corporation (VEIC), Burlington, VT (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    that support charging infrastructure deployment and PEV purchases. Future plans include an additional round of consumer/dealer PEV incentives, continuation of the marketing campaign, and utilization of consumer surveys to develop new campaign themes and to optimize information distribution channels. In Vermont, the number of PEVs grew from 88 in July 2012 to 1,113 in January 2016, with a high percentage of the PEVs being plug-in hybrids (i.e., 865) versus all electric vehicles (i.e., 248). The most popular PEVs are Toyota’s Prius Plug-in and Ford’s C-Max Energi, which make up a combined 48% of the total PEV ownership in the state. The PEVs are predominantly clustered in four counties: Lamoille, Caledonia, Washington, and Chittenden. There is no evident correlation between community size and PEV penetration; however, over 70% of PEV owners are in communities of 1,000 to 10,000 people. On the other hand, there is a close correlation between where PEVs are registered and where they publically charge. The number of PEV charging stations in Vermont grew from 17 in January 2013 to 111 in January 2016, at a variety of charging venues, including retail, parking (short term and long term), workplace, dealerships, hotels, education, leisure, and hospitals. The vast majority of the charging venues contain Level 2 electric vehicle supply equipment (EVSE) solely or combined with Level 1 EVSE or direct current fast charging. The average power transferred per charging event for communities across Vermont ranged from 4.8 to 13.8 kWh for direct current fast charging and 1.0 to 11.9 kWh for and Level 2 EVSE. Over half the charging locations offer free charging. For those that do require payment, different pricing models are employed, including monthly memberships, hourly payment (where there is often a higher fee for the first hour followed by a lower hourly fee for the remaining hours), and energy use based on kWh drawn from the EVSE. There is no correlation between pricing models

  7. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2009-11-01

    environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews

  8. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  9. 动力锂离子电池的安全性控制策略及其试验验证%Safety control strategy of large format Li-ion batteries and test verification

    Institute of Scientific and Technical Information of China (English)

    李建军; 王莉; 高剑; 何向明; 田光宇; 张剑波

    2012-01-01

    Whether the lithium-ion battery can enter the EV, HEV and PHEV markets depends on its safety, and the thermal runaway control is the most critical challenges. This paper discusses the field failure abuse thermal runaway of large format lithium ion batteries in vehicular applications, focusing on the evolution of the insight process of thermal runaway. In terms of the positive electrode, negative electrode, electrolyte, separator and current collector, the impacts on safety of the key materials are reviewed, with the battery safety control strategy proposed. The LiNil/3Col/3Mnl/302 based battery with nominal capacity of 12 Ah was developed with modified key materials with energy density of 160 Wh/kg and power density of 1.25 kW/kg. Tests were carried out for 0.5 C rate / 20 V overcharge and fully charged state (4.2 V) hot-box at 150℃ for 4 h. The results show that the batteries are safe, the effectiveness of the proposed safety control strategy is verified, and the self-discharge and chemical stability of the safe batteries arebetter than those of traditional batteries.%锂离子动力电池的安全性决定了它的市场生存,而控制电池热失控是锂离子电池安全性研究的最具挑战的课题。该文介绍了动力锂离子电池的现场失效安全性和滥用安全性现状,探究了动力电池发生热失控的内在演变过程,并从电池的正负极、电解液、隔膜和集流体等方面分析了材料对电池热失控安全性的影响;提出了控制大型动力电池安全性的一般策略;并通过关键材料的改性,研制了标称容量12Ah的三元材料(LiNil/3C01/3Mnl/302)体系动力锂离子电池,其比能量为160Wh/kg,比功率达1.25kW/kg。进行了该电池的0.5C倍率、20V过充电测试和150℃、4h的4.2V满电态热箱试验。结果表明:电池具有较高安全性,验证了安全性控制策略的有效性;安全性电池的自放电和化学稳定性均优于普通电池。

  10. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2009-11-01

    environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews

  11. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2011-10-01

    's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological

  12. Lithium Resources for the 21st Century

    Science.gov (United States)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas

  13. High voltage energy storage system design for a parallel-through-the-road plug-in hybrid electric vehicle

    Science.gov (United States)

    Belt, Bryan Whitney D.

