WorldWideScience

Sample records for hydroxylase-2 gene variants

  1. To Cheat or Not To Cheat: Tryptophan Hydroxylase 2 SNP Variants Contribute to Dishonest Behavior.

    Science.gov (United States)

    Shen, Qiang; Teo, Meijun; Winter, Eyal; Hart, Einav; Chew, Soo H; Ebstein, Richard P

    2016-01-01

    Although, lying (bear false witness) is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology, and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Toward addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2) gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  2. To cheat or not to cheat: Tryptophan hydroxylase 2 SNP variants contribute to dishonest behavior

    Directory of Open Access Journals (Sweden)

    Qiang eShen

    2016-05-01

    Full Text Available Although lying (bear false witness is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Towards addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2 gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  3. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-01-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview ((R. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  4. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-06-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis, is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview®. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  5. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  6. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    Science.gov (United States)

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Three novel variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) of the phenylalanine hydroxylase (PAH) gene impair protein expression and function in vitro.

    Science.gov (United States)

    Zong, Yanan; Liu, Ning; Ma, Shanshan; Bai, Ying; Guan, Fangxia; Kong, Xiangdong

    2018-08-20

    Phenylketonuria (PKU) is the most common inherited metabolic disease, an autosomal recessive disorder affecting >10,000 newborns each year globally. It can be caused by over 1000 different naturally occurring mutations in the phenylalanine hydroxylase (PAH) gene. We analyzed three novel naturally occurring PAH gene variants: p.Glu178Lys (c.532G>A), p.Val245Met (c.733G>A) and p.Ser250Phe (c.749C>T). The mutant effect on the PAH enzyme structure and function was predicted by bioinformatics software. Vectors expressing the corresponding PAH variants were generated for expression in E. coli and in HEK293T cells. The RNA expression of the three PAH variants was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The mutant PAH protein levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA). All three variants were predicted to be pathogenic by bioinformatics analysis. The transcription of the three PAH variants was similar to the wild type PAH gene in HEK293T cells. In contrast, the levels of mutant PAH proteins decreased significantly compared to the wild type control, in both E. coli and HEK293T cells. Our results indicate that the three novel PAH gene variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) impair PAH protein expression and function in prokaryotic and eukaryotic cells. Copyright © 2018. Published by Elsevier B.V.

  8. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  9. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  10. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    OpenAIRE

    Zheng, Ping; Li, Erzhen; Wang, Jianhua; Cui, Xiaodai; Wang, Liwen

    2013-01-01

    Abstract Background Tryptophan hydroxylase-2 (TPH2) is a potential candidate gene for screening tic disorder (TD). Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs) of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those wit...

  11. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  12. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  13. Polymorphism in the tyrosine hydroxylase (TH gene is associated with activity-impulsivity in German Shepherd Dogs.

    Directory of Open Access Journals (Sweden)

    Eniko Kubinyi

    Full Text Available We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1 the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS filled in by the dog owners and (2 the newly developed Activity-impulsivity Behavioural Scale (AIBS containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS. Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023. The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds.

  14. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  15. Polymorphism screening and haplotype analysis of the tryptophan hydroxylase gene (TPH1 and association with bipolar affective disorder in Taiwan

    Directory of Open Access Journals (Sweden)

    Lin Yi-Mei J

    2005-03-01

    Full Text Available Abstract Background Disturbances in serotonin neurotransmission are implicated in the etiology of many psychiatric disorders, including bipolar affective disorder (BPD. The tryptophan hydroxylase gene (TPH, which codes for the enzyme catalyzing the rate-limiting step in serotonin biosynthetic pathway, is one of the leading candidate genes for psychiatric and behavioral disorders. In a preliminary study, we found that TPH1 intron7 A218C polymorphism was associated with BPD. This study was designed to investigate sequence variants of the TPH1 gene in Taiwanese and to test whether the TPH1 gene is a susceptibility factor for the BPD. Methods Using a systematic approach, we have searched the exons and promoter region of the TPH1 gene for sequence variants in Taiwanese Han and have identified five variants, A-1067G, G-347T, T3804A, C27224T, and A27237G. These five variants plus another five taken from the literature and a public database were examined for an association in 108 BPD patients and 103 controls; no association was detected for any of the 10 variants. Results Haplotype constructions using these 10 SNPs showed that the 3 most common haplotypes in both patients and controls were identical. One of the fourth common haplotype in the patient group (i.e. GGGAGACCCA was unique and showed a trend of significance with the disease (P = 0.028. However, the significance was abolished after Bonferroni correction thus suggesting the association is weak. In addition, three haplotype-tagged SNPs (htSNPs were selected to represent all haplotypes with frequencies larger than 2% in the Taiwanese Han population. The defined TPH1 htSNPs significantly reduce the marker number for haplotype analysis thus provides useful information for future association studies in our population. Conclusion Results of this study did not support the role of TPH1 gene in BPD etiology. As the current studies found the TPH1 gene under investigation belongs to the peripheral

  16. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China.

    Science.gov (United States)

    Liu, Ning; Huang, Qiuying; Li, Qingge; Zhao, Dehua; Li, Xiaole; Cui, Lixia; Bai, Ying; Feng, Yin; Kong, Xiangdong

    2017-10-05

    Phenylketonuria (PKU), which primarily results from a deficiency of phenylalanine hydroxylase (PAH), is one of the most common inherited inborn errors of metabolism that impairs postnatal cognitive development. The incidence of various PAH variations differs by race and ethnicity. The aim of the present study was to characterize the PAH gene variants of a Han population from Northern China. In total, 655 PKU patients and their families were recruited for this study; each proband was diagnosed both clinically and biochemically with phenylketonuria. Subjects were sequentially screened for single-base variants and exon deletions or duplications within PAH via direct Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). A spectrum of 174 distinct PAH variants was identified: 152 previously documented variants and 22 novel variants. While single-base variants were distributed throughout the 13 exons, they were particularly concentrated in exons 7 (33.3%), 11 (14.2%), 6 (13.2%), 12 (11.0%), 3 (10.4%), and 5 (4.4%). The predominant variant was p.Arg243Gln (17.7%), followed by Ex6-96A > G (8.3%), p.Val399 = (6.4%), p.Arg53His (4.7%), p.Tyr356* (4.7%), p.Arg241Cys (4.6%), p.Arg413Pro (4.6%), p.Arg111* (4.4%), and c.442-1G > A (3.4%). Notably, two patients were also identified as carrying de novo variants. The composition of PAH gene variants in this Han population from Northern China was distinct from those of other ethnic groups. As such, the construction of a PAH gene variant database for Northern China is necessary to lay a foundation for genetic-based diagnoses, prenatal diagnoses, and population screening.

  17. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Chon, H.; Gkika, D.; Bluyssen, H.A.; Holstege, F.C.; St. Arnaud, R.; Braam, B.; Bindels, R.J.M.

    2004-01-01

    BACKGROUND: Pseudovitamin D deficiency rickets (PDDR) is an autosomal disease, characterized by undetectable levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), rickets and secondary hyperparathyroidism. Mice in which the 25-hydroxyvitamin D3-1 alpha-hydroxylase (1 alpha-OHase) gene was inactivated,

  18. MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome.

    Science.gov (United States)

    Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Tachyla, Iryna; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca

    2014-01-01

    To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25-8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption.

  19. Common variants in the TPH2 promoter confer susceptibility to paranoid schizophrenia.

    Science.gov (United States)

    Yi, Zhenghui; Zhang, Chen; Lu, Weihong; Song, Lisheng; Liu, Dentang; Xu, Yifeng; Fang, Yiru

    2012-07-01

    Serotonergic system-related genes may be good candidates in investigating the genetic basis of schizophrenia. Our previous study suggested that promoter region of tryptophan hydroxylase 2 gene (TPH2) may confer the susceptibility to paranoid schizophrenia. In this study, we investigated whether common variants within TPH2 promoter may predispose to paranoid schizophrenia in Han Chinese. A total of 509 patients who met DSM-IV criteria for paranoid schizophrenia and 510 matched healthy controls were recruited for this study. Five polymorphisms within TPH2 promoter region were tested. No statistically significant differences were found in allele or genotype frequencies between schizophrenic patients and healthy controls. The frequency of the rs4448731T-rs6582071A-rs7963803A-rs4570625T-rs11178997A haplotype was significantly higher in cases compared to the controls (P = 0.003; OR = 1.49; 95% CI, 1.15-1.95). Our results suggest that the common variants within TPH2 promoter are associated with paranoid schizophrenia in Han Chinese. Further studies in larger samples are warranted to elucidate the role of TPH2 in the etiology of paranoid schizophrenia.

  20. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  1. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan

    2015-01-01

    genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association......, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest...... that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene....

  2. Metabolism of 7-ethoxycoumarin, flavanone and steroids by cytochrome P450 2C9 variants.

    Science.gov (United States)

    Uno, Tomohide; Nakano, Ryosuke; Kanamaru, Kengo; Takenaka, Shinji; Uno, Yuichi; Imaishi, Hiromasa

    2017-11-01

    CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6β-hydroxylation, progesterone 6β-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Serotonin and Early Cognitive Development: Variation in the Tryptophan Hydroxylase 2 Gene Is Associated with Visual Attention in 7-Month-Old Infants

    Science.gov (United States)

    Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho

    2011-01-01

    Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…

  4. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.

    Science.gov (United States)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J; Li, Qiyuan; Marks, Jeffrey R; Berchuck, Andrew; Lee, Janet M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y; Kjaer, Susanne Kruger; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Budzilowska, Agnieszka; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A; Freedman, Matthew L; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D; Gayther, Simon A; Schildkraut, Joellen M

    2015-11-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Yong-An Zhou

    2012-01-01

    Full Text Available The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH gene was investigated in 59 children with phenylketonuria (PKU and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%, followed by Ivs7 +2T>A (5.1% and T278I (2.5%. G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.

  6. Peeling skin syndrome associated with novel variant in FLG2 gene.

    Science.gov (United States)

    Alfares, Ahmed; Al-Khenaizan, Sultan; Al Mutairi, Fuad

    2017-12-01

    Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings. © 2017 Wiley Periodicals, Inc.

  7. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  8. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

    DEFF Research Database (Denmark)

    Helgason, Agnar; Pálsson, Snaebjörn; Thorleifsson, Gudmar

    2007-01-01

    diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East......We recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2...

  9. Variants of the ADRB2 Gene in COPD

    DEFF Research Database (Denmark)

    Nielsen, Anne Orholm; Steen Jensen, Camilla; Arredouani, Mohamed Simo

    2017-01-01

    The β2-adrenergic receptor (ADRB2) is an important regulator of airway smooth muscle tone in chronic obstructive pulmonary disease (COPD). Variants that impair ADRB2 function could increase disease risk or reduce the response to endogenous and inhaled adrenergic agonists in COPD. We performed...... a systematic review and three meta-analyses to assess whether three functional variants (Thr164Ile, Arg16Gly, and Gln27Glu) in the ADRB2 gene are associated with elevated risk of disease or reduced therapeutic response to inhaled β2-agonists in COPD. We searched the medical literature from 1966 to 2017...... and found 16 relevant studies comprising 85381 study subjects. The meta-analyses found no significant association between ADRB2 genotype and COPD risk. The summary odds ratios (ORs) for COPD in Thr164Ile homozygotes and heterozygotes were 2.57 (95% confidence interval (CI): 0.54-12.4) and 1.17 (95% CI: 0...

  10. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Dardenne, O.; Abel, M. van; Kemp, J.W.C.M. van der; Os, C.H. van; Arnaud, R. St.; Bindels, R.J.M.

    2002-01-01

    Pseudovitamin D-deficiency rickets (PDDR) is an autosomal disease characterized by hyperparathyroidism, rickets, and undetectable levels of 1,25-dihydroxyvitaminD3 (1,25(OH)2D3). Mice in which the 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene was inactivated presented the same clinical

  11. The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes.

    Science.gov (United States)

    Garcia, Edwin A; King, Peter; Sidhu, Kally; Ohgusu, Hideko; Walley, Andrew; Lecoeur, Cecile; Gueorguiev, Maria; Khalaf, Sahira; Davies, Derek; Grossman, Ashley B; Kojima, Masayasu; Petersenn, Stephan; Froguel, Phillipe; Korbonits, Márta

    2009-08-01

    Ghrelin and its receptor play an important role in glucose metabolism and energy homeostasis, and therefore they are functional candidates for genes carrying susceptibility alleles for type 2 diabetes. We assessed common genetic variation of the ghrelin (GHRL; five single nucleotide polymorphisms (SNP)) and the ghrelin-receptor (GHSR) genes (four SNPs) in 610 Caucasian patients with type 2 diabetes and 820 controls. In addition, promoter reporter assays were conducted to model the regulatory regions of both genes. Neither GHRL nor GHSR gene SNPs were associated with type 2 diabetes. One of the ghrelin haplotypes showed a marginal protective role in type 2 diabetes. We observed profound differences in the regulation of the GHRL gene according to promoter sequence variants. There are three different GHRL promoter haplotypes represented in the studied cohort causing up to 45% difference in the level of gene expression, while the promoter region of GHSR gene is primarily represented by a single haplotype. The GHRL and GHSR gene variants are not associated with type 2 diabetes, although GHRL promoter variants have significantly different activities.

  12. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.

    Science.gov (United States)

    Kwon, Minseok; Leem, Sangseob; Yoon, Joon; Park, Taesung

    2018-03-19

    With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.

  13. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  14. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    The purpose of this research was to clone and characterize the expression pattern of a kenaf (Hibiscus cannabinus L.) F5H gene that encodes ferulate 5-hydroxylase in the phenylpropanoid pathway. Kenaf is well known as a fast growing dicotyledonous plant, which makes it a valuable biomass plant. The ...

  15. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Directory of Open Access Journals (Sweden)

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  16. Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Anil K Giri

    Full Text Available A recent genome-wide association study (GWAS identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525-OR 1.71, P = 1.38 x 10-09; rs12008279-OR 1.56, P = 1.53 x 10-04 and 2 variants in MORC4 gene (rs12688220-OR 1.72, P = 9.20 x 10-09; rs6622126-OR 1.75, P = 4.04x10-05 in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06 and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31-0.78], P = 0.0027. A variant in the gene MORC4 (rs12688220 showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068 suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14. Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.

  17. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    -hyperactive disorder (ADHD) among others. Since all these diseases are the cause of huge economical and personal costs it is very important to gain more knowledge of TPH and DβH since these two enzymes could be possible targets for medicine against the diseases mentioned above. TPH a three-domain, iron......-containing enzyme which belongs to the aromatic amino acid hydroxylase (AAAH) family. It exist in two isoforms, TPH1 and TPH2, which are expressed in different tissues and have different properties. TPH is known as a very diffcult protein to work with especially due to instability and only truncated forms of TPH1...... have been purified and crystallized. This project concern the human neuronal TPH or TPH2. In an attempt to overcome the problems with recombinant TPH two stability and solubility optimized variants of TPH2 are designed. Escherichia coli (E. coli) expression strains for these variants and full length...

  18. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    Science.gov (United States)

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  19. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene.

    Science.gov (United States)

    Drost, Mark; Koppejan, Hester; de Wind, Niels

    2013-11-01

    Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS. © 2013 WILEY PERIODICALS, INC.

  20. Childhood asthma and spirometric indices are associated with polymorphic markers of two vitamin D 25-hydroxylase genes.

    Science.gov (United States)

    Leung, Ting Fan; Wang, Susan Shuxin; Tang, Man Fung; Kong, Alice Pik-Shan; Sy, Hing Yee; Hon, Kam Lun; Chan, Juliana Chung-ngor; Wong, Gary Wing-kin

    2015-06-01

    Polymorphic markers of vitamin D pathway genes have been associated with asthma traits in different White populations. This study investigated the relationship between asthma phenotypes and single nucleotide polymorphisms (SNPs) of vitamin D receptor (VDR), vitamin D binding protein (GC), two 25-hydroxylases (CYP2R1 and CYP27A1), and 1α-hydroxylase (CYP27B1) in Hong Kong Chinese children. 23 SNPs of the five vitamin D pathway genes were successfully genotyped in 914 asthmatic children and 1231 non-allergic controls. Genotypic and haplotypic associations with asthma phenotypes (diagnosis, spirometric indices, total IgE, and eosinophil percentage) were analyzed by multivariate regression. Generalized multifactor dimensionality reduction was used to detect epistatic interactions between SNPs for asthma phenotypes. Several SNPs of CYP27A1, CYP27B1, GC, and CYP2R1 were associated with asthma or spirometric indices, although only the association between FEV1 and CYP2R1 rs7935792 passed Bonferroni correction (p = 2.73 × 10(-4) ). Patients with CC genotype of rs7935792 had higher FEV1 than those with the other two genotypes. Asthma was also associated with TT haplotype of CYP27A1 and AGGATA haplotype of CYP2R1 (p = 0.021 and 0.024, respectively). Besides, strong association was found between FEV1 and GATAG of CYP2R1 (β = 13.37, p = 4.83 × 10(-4) ). GMDR failed to identify any 2-locus to 4-locus interaction that modulated asthma or spirometric indices. Several SNPs and haplotypes of CYP2R1 are associated with asthma diagnosis and FEV1 in children. Asthma is also modestly associated with a CYP27A1 haplotype. These two 25-hydroxylase genes may be genetic determinants for asthma phenotypes in children. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy.