    A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle (PHEV) pairs an engine powering the front wheels of a vehicle with an electric motor powering the rear wheels. This arrangement gives the flexibility of being able to operate the vehicle in an all-electric mode, an all biodiesel mode, or a combination of both to create maximum power. For this work, a 1.7 L CIDI engine running on biodiesel will be the engine being used and a 103 kW Magna motor will power the rear wheels. In order to power the motor, a high voltage (HV) energy storage system (ESS) needs to be designed and integrated into the vehicle. The goal for the mechanical design of the ESS is to create a structure that will enclose all of the batteries and battery control modules to protect them from environmental factors such as dirt and water as well as to prevent them from becoming dislodged in the event of a collision. The enclosure will also serve as a means to protect the consumer from the dangers of HV. The mechanical design also entailed designing a cooling system that will keep the batteries operating in an acceptable temperature range while they are charging and discharging. The electrical design focused on designing a HV system that could adequately supply enough current flow to each component to meet the peak loading condition yet be able to disconnect should a fault occur to prevent component damage. The system was also designed with safety in mind. Controllers will constantly be monitoring both the HV and LV systems to make sure that each is isolated from the other. Should a controller detect a problem, it will disconnect the HV system. The electrical system will have a high voltage interlock loop (HVIL). The HVIL will be a continuous LV circuit that passes through every HV connector and various switches, so that, if a connector is unplugged or a switch is flipped, the circuit will open. A controller will be monitoring the HVIL for LV. Should it not detect LV, the controller will

  14. Representative Midwestern US Cycles: Synthesis and Applications Cycles représentatifs du Middle West américain : synthèse et applications

    Directory of Open Access Journals (Sweden)

    Lee T.-K.

    2013-02-01

    Full Text Available This paper proposed a set of representative real-world driving cycles in Midwestern US, which are capable of capturing the dependence of driving patterns on driving distance. Recent analyses of the real-world driving in USA show that most of certification cycles lead to underestimation of energy consumption per mile compared to the naturalistic driving patterns. Real-world driving is a mix of local driving and highway driving. Furthermore, the driving patterns show high dependency on the driving distance. To cover the wide range of real-world driving distances, five synthetic cycles are generated ranging from 4.78 miles to 40.71 miles following the real-world driving distance distribution. Each individual cycle is constructed by a stochastic process using the extracted driving information from the naturalistic trip data in the Midwestern US. While constructing the cycle set, the statistical criteria for validating the cycle representativeness are processed to capture the clear distance dependency and remove random variations. The synthesized cycles are subsequently used for Plug-in Hybrid Electric Vehicle (PHEVs or Hybrid Electric Vehicle (HEVs design and control studies for the assessment of the impact of electrified vehicles on the grid. Cet article propose un ensemble de cycles de conduite représentatifs du monde réel dans le Middle West américain, aptes à reproduire la dépendance des modes de conduite à la distance parcourue. Des analyses récentes de la conduite aux Etats-Unis montrent que la plupart des cycles de certification mènent à une sous- estimation de la consommation d’énergie par mile parcouru par rapport aux habitudes de conduite. La conduite dans le monde réel est un mix de conduite locale et de conduite sur autoroutes. De plus, les habitudes de conduite montrent une forte dépendance à la distance parcourue. Pour couvrir la vaste gamme de distances parcourues dans le monde réel, cinq cycles synthétiques ont

  15. Voltage management of distribution networks with high penetration of distributed photovoltaic generation sources

    Science.gov (United States)