    Science.gov (United States)

    Torres, Carolina Machado; Siebert, Marina; Bock, Hugo; Mota, Suelen Mandelli; Castan, Juliana Unis; Scornavacca, Francisco; de Castro, Luiza Amaral; Saraiva-Pereira, Maria Luiza; Bianchin, Marino Muxfeldt

    2017-06-01

    Psychiatric comorbidities are highly prevalent in epilepsy, adding an important burden to the disease and profoundly affecting the quality of life of these individuals. Patients with temporal lobe epilepsy (TLE) are especially at risk to develop depression and several lines of evidence suggest that the association of depression with epilepsy might be related to common biological substrates. In this study, we test whether NTRK2 allele variants are associated with mood disorders or depressive disorders in patients with TLE. An association study of 163 patients with TLE. The NTRK2 variants studied were rs1867283, rs10868235, rs1147198, rs11140800, rs1187286, rs2289656, rs1624327, rs1443445, rs3780645, and rs2378672. All patients were submitted to the Structured Clinical Interview for DSM-IV (SCID) and epilepsy patients with mood disorders or depressive disorders were compared to epilepsy patients without mood disorders or depressive disorders. In our TLE cohort, 76 patients (46.6%) showed mood disorders. After logistic regression, independent risk factors for mood disorders in TLE were female sex, presence of concomitant anxiety disorders, and genetic variations in rs1867283 and rs10868235 NTRK2 variants. Depressive disorders accounted for this results and independent variables associated with depressive disorders in TLE were female sex (OR=2.59; 95%CI=1.15-5.82; p=0.021), presence of concomitant anxiety disorders (OR=3.72; 95%CI=1.71-8.06; p=0.001) or psychotic disorders (OR=3.86; 95%CI=1.12-13.25; p=0.032), A/A genotype in the rs1867283 NTRK2 gene (OR=3.06; 95%CI=1.25-7.50; p=0.015) and C/C genotype in the rs10868235 NTRK2 gene (OR=3.54; 1.55-8.08; p=0.003). Similarly, these genotypes also remained independently and significantly associated with depressive disorders when patients with depressive disorders were compared to TLE patients without any psychiatric comorbidity. In the present study, female sex, presence of concomitant anxiety or psychotic disorders, and

  2. Circadian gene variants and susceptibility to type 2 diabetes: a pilot study.

    Directory of Open Access Journals (Sweden)

    M Ann Kelly

    Full Text Available Disruption of endogenous circadian rhythms has been shown to increase the risk of developing type 2 diabetes, suggesting that circadian genes might play a role in determining disease susceptibility. We present the results of a pilot study investigating the association between type 2 diabetes and selected single nucleotide polymorphisms (SNPs in/near nine circadian genes. The variants were chosen based on their previously reported association with prostate cancer, a disease that has been suggested to have a genetic link with type 2 diabetes through a number of shared inherited risk determinants.The pilot study was performed using two genetically homogeneous Punjabi cohorts, one resident in the United Kingdom and one indigenous to Pakistan. Subjects with (N = 1732 and without (N = 1780 type 2 diabetes were genotyped for thirteen circadian variants using a competitive allele-specific polymerase chain reaction method. Associations between the SNPs and type 2 diabetes were investigated using logistic regression. The results were also combined with in silico data from other South Asian datasets (SAT2D consortium and white European cohorts (DIAGRAM+ using meta-analysis. The rs7602358G allele near PER2 was negatively associated with type 2 diabetes in our Punjabi cohorts (combined odds ratio [OR] = 0.75 [0.66-0.86], p = 3.18 × 10(-5, while the BMAL1 rs11022775T allele was associated with an increased risk of the disease (combined OR = 1.22 [1.07-1.39], p = 0.003. Neither of these associations was replicated in the SAT2D or DIAGRAM+ datasets, however. Meta-analysis of all the cohorts identified disease associations with two variants, rs2292912 in CRY2 and rs12315175 near CRY1, although statistical significance was nominal (combined OR = 1.05 [1.01-1.08], p = 0.008 and OR = 0.95 [0.91-0.99], p = 0.015 respectively.None of the selected circadian gene variants was associated with type 2 diabetes with study-wide significance after meta-analysis. The nominal

  3. HFE gene variants affect iron in the brain.

    Science.gov (United States)

    Nandar, Wint; Connor, James R

    2011-04-01

    Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.

  4. Phenylalanine hydroxylase deficiency caused by a single base substitution in an exon of the human phenylalanine hydroxylase gene

    International Nuclear Information System (INIS)

    Lichter-Konecki, U.; Konecki, D.S.; DiLella, A.G.; Brayton, K.; Marvit, J.; Hahn, T.M.; Trefz, E.K.; Woo, S.L.C.

    1988-01-01

    A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAD cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM - phenotype. Together with the other mutations recently reported in the PAH gene,the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level

  5. Phenylalanine hydroxylase deficiency caused by a single base substitution in an exon of the human phenylalanine hydroxylase gene

    Energy Technology Data Exchange (ETDEWEB)

    Lichter-Konecki, U.; Konecki, D.S.; DiLella, A.G.; Brayton, K.; Marvit, J.; Hahn, T.M.; Trefz, E.K.; Woo, S.L.C.

    1988-04-19

    A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAD cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM/sup -/ phenotype. Together with the other mutations recently reported in the PAH gene,the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level.

  6. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Laura Ibanez

    2018-04-01

    Full Text Available Background: The prevalence of dementia in Parkinson disease (PD increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established.Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients.Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP, Presenilin 1 and 2 (PSEN1, PSEN2, and Granulin (GRN genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES data by single variant and gene base (SKAT-O and burden tests analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE or the Montreal Cognitive Assessment (MoCA. The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status.Results: Known AD pathogenic mutations in the PSEN1 (p.A79V and PSEN2 (p.V148I genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2, and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p = 2.0 × 10−4, independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site.Conclusions: Pathogenic mutations in

  7. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  8. FEATURES OF THE CLINICAL SIGNIFICANCE OF POLYMORPHIC VARIANTS OF ENOS AND AGTR2 GENES IN PATIENTS WITH CAD

    Directory of Open Access Journals (Sweden)

    A. L. Khokhlov

    2016-01-01

    Full Text Available Coronary heart disease (CHD is a major cause of mortality. Morphological substrate of CHD in most cases is atherosclerosis, which is based on structural genes polymorphism eNOS and AGTR2. The aim of the study was to study the prevalence of eNOS and AGTR2 genes in patients with coronary artery disease and the association of these genes with coronary heart disease. The study involved 187 patients aged 36 to 86 years (62,2±11,2 with different forms of CHD: stable and unstable angina, myocardial infarction and 45 people without CHD. Determination of gene polymorphisms was performed by real-time PCR analyzer of nucleic acids IQ 5 Bio-Rad. Statistical analysis was performed using Statistica 10.0. The study revealed a significant difference between the incidence of homozygous AA allelic variant gene AGTR2 group of patients with myocardial infarction and the comparison group; polymorphic variant AA AGTR2 gene is associated with earlier onset of coronary artery disease; It found that carriers of the polymorphic variant gene GA AGTR2 beginning statistically CHD occurred significantly later than in carriers of alleles GG and AA; age CHD debut TT allele carriers of the eNOS gene is associated with an earlier onset of the disease and statistically significantly different from the age of first CHD in carriers of alleles of polymorphic variants of GG and GT; revealed a positive correlation between the polymorphic allele AGTR2 gene with the presence of arterial hypertension in patients with coronary artery disease; It determined that the T allele carriers of the polymorphic gene eNOS is associated more early onset of hypertension, found the association of the polymorphic allele gene AGTR2 the need to use higher doses of ACE inhibitor — perindopril.

  9. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  10. Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome.

    Science.gov (United States)

    Cariola, Filomena; Disciglio, Vittoria; Valentini, Anna M; Lotesoriere, Claudio; Fasano, Candida; Forte, Giovanna; Russo, Luciana; Di Carlo, Antonio; Guglielmi, Floranna; Manghisi, Andrea; Lolli, Ivan; Caruso, Maria L; Simone, Cristiano

    2018-04-01

    Lynch syndrome is caused by germline mutations in one of the mismatch repair genes ( MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A>G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A>G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A>G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2).

  11. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    Science.gov (United States)

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy

    Science.gov (United States)

    Carmona, F. David; Dolade, Nuria; Vargas, Sofia; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2018-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus kinases family implicated in the signal transduction of type I interferons and several interleukins. It has been described that genetic mutations within TYK2 lead to multiple deleterious effects in the immune response. In this work, we have analyzed three functional independent variants from the frequency spectrum on the TYK2 gene (common and low-frequency variants) suggested to reduce the function of the gene in mediating cytokine signaling and the susceptibility to infections by Trypanosoma cruzi and/or the development of Chagas cardiomyopathy in the Colombian population. A total of 1,323 individuals from a Colombian endemic region for Chagas disease were enrolled in the study. They were classified as seronegative (n = 445), seropositive asymptomatic (n = 336), and chronic Chagas Cardiomyopathy subjects (n = 542). DNA samples were genotyped using TaqMan probes. Our results showed no statistically significant differences between the allelic frequencies of the three analyzed variants when seropositive and seronegative individuals were compared, therefore these variants were not associated with susceptibility to Chagas disease. Moreover, when Chagas cardiomyopathy patients were compared to asymptomatic patients, no significant associations were found. Previous reports highlighted the association of this gene in immune-related disorders under an autoimmunity context, but not predisposing patients to infectious diseases, which is consistent with our findings. Therefore, according to our results, TYK2 gene variants do not seem to play an important role in Chagas disease susceptibility and/or chronic Chagas cardiomyopathy. PMID:29304122

  13. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    International Nuclear Information System (INIS)

    Nan, Hongmei; Qureshi, Abrar A; Hunter, David J; Han, Jiali

    2009-01-01

    The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers. We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls. We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer. Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women

  14. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1.

    Directory of Open Access Journals (Sweden)

    Philipp Harter

    Full Text Available Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated.Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53 were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history.In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16-93 and 406 patients (77.6% had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%, BRCA2 (5.5%, RAD51C (2.5% and PALB2 (1.1% genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes in patients <60 years was 30.2% (33.2% versus 10.6% (18.9% in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants

  15. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2013-01-01

    Full Text Available Abstract Background Tryptophan hydroxylase-2 (TPH2 is a potential candidate gene for screening tic disorder (TD. Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR =3.077, 95% confidence interval (CI: 1.273–7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153–9.040; P = 0.020. The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS than those in controls among the male children (OR = 1.684, 95%: 1.097–2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139–9.513; P = 0.022. We also found that genotype distributions of both SNPs were different between the Asian and European populations. Conclusions Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD,these findings need to be confirmed by studies in much larger samples.

  16. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population.

    Science.gov (United States)

    Zheng, Ping; Li, Erzhen; Wang, Jianhua; Cui, Xiaodai; Wang, Liwen

    2013-01-29

    Tryptophan hydroxylase-2 (TPH2) is a potential candidate gene for screening tic disorder (TD). A case-control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs) of the TPH2 gene in 149 TD children and in 125 normal controls. For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR) =3.077, 95% confidence interval (CI): 1.273-7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153-9.040; P = 0.020). The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS) than those in controls among the male children (OR = 1.684, 95%: 1.097-2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139-9.513; P = 0.022). We also found that genotype distributions of both SNPs were different between the Asian and European populations. Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD),these findings need to be confirmed by studies in much larger samples.

  17. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene.

    Science.gov (United States)

    Moreno-Pérez, Antonio J; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2011-05-15

    Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  19. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  20. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2.

    Science.gov (United States)

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.

  1. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  2. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  3. Screening for coding variants in FTO and SH2B1 genes in Chinese patients with obesity.

    Directory of Open Access Journals (Sweden)

    Zhaojing Zheng

    Full Text Available To investigate potential functional variants in FTO and SH2B1 genes among Chinese children with obesity.Sanger sequencing of PCR products of all FTO and SH2B1 exons and their flanking regions were performed in 338 Chinese Han children with obesity and 221 age- and sex-matched lean controls.A total of seven and five rare non-synonymous variants were identified in FTO and SH2B1, respectively. The overall frequencies of FTO and SH2B1 rare non-synonymous variants were similar in obese and lean children (2.37% and 0.90% vs. 1.81% and 1.36%, P>0.05. However, four out of the seven variants in FTO were novel and all were unique to obese children (p>0.05. None of the novel variants was consistently being predicted to be deleterious. Four out of five variants in SH2B1 were novel and one was unique to obese children (p>0.05. One variant (L293R that was consistently being predicted as deleterious in SH2B1 gene was unique to lean control. While rare missense mutations were more frequently detected in girls from obesity as well as lean control than boys, the difference was not statistically significant. In addition, it's shown that the prevalence of rare missense mutations of FTO as well as SH2B1 was similar across different ethnic groups.The rare missense mutations of FTO and SH2B1 did not confer risks of obesity in Chinese Han children in our cohort.

  4. Molecular characterization of canine parvovirus variants (CPV-2a, CPV-2b, and CPV-2c) based on the VP2 gene in affected domestic dogs in Ecuador.

    Science.gov (United States)

    la Torre, David De; Mafla, Eulalia; Puga, Byron; Erazo, Linda; Astolfi-Ferreira, Claudete; Ferreira, Antonio Piantino

    2018-04-01

    The objective of this study was to determine the presence of the variants of canine parvovirus (CPV)-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35) for CPV-2a, 8.5% (3/35) for CPV-2b, and 34.3% (12/35) for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c) have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies.

  5. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  6. Novel de novo pathogenic variant in the NR2F2 gene in a boy with congenital heart defect and dysmorphic features.

    Science.gov (United States)

    Upadia, Jariya; Gonzales, Patrick R; Robin, Nathaniel H

    2018-04-16

    The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect. © 2018 Wiley Periodicals, Inc.

  7. Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario

    2007-06-21

    Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.

  8. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  9. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  10. BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression.

    Directory of Open Access Journals (Sweden)

    Nic Waddell

    2008-05-01

    Full Text Available The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases. 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS. BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%, poor for BRCAX with an LCS (40-50%, and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%. This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.

  11. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer

    International Nuclear Information System (INIS)

    Rawluszko, Agnieszka A; Bujnicka, Katarzyna E; Horbacka, Karolina; Krokowicz, Piotr; Jagodziński, Paweł P

    2013-01-01

    Colorectal cancer (CRC) is one of the most common and comprehensively studied malignancies. Hypoxic conditions during formation of CRC may support the development of more aggressive cancers. Hypoxia inducible factor (HIF), a major player in cancerous tissue adaptation to hypoxia, is negatively regulated by the family of prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) and asparaginyl hydroxylase, called factor inhibiting HIF (FIH). PHD1, PHD2, PHD3 and FIH gene expression was evaluated using quantitative RT-PCR and western blotting in primary colonic adenocarcinoma and adjacent histopathologically unchanged colonic mucosa from patients who underwent radical surgical resection of the colon (n = 90), and the same methods were used for assessment of PHD3 gene expression in HCT116 and DLD-1 CRC cell lines. DNA methylation levels of the CpG island in the promoter regulatory region of PHD1, PHD2, PHD3 and FIH were assessed using bisulfite DNA sequencing and high resolution melting analysis (HRM) for patients and HRM analysis for CRC cell lines. We found significantly lower levels of PHD1, PHD2 and PHD3 transcripts (p = 0.00026; p < 0.00001; p < 0.00001) and proteins (p = 0.004164; p = 0.0071; p < 0.00001) in primary cancerous than in histopathologically unchanged tissues. Despite this, we did not observe statistically significant differences in FIH transcript levels between cancerous and histopathologically unchanged colorectal tissue, but we found a significantly increased level of FIH protein in CRC (p = 0.0169). The reduced PHD3 expression was correlated with significantly increased DNA methylation in the CpG island of the PHD3 promoter regulatory region (p < 0.0001). We did not observe DNA methylation in the CpG island of the PHD1, PHD2 or FIH promoter in cancerous and histopathologically unchanged colorectal tissue. We also showed that 5-Aza-2’-deoxycytidine induced DNA demethylation leading to increased PHD3 transcript and protein level in HCT116 cells. We

  12. Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Science.gov (United States)

    Petter, Michaela; Lee, Chin Chin; Byrne, Timothy J.; Boysen, Katja E.; Volz, Jennifer; Ralph, Stuart A.; Cowman, Alan F.; Brown, Graham V.; Duffy, Michael F.

    2011-01-01

    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are

  13. Molecular characterization of canine parvovirus variants (CPV-2a, CPV-2b, and CPV-2c based on the VP2 gene in affected domestic dogs in Ecuador

    Directory of Open Access Journals (Sweden)

    David De la Torre

    2018-04-01

    Full Text Available Aim: The objective of this study was to determine the presence of the variants of canine parvovirus (CPV-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Materials and Methods: Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. Results: The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35 for CPV-2a, 8.5% (3/35 for CPV-2b, and 34.3% (12/35 for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. Conclusion: This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies.

  14. Molecular characterization of canine parvovirus variants (CPV-2a, CPV-2b, and CPV-2c) based on the VP2 gene in affected domestic dogs in Ecuador

    Science.gov (United States)

    la Torre, David De; Mafla, Eulalia; Puga, Byron; Erazo, Linda; Astolfi-Ferreira, Claudete; Ferreira, Antonio Piantino

    2018-01-01

    Aim The objective of this study was to determine the presence of the variants of canine parvovirus (CPV)-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Materials and Methods Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. Results The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35) for CPV-2a, 8.5% (3/35) for CPV-2b, and 34.3% (12/35) for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. Conclusion This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c) have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies. PMID:29805214

  15. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  16. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-08-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2'-beta-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2'-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.

  17. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  18. ACSS2 gene variant associated with cleft lip and palate in two independent Hispanic populations.

    Science.gov (United States)

    Dodhia, Sonam; Celis, Katrina; Aylward, Alana; Cai, Yi; Fontana, Maria E; Trespalacios, Alberto; Hoffman, David C; Alfonso, Henry Ostos; Eisig, Sidney B; Su, Gloria H; Chung, Wendy K; Haddad, Joseph

    2017-10-01

    A candidate variant (p.Val496Ala) of the ACSS2 gene (T > C missense, rs59088485 variant at chr20: bp37 33509608) was previously found to consistently segregate with nonsyndromic cleft lip and/or palate (NSCLP) in three Honduran families. Objectives of this study were 1) to investigate the frequency of this ACSS2 variant in Honduran unrelated NSCLP patients and unrelated unaffected controls and 2) to investigate the frequency of this variant in Colombian unrelated affected NSCLP patients and unrelated unaffected controls. Case-control studies. Sanger sequencing of 99 unrelated Honduran NSCLP patients and 215 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. Sanger sequencing of 230 unrelated Colombian NSCLP patients and 146 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. In the Honduran population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 4.0 (P = .03), with a carrier frequency of seven of 99 (7.1%) in unrelated affected and four of 215 (1.9%) in unrelated unaffected individuals. In the Colombian population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 2.6 (P = .04), with a carrier frequency of 23 of 230 (10.0%) in unrelated affected and six of 146 (4.1%) in unrelated unaffected individuals. These findings support the role of ACSS2 in NSCLP in two independent Hispanic populations from Honduras and Colombia. NA Laryngoscope, 127:E336-E339, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes

    Science.gov (United States)

    Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

    2015-01-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

  20. Y2 receptor gene variants reduce the risk of hypertension in obese children and adolescents.

    Science.gov (United States)

    Santoro, Nicola; Del Giudice, Emanuele Miraglia; Grandone, Anna; Marzuillo, Pierluigi; Cozzolino, Domenico; Di Salvo, Giovanni; Pacileo, Giuseppe; Calabrò, Raffaele; Perrone, Laura

    2008-08-01

    To verify whether peptide YY (PYY) and its Y2 receptor (Y2R) gene variants can be associated with obesity or hypertension or both in a cohort of obese children and adolescents. Two hundred and twenty-nine obese children (105 girls, mean z-score BMI 5.1 +/- 2.4; mean age 10.5 +/- 2.9 years) and 250 age and sex-matched lean controls (130 women, mean z-score BMI 0.5 +/- 1.1; mean age 10.3 +/- 2.8) were enrolled in the study. Height, weight, BMI, waist circumference and 24-h systolic and diastolic blood pressure were measured. Night-time, day-time and 24-h systolic and diastolic blood pressures were evaluated by 24 h ambulatory blood pressure measurement, and appropriate standard deviation scores according to sex, age and height were calculated. Molecular screening of the PYY and Y2R genes was performed. No new mutations were found. We observed three previously described polymorphisms: G767C on PYY and T585C and T936C on Y2R. An association study was carried out in obese patients. No associations were found between the PYY genotypes and the studied phenotypes. The Y2R gene variants, T585C and T936C, which are in almost complete linkage disequilibrium, were found to be associated with night-time, day-time and 24-h systolic and diastolic blood pressures. In particular, subject homozygotes for the T allele showed lower systolic and diastolic blood pressure values compared with the other genotypes. Moreover, obese children homozygous for the T585 allele showed a lower risk of developing hypertension than patients carrying the CC and CT genotypes (chi 6.9; df = 1, P = 0.03; odds ratio = 0.5, 95% confidence interval: 0.27-0.88). Our results suggest that Y2R gene variants are involved in blood pressure regulation in obese children and adolescents.

  1. Retrospective analysis in oculocutaneous albinism patients for the 2.7 kb deletion in the OCA2 gene revealed a co-segregation of the controversial variant, p.R305W.

    Science.gov (United States)

    Gao, Jackson; D'Souza, Leera; Wetherby, Keith; Antolik, Christian; Reeves, Melissa; Adams, David R; Tumminia, Santa; Wang, Xinjing

    2017-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder. A significant portion of OCA patients has been found with a single pathogenic variant either in the TYR or the OCA2 gene. Diagnostic sequencing of the TYR and OCA2 genes is routinely used for molecular diagnosis of OCA subtypes. To study the possibility that genomic abnormalities with single or multiple exon involvement may account for a portion of the potential missing pathogenic variants (the second), we retrospectively analyzed the TYR gene by long range PCR and analyzed the target 2.7 kb deletion in the OCA2 gene spanning exon 7 in OCA patients with a single pathogenic variant in the target genes. In the 108 patients analyzed, we found that one patient was heterozygous for the 2.7 kb OCA2 gene deletion and this patient was positive with one pathogenic variant and one possibly pathogenic variant [c.1103C>T (p.Ala368Val) + c.913C>T (p.R305W)]. Further analysis of maternal DNA, and two additional OCA DNA homozygous for the 2.7 kb deletion, revealed that the phenotypically normal mother is heterozygous of the 2.7 kb deletion and homozygous of the p.R305W. The two previously reported patients with homozygous of the 2.7 kb deletion are also homozygous of p.R305W. Among the reported pathogenic variants, the pathogenicity of the p.R305W has been discussed intensively in literature. Our results indicate that p.R305W is unlikely a pathogenic variant. The possibility of linkage disequilibrium between p.R305W with the 2.7 kb deletion in OCA2 gene is also suggested.

  2. Assessment of association between lipoxygenase genes variants in elderly Greek population and type 2 diabetes mellitus.

    Science.gov (United States)

    Tsekmekidou, Xanthippi A; Kotsa, Kalliopi D; Tsetsos, Fotis S; Didangelos, Triantafyllos P; Georgitsi, Marianthi A; Roumeliotis, Athanasios K; Panagoutsos, Stylianos A; Thodis, Elias D; Theodoridis, Marios T; Papanas, Nikolaos P; Papazoglou, Dimitrios A; Pasadakis, Ploumis S; Eustratios, Maltezos S; Paschou, Peristera I; Yovos, John G

    2018-02-01

    Inflammation plays a pivotal role in the pathogenesis of diabetes and its complications. Arachidonic acid lipoxygenases have been intensively studied in their role in inflammation in metabolic pathways. Thus, we aimed to explore variants of lipoxygenase genes (arachidonate lipoxygenase genes) in a diabetes adult population using a case-control study design. Study population consisted of 1285 elderly participants, 716 of whom had type 2 diabetes mellitus. The control group consisted of non-diabetes individuals with no history of diabetes history and with a glycated haemoglobin <6.5% (<48 mmol/mol)] and fasting plasma glucose levels <126 mg/dL. Blood samples were genotyped on Illumina Infinium PsychArray. Variants of ALOX5, ALOX5AP, ALOX12, ALOX15 were selected. All statistical analyses were undertaken within PLINK and SPSS packages utilising permutation analysis tests. Our findings showed an association of rs9669952 (odds ratio = 0.738, p = 0.013) and rs1132340 (odds ratio = 0.652, p = 0.008) in ALOX5AP and rs11239524 in ALOX5 gene with disease (odds ratio = 0.808, p = 0.038). Rs9315029 which is located near arachidonate ALOX5AP also associated with type 2 diabetes mellitus ( p = 0.025). No variant of ALOX12 and ALOX15 genes associated with disease. These results indicate a potential protective role of ALOX5AP and 5-arachidonate lipoxygenase gene in diabetes pathogenesis, indicating further the importance of the relationship between diabetes and inflammation. Larger population studies are required to replicate our findings.

  3. The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype.

    Science.gov (United States)

    Barat-Houari, Mouna; Dumont, Bruno; Fabre, Aurélie; Them, Frédéric Tm; Alembik, Yves; Alessandri, Jean-Luc; Amiel, Jeanne; Audebert, Séverine; Baumann-Morel, Clarisse; Blanchet, Patricia; Bieth, Eric; Brechard, Marie; Busa, Tiffany; Calvas, Patrick; Capri, Yline; Cartault, François; Chassaing, Nicolas; Ciorca, Vidrica; Coubes, Christine; David, Albert; Delezoide, Anne-Lise; Dupin-Deguine, Delphine; El Chehadeh, Salima; Faivre, Laurence; Giuliano, Fabienne; Goldenberg, Alice; Isidor, Bertrand; Jacquemont, Marie-Line; Julia, Sophie; Kaplan, Josseline; Lacombe, Didier; Lebrun, Marine; Marlin, Sandrine; Martin-Coignard, Dominique; Martinovic, Jelena; Masurel, Alice; Melki, Judith; Mozelle-Nivoix, Monique; Nguyen, Karine; Odent, Sylvie; Philip, Nicole; Pinson, Lucile; Plessis, Ghislaine; Quélin, Chloé; Shaeffer, Elise; Sigaudy, Sabine; Thauvin, Christel; Till, Marianne; Touraine, Renaud; Vigneron, Jacqueline; Baujat, Geneviève; Cormier-Daire, Valérie; Le Merrer, Martine; Geneviève, David; Touitou, Isabelle

    2016-07-01

    Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype-phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach.

  4. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese.

    Science.gov (United States)

    Enya, Mayumi; Horikawa, Yukio; Iizuka, Katsumi; Takeda, Jun

    2014-01-01

    None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. We screened all exons of the incretin-related genes ( GCG , GLP1R , DPP4 , PCSK1 , GIP , and GIPR ) in 96 patients with type 2 diabetes and investigated for association of genetic variants of these genes with quantitative metabolic traits upon test meal with 38 young healthy volunteers and with the occurrence of type 2 diabetes in Japanese subjects comprising 1303 patients with type 2 diabetes and 1014 controls. Two mutations of GIPR , p.Thr3Alafsx21 and Arg183Gln, were found only in patients with type 2 diabetes, and both of them were treated with insulin. Of ten tagSNPs, we found that risk allele C of SNP393 (rs6235) of PCSK1 was nominally associated with higher fasting insulin and HOMA-R ( P  = 0.034 and P  = 0.030), but not with proinsulin level, incretin level or BMI. The variant showed significant association with occurrence of type 2 diabetes after adjustment for age, sex, and BMI ( P  = 0.0043). Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  5. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-01-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation. PMID:16085816

  6. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  7. Common Variants of Homocysteine Metabolism Pathway Genes and Risk of Type 2 Diabetes and Related Traits in Indians

    Directory of Open Access Journals (Sweden)

    Ganesh Chauhan

    2012-01-01

    Full Text Available Hyperhomocysteinemia, a risk factor for cardiovascular disorder, obesity, and type 2 diabetes, is prevalent among Indians who are at high risk of these metabolic disorders. We evaluated association of common variants of genes involved in homocysteine metabolism or its levels with type 2 diabetes, obesity, and related traits in North Indians. We genotyped 90 variants in initial phase (2.115 subjects and replicated top signals in an independent sample set (2.085 subjects. The variant MTHFR-rs1801133 was the top signal for association with type 2 diabetes (OR=0.78 (95%  CI=0.67–0.92, P=0.003 and was also associated with 2 h postload plasma glucose (P=0.04, high-density lipoprotein cholesterol (P=0.004, and total cholesterol (P=0.01 in control subjects. These associations were neither replicated nor significant after meta-analysis. Studies involving a larger study population and different ethnic groups are required before ruling out the role of these important candidate genes in type 2 diabetes, obesity, and related traits.

  8. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Science.gov (United States)

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  9. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Directory of Open Access Journals (Sweden)

    Nicola Pirastu

    Full Text Available Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  10. Screening for common copy-number variants in cancer genes.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  12. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese

    OpenAIRE

    Mayumi Enya; Yukio Horikawa; Katsumi Iizuka; Jun Takeda

    2014-01-01

    Background: None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. Method: We screened all exons of the incretin-related genes (GCG, GLP1R, DPP4, PCSK1, GIP, and GIPR) in 96 patients with type 2 diabetes and investigated for association of...

  13. Sequence variation at the phenylalanine hydroxylase gene in the British Isles

    Energy Technology Data Exchange (ETDEWEB)

    Tyfield, L.A. [Southmead Hospital, Bristol (United Kingdom)]|[Univ. of Bristol (United Kingdom); Stephenson, A. [Southmead Hospital, Bristol (United Kingdom); Cockburn, F. [Royal Hospital for Sick Children, Glasgow (United Kingdom)] [and others

    1997-02-01

    Using mutation and haplotype analysis, we have examined the phenylalanine hydroxylase gene in the phenylketonuria populations of four geographical areas of the British Isles: the west of Scotland, southern Wales, and southwestern and southeastern England. The enormous genetic diversity of this locus within the British Isles is demonstrated in the large number of different mutations characterized and in the variety of genetic backgrounds on which individual mutations are found. Allele frequencies of the more common mutations exhibited significant nonrandom distribution in a north/south differentiation. Differences between the west of Scotland and southwestern England may be related to different events in the recent and past histories of their respective populations. Similarities between southern Wales and southeastern England are likely to reflect the heterogeneity that is seen in and around two large capital cities. Finally, comparison with more recently colonized areas of the world corroborates the genealogical origin by range expansion of several mutations. 38 refs., 2 tabs.

  14. The effect of the Taq1A variant in the dopamine D2 receptor gene and common CYP2D6 alleles on prolactin levels in risperidone-treated boys

    NARCIS (Netherlands)

    Roke, Y.; Harten, P.N. van; Franke, B.; Galesloot, T.E.; Boot, A.M.; Buitelaar, J.K.

    2013-01-01

    OBJECTIVE: To investigate the effect of the Taq1A variant in the Dopamine D2 receptor gene (DRD2) and common functional genetic variants in the cytochrome P450 2D6 gene (CYP2D6) on prolactin levels in risperidone-treated boys with autism spectrum disorders and disruptive behavior disorders. METHODS:

  15. The effect of the Taq1A variant in the dopamine D-2 receptor gene and common CYP2D6 alleles on prolactin levels in risperidone-treated boys

    NARCIS (Netherlands)

    Roke, Yvette; van Harten, Peter N.; Franke, Barbara; Galesloot, Tessel E.; Boot, Annemieke M.; Buitelaar, Jan K.

    Objective To investigate the effect of the Taq1A variant in the Dopamine D2 receptor gene (DRD2) and common functional genetic variants in the cytochrome P450 2D6 gene (CYP2D6) on prolactin levels in risperidone-treated boys with autism spectrum disorders and disruptive behavior disorders.Methods

  16. Human GRIN2B variants in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  17. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.

    Science.gov (United States)

    Lubbe, S J; Escott-Price, V; Brice, A; Gasser, T; Pittman, A M; Bras, J; Hardy, J; Heutink, P; Wood, N M; Singleton, A B; Grosset, D G; Carroll, C B; Law, M H; Demenais, F; Iles, M M; Bishop, D T; Newton-Bishop, J; Williams, N M; Morris, H R

    2016-12-01

    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  19. Comprehensive investigation of cytokine- and immune-related gene variants in HBV-associated hepatocellular carcinoma patients.

    Science.gov (United States)

    Yu, Fengxue; Zhang, Xiaolin; Tian, Suzhai; Geng, Lianxia; Xu, Weili; Ma, Ning; Wang, Mingbang; Jia, Yuan; Liu, Xuechen; Ma, Junji; Quan, Yuan; Zhang, Chaojun; Guo, Lina; An, Wenting; Liu, Dianwu

    2017-12-22

    Host genotype may be closely related to the different outcomes of Hepatitis B virus (HBV) infection. To identify the association of variants and HBV infection, we comprehensively investigated the cytokine- and immune-related gene mutations in patients with HBV associated hepatocellular carcinoma (HBV-HCC). Fifty-three HBV-HCC patients, 53 self-healing cases (SH) with HBV infection history and 53 healthy controls (HCs) were recruited, the whole exon region of 404 genes were sequenced at >900× depth. Comprehensive variants and gene levels were compared between HCC and HC, and HCC and SH. Thirty-nine variants (adjusted P HBV-HCC. Thirty-four variants were from eight human leukocyte antigen (HLA) genes that were previously reported to be associated with HBV-HCC. The novelties of our study are: five variants (rs579876, rs579877, rs368692979, NM_145007:c.*131_*130delTG, NM_139165:exon5:c.623-2->TT) from three genes ( REAT1E , NOD-like receptor (NLR) protein 11 ( NLRP11 ), hydroxy-carboxylic acid receptor 2 ( HCAR2 )) were found strongly associated with HBV-HCC. We found 39 different variants in 11 genes that were significantly related to HBV-HCC. Five of them were new findings. Our data implied that chronic hepatitis B patients who carry these variants are at a high risk of developing HCC. © 2017 The Author(s).

  20. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    Energy Technology Data Exchange (ETDEWEB)

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  1. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders

    Science.gov (United States)

    Toshchakova, Valentina A.; Bakhtiari, Yalda; Kulikov, Alexander V.; Gusev, Sergey I.; Trofimova, Marina V.; Fedorenko, Olga Yu.; Mikhalitskaya, Ekaterina V.; Popova, Nina K.; Bokhan, Nikolay A.; Hovens, Johannes E.; Loonen, Anton J.M.; Wilffert, Bob; Ivanova, Svetlana A.

    2018-01-01

    Background Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. Methods Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. Results No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. Conclusions The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed. PMID:29621775

  2. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  3. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Hudler, Petra [Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia); Komel, Radovan [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia)

    2009-10-28

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  4. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  5. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    International Nuclear Information System (INIS)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja; Hudler, Petra; Komel, Radovan

    2009-01-01

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene

  6. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  7. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  8. Clinicopathological differences between variants of the NAB2-STAT6 fusion gene in solitary fibrous tumors of the meninges and extra-central nervous system.

    Science.gov (United States)

    Nakada, Satoko; Minato, Hiroshi; Nojima, Takayuki

    2016-07-01

    Investigations on the NAB2-STAT6 fusion gene in solitary fibrous tumors (SFTs) and hemangiopericytomas (HPCs) have increased since its discovery in 2013. Although several SFTs reported without NAB2-STAT6 fusion gene analysis, we reviewed 546 SFTs/HPCs with NAB2-STAT6 fusion gene analysis in this study and investigated differences between the gene variants. In total, 452 cases tested positive for the NAB2-STAT6 fusion gene, with more than 40 variants being detected. The most frequent of these were NAB2 exon 6-STAT6 exon 16/17/18 and NAB2 exon 4-STAT6 exon 2/3, with the former occurring most frequently in SFTs in meninges, soft tissues, and head and neck; the latter predominated in SFTs in the pleura and lung. There was no difference between the histology of SFTs and fusion gene variants. A follow-up analysis of SFTs showed that 51 of 202 cases had a recurrence, with 18 of 53 meningeal SFTs having a local recurrence and/or metastasis within 0-19 years. In meninges and soft tissue, SFTs with the NAB2 exon 6-STAT6 exon 16/17/18 tended to recur more frequently than SFTs with the NAB2 exon 4-STAT6 exon 2/3. Clinicopathological data, including yearly follow-ups, are required for meningeal SFTs/HPCs to define the correlation of variants of NAB2-STAT6 fusion gene.