    Alyami, Saeed

    Installation of photovoltaic (PV) units could lead to great challenges to the existing electrical systems. Issues such as voltage rise, protection coordination, islanding detection, harmonics, increased or changed short-circuit levels, etc., need to be carefully addressed before we can see a wide adoption of this environmentally friendly technology. Voltage rise or overvoltage issues are of particular importance to be addressed for deploying more PV systems to distribution networks. This dissertation proposes a comprehensive solution to deal with the voltage violations in distribution networks, from controlling PV power outputs and electricity consumption of smart appliances in real time to optimal placement of PVs at the planning stage. The dissertation is composed of three parts: the literature review, the work that has already been done and the future research tasks. An overview on renewable energy generation and its challenges are given in Chapter 1. The overall literature survey, motivation and the scope of study are also outlined in the chapter. Detailed literature reviews are given in the rest of chapters. The overvoltage and undervoltage phenomena in typical distribution networks with integration of PVs are further explained in Chapter 2. Possible approaches for voltage quality control are also discussed in this chapter, followed by the discussion on the importance of the load management for PHEVs and appliances and its benefits to electric utilities and end users. A new real power capping method is presented in Chapter 3 to prevent overvoltage by adaptively setting the power caps for PV inverters in real time. The proposed method can maintain voltage profiles below a pre-set upper limit while maximizing the PV generation and fairly distributing the real power curtailments among all the PV systems in the network. As a result, each of the PV systems in the network has equal opportunity to generate electricity and shares the responsibility of voltage

  16. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  17. Improved Positive Electrode Materials for Lithium-ion Batteries

    Science.gov (United States)

    Conry, Thomas Edward

    The introduction of the first commercially produced Li-ion battery by Sony in 1990 sparked a period of unprecedented growth in the consumer electronics industry. Now, with increasing efforts to move away from fossil-fuel-derived energy sources, a substantial amount of current research is focused on the development of an electrified transportation fleet. Unfortunately, existent battery technologies are unable to provide the necessary performance for electric vehicles (EV's) and plug-in hybrid electric vehicles (PHEV's) vehicles at a competitive cost. The cost and performance metrics of current Li-ion batteries are mainly determined by the positive electrode materials. The work here is concerned with understanding the structural and electrochemical consequences of cost-lowering mechanisms in two separate classes of Li-ion cathode materials; the LiMO2 (M = Ni, Mn, Co) layered oxides and the LiMPO4 olivine materials; with the goal of improving performance. Al-substitution for Co in LiNizMnzCo1-2zO 2 ("NMC") materials not only decreases the costly Co-content, but also improves the safety aspects and, notably, enhances the cycling stability of the layered oxide electrodes. The structural and electrochemical effects of Al-substitution are investigated here in a model NMC compound, LiNi0.45 Mn0.45Co0.1-yAlyO2. In addition to electrochemical measurements, various synchrotron-based characterization methods are utilized, including high-resolution X-ray diffraction (XRD), in situ X-ray diffraction, and X-ray absorption spectroscopy (XAS). Al-substitution causes a slight distortion of the as-synthesized hexagonal layered oxide lattice, lowering the inherent octahedral strain within the transition metal layer. The presence of Al also is observed to limit the structural variation of the NMC materials upon Li-deintercalation, as well as extended cycling of the electrodes. Various olivine materials, LiMPO4 ( M=Fe,Co) are produced using a custom-built spray pyrolysis system. Spray

  18. Transportation Energy Pathways LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan B.; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas

  19. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-04-30

    validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits

  20. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2011-10-01

    's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological

  1. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2010-10-01

    , subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL

  2. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-04-30

    validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits

  3. Integrated Transmission and Distribution Control

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  4. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2010-10-01

    , subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL

  5. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haas, Harry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Terricciano, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-30

    In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory

  6. Energy management control strategy and optimization for plug-in 4WD hybrid electric vehicle%插电式四驱混合动力汽车能量管理控制策略及其优化

    Institute of Scientific and Technical Information of China (English)