  9. Association between a promoter dopamine D2 receptor gene variant and the personality trait detachment.

    Science.gov (United States)

    Jönsson, Erik G; Cichon, Sven; Gustavsson, J Petter; Grünhage, Frank; Forslund, Kaj; Mattila-Evenden, Marja; Rylander, Gunnar; Asberg, Marie; Farde, Lars; Propping, Peter; Nöthen, Markus M

    2003-04-01

    Personality traits have shown considerable heritable components. Striatal dopamine D(2) receptor density, as determined by positron-emission tomography, has been associated with detached personality, as assessed by the Karolinska Scales of Personality. A putative functional promoter polymorphism in the dopamine D(2) receptor gene (DRD2), -141C ins/del, has been associated with dopamine D(2) receptor density. In this study healthy subjects (n = 235) who filled in at least one of several personality questionnaires (Karolinska Scales of Personality, Swedish Universities Scales of Personality, Health-relevant Five-factor Personality Inventory, and Temperament and Character Inventory) were analyzed with regard to the DRD2 -141C ins/del variant. There was an association (p =.001) between the DRD2 -141C ins/del variant and Karolinska Scales of Personality Detachment scale, indicating higher scores in subjects with the -141C del variant. There were also associations between the DRD2 -141C ins/del variant and a number of Karolinska Scales of Personality and Swedish Universities Scales of Personality Neuroticism-related scales, but of these only Swedish Universities Scales of Personality Lack of Assertiveness scale (p =.001) survived correction for multiple testing. These results add further support for the involvement of dopamine D(2) receptor in certain personality traits. The results should be treated with caution until replicated.

  10. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  11. A novel homozygous mutation IVS6+5G>T in CYP11B1 gene in a Vietnamese patient with 11β-hydroxylase deficiency.

    Science.gov (United States)

    Nguyen, Thi Phuong Mai; Nguyen, Thu Hien; Ngo, Diem Ngoc; Vu, Chi Dung; Nguyen, Thi Kim Lien; Nong, Van Hai; Nguyen, Huy Hoang

    2015-07-10

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11β-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11β-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Variant of Rett syndrome and CDKL5 gene

    DEFF Research Database (Denmark)

    Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt

    2012-01-01

    UNLABELLED: Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. AIMS: In recent years more than 60 patients with mutations in the CDKL5 gene have...... been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. METHODS: 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all...

  13. High-performance web services for querying gene and variant annotation.

    Science.gov (United States)

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  14. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  15. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  16. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    Directory of Open Access Journals (Sweden)

    Shawn M Crump

    2014-01-01

    Full Text Available There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.

  17. Ehlers-Danlos Syndrome Caused by Biallelic TNXB Variants in Patients with Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Chen, Wuyan; Perritt, Ashley F; Morissette, Rachel; Dreiling, Jennifer L; Bohn, Markus-Frederik; Mallappa, Ashwini; Xu, Zhi; Quezado, Martha; Merke, Deborah P

    2016-09-01

    Some variants that cause autosomal-recessive congenital adrenal hyperplasia (CAH) also cause hypermobility type Ehlers-Danlos syndrome (EDS) due to the monoallelic presence of a chimera disrupting two flanking genes: CYP21A2, encoding 21-hydroxylase, necessary for cortisol and aldosterone biosynthesis, and TNXB, encoding tenascin-X, an extracellular matrix protein. Two types of CAH tenascin-X (CAH-X) chimeras have been described with a total deletion of CYP21A2 and characteristic TNXB variants. CAH-X CH-1 has a TNXB exon 35 120-bp deletion resulting in haploinsufficiency, and CAH-X CH-2 has a TNXB exon 40 c.12174C>G (p.Cys4058Trp) variant resulting in a dominant-negative effect. We present here three patients with biallelic CAH-X and identify a novel dominant-negative chimera termed CAH-X CH-3. Compared with monoallelic CAH-X, biallelic CAH-X results in a more severe phenotype with skin features characteristic of classical EDS. We present evidence for disrupted tenascin-X function and computational data linking the type of TNXB variant to disease severity. © 2016 WILEY PERIODICALS, INC.

  18. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis.

    Science.gov (United States)

    Olivera, Nelda L; Nievas, Marina L; Lozada, Mariana; Del Prado, Guillermo; Dionisi, Hebe M; Siñeriz, Faustino

    2009-01-01

    Biosurfactant-producing bacteria belonging to the genera Alcanivorax, Cobetia and Halomonas were isolated from marine sediments with a history of hydrocarbon exposure (Aristizábal and Gravina Peninsulas, Argentina). Two Alcanivorax isolates were found to form naturally occurring consortia with strains closely related to Pseudomonas putida and Microbacterium esteraromaticum. Alkane hydroxylase gene analysis in these two Alcanivorax strains resulted in the identification of two novel alkB genes, showing 86% and 60% deduced amino acid sequence identity with those of Alcanivorax sp. A-11-3 and Alcanivorax dieselolei P40, respectively. In addition, a gene homologous to alkB2 from Alcanivorax borkumensis was present in one of the strains. The consortium formed by this strain, Alcanivorax sp. PA2 (98.9% 16S rRNA gene sequence identity with A. borkumensis SK2(T)) and P. putida PA1 was characterized in detail. These strains form cell aggregates when growing as mixed culture, though only PA2 was responsible for biosurfactant activity. During exponential growth phase of PA2, cells showed high hydrophobicity and adherence to hydrocarbon droplets. Biosurfactant production was only detectable at late growth and stationary phases, suggesting that it is not involved in initiating oil degradation and that direct interfacial adhesion is the main hydrocarbon accession mode of PA2. This strain could be useful for biotechnological applications due to its biosurfactant production, catabolic and aggregation properties.

  19. Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population

    Directory of Open Access Journals (Sweden)

    Kumar Sudhesh

    2008-02-01

    Full Text Available Abstract Background Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2 gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry. Methods We genotyped four single nucleotide polymorphisms (SNPs of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372 in 831 subjects with diabetes and 437 control subjects. Results The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3. For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7. Conclusion Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups.

  20. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  1. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum.

    Science.gov (United States)

    Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu

    2012-05-01

    The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.

  2. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  3. Common variants in Mendelian kidney disease genes and their association with renal function.

    Science.gov (United States)

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  4. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  5. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  6. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic.

    Directory of Open Access Journals (Sweden)

    Nikolay A Barashkov

    Full Text Available Pathogenic variants in the GJB2 gene, encoding connexin 26, are known to be a major cause of hearing impairment (HI. More than 300 allelic variants have been identified in the GJB2 gene. Spectrum and allelic frequencies of the GJB2 gene vary significantly among different ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic variants in exon 1, exon 2 and the flanking intronic regions of the GJB2 gene have not been described thoroughly in the Sakha Republic (Yakutia, which is located in a subarctic region in Russia. The complete sequencing of the non-coding and coding regions of the GJB2 gene was performed in 393 patients with HI (Yakuts-296, Russians-51, mixed and other ethnicities-46 and in 187 normal hearing individuals of Yakut (n = 107 and Russian (n = 80 populations. In the total sample (n = 580, we revealed 12 allelic variants of the GJB2 gene, 8 of which were recessive pathogenic variants. Ten genotypes with biallelic recessive pathogenic variants in the GJB2 gene (in a homozygous or a compound heterozygous state were found in 192 out of 393 patients (48.85%. We found that the most frequent GJB2 pathogenic variant in the Yakut patients was c.-23+1G>A (51.82% and that the second most frequent was c.109G>A (2.37%, followed by c.35delG (1.64%. Pathogenic variants с.35delG (22.34%, c.-23+1G>A (5.31%, and c.313_326del14 (2.12% were found to be the most frequent among the Russian patients. The carrier frequencies of the c.-23+1G>A and с.109G>A pathogenic variants in the Yakut control group were 10.20% and 2.80%, respectively. The carrier frequencies of с.35delG and c.101T>C were identical (2.5% in the Russian control group. We found that the contribution of the GJB2 gene pathogenic variants in HI in the population of the Sakha Republic (48.85% was the highest among all of the previously studied regions of Asia. We suggest that extensive accumulation of the c.-23+1G>A pathogenic variant in the indigenous Yakut

  7. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic).

    Science.gov (United States)

    Barashkov, Nikolay A; Pshennikova, Vera G; Posukh, Olga L; Teryutin, Fedor M; Solovyev, Aisen V; Klarov, Leonid A; Romanov, Georgii P; Gotovtsev, Nyurgun N; Kozhevnikov, Andrey A; Kirillina, Elena V; Sidorova, Oksana G; Vasilyevа, Lena M; Fedotova, Elvira E; Morozov, Igor V; Bondar, Alexander A; Solovyevа, Natalya A; Kononova, Sardana K; Rafailov, Adyum M; Sazonov, Nikolay N; Alekseev, Anatoliy N; Tomsky, Mikhail I; Dzhemileva, Lilya U; Khusnutdinova, Elza K; Fedorova, Sardana A

    2016-01-01

    Pathogenic variants in the GJB2 gene, encoding connexin 26, are known to be a major cause of hearing impairment (HI). More than 300 allelic variants have been identified in the GJB2 gene. Spectrum and allelic frequencies of the GJB2 gene vary significantly among different ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic variants in exon 1, exon 2 and the flanking intronic regions of the GJB2 gene have not been described thoroughly in the Sakha Republic (Yakutia), which is located in a subarctic region in Russia. The complete sequencing of the non-coding and coding regions of the GJB2 gene was performed in 393 patients with HI (Yakuts-296, Russians-51, mixed and other ethnicities-46) and in 187 normal hearing individuals of Yakut (n = 107) and Russian (n = 80) populations. In the total sample (n = 580), we revealed 12 allelic variants of the GJB2 gene, 8 of which were recessive pathogenic variants. Ten genotypes with biallelic recessive pathogenic variants in the GJB2 gene (in a homozygous or a compound heterozygous state) were found in 192 out of 393 patients (48.85%). We found that the most frequent GJB2 pathogenic variant in the Yakut patients was c.-23+1G>A (51.82%) and that the second most frequent was c.109G>A (2.37%), followed by c.35delG (1.64%). Pathogenic variants с.35delG (22.34%), c.-23+1G>A (5.31%), and c.313_326del14 (2.12%) were found to be the most frequent among the Russian patients. The carrier frequencies of the c.-23+1G>A and с.109G>A pathogenic variants in the Yakut control group were 10.20% and 2.80%, respectively. The carrier frequencies of с.35delG and c.101T>C were identical (2.5%) in the Russian control group. We found that the contribution of the GJB2 gene pathogenic variants in HI in the population of the Sakha Republic (48.85%) was the highest among all of the previously studied regions of Asia. We suggest that extensive accumulation of the c.-23+1G>A pathogenic variant in the indigenous Yakut

  8. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.

    Science.gov (United States)

    Aprelikova, Olga; Chandramouli, Gadisetti V R; Wood, Matthew; Vasselli, James R; Riss, Joseph; Maranchie, Jodi K; Linehan, W Marston; Barrett, J Carl

    2004-06-01

    Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation. Copyright 2004 Wiley-Liss, Inc.

  9. The influence of VKORC1 and CYP2C9 gene sequence variants on the stability of maintenance phase warfarin treatment

    DEFF Research Database (Denmark)

    Skov, Jane; Bladbjerg, Else-Marie; Leppin, Anja

    2013-01-01

    alleles require lower doses and have increased risk of overanticoagulation. METHODS: We investigated the influence of the above sequence variants on stability of maintenance phase warfarin therapy in a prospective study of 300 consecutive patients followed for one year at an anticoagulant clinic. RESULTS...... of common gene sequence variants in CYP2C9 and VKORC1 on stability of maintenance phase warfarin therapy. Patients attending an anticoagulant clinic using computer-assisted dosage were safely monitored regardless of these sequence variants, but for the small subgroup of patients with the CYP2C9 genotype *2...

  10. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    Directory of Open Access Journals (Sweden)

    Kelsey E. Grinde

    2017-09-01

    Full Text Available To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p < 2.2 × 10−6 and, consequently, substantially improves mean squared error and variant prioritization/ranking. The method is particularly helpful in adjustment for winner's curse effects when the initial gene-based test has low power and for relatively more common, non-causal variants. Adjustment for winner's curse is recommended for all post-hoc estimation and ranking of variants after a gene-based test. Further work is necessary to continue seeking ways to reduce bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures.

  11. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    NARCIS (Netherlands)

    Shimelis, Hermela; Mesman, Romy L. S.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne M. G. R.; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M.; Aittomäki, Kristiina; Andrulis, Irene; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Benitez, Javier; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Broeks, Annegien; Brouwers, Barbara; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Cheng, Ching-Yu; Choi, Ji-Yeob; Collée, J. Margriet; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M.; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Glendon, Gord; Guénel, Pascal; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Hartman, Mikael; Hogervorst, Frans B.; Hollestelle, Antoinette; Hopper, John L.; Ito, Hidemi; Jakubowska, Anna; Kang, Daehee; Kosma, Veli-Matti; Kristensen, Vessela; Lai, Kah-Nyin; Lambrechts, Diether; Marchand, Loic Le; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Machackova, Eva; Mannermaa, Arto; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; Miao, Hui; Michailidou, Kyriaki; Milne, Roger L.; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Olson, Janet E.; Olswold, Curtis; Oosterwijk, Jan J. C.; Osorio, Ana; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D. P.; Pylkäs, Katri; Radice, Paolo; Rashid, Muhammad Usman; Rhenius, Valerie; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schoemaker, Minouk J.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shrubsole, Martha; Shu, Xiao-Ou; Slager, Susan; Southey, Melissa C.; Stram, Daniel O.; Swerdlow, Anthony; teo, Soo H.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; van Asperen, Christi J.; van der Kolk, Lizet E.; Wang, Qin; Winqvist, Robert; Wu, Anna H.; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Leary, Jennifer; Walker, Logan; Foretova, Lenka; Fostira, Florentia; Claes, Kathleen B. M.; Varesco, Liliana; Moghadasi, Setareh; Easton, Douglas F.; Spurdle, Amanda; Devilee, Peter; Vrieling, Harry; Monteiro, Alvaro N. A.; Goldgar, David E.; Carreira, Aura; Vreeswijk, Maaike P. G.; Couch, Fergus J.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk

  12. HFE gene C282Y variant is associated with colorectal cancer in Caucasians: a meta-analysis.

    Science.gov (United States)

    Chen, Weidong; Zhao, Hua; Li, Tiegang; Yao, Hongliang

    2013-08-01

    The HFE gene has been suggested to play an important role in the pathogenesis of colorectal cancer. However, the results have been conflicting. In this study, we performed a meta-analysis to clarify the association of HFE gene C282Y variant with colorectal cancer. PubMed and Embase were retrieved to identify the potential literature. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated using fixed- or random-effects model. A total of eight papers including nine studies (7,588 colorectal cancer cases and 81,571 controls) for HFE gene C282Y variant were included in the meta-analysis. The result indicated that HFE gene C282Y variant was significantly associated with colorectal cancer under recessive model (OR = 2.00, 95 % CI = 1.32-3.04), with no evidence of between-study heterogeneity (I (2) = 0.2 %, p = 0.432). Further subgroup analysis by number of cases suggested the effect was significant in studies with more than 500 cases (OR = 2.51, 95 % CI = 1.58-3.98, I (2) = 0.0 %, p = 0.921), but not in studies with less than 500 cases (OR = 0.75, 95 % CI = 0.28-1.97, I (2) = 0.0 %, p = 0.622). The current meta-analysis supported the positive association of HFE gene C282Y variant with colorectal cancer. Further large-scale studies with the consideration for gene-gene/gene-environment interactions should be conducted to investigate the association.

  13. Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.

    Science.gov (United States)

    Pisciotta, Livia; Fresa, Raffaele; Bellocchio, Antonella; Guido, Virgilia; Priore Oliva, Claudio; Calandra, Sebastiano; Bertolini, Stefano

    2011-11-20

    Common variants of APOA5 gene affect plasma triglyceride (TG) in the population and a number of rare variants APOA5 have been reported in individuals with hypertriglyceridemia (HTG). APOA5 was analysed in 98 HTG individuals (plasma TG >9 mmol/L) in whom no mutations in LPL and APOC2 had been found. Two patients were found to be heterozygous for two novel APOA5 variants. The first variant (p.L253P) was identified in an obese male who consumed a diet rich in fat and simple sugars. He was also a carrier in trans of the common TG-raising p.S19W SNP (5*3 haplotype). The second variant (c.295-297 del GAG, p.E99 del) was found in a lean male with no life style or metabolic factors known to affect plasma TG. He was a carrier in trans of the TG-raising 5*2 haplotype and was homozygous for the rare c.1337T allele of a SNP of GCKR gene. No mutations in other genes affecting plasma TG (LMF1 and GPIHBP1) were found in these patients. These APOA5 variants, resulted to be deleterious in silico, were not found in 350 control subjects. These novel APOA5 variants predispose to HTG in combination with other genetic or nutritional factors. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Directory of Open Access Journals (Sweden)

    Zhang Yuqi

    2010-08-01

    Full Text Available Abstract Background Suicide and major depressive disorders (MDD are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2 gene rs7305115 SNP may predispose to suicide attempts in MDD. Methods We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis. Results There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, p p p Conclusions The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.

  15. High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl 3-Hydroxylase 2

    Science.gov (United States)

    Mordechai, Shikma; Gradstein, Libe; Pasanen, Annika; Ofir, Rivka; El Amour, Khalil; Levy, Jaime; Belfair, Nadav; Lifshitz, Tova; Joshua, Sara; Narkis, Ginat; Elbedour, Khalil; Myllyharju, Johanna; Birk, Ohad S.

    2011-01-01

    Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2. PMID:21885030

  16. TREM2 Variants in Alzheimer's Disease

    Science.gov (United States)

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  17. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    in the anion exchange, indicating that the protein still exists in different oligomer forms. This was also observed in the gel filtration. Variants of both hTPH1 and hTPH2 containing the regulatory domain or parts of it were constructed and tested for expression in Escherichia coli as well as solubility....... It was observed that changes in the amino acid sequence of the regulatory domain by point mutations or truncations in the N-terminal had a huge impact on the solubility of the protein and caused the protein to be insoluble. The regulatory domain of human TPH1 (rhTPH1), and two fusion proteins of rhTPH1 fused...... to the green fluorescent protein (GFP) in the C-terminal and the glutathione S-transferase (GST) in the N-terminal, respectively, were expressed in a soluble form. The purification trials of the variants containing the regulatory domain showed that a high salt concentration was necessary to stabilize...

  18. Resequencing of genes for transforming growth factor β1 (TGFB1 type 1 and 2 receptors (TGFBR1, TGFBR2, and association analysis of variants with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Patterson Chris C

    2007-02-01

    Full Text Available Abstract Background Diabetic nephropathy is the leading cause of end stage renal failure in the western world. There is substantial epidemiological evidence supporting a genetic predisposition to diabetic nephropathy, however the exact molecular mechanisms remain unknown. Transforming growth factor (TGFβ1 is a crucial mediator in the pathogenesis of diabetic nephropathy. Methods We investigated the role of five known single nucleotide polymorphisms (SNPs in the TGFB1 gene for their association with diabetic nephropathy in an Irish, type 1 diabetic case (n = 272 control (n = 367 collection. The activity of TGFβ1 is facilitated by the action of type 1 and type 2 receptors, with both receptor genes (TGFBR1 and TGFBR2 shown to be upregulated in diabetic kidney disease. We therefore screened TGFBR1 and TGFBR2 genes for genomic variants using WAVE™ (dHPLC technology and confirmed variants by direct capillary sequencing. Allele frequencies were determined in forty-eight healthy individuals. Data for all SNPs was assessed for Hardy Weinberg equilibrium, with genotypes and allele frequencies compared using the χ2 test for contingency tables. Patterns of linkage disequilibrium were established and common haplotypes estimated. Results Fifteen variants were identified in these genes, seven of which are novel, and putatively functional SNPs were subsequently genotyped using TaqMan™, Invader™ or Pyrosequencing® technology. No significant differences (p > 0.1 were found in genotype or allele distributions between cases and controls for any of the SNPs assessed. Conclusion Our results suggest common variants in TGFB1, TGFBR1 and TGFBR2 genes do not strongly influence genetic susceptibility to diabetic nephropathy in an Irish Caucasian population.

  19. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    Science.gov (United States)

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database

    DEFF Research Database (Denmark)

    Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul

    2014-01-01

    and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary...... are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation......The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test...

  1. Genetic variants of the MAVS, MITA and MFN2 genes are not associated with leprosy in Han Chinese from Southwest China.

    Science.gov (United States)

    Wang, Dong; Li, Guo-Dong; Zhang, Deng-Feng; Xu, Ling; Li, Xiao-An; Yu, Xiu-Feng; Long, Heng; Li, Yu-Ye; Yao, Yong-Gang

    2016-11-01

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae), which has massive genomic decay and dependence on host metabolism. Accumulating evidence showed a crucial role of mitochondria in metabolism and innate immunity. We hypothesized that the mitochondrial-related antimicrobial/antiviral immune genes MAVS (mitochondrial antiviral signaling protein), MITA (mediator of IRF3 activation) and MFN2 (mitofusin 2) would confer a risk to leprosy. In this study, we performed a case-control study to analyze 11 tag and/or non-synonymous SNPs of the MAVS, MITA and MFN2 genes in 527 leprosy patients and 583 healthy individuals, and directly sequenced the three genes in 80 leprosy patients with a family history from Yunnan, Southwest China. We found no association between these SNPs and leprosy (including its subtypes) based on the frequencies of alleles, genotypes and haplotypes between the cases and controls. There was also no enrichment of potential pathogenic variants of the three genes in leprosy patients. Our results suggested that genetic variants of the MAVS, MITA and MFN2 genes might not affect the susceptibility to leprosy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Large-scale studies of the functional K variant of the butyrylcholinesterase gene in relation to Type 2 diabetes and insulin secretion

    DEFF Research Database (Denmark)

    Johansen, A; Nielsen, E-M D; Andersen, G

    2004-01-01

    Polymorphisms of the butyrylcholinesterase gene (BCHE) are reported to associate with Alzheimer's disease and a recent study found a significant association of the BCHE K variant (G1615A/Ala539Thr) with Type 2 diabetes. The objectives of our study were to examine whether the BCHE K variant is ass...... is associated with Type 2 diabetes or estimates of pancreatic beta cell function in large-scale populations of glucose-tolerant Caucasians....

  3. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  4. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Matteson, K.J.; Phillips, J.A. III; Miller, W.L.; Chung, B.C.; Orlando, P.J.; Frisch, H.; Ferrandez, A.; Burr, I.M.

    1987-01-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 [steroid 21-monooxygenase (steroid 21-hydroxylase)], which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. The authors have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, they conclude that the P450XXIA2 gene deletions widely reported in CAH patients probably represent gene conversions, unequal crossovers,or polymorphisms rather than simple gene deletions

  5. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  6. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  7. Deleterious genetic variants in ciliopathy genes increase risk of ritodrine-induced cardiac and pulmonary side effects.

    Science.gov (United States)

    Seo, Heewon; Kwon, Eun Jin; You, Young-Ah; Park, Yoomi; Min, Byung Joo; Yoo, Kyunghun; Hwang, Han-Sung; Kim, Ju Han; Kim, Young Ju

    2018-01-24

    Ritodrine is a commonly used tocolytic to prevent preterm labour. However, it can cause unexpected serious adverse reactions, such as pulmonary oedema, pulmonary congestion, and tachycardia. It is unknown whether such adverse reactions are associated with pharmacogenomic variants in patients. Whole-exome sequencing of 13 subjects with serious ritodrine-induced cardiac and pulmonary side-effects was performed to identify causal genes and variants. The deleterious impact of nonsynonymous substitutions for all genes was computed and compared between cases (n = 13) and controls (n = 30). The significant genes were annotated with Gene Ontology (GO), and the associated disease terms were categorised into four functional classes for functional enrichment tests. To assess the impact of distributed rare variants in cases with side effects, we carried out rare variant association tests with a minor allele frequency ≤ 1% using the burden test, the sequence Kernel association test (SKAT), and optimised SKAT. We identified 28 genes that showed significantly lower gene-wise deleteriousness scores in cases than in controls. Three of the identified genes-CYP1A1, CYP8B1, and SERPINA7-are pharmacokinetic genes. The significantly identified genes were categorized into four functional classes: ion binding, ATP binding, Ca 2+ -related, and ciliopathies-related. These four classes were significantly enriched with ciliary genes according to SYSCILIA Gold Standard genes (P side effects may be associated with deleterious genetic variants in ciliary and pharmacokinetic genes.

  8. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  9. Genotyping Fanconi anemia patients from Serbia reveals three novel FANCD2 variants

    Directory of Open Access Journals (Sweden)

    Filipović-Tričković Jelena

    2017-01-01

    Full Text Available Fanconi anemia is rare inherited disease characterized by wide spectrum of congenital anomalies, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. Molecular genetic analysis of mutations in FANC genes is of a great importance for diagnosis confirmation, prenatal and carrier testing, as well as for prediction of chemotherapy outcome and disease complications. In this study we performed screening of frequently affected regions of FANCD2 gene for sequence variants in six unrelated FA-D2 patients in Serbia. This is the first molecular analysis of FANCD2 gene in Serbian FA-D2 patients. A total of 10 sequence variants were detected, one in homozygous, and nine in heterozygous state. Two variants were found within exons, and eight within introns, in deep intronic regions. In-silico analysis showed that among all detected variants one exon variant and three intron variants might have impact on splicing mechanism. Heterozygous variants found in intron 3, c.206-246delG; exon 26, c.2396 C>A and intron 28, c.2715+573 C>T were not previously reported. In-silico analysis revealed that among them, two (intron 3, c.206-246 delG and exon 26, c.2396 C>A could be novel disease-causing mutations. Many variants were found in more than one patient, including those unreported, indicating their possible ethnic association. Great number of variants in some patients suggests their non-random emergence in Fanconi anemia pathway. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173046

  10. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    Science.gov (United States)

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  11. Molecular characterization of a genetic variant of the steroid hormone-binding globulin gene in heterozygous subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.O.; Catterall, J.F. [Population Council, New York, NY (United States); Carino, C. [Instituto National de la Nutricion, Mexico City, MX (United States)] [and others

    1995-04-01

    Steroid hormone-binding globulin in human serum displays different isoelectric focusing (IEF) patterns among individuals, suggesting genetic variation in the gene for this extracellular steroid carrier protein. Analysis of allele frequencies and family studies suggested the existence of two codominant alleles of the gene. Subsequent determination of the molecular basis of a variant of the gene was carried out using DNA from homozygous individuals from a single Belgian family. It was of interest to characterize other variant individuals to determine whether all variants identified by IEF phenotyping were caused by the same mutation or whether other mutations occurred in the gene in different populations. Previous studies identified Mexican subjects who were heterozygous for the variant IEF phenotype. Denaturing gradient gel electrophoresis was used to localize the mutation in these subjects and to purify the variant allele for DNA sequence analysis. The results show that the mutation in this population is identical to that identified in the Belgian family, and no other mutations were detected in the gene. These data represent the first analysis of steroid hormone-binding globulin gene variation in heterozygous subjects and further support the conclusion of biallelism of the gene worldwide. 11 refs., 2 figs., 1 tab.

  12. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  13. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Science.gov (United States)

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1 , a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  15. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Reynisdottir, Inga

    2007-01-01

    We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified...... risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13-1.27), P = 7.7 x 10(-9)) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11-1.40), P = 0...... was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion....

  16. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′)-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2′)-hydroxylated carotenoids). PMID:21673887

  17. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Directory of Open Access Journals (Sweden)

    Norihiko Misawa

    2011-05-01

    Full Text Available Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′-ketolase (4(4′-oxygenase; CrtW and hydroxylated by carotenoid β-ring 3(3′-hydroxylase (CrtZ. In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′-hydroxylase (CrtG. This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s-2(2′-hydroxylated carotenoids.

  18. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls.

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C₄₀-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4')-ketolase (4(4')-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3')-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

  19. Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E; del Monte, Federica

    2010-03-16

    Heart failure is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as idiopathic dilated cardiomyopathy (iDCM), the origin of heart failure is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of beta-amyloid impair cell function and lead to cell death. We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients, pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca(2+) homeostasis. Additionally, we have identified 2 new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 coimmunoprecipitates with SERCA2a. On the basis of these findings, we propose that 2 mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca(2+) handling and a direct effect of PSEN1 sequence variants on excitation-contraction coupling protein function.

  20. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  1. Molecular Background of Colorectal Tumors From Patients with Lynch Syndrome Associated With Germline Variants in PMS2.

    Science.gov (United States)

    Ten Broeke, S W; van Bavel, T C; Jansen, A M L; Gómez-García, E; Hes, F J; van Hest, L P; Letteboer, T G W; Olderode-Berends, M J W; Ruano, D; Spruijt, L; Suerink, M; Tops, C M; van Eijk, R; Morreau, H; van Wezel, T; Nielsen, M

    2018-05-11

    Germline variants in the mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in patients of older ages than colorectal tumors with variants in the other mismatch repair genes. We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher's exact test. None of the PMS2-associated CRCs contained any somatic variants in the catenin beta 1 gene (CTNNB1), which encodes β-catenin, whereas 14/24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half of PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%, P=.44) and MSH2 (and 71.4%, P=.035) than with variants in PMS2. In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    NARCIS (Netherlands)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle; Keogh, Julia M.; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A.; Langenberg, Claudia; Wareham, Nick J.; Surendran, Praveen; Howson, Joanna M M; Butterworth, Adam S.; Danesh, John; Nordestgaard, Børge G.; Nielsen, Sune F.; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L.; Palomino, Rafael I.; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I. Sadaf; Benzeval, Michaela; Burton, Jonathan; Buck, Nicholas; Jäckle, Annette; Kumari, Meena; Laurie, Heather; Lynn, Peter; Pudney, Stephen; Rabe, Birgitta; Wolke, Dieter; Overvad, Kim; Tjønneland, Anne; Clavel-Chapelon, Francoise; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Ferrari, Pietro; Palli, Domenico; Krogha, Vittorio; Panico, Salvatore; Tuminoa, Rosario; Matullo, Giuseppe; Boer, Jolanda Ma; Van Der Schouw, Yvonne; Weiderpass, Elisabete; Quiros, J. Ramon; Sánchez, María José; Navarro, Carmen; Moreno-Iribas, Conchi; Arriola, Larraitz; Melander, Olle; Wennberg, Patrik; Key, Timothy J.; Riboli, Elio; Al-Turki, Saeed; Anderson, Carl A; Anney, Richard; Antony, Dinu; Soler Artigas, María; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C; Beales, Phil; Bentham, Jamie; Bhattacharyaa, Shoumo; Birney, Ewan; Blackwooda, Douglas; Bobrow, Martin; Bolton, Patrick F.; Boustred, Chris; Breen, Gerome; Calissanoa, Mattia; Carss, Keren; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampia, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Coccaa, Massimiliano; Collier, David A; Cosgrove, Catherine; Coxa, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Day, Ian N M; Day-Williams, Aaron G; Dominiczak, Anna; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evansa, David M.; FitzPatrick, David R.; Flicek, Paul; Floyd, James S.; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel H.; Greenwood, Celia M.T.; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah J.; Holmans, Peter A; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro G.; Iotchkova, Valentina; Jackson, David K.; Jamshidi, Yalda; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Khawaja, Farrah; Van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; MacArthur, Daniel G.; Mangino, Massimo; Marchini, Jonathan; Maslen, John; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Migone, Nicola; Min, Josine L.; Mitchison, Hannah M; Moayyeri, Alireza; Morris, Andrew D.; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael C.; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Porteous, David J.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, F. Lucy; Rehnström, Karola; Richards, J Brent; Ridout, Cheryl K.; Ring, Susan M.; Ritchie, Graham R.S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So Youn; Skuse, David; Small, Kerrin S; Smee, Carol; Smith, Blair H.; Davey Smith, George; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela L; Suvisaari, Jaana; Syrris, Petros; Taylor, Rohan; Tian, Jing; Timpson, Nicholas J.; Tobin, Martin D; Valdes, Ana M.; Vandersteen, Anthony M.; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Nai-Yu; Ward, Kirsten; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, Changjiang; Yang, Jian; Zhang, Feng; Zhang, Pingbo; Zheng, Hou Feng

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS,

  3. Rare variant analysis of human and rodent obesity genes in individuals with severe childhood obesity

    DEFF Research Database (Denmark)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GN...

  4. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  5. Integrated Enrichment Analysis of Variants and Pathways in Genome-Wide Association Studies Indicates Central Role for IL-2 Signaling Genes in Type 1 Diabetes, and Cytokine Signaling Genes in Crohn's Disease

    Science.gov (United States)

    Carbonetto, Peter; Stephens, Matthew

    2013-01-01

    Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14

  6. Changes in classification of genetic variants in BRCA1 and BRCA2.

    Science.gov (United States)

    Kast, Karin; Wimberger, Pauline; Arnold, Norbert

    2018-02-01

    Classification of variants of unknown significance (VUS) in the breast cancer genes BRCA1 and BRCA2 changes with accumulating evidence for clinical relevance. In most cases down-staging towards neutral variants without clinical significance is possible. We searched the database of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for changes in classification of genetic variants as an update to our earlier publication on genetic variants in the Centre of Dresden. Changes between 2015 and 2017 were recorded. In the group of variants of unclassified significance (VUS, Class 3, uncertain), only changes of classification towards neutral genetic variants were noted. In BRCA1, 25% of the Class 3 variants (n = 2/8) changed to Class 2 (likely benign) and Class 1 (benign). In BRCA2, in 50% of the Class 3 variants (n = 16/32), a change to Class 2 (n = 10/16) or Class 1 (n = 6/16) was observed. No change in classification was noted in Class 4 (likely pathogenic) and Class 5 (pathogenic) genetic variants in both genes. No up-staging from Class 1, Class 2 or Class 3 to more clinical significance was observed. All variants with a change in classification in our cohort were down-staged towards no clinical significance by a panel of experts of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevention in families with Class 3 variants should be based on pedigree based risks and should not be guided by the presence of a VUS.

  7. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  8. Common variants in CYP2R1 and GC genes are both determinants of serum 25-hydroxyvitamin D concentrations after UVB irradiation and after consumption of vitamin D₃-fortified bread and milk during winter in Denmark.

    Science.gov (United States)

    Nissen, Janna; Vogel, Ulla; Ravn-Haren, Gitte; Andersen, Elisabeth W; Madsen, Katja H; Nexø, Bjørn A; Andersen, Rikke; Mejborn, Heddie; Bjerrum, Poul J; Rasmussen, Lone B; Wulf, Hans Christian

    2015-01-01

    Little is known about how the genetic variation in vitamin D modulating genes influences ultraviolet (UV)B-induced 25-hydroxyvitamin D [25(OH)D] concentrations. In the Food with vitamin D (VitmaD) study, we showed that common genetic variants rs10741657 and rs10766197 in 25-hydroxylase (CYP2R1) and rs842999 and rs4588 in vitamin D binding protein (GC) predict 25(OH)D concentrations at late summer and after 6-mo consumption of cholecalciferol (vitamin D₃)-fortified bread and milk. In the current study, called the Vitamin D in genes (VitDgen) study, we analyzed associations between the increase in 25(OH)D concentrations after a given dose of artificial UVB irradiation and 25 single nucleotide polymorphisms located in or near genes involved in vitamin D synthesis, transport, activation, or degradation as previously described for the VitmaD study. Second, we aimed to determine whether the genetic variations in CYP2R1 and GC have similar effects on 25(OH)D concentrations after artificial UVB irradiation and supplementation by vitamin D₃-fortified bread and milk. The VitDgen study includes 92 healthy Danes who received 4 whole-body UVB treatments with a total dose of 6 or 7.5 standard erythema doses during a 10-d period in winter. The VitmaD study included 201 healthy Danish families who were given vitamin D₃-fortified bread and milk or placebo for 6 mo during the winter. After UVB treatments, rs10741657 in CYP2R1 and rs4588 in GC predicted UVB-induced 25(OH)D concentrations as previously shown in the VitmaD study. Compared with noncarriers, carriers of 4 risk alleles of rs10741657 and rs4588 had lowest concentrations and smallest increases in 25(OH)D concentrations after 4 UVB treatments and largest decreases in 25(OH)D concentrations after 6-mo consumption of vitamin D₃-fortified bread and milk. Common genetic variants in the CYP2R1 and GC genes modify 25(OH)D concentrations in the same manner after artificial UVB-induced vitamin D and consumption of vitamin D

  9. Characterization of Canine parvovirus 2 variants circulating in Greece.

    Science.gov (United States)

    Ntafis, Vasileios; Xylouri, Eftychia; Kalli, Iris; Desario, Costantina; Mari, Viviana; Decaro, Nicola; Buonavoglia, Canio

    2010-09-01

    The aim of the present study was to characterize Canine parvovirus 2 (CPV-2) variants currently circulating in Greece. Between March 2008 and March 2009, 167 fecal samples were collected from diarrheic dogs from different regions of Greece. Canine parvovirus 2 was detected by standard polymerase chain reaction, whereas minor groove binder probe assays were used to distinguish genetic variants and discriminate between vaccine and field strains. Of 84 CPV-2-positive samples, 81 CPV-2a, 1 CPV-2b, and 2 CPV-2c were detected. Vaccine strains were not detected in any sample. Sequence analysis of the VP2 gene of the 2 CPV-2c viruses revealed up to 100% amino acid identity with the CPV-2c strains previously detected in Europe. The results indicated that, unlike other European countries, CPV-2a remains the most common variant in Greece, and that the CPV-2c variant found in Europe is also present in Greece.