    钱立军; 邱利宏; 辛付龙; 陈朋; 王金波

    2015-01-01

    为精确计算驾驶员请求转矩,克服模糊逻辑及模糊比例-积分-微分(proportion integration differentiation,PID)需要先验知识的固有缺陷,该文提出利用径向基函数(radial basis function,RBF)神经网络拟合转矩识别系数。考虑到动力部件的瞬态特性,建立了各动力部件及传动系统的动力学模型,制定了基于规则的控制策略并描述了各驱动模式的成立条件及其动力学方程。为减少程序运行时间,提出修正动态规划(correctional dynamic programming,CDP)算法对控制策略进行全局优化。搭建硬件在环试验台架,对控制策略进行了试验。试验结果表明,基于规则和修正动态规划的控制策略均能实现良好的控制效果。引入转矩识别后,车速误差明显减小,燃油经济性提高了4.54%。采用修正动态规划后,燃油经济性进一步提高了14.04%。该文研究方法可以为制定复杂混合动力系统控制策略提供理论依据。%For a plug-in four-wheel-drive hybrid electric vehicle (4WD PHEV), there are 3 power components which can work independently or cooperatively. Therefore, it has many work modes and the energy management control is relatively complicated. As the calculation of the torque request of the driver by the gas pedal travel only is not precise and that method can’t reflect the driver’s intention, especially the intensity of the acceleration, thus rendering bad power performances and fuel consumption. And to overcome the inherent defects of fuzzy logic and fuzzy PID (proportion integration differentiation) that they relied on prior knowledge to set the parameters and it was difficult to realize good control effect, it was put forward in this paper that the torque identification coefficient could be obtained through RBF (radial basis function) neural network, whose inputs were the gas pedal travel and its change rate, and the output was the torque

  7. 插电式四驱混合动力汽车能量管理与转矩协调控制策略%Energy management and torque coordination control for plug-in 4WD hybrid electric vehicle

    Institute of Scientific and Technical Information of China (English)

    钱立军; 邱利宏; 辛付龙; 胡伟龙

    2014-01-01

    为克服传统比例-积分-微分(proportion integration differentiation,PID)以及模糊逻辑算法的缺陷、保障汽车经济性并改善乘员的乘坐舒适性,该文采用自适应模糊PID算法,建立了驾驶员模型。使用基于发动机输出转矩最优的能量管理控制策略,简述了驱动模式判别条件及转矩分配方法。提出1种“发动机调速+离合器模糊PID控制+发动机动态转矩查表+双电机转矩补偿控制”转矩协调控制方法,简述了模式切换步骤。在dSPACE实时仿真系统上对控制策略进行了硬件在环仿真。仿真结果表明,该控制策略在能量管理方面控制效果良好,动力部件的输出与控制策略完全吻合且平均车速误差下降37.1%。引入转矩协调之后,整车最大冲击度下降47.5%。该文的研究方法可以为制定复杂混合动力系统的控制策略提供参考。%This paper focuses on the control strategy of a plug-in 4-wheel-drive (4WD) hybrid electric vehicle (PHEV). To overcome the defects of the traditional proportion-integration-differentiation (PID) control method, an algorithm based on an adaptive fuzzy PID control method which provides better dynamic and static performances for the vehicle was adopted and a driver model was established using this algorithm. The input of the driver model was the difference between the cycle velocity and the actual output velocity of the vehicle. The output of the driver model was the required torque coefficient which reflects the driver’s intention and thus can be used to calculate the actual required torque of the driver. The PID parameters can be revised real-time according to the change of the cycle conditions, and the principle to choose theses parameters to ensure the stability of the controller was introduced as well. The domain of discourse for the inputs and outputs of the fuzzy PID controller and their membership functions were analyzed and parts of the fuzzy

  8. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haas, Harry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Terricciano, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-30

    In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory

  9. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    Science.gov (United States)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with