  10. CEACAM6 gene variants in inflammatory bowel disease.

    Science.gov (United States)

    Glas, Jürgen; Seiderer, Julia; Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-04-29

    The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  11. CEACAM6 gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 acts as a receptor for adherent-invasive E. coli (AIEC and its ileal expression is increased in patients with Crohn's disease (CD. Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD. METHODOLOGY: In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC, and 1,350 healthy, unrelated controls was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839. In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS: This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  12. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    Science.gov (United States)

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  13. HABP2 G534E Variant in Papillary Thyroid Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jerneja Tomsic

    Full Text Available The main nonmedullary form of thyroid cancer is papillary thyroid carcinoma (PTC that accounts for 80-90% of all thyroid malignancies. Only 3-10% of PTC patients have a positive family history of PTC yet the familiality is one of the highest of all cancers as measured by case control studies. A handful of genes have been implicated accounting for a small fraction of this genetic predisposition. It was therefore of considerable interest that a mutation in the HABP2 gene was recently implicated in familial PTC. The present work was undertaken to examine the extent of HABP2 variant involvement in PTC. The HABP2 G534E variant (rs7080536 was genotyped in blood DNA from 179 PTC families (one affected individual per family, 1160 sporadic PTC cases and 1395 controls. RNA expression of HABP2 was tested by qPCR in RNA extracted from tumor and normal thyroid tissue from individuals that are homozygous wild-type or heterozygous for the variant. The variant was found to be present in 6.1% familial cases, 8.0% sporadic cases (2 individuals were homozygous for the variant and 8.7% controls. The variant did not segregate with PTC in one large and 6 smaller families in which it occurred. In keeping with data from the literature and databases the expression of HABP2 was highest in the liver, much lower in 3 other tested tissues (breast, kidney, brain but not found in thyroid. Given these results showing lack of any involvement we suggest that the putative role of variant HABP2 in PTC should be carefully scrutinized.

  14. MC1R gene variants involvement in human OCA phenotype

    OpenAIRE

    Saleha Shamim; Khan Taj Ali; Zafar Shaista

    2016-01-01

    Oculocutaneous albinism (OCA) is a genetic disorder of melanin synthesis that results in hypopigmentation in hair, skin and eyes. OCA has been reported in individuals from all ethnic backgrounds but it is more common among those with Europeans ancestry. OCA is heterogeneous group of disorders and seven types of OCA are caused by mutations in TYR (OCA1), OCA2 (OCA2), TYRP1 (OCA3), SLC45A2 (OCA4), SLC24A5 (OCA6) and C10oRF11 (OCA7) genes. However, MC1R gene variants have been reported that modi...

  15. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence.

    Directory of Open Access Journals (Sweden)

    Andrea Vereczkei

    Full Text Available BACKGROUND: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. OBJECTIVE: To study the potential association between allelic variants of dopamine D2 receptor (DRD2, ANKK1 (ankyrin repeat and kinase domain containing 1, dopamine D4 receptor (DRD4, catechol-O-methyl transferase (COMT and dopamine transporter (SLC6A3 genes and heroin dependence in Hungarian patients. METHODS: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA. FINDINGS AND CONCLUSIONS: In single marker analysis the TaqIA (rs1800497 and TaqIB (rs1079597 variants were associated with heroin dependence. Moreover, -521 C/T SNP (rs1800955 of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462 of the DRD4 gene and this effect is mediated through the -521 C/T (rs1800955 polymorphism in the promoter.

  16. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Science.gov (United States)

    Caduff, Madleina; Bauer, Anina; Jagannathan, Vidhya; Leeb, Tosso

    2017-01-01

    We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G). The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1). Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2) in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  17. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  18. Analysis of IL12B gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD. However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed IL12B gene variants regarding association with Crohn's disease (CD and ulcerative colitis (UC. Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695. Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01-1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99-1.31], p = 0.066 and UC (OR 1.18 [0.97-1.43], p = 0.092. CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10(-5; OR = 2.84, 95% CI 1.66-4.84, while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14-0.92. In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694 in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05 but there was no epistasis between IL23R and IL12B variants. CONCLUSIONS/SIGNIFICANCE: The IL12B SNP rs6887695

  19. Complex phenotype of dyskeratosis congenita and mood dysregulation with novel homozygous RTEL1 and TPH1 variants.

    Science.gov (United States)

    Ungar, Rachel A; Giri, Neelam; Pao, Maryland; Khincha, Payal P; Zhou, Weiyin; Alter, Blanche P; Savage, Sharon A

    2018-06-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease. © 2018 Wiley Periodicals, Inc.

  20. Gypsy Phenylketonuria: A point mutation of the phenylalanine hydroxylase gene in Gypsy families from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Kalanin, J. [Institute for Clinical and Experical Medicine, Praha (Czechoslovakia); Takarada, Y. [Toyobo Research Center, Shiga (Japan); Kagawa, S.; Yamashita, K.; Ohtsuka, N.; Matsuoka, A. [Hyogo College of Medicine, Nishinomiya (Japan)

    1994-01-15

    A direct mutational analysis of the phenylalanine hydroxylase gene (PAH) in Gypsy families with phenylketonuria (PKU) has not yet been presented. However, they obviously represent a group at high risk for this inherited disease. The authors analyzed the PAH loci of 65 Gypsies originating from Eastern Slovakia by a combination of PCR amplification, direct sequencing and ASO hybridization. These studies uncovered 10 {open_quotes}classical PKU{close_quotes} patients to be homozygous for a R252W (CGG-TGG) transition, and 29 heterozygous carriers of this mutation. Fifteen control Caucasoid PKU patients from the Czech and Slovak Republics were selected. In this group they detected R252W mutation in two subjects (6.67% of all mutant alleles). Both were compound heterozygous for two different mutations. Previous haplotype studies of Welsh Gypsies with PKU were uninformative in the determination of heterozygosity. ASO hybridization served effectively for the consequent analyses in Gypsy PKU-related families and to identify the carriers among the unrelated subjects. 19 refs., 2 figs.

  1. Genetic variants in ATM, H2AFX and MRE11 genes and susceptibility to breast cancer in the polish population.

    Science.gov (United States)

    Podralska, Marta; Ziółkowska-Suchanek, Iwona; Żurawek, Magdalena; Dzikiewicz-Krawczyk, Agnieszka; Słomski, Ryszard; Nowak, Jerzy; Stembalska, Agnieszka; Pesz, Karolina; Mosor, Maria

    2018-04-20

    DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility. We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.5932G > T, c.6095G > A, and c.7630-2A > C) and single nucleotide polymorphisms (SNPs) in H2AFX (rs643788, rs8551, rs7759, and rs2509049) and MRE11 (rs1061956 and rs2155209) among 315 breast cancer patients and 515 controls. The analysis was performed using high-resolution melting for new variants and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for recurrent ATM mutations. H2AFX and MRE11 polymorphisms were analyzed using TaqMan assays. The cumulative genetic risk scores (CGRS) were calculated using unweighted and weighted approaches. We identified four mutations (c.6067G > A, c.8314G > A, c.8187A > T, and c.6095G > A) in the ATM gene in three BC cases and two control subjects. We observed a statistically significant association of H2AFX variants with BC. Risk alleles (the G of rs7759 and the T of rs8551 and rs2509049) were observed more frequently in BC cases compared to the control group, with P values, odds ratios (OR) and 95% confidence intervals (CIs) of 0.0018, 1.47 (1.19 to 1.82); 0.018, 1.33 (1.09 to 1.64); and 0.024, 1.3 (1.06 to 1.59), respectively. Haplotype-based tests identified a significant association of the H2AFX CACT haplotype with BC (P ATM gene to the development of breast cancer needs further detailed study.

  2. Evidence for Association of the E23K Variant of KCNJ11 Gene with Type 2 Diabetes in Tunisian Population: Population-Based Study and Meta-Analysis

    OpenAIRE

    Lasram, Khaled; Ben Halim, Nizar; Hsouna, Sana; Kefi, Rym; Arfa, Imen; Ghazouani, Welid; Jamoussi, Henda; Benrahma, Houda; Kharrat, Najla; Rebai, Ahmed; Ben Ammar, Slim; Bahri, Sonia; Barakat, Abdelhamid; Abid, Abdelmajid; Abdelhak, Sonia

    2014-01-01

    Aims. Genetic association studies have reported the E23K variant of KCNJ11 gene to be associated with Type 2 diabetes. In Arab populations, only four studies have investigated the role of this variant. We aimed to replicate and validate the association between the E23K variant and Type 2 diabetes in Tunisian and Arab populations. Methods. We have performed a case-control association study including 250 Tunisian patients with Type 2 diabetes and 267 controls. Allelic association has also been ...

  3. AB093. Report of a SMARCA4 variant identified in a patient with Coffin-Siris syndrome

    Science.gov (United States)

    Loke, Mun Fai; Jamuar, Saumya Shekhar; Lim, Eileen Chew Ping; Tan, Ene Choo

    2017-01-01

    Background Coffin-Siris syndrome (CSS, OMIM 614609) is a rare condition that affects multiple body systems. Hallmarks of this condition include developmental disability, abnormalities of the fifth fingers or toes, and characteristic facial features. Here, the case of a 4-year-old Chinese boy with lateral flaring and thick eyebrows, long eyelashes, coarse facies, left single palmar crease, absent of both fifth toenails, posterior cleft palate, umbilical hernia and congenital nystagmus is presented. The boy also has bilateral developmental dysplasia of the hip, which has not been reported in CSS. Methods Genomic DNA was extracted from peripheral blood samples collected from the patient and parents. Targeted next generation sequencing of the patient sample was performed on the Illumina MiSeq system using the TruSight One panel that covers >4,800 clinically relevant genes. Alignment and variant calling was carried out using the on-instrument MiSeq Reporter software, and the VCF file generated was annotated and filtered using WANNOVAR. The presence of the variant and the de novo status was confirmed by Sanger sequencing of patient and parental samples. Results A heterozygous c.3127C>T variant was detected in exon 23 of the SMARCA4 gene in the patient. It was not present in his parents. The de novo variant is predicted to cause a p. (Arg1043Trp) missense substitution of a highly conserved amino acid in the SNF2-related domain of the SMARCA4 protein, and can be classified as likely pathogenic for CSS based on the ACMG/AMP 2015 guidelines. This variant is not in the Exome Sequencing Project, 1000 Genomes Project and Exome Aggregation Consortium databases, although it has been reported previously in a patient with CSS. Conclusions The SMARCA4 gene encodes the ATP-hydroxylase containing subunits of the BAF complex and variants are expected to influence the ATP-hydrolase activity and affect downstream processes such as DNA packaging and gene expression.

  4. Gene Variants Are Associated with PCOS Susceptibility and Hyperandrogenemia in Young Korean Women

    Directory of Open Access Journals (Sweden)

    Do Kyeong Song

    2014-08-01

    Full Text Available BackgroundThe fat mass and obesity-associated (FTO gene is associated with obesity and type 2 diabetes mellitus. Obesity and insulin resistance are also common features of polycystic ovary syndrome (PCOS. Therefore, the FTO gene might be a candidate gene for PCOS susceptibility. The aim of the present study was to evaluate the effects of FTO gene variants on PCOS susceptibility and metabolic and reproductive hormonal parameters.MethodsWe recruited 432 women with PCOS (24±5 years and 927 healthy women with regular menstrual cycles (27±5 years and performed a case-control association study. We genotyped the single nucleotide polymorphisms rs1421085, rs17817449, and rs8050136 in the FTO gene and collected metabolic and hormonal measurements.ResultsLogistic regression revealed that the G/G genotype (rs1421085, 1.6%, the C/C genotype (rs17817449, 1.6%, and the A/A genotype (rs8050136, 1.6% were strongly associated with an increased risk of PCOS (odds ratio, 2.551 to 2.559; all P<0.05. The strengths of these associations were attenuated after adjusting for age and BMI. The women with these genotypes were more obese and exhibited higher free androgen indices (P<0.05 and higher free testosterone levels (P=0.053 to 0.063 compared to the other genotypes. However the significant differences disappeared after adjusting for body mass index (BMI. When we analyzed the women with PCOS and the control groups separately, there were no significant differences in the metabolic and reproductive hormonal parameters according to the FTO gene variants.ConclusionThe rs1421085, rs17817449, and rs8050136 variants of the FTO gene were associated with PCOS susceptibility and hyperandrogenemia in young Korean women. These associations may be mediated through an effect of BMI.

  5. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer.

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy LS; Von, Nicolai Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne MGR; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomäki, Kristiina; Andrulis, Irene

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the $\\textit{BRCA1}$ and $\\textit{BRCA2}$ genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine ...

  6. Altered gene expression in pulmonary tissue of tryptophan hydroxylase-1 knockout mice: implications for pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Richard B Rothman

    Full Text Available The use of fenfluramines can increase the risk of developing pulmonary arterial hypertension (PAH in humans, but the mechanisms responsible are unresolved. A recent study reported that female mice lacking the gene for tryptophan hydroxylase-1 (Tph1(-/- mice were protected from PAH caused by chronic dexfenfluramine, suggesting a pivotal role for peripheral serotonin (5-HT in the disease process. Here we tested two alternative hypotheses which might explain the lack of dexfenfluramine-induced PAH in Tph1(-/- mice. We postulated that: 1 Tph1(-/- mice express lower levels of pulmonary 5-HT transporter (SERT when compared to wild-type controls, and 2 Tph1(-/- mice display adaptive changes in the expression of non-serotonergic pulmonary genes which are implicated in PAH. SERT was measured using radioligand binding methods, whereas gene expression was measured using microarrays followed by quantitative real time PCR (qRT-PCR. Contrary to our first hypothesis, the number of pulmonary SERT sites was modestly up-regulated in female Tph1(-/- mice. The expression of 51 distinct genes was significantly altered in the lungs of female Tph1(-/- mice. Consistent with our second hypothesis, qRT-PCR confirmed that at least three genes implicated in the pathogenesis of PAH were markedly up-regulated: Has2, Hapln3 and Retlna. The finding that female Tph1(-/- mice are protected from dexfenfluramine-induced PAH could be related to compensatory changes in pulmonary gene expression, in addition to reductions in peripheral 5-HT. These observations emphasize the intrinsic limitation of interpreting data from studies conducted in transgenic mice that are not fully characterized.

  7. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  8. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency

    International Nuclear Information System (INIS)

    Sinnott, P.; Collier, S.; Dyer, P.A.; Harris, R.; Strachan, T.; Costigan, C.

    1990-01-01

    The HLA-linked human steroid 21-hydroxylase gene CYP21B and its closely homologous pseudogene CYP21A are each normally located centromeric to a fourth component of complement (C4) gene, C4B and C4A, respectively, in an organization suggesting tandem duplication of a ca. 30-kilobase DNA unit containing a CYP21 gene and a C4 gene. Such an organization has been considered to facilitate gene deletion and addition events by unequal crossover between the tandem repeats. The authors have identified a steroid 21-hydroxylase deficiency patient who has a maternally inherited disease haplotype that carries a de novo deletion of a ca. 30-kilobase repeat unit including the CYP21B gene and associated C4B gene. This disease haplotype appears to have been generated as a result of meiotic unequal crossover between maternal homologous chromosomes. One of the maternal haplotypes is the frequently occurring HLA-DR3,B8,A1 haplotype that normally carries a deletion of a ca. 30-kilobase unit including the CYP21A gene and C4A gene. Haplotypes of this type may possible act as premutations, increasing the susceptibility of developing a 21-hydroxylase deficiency mutation by facilitating unequal chromosome pairing

  9. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  10. No effect of C1473G polymorphism in the tryptophan hydroxylase 2 gene on the response of the brain serotonin system to chronic fluoxetine treatment in mice.

    Science.gov (United States)

    Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V

    2017-07-13

    Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Directory of Open Access Journals (Sweden)

    Madleina Caduff

    Full Text Available We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G. The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1. Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2 in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  12. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  13. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  14. The D313Y variant in the GLA gene - no evidence of a pathogenic role in Fabry disease

    DEFF Research Database (Denmark)

    Hasholt, Lis; Ballegaard, Martin; Bundgaard, Henning

    2017-01-01

    Fabry disease is an X- linked inherited lysosomal storage disease caused by mutations in the GLA gene encoding the lysosomal enzyme alpha-galactosidase A (α-Gal A). The possible pathological significance of the D313Y variant in the GLA gene has not been verified and it may be a Fabry variant. Our......, and the presence in Fabry females did not significantly enhance the phenotype of a known causative mutation in the GLA gene (G271S). Our findings indicate that the D313Y variant is not causative to nor enhancing Fabry disease phenotype. The D313Y variant in the GLA gene was not disease causative in 2 Danish...... families. Investigating male family members were crucial in excluding the Fabry phenotype, and thus very important for proper genetic counceling of all family members, as well as overdiagnosing a devastating genetic disease....

  15. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome.

    Science.gov (United States)

    Yamamoto, Guilherme Lopes; Aguena, Meire; Gos, Monika; Hung, Christina; Pilch, Jacek; Fahiminiya, Somayyeh; Abramowicz, Anna; Cristian, Ingrid; Buscarilli, Michelle; Naslavsky, Michel Satya; Malaquias, Alexsandra C; Zatz, Mayana; Bodamer, Olaf; Majewski, Jacek; Jorge, Alexander A L; Pereira, Alexandre C; Kim, Chong Ae; Passos-Bueno, Maria Rita; Bertola, Débora Romeo

    2015-06-01

    Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  17. Effects of methyl jasmonate, on stevioside and rebaudioside A content and expression of the ent-Kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bert. in vitro

    Directory of Open Access Journals (Sweden)

    Mehrdad Behmanesh

    2014-08-01

    Full Text Available Glycosides are a form of secondary metabolites that consist variety compounds and in some cases can play a role in primary metabolism. Steviol is lipophilic skeleton of Stevioside and Rebaudioside A, two main glycosides of Stevia rebuadiana. Steviol glycosides which are synthesized in S.rebaudiana have important medical and nutritional values as high intensity natural sweeteners. Steviol is synthesized from Kaurenoic acid in chloroplastic Terpenoid pathway that mediated by Kaurenoic acid 13-hydroxylase. In this study, HPLC method and RT-PCR were performed for quantification of glycosides and gene expression (ent-Kaurenoic acid 13-hydroxylase respectively. Methyl jasmonate treatment (at 20 micromolar in vitro induced glycoside biosynthesis significantly (P≤0.05 whereas higher concentration of Methyl jasmonate (100 µM caused a decrease in glycoside production and growth. The most glycoside content of the plant was three days after treatment. Also Methyl jasmonate treatment caused an increase in ent-Kaurenoic 13-hydroxylase gene expression from 6 hours to 48 hours (after treatment Results showed that biosynthesis of Stevia glycosides was probably a defense mechanism against pathogens and herbivore insects. Also we found that different concentrations of Methyl jasmonate, alter the ratio between glycosides rather than the increase in glycoside contents.

  18. BRCA2 hypomorphic missense variants confer moderate risks of breast cancer

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy L.s.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calleja, Fabienne Mgr; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomaki, Kristiina; Andrulis, Irene L.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case–control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ances...

  19. New allelic variant of autosomal recessive hereditary motor and sensory neuropathy type 2S resulted from mutations in gene IGHMBP2

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2016-01-01

    Full Text Available Hereditary motor and sensory neuropathy (HMSN, Charcot–Marie–Tooth disease is a group of genetically heterogeneous disorders with more than 80 genes linked to different phenotypes, including IGHMBP2 gene responsible for HMSN type 2S (OMIM 616155. Until recently, mutations in IGHMBP2 were exclusively associated with neonatal distal spinal muscular atrophy with respiratory distress (SMARD1, OMIM 604320. A case report presents a boy with infant onset decreased distal muscle tone and weakness, distal wasting and deformation in legs and hands, areflexia and decreased sensation without respiratory involvement; at age seven he had severe fixed kypho-scoliosis. EMG revealed signs distal axonal neuropathy. The exsome sequencing confirmed the allelic variant of two compound heterozygous mutations in gene IGHMBP2: known missens mutation с.1616С>Т (р.Ser539Leu in exone 11 and a novel deletion с.2601_2602delGA in exone 13. The diagnosis of infant HMSN type 2S was confirmed. The phenotype of HMSN type 2S and its diagnostics differences between SMARD1 are discussed.

  20. [Characterisation of three polymorphisms of the tryptophan hydroxylase 2 gene in a sample of Colombian population with major depressive disorder].

    Science.gov (United States)

    Martínez-Idárraga, Adriana; Riveros-Barrera, Irene; Sánchez, Ricardo; Jaramillo, Luis Eduardo; Calvo-Gómez, José Manuel; Yunis-Londoño, Juan José

    Identify whether rs11179000, rs136494 and rs4570625 polymorphisms of the tryptophan hydroxylase 2 gene, are associated with a major depressive disorder in a sample of the Colombian population. Case-control study was conducted in which a comparison was made between subjects diagnosed with major depressive disorder at some point in adulthood or active symptoms at the time of evaluation, and subjects with no psychiatric disease. Subjects were studied in the Department of Psychiatry, Faculty of Medicine and the Institute of Genetics at the National University of Colombia. Polymorphisms were genotyped using Taqman probes in real time PCR. As well as studying the association between major depressive disorder and these (single nucleotide polymorphisms (SNPs), the association with other factors previously associated with depression were also analysed. No statistically significant association between genotypic and allelic frequencies of each polymorphism and major depressive disorder was found. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. There was no association between any polymorphism and major depressive disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  1. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome

    NARCIS (Netherlands)

    Halim, Danny; Hofstra, Robert M. W.; Signorile, Luca; Verdijk, Rob M.; van der Werf, Christine S.; Sribudiani, Yunia; Brouwer, Rutger W. W.; van IJcken, Wilfred F. J.; Dahl, Niklas; Verheij, Joke B. G. M.; Baumann, Clarisse; Kerner, John; van Bever, Yolande; Galjart, Niels; Wijnen, Rene M. H.; Tibboel, Dick; Burns, Alan J.; Muller, Franoise; Brooks, Alice S.; Alves, Maria M.

    2016-01-01

    Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin gamma-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we

  2. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.

    Science.gov (United States)

    Tee, Meng Kian; Speek, Mart; Legeza, Balázs; Modi, Bhavi; Teves, Maria Eugenia; McAllister, Janette M; Strauss, Jerome F; Miller, Walter L

    2016-10-15

    Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by hyperandrogenism and metabolic disorders. The excess androgens may be of both ovarian and adrenal origin. PCOS has a strong genetic component, and genome-wide association studies have identified several candidate genes, notably DENND1A, which encodes connecdenn 1, involved in trafficking of endosomes. DENND1A encodes two principal variants, V1 (1009 amino acids) and V2 (559 amino acids). The androgen-producing ovarian theca cells of PCOS women over-express V2. Knockdown of V2 in these cells reduces androgen production, and overexpression of V2 in normal theca cells confers upon them a PCOS phenotype of increased androgen synthesis. We report that human adrenal NCI-H295A cells express V1 and V2 mRNA and that the V2 isoform is produced by exonization of sequences in intron 20, which generates a unique exon 20A, encoding the C-terminus of V2. As in human theca cells from normal women, forced expression of V2 in NCI-H295A cells resulted in increased abundance of CYP17A1 and CYP11A1 mRNAs. We also found genetic variation in the intronic region 330 bp upstream from exon 20A, which could have the potential to drive the selective expression of V2. There was no clear association with these variants with PCOS when we analyzed genomc DNA from normal women and women with PCOS. Using minigene expression vectors in NCI-H295A cells, this variable region did not consistently favor splicing of the V2 transcript. These findings suggest increased V2 expression in PCOS theca cells is not the result of genomic sequence variation in intron 20. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Polymorphic Variants rs3088442 and rs2292334 in the Organic Cation Transporter 3 (OCT3) Gene and Susceptibility Against Type 2 Diabetes: Role of their Interaction.

    Science.gov (United States)

    Mahrooz, Abdolkarim; Alizadeh, Ahad; Hashemi-Soteh, Mohammad Bagher; Ghaffari-Cherati, Maryam; Hosseyni-Talei, Seyyedeh Raheleh

    2017-02-01

    In this study, we investigated whether two common variants (rs3088442G>A and rs2292334G>A) in the organic cation transporter 3 (OCT3) gene, a high-capacity transporter widely expressed in various tissues, affect susceptibility to type 2 diabetes (T2D) in patients newly diagnosed with T2D. We performed a study with 150 newly diagnosed patients with T2D and 152 controls. The genetic analyses were performed using the restricted fragment length polymorphism (RFLP) after PCR amplification. For the rs3088442G>A variant, A allele carriers had a significantly lower odds ratio (OR) vs. GG homozygotes in the BMI A variant was associated with a decreased risk of T2D (OR = 0.016, p A in the 3'-untranslated region of the OCT3 gene in susceptibility to T2D, and that the protective role is maintained in the presence of risky alleles of the variant rs2292334G>A. The association of the A allele of rs3088442G>A with T2D become weaker in obese people than that of non-obese. If confirmed in other populations, the rs3088442G>A variant as a genetic marker may potentially assist in the identification of individuals at an increased risk of T2D. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat.

    Directory of Open Access Journals (Sweden)

    Keijiro Mizukami

    Full Text Available Cystinuria is a classical inborn error of metabolism characterized by a selective proximal renal tubular defect affecting cystine, ornithine, lysine, and arginine (COLA reabsorption, which can lead to uroliths and urinary obstruction. In humans, dogs and mice, cystinuria is caused by variants in one of two genes, SLC3A1 and SLC7A9, which encode the rBAT and bo,+AT subunits of the bo,+ basic amino acid transporter system, respectively. In this study, exons and flanking regions of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA of cats (Felis catus with COLAuria and cystine calculi. Relative to the Felis catus-6.2 reference genome sequence, DNA sequences from these affected cats revealed 3 unique homozygous SLC7A9 missense variants: one in exon 5 (p.Asp236Asn from a non-purpose-bred medium-haired cat, one in exon 7 (p.Val294Glu in a Maine Coon and a Sphinx cat, and one in exon 10 (p.Thr392Met from a non-purpose-bred long-haired cat. A genotyping assay subsequently identified another cystinuric domestic medium-haired cat that was homozygous for the variant originally identified in the purebred cats. These missense variants result in deleterious amino acid substitutions of highly conserved residues in the bo,+AT protein. A limited population survey supported that the variants found were likely causative. The remaining 2 sequenced domestic short-haired cats had a heterozygous variant at a splice donor site in intron 10 and a homozygous single nucleotide variant at a branchpoint in intron 11 of SLC7A9, respectively. This study identifies the first SLC7A9 variants causing feline cystinuria and reveals that, as in humans and dogs, this disease is genetically heterogeneous in cats.

  5. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes.

    Science.gov (United States)

    Rosenthal, E T; Bowles, K R; Pruss, D; van Kan, A; Vail, P J; McElroy, H; Wenstrup, R J

    2015-12-01

    Based on current consensus guidelines and standard practice, many genetic variants detected in clinical testing are classified as disease causing based on their predicted impact on the normal expression or function of the gene in the absence of additional data. However, our laboratory has identified a subset of such variants in hereditary cancer genes for which compelling contradictory evidence emerged after the initial evaluation following the first observation of the variant. Three representative examples of variants in BRCA1, BRCA2 and MSH2 that are predicted to disrupt splicing, prematurely truncate the protein, or remove the start codon were evaluated for pathogenicity by analyzing clinical data with multiple classification algorithms. Available clinical data for all three variants contradicts the expected pathogenic classification. These variants illustrate potential pitfalls associated with standard approaches to variant classification as well as the challenges associated with monitoring data, updating classifications, and reporting potentially contradictory interpretations to the clinicians responsible for translating test outcomes to appropriate clinical action. It is important to address these challenges now as the model for clinical testing moves toward the use of large multi-gene panels and whole exome/genome analysis, which will dramatically increase the number of genetic variants identified. © 2015 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. © 2015 WILEY PERIODICALS, INC.

  7. Common Genetic Variant of INSIG2 Gene rs7566605 Polymorphism Is Associated with Severe Obesity in North India

    OpenAIRE

    Prakash, Jai; Mittal, Balraj; Srivastava, Apurva; Awasthi, Shally; Srivastava, Pranjal; Srivastava, Neena

    2017-01-01

    Background: Obesity is a very common disorder resulting from an imbalance between food intake and energy expenditure, and it has a substantial impact on the development of chronic diseases. The aim of this study was to examine the association of INSIG2 (rs7566605) gene polymorphism with obesity and obesity associated phenotypes in North Indian subjects. Methods: The variants were investigated for association in 642 obese and non-obese individuals. The genotyping of INSIG2 (rs7566605) single n...

  8. Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del

    2010-01-01

    Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882

  9. Functional non-synonymous variants of ABCG2 and gout risk.

    Science.gov (United States)

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Associations between mutations and a VNTR in the human phenylalanine hydroxylase gene

    Energy Technology Data Exchange (ETDEWEB)

    Goltsov, A.A.; Eisensmith, R.C.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (United States)); Konecki, D.S.; Lichter-Konecki, U.

    1992-09-01

    The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiples of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between theses alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations. 32 refs., 3 figs., 3 tabs.

  11. Analysis of IL12B Gene Variants in Inflammatory Bowel Disease

    Science.gov (United States)

    Wagner, Johanna; Olszak, Torsten; Fries, Christoph; Tillack, Cornelia; Friedrich, Matthias; Beigel, Florian; Stallhofer, Johannes; Steib, Christian; Wetzke, Martin; Göke, Burkhard; Ochsenkühn, Thomas; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2012-01-01

    Background IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. Methodology/Principal Findings We analyzed IL12B gene variants regarding association with Crohn's disease (CD) and ulcerative colitis (UC). Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695). Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01–1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99–1.31], p = 0.066) and UC (OR 1.18 [0.97–1.43], p = 0.092). CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10−5; OR = 2.84, 95% CI 1.66–4.84), while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14–0.92). In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694) in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05) but there was no epistasis between IL23R and IL12B variants. Conclusions/Significance The IL12B SNP rs6887695 modulates

  12. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  13. The Analysis Mutation Of The CARD 15 Gene Variants In Chronic Periodontis

    OpenAIRE

    Bahruddin Thalib, Dr.drg. M.Kes,Sp.Pros.

    2014-01-01

    As Conclusion, CARD 15 gene mutation with chronic periodontitis was found to have heterozygote mutation and homozygote mutation variants, and also found genetics variation that changed the composition of C??? T nucleotide at codon 802 in exon 4 amino acid changed from alanine to valine. Purpose of This study was to determine the variant of card 15 gene mutation with periodontitis chronic.

  14. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... known as vitamin D 1α-hydroxylase deficiency or pseu- dovitamin D ... amplicons of the 378 bp were digested with restriction enzyme PvuI and ... have no enzymatic activity; a missense mutation c.473T>C. (p.L158P) in the ...

  15. A role for coding functional variants in HNF4A in type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Jafar-Mohammadi, B; Groves, C J; Gjesing, A P

    2011-01-01

    Rare mutations in the gene HNF4A, encoding the transcription factor hepatocyte nuclear factor 4α (HNF-4A), account for ~5% of cases of MODY and more frequent variants in this gene may be involved in multifactorial forms of diabetes. Two low-frequency, non-synonymous variants in HNF4A (V255M, minor...... allele frequency [MAF] ~0.1%; T130I, MAF ~3.0%)-known to influence downstream HNF-4A target gene expression-are of interest, but previous type 2 diabetes association reports were inconclusive. We aimed to evaluate the contribution of these variants to type 2 diabetes susceptibility through large...

  16. Common type 2 diabetes risk gene variants associate with gestational diabetes

    DEFF Research Database (Denmark)

    Lauenborg, Jeannet; Grarup, Niels; Damm, Peter

    2009-01-01

    Objective: We aimed to examine the association between gestational diabetes (GDM) and eleven recently identified type 2 diabetes susceptibility loci. Research Design and Methods: Type 2 diabetes risk variants in TCF7L2, CDKAL1, SLC30A8, HHEX/IDE, CDKN2A/2B, IGF2BP2, FTO, TCF2, PPARG, KCNJ11 and WFS......1 loci were genotyped in a cohort of women with a history of GDM (n=283) and in glucose tolerant women of the population-based Inter99 cohort (n=2,446). Results: All the risk alleles in the 11 examined type 2 diabetes risk variants showed an odds ratio greater than 1 for the GDM group compared...... previously proven type 2 diabetes risk alleles equals the findings from association studies on type 2 diabetes. This supports the hypothesis that GDM and type 2 diabetes are two of the same entity....

  17. Targeted deep resequencing identifies coding variants in the PEAR1 gene that play a role in platelet aggregation.

    Directory of Open Access Journals (Sweden)

    Yoonhee Kim

    Full Text Available Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1 gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13 selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate. Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5% were noted in African Americans compared to European Americans (108 vs. 45. The common intronic GWAS-identified variant (rs12041331 demonstrated the most significant association signal in African Americans (p = 4.020×10(-4; no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331. Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965 supports the results noted in the sequenced discovery sample: p = 3.56×10(-4, 2.27×10(-7, 5.20×10(-5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans

  18. Combined analysis of 19 common validated type 2 diabetes susceptibility gene variants shows moderate discriminative value and no evidence of gene-gene interaction

    DEFF Research Database (Denmark)

    Sparsø, T; Grarup, N; Andreasen, C.

    2009-01-01

    study; and additional type 2 diabetic patients and glucose-tolerant individuals. The case-control studies involved 4,093 type 2 diabetic patients and 5,302 glucose-tolerant individuals. RESULTS: Single-variant analyses demonstrated allelic odds ratios ranging from 1.04 (95% CI 0.98-1.11) to 1.33 (95% CI...... analysis of the 19 validated variants enables detection of subgroups at substantially increased risk of type 2 diabetes; however, the discrimination between glucose-tolerant and type 2 diabetes individuals is still too inaccurate to achieve clinical value.......AIMS/HYPOTHESIS: The list of validated type 2 diabetes susceptibility variants has recently been expanded from three to 19. The variants identified are common and have low penetrance in the general population. The aim of the study is to investigate the combined effect of the 19 variants by applying...

  19. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  20. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  1. A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an ehlers-danlos VIA patient

    NARCIS (Netherlands)

    Walker, L.C.; Overstreet, M.A.; Siddiqui, A.; Paepe, A. de; Ceylaner, G.; Malfait, F.; Symoens, S.; Atsawasuwan, P.; Yamauchi, M.; Ceylaner, S.; Bank, R.A.; Yeowell, H.N.

    2005-01-01

    The clinical diagnosis of a patient with the phenotype of Ehlers-Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360 → G in exon 13 of the

  2. Neurexin gene family variants as risk factors for autism spectrum disorder.

    Science.gov (United States)

    Wang, Jia; Gong, Jianhua; Li, Li; Chen, Yanlin; Liu, Lingfei; Gu, HuaiTing; Luo, Xiu; Hou, Fang; Zhang, Jiajia; Song, Ranran

    2018-01-01

    Increasing evidence suggests that abnormal synaptic function leads to neuronal developmental disorders and is an important component of the etiology of autism spectrum disorder (ASD). Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals. Thus, neurexins are attractive candidate genes for autism. Since gene families have greater power to reveal genetic association than single genes, we designed this case-control study to investigate six genetic variants in three neurexin genes (NRXN1, NRXN2, and NRXN3) in a Chinese population including 529 ASD patients and 1,923 healthy controls. We found that two SNPs were significantly associated with ASD after false discovery rate (FDR) adjustment for multiple comparisons. The NRXN2 rs12273892 polymorphism T allele and AT genotype were significantly associated with increased risk of ASD (respectively: OR = 1.328, 95% CI = 1.133-1.557, P Autism Res 2018, 11: 37-43. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is highly heritable, and studies have found a number of candidate genes that might contribute to ASD. Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals, and they play an important role in normal brain development and become candidate genes for autism. The purpose of our study is to explore the association between variants of the neurexins gene family and ASD in a Chinese population through a case-control study. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease.

    Science.gov (United States)

    Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P; Bao, Xiuliang; Labrias, Philippe R; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R; Bressman, Susan; Cheifetz, Adam S; Clark, Lorraine N; Daly, Mark J; Desnick, Robert J; Duerr, Richard H; Katz, Seymour; Lencz, Todd; Myers, Richard H; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D; Segal, Anthony W; Scott, William K; Silverberg, Mark S; Vance, Jeffery M; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe'er, Itsik; Ioannou, Yiannis; McGovern, Dermot P B; Yue, Zhenyu; Schadt, Eric E; Cho, Judy H; Peter, Inga

    2018-01-10

    Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10 -10 ) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10 -8 ). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice1[C][W][OA

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-01-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice. PMID:20852032

  5. A novel variant in the SLC12A1 gene in two families with antenatal Bartter syndrome.

    Science.gov (United States)

    Breinbjerg, Anders; Siggaard Rittig, Charlotte; Gregersen, Niels; Rittig, Søren; Hvarregaard Christensen, Jane

    2017-01-01

    Bartter syndrome is an autosomal-recessive inherited disease in which patients present with hypokalaemia and metabolic alkalosis. We present two apparently nonrelated cases with antenatal Bartter syndrome type I, due to a novel variant in the SLC12A1 gene encoding the bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2 in the thick ascending limb of the loop of Henle. Blood samples were received from the two cases and 19 of their relatives, and deoxyribonucleic acid was extracted. The coding regions of the SLC12A1 gene were amplified using polymerase chain reaction, followed by bidirectional direct deoxyribonucleic acid sequencing. Each affected child in the two families was homozygous for a novel inherited variant in the SLC12A1gene, c.1614T>A. The variant predicts a change from a tyrosine codon to a stop codon (p.Tyr538Ter). The two cases presented antenatally and at six months of age, respectively. The two cases were homozygous for the same variant in the SLC12A1 gene, but presented clinically at different ages. This could eventually be explained by the presence of other gene variants or environmental factors modifying the phenotypes. The phenotypes of the patients were similar to other patients with antenatal Bartter syndrome. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  7. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  8. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    DEFF Research Database (Denmark)

    hart, Leen M; Hansen, Torben; Rietveld, Ingrid

    2005-01-01

    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase...... gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations...... in the Netherlands and Denmark. A -109 g/a variant was not associated with type 2 diabetes. Allele frequencies for the other variant, H324Q, were 3.5% in type 2 diabetic and 2.7% in control subjects, respectively. The common odds ratio across all four studies was 1.40 (95% CI 1.12-1.76), P = 0.004. There were...

  9. Frequency of the Hemochromatosis Gene (HFE Variants in a Jordanian Arab Population and in Diabetics from the Same Region

    Directory of Open Access Journals (Sweden)

    Asem Alkhateeb

    2009-01-01

    Full Text Available Hereditary HFE-linked hemochromatosis is a frequent recessive disorder among individuals of northern European ancestry. The clinical characteristic of this disease is the gradual accumulation of iron in internal organs, which ultimately may lead to organ damage and death. Three allelic variants of HFE gene have been correlated with hereditary hemochromatosis: C282Y is significantly associated with hereditary hemochromatosis in populations of Celtic origin, H63D and S65C are associated with milder form of iron overload. In this study we performed mutation analysis to identify allele frequency of the three variants of HFE gene in Jordanian Arab population, to assess deviations of these frequencies from those detected elsewhere, and to determine if there is an increased frequency of these variants in a diabetic population (Type 2 diabetes from the same area. DNA was extracted from blood samples of 440 individuals attending King Abdullah University Hospital for ambulatory services. We used polymerase chain reaction (PCR to amplify exons 2 and 4 of the HFE gene then restriction fragment length polymorphism (RFLP method to detect the variants. There were neither homozygous nor heterozygous for C282Y variant. For the H63D variant, 0.68% were homozygous and 21.1% were heterozygous. For the S65C variant, there were no homozygous and 0.23% were heterozygous. Allelic frequencies were, 0%, 11.25%, and 0.11% for C282Y, H63D, and S65C, respectively. Our samples were subdivided into two categories of type 2 diabetic (89 cases and controls (blood donors, 204 cases and compared with regard to the H63D variant. Both groups did not have homozygous H63D variant. H63D heterozygous in diabetics were 23.60% and in blood donor controls 22.55%. Allelic frequency of the mutant H63D allele was 11.80% in diabetics and 11.27% for the blood donor controls. This is the first study to show the frequency of the three hemochromatosis gene variants in Jordan with the interesting

  10. Interactions among variants in TXA2R, P2Y12 and GPIIIa are associated with carotid plaque vulnerability in Chinese population.

    Science.gov (United States)

    Yi, Xingyang; Lin, Jing; Luo, Hua; Zhou, Ju; Zhou, Qiang; Wang, Yanfen; Wang, Chun

    2018-04-03

    The associations between variants in platelet activation-relevant genes and carotid plaque vulnerability are not fully understood. The aim of the present study was to investigate the associations of the variants in platelet activation-relevant genes and interactions among these variants with carotid plaque vulnerability. There were no significant differences in the frequencies of genotypes of the 11 variants between patients and controls. Among 396 patients, 102 patients had not carotid plaque, 106 had VP, and 188 had SP. The 11 variants were not independently associated with risk of carotid plaque vulnerability after adjusting for potential confounding variables. However, the GMDR analysis showed that there were synergistic effects of gene-gene interactions among TXA2Rr s1131882, GPIIIa rs2317676 and P2Y12 rs16863323 on carotid plaque vulnerability. The high-risk interactions among the three variants were associated with high platelet activation, and independently associated with the risk of carotid plaque vulnerability. Eleven variants in platelet activation-relevant genes were examined using mass spectrometry methods in 396 ischemic stroke patients and 291controls. Platelet-leukocyte aggregates and platelet aggregation were also measured. Carotid plaques were assessed by B-mode ultrasound. According to the results of ultrasound, the patients were stratified into three groups: non-plaque group, vulnerable plaque (VP) group and stable plaque (SP) group. Furthermore, gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) methods. The rs1131882, rs2317676, and rs16863323 three-loci interactions may confer a higher risk of carotid plaque vulnerability, and might be potential markers for plaque instability.

  11. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  12. The prevalence of PAI-1 4G/5G gene variant in Serbian population

    Directory of Open Access Journals (Sweden)

    Đorđević Valentina

    2013-01-01

    Full Text Available Introduction: Plasminogen activator inhibitor 1 (PAI-1 has a major role in inhibition of firinolysis and normal haemostasis. The presence of the PAI-1 4G/4G genotype leads to increased expression of PAI-1. High blood level of PAI-1 is associated with many diseases such as thrombosis, cerebral insult, myocardial infarction, pregnancy loss, preeclampsia, insulin resistance, type 2 diabetes, breast cancer and asthma. In this study, the prevalence of PAI-1 4G/5G gene variant was determined in healthy subjects from Serbian population. Methods: The study was carried out in a group of 210 healthy subjects (105 women and 105 men. The presence of PAI-1 4G/5G gene variant was detected by PCR-RFLP analysis. Results: The prevalence of PAI-1 4G/4G genotype was 34.76% and it was increased compared to PAI-1 5G/5G genotype (19.05%. The most frequent was PAI-1 4G/5G genotype (46.19%. Allelic frequency for 4G allele was higher (0.58 compared to 5G allele (0.42. Conclusions: The prevalence of PAI-1 4G/5G gene variant in Serbian population is similar to the neighboring populations. Results of this study represent the first data for Serbian population. This study could be useful for further research where the role of PAI-1 4G/5G gene variant will be assessed in the pathogenesis of many diseases.

  13. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases.

    Directory of Open Access Journals (Sweden)

    Xia Deng

    Full Text Available BACKGROUND: Nodal/TGF-Lefty signaling pathway has important effects at early stages of differentiation of human embryonic stem cells in directing them to differentiate into different embryonic lineages. LEFTY, one of transforming growth factors in the Nodal/TGF-Lefty signaling pathway, plays an important role in the development of heart. The aim of this work was to find evidence on whether Lefty variations are associated with congenital heart diseases (CHD. METHODS: We sequenced the Lefty gene for 230 Chinese Han CHD patients and evaluated SNPs rs2295418, rs360057 and g.G169A, which are located within the translated regions of the genes. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0. The Hardy-Weinberg equilibrium test of the population was carried out using online software OEGE, and multiple-sequence alignments of LEFTY proteins were carried out using the Vector NTI software. RESULTS: Two heterozygous variants in Lefty1 gene, g.G169A and g.A1035C, and one heterozygous variant in Lefty2 gene, g.C925A, were identified. Statistical analyses showed that the rs2295418 (g.C925A variant in Lefty2 gene was obviously associated with the risk of CHD (P value = 0.0160.05. CONCLUSIONS: The SNP rs2295418 in the Lefty2 gene is associated with CHD in Chinese Han populations.

  14. Friendships Moderate an Association Between a Dopamine Gene Variant and Political Ideology.

    Science.gov (United States)

    Settle, Jaime E; Dawes, Christopher T; Christakis, Nicholas A; Fowler, James H

    2010-01-01

    Scholars in many fields have long noted the importance of social context in the development of political ideology. Recent work suggests that political ideology also has a heritable component, but no specific gene variant or combination of variants associated with political ideology have so far been identified. Here, we hypothesize that individuals with a genetic predisposition toward seeking out new experiences will tend to be more liberal, but only if they are embedded in a social context that provides them with multiple points of view. Using data from the National Longitudinal Study of Adolescent Health, we test this hypothesis by investigating an association between self-reported political ideology and the 7R variant of the dopamine receptor D4 gene (DRD4), which has previously been associated with novelty seeking. Among those with DRD4-7R, we find that the number of friendships a person has in adolescence is significantly associated with liberal political ideology. Among those without the gene variant, there is no association. This is the first study to elaborate a specific gene-environment interaction that contributes to ideological self-identification, and it highlights the importance of incorporating both nature and nurture into the study of political preferences.

  15. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura

    Directory of Open Access Journals (Sweden)

    Sundholm James

    2004-02-01

    Full Text Available Abstract Background The C677T variant in the methylenetetrahydrofolate reductase (MTHFR gene is associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Migraine, with and without aura (MA and MO, is a prevalent and complex neurovascular disorder that may also be affected by genetically influenced hyperhomocysteinaemia. To determine whether the C677T variant in the MTHFR gene is associated with migraine susceptibility we utilised unrelated and family-based case-control study designs. Methods A total of 652 Caucasian migraine cases were investigated in this study. The MTHFR C677T variant was genotyped in 270 unrelated migraine cases and 270 controls as well as 382 affected subjects from 92 multiplex pedigrees. Results In the unrelated case-control sample we observed an over-representation of the 677T allele in migraine patients compared to controls, specifically for the MA subtype (40% vs. 33% (χ2 = 5.70, P = 0.017. The Armitage test for trend indicated a significant dosage effect of the risk allele (T for MA (χ2 = 5.72, P = 0.017. This linear trend was also present in the independent family-based sample (χ2 = 4.25, Padjusted = 0.039. Overall, our results indicate that the T/T genotype confers a modest, yet significant, increase in risk for the MA subtype (odds ratio: 2.0 – 2.5. No increased risk for the MO subtype was observed (P > 0.05. Conclusions In Caucasians, the C677T variant in the MTHFR gene influences susceptibility to MA, but not MO. Investigation into the enzyme activity of MTHFR and the role of homocysteine in the pathophysiology of migraine is warranted.

  16. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women.

    Science.gov (United States)

    Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza

    2018-02-28

    Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays.  The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.

  17. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  18. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  19. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  20. Heterozygous M1V variant of ELA-2 gene mutation associated with G-CSF refractory severe congenital neutropenia.

    Science.gov (United States)

    Setty, Bhuvana A; Yeager, Nicholas D; Bajwa, Rajinder P

    2011-09-01

    Severe congenital neutropenia is an autosomal recessive disorder characterized by maturation arrest at the promyelocyte/myelocyte phase in the bone marrow, absolute neutrophil count ELA-2 have been described. We report the case of a premature male infant with congenital neutropenia, associated with multiple infections, refractory to treatment with granulocyte colony stimulating factor who subsequently underwent matched sibling donor stem-cell transplant. He was found to be heterozygous for the M1V variant of the ELA-2 gene that we postulate to be causative for his severe neutropenia Copyright © 2011 Wiley-Liss, Inc.

  1. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-09-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3..-->..qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of /sup 125/I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22..-->..12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12.

  2. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    International Nuclear Information System (INIS)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3→qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of 125 I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22→12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12

  3. Association between genetic variants of the clock gene and obesity and sleep duration.

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  4. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis.

    Science.gov (United States)

    Furlan, Larissa Lazzarini; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia; Salomão Junior, João Batista; Souza, Dorotéia Rossi Silva; Marson, Fernando Augusto Lima

    Interleukin 8 protein promotes inflammatory responses, even in airways. The presence of interleukin 8 gene variants causes altered inflammatory responses and possibly varied responses to inhaled bronchodilators. Thus, this study analyzed the interleukin 8 variants (rs4073, rs2227306, and rs2227307) and their association with the response to inhaled bronchodilators in cystic fibrosis patients. Analysis of interleukin 8 gene variants was performed by restriction fragment length polymorphism of polymerase chain reaction. The association between spirometry markers and the response to inhaled bronchodilators was evaluated by Mann-Whitney and Kruskal-Wallis tests. The analysis included all cystic fibrosis patients, and subsequently patients with two mutations in the cystic fibrosis transmembrane conductance regulator gene belonging to classes I to III. This study included 186 cystic fibrosis patients. There was no association of the rs2227307 variant with the response to inhaled bronchodilators. The rs2227306 variant was associated with FEF 50% in the dominant group and in the group with two identified mutations in the cystic fibrosis transmembrane conductance regulator gene. The rs4073 variant was associated with spirometry markers in four genetic models: co-dominant (FEF 25-75% and FEF 75% ), dominant (FEV 1 , FEF 50% , FEF 75% , and FEF 25-75% ), recessive (FEF 75% and FEF 25-75% ), and over-dominant (FEV 1 /FVC). This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  6. MACF1 gene variant rs2296172 is associated with type 2 diabetes susceptibility in the Bania population group of Punjab - India

    Directory of Open Access Journals (Sweden)

    Varun Sharma

    2017-10-01

    Full Text Available Microtubule Actin Cross linking Factor 1 (MACF1 gene variant rs2296172 has been associated with Type 2 Diabetes (T2D. However, this variant has never been evaluated as such in Indian populations. We replicated this variant in pooled population of Northwest India and specifically in an endogamous caste group, Bania  of Punjab, India. We genotyped variant rs2296172 by Taqman allele discrimination assay in 651 T2D patients and in 568 healthy controls from Northwest India. The association of the SNP with T2D was evaluated by case - control association study design. The SNP rs2296172 of MACF1 was found to be significantly associated with T2D with p value = 0.009 in Northwest Indian population but allelic distribution was observed to be deviated from Hardy-Weinberg equilibrium (HWE. Assuming population stratification the most plausible cause, we further evaluated the samples belonging to Bania caste group from Punjab, India. We observed significant association of this SNP with T2D with OR = 1.71 (1.03-2.83 at 95%CI, (p =0.03 and sample set following HWE. MACF1 variant rs2296172 was found to be associated with T2D in endogamous ethnic population group (Bania of Punjab, India. Deviation from Hardy-Weinberg equilibrium in the pooled population group from Northwest India, underlines that Indian population sub structure exists and may have implications in association studies. Thus, ideal case - control association study design in Indian populations is to evaluate endogamous population groups rather than the conventional practice of pooling samples based on geography or linguistic affinities only.

  7. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  8. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Pipper, Christian Bressen; Tavendale, Roger

    2010-01-01

    Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was one of the discovery cohorts of the association between eczema and variants in the filaggrin coding gene (FLG). Here, we study the FLG-associated risk of asthma symptoms in early life and describe the temporal relationship in the de......Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was one of the discovery cohorts of the association between eczema and variants in the filaggrin coding gene (FLG). Here, we study the FLG-associated risk of asthma symptoms in early life and describe the temporal relationship...... diagnosed prospectively by the investigators. FLG variants R501X and Del4 were determined in 382 Caucasians. Filaggrin variants increased risk of developing recurrent wheeze, asthma and asthma exacerbations (hazard ratio 1.82 [1.06-3.12], p = 0.03), which was expressed within the first 1.5 yr of life...... fully in the first year of life (point prevalence ratio for age 0-5 was 1.75 [1.29-2.37]; p-value = 0.0003) contrasting the increased risk of specific sensitization by age 4 (odds ratio 3.52 [1.72-7.25], p = 0.0007) but not age 1.5. This study describes a FLG-associated pattern of atopic diseases...

  9. MSX1 gene variant - its presence in tooth absence - a case control genetic study.

    Science.gov (United States)

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-10-01

    Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. The RESULTS showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6.

  10. Studies of metabolic phenotypic correlates of 15 obesity associated gene variants

    DEFF Research Database (Denmark)

    Sandholt, Camilla Helene; Vestmar, Marie Aare; Bille, Dorthe Sadowa

    2011-01-01

    associate with type 2 diabetes and to elucidate potential underlying metabolic mechanisms. Methods: 15 gene variants in 14 loci including TMEM18 (rs7561317), SH2B1 (rs7498665), KCTD15 (rs29941), NEGR1 (rs2568958), ETV5 (rs7647305), BDNF (rs4923461, rs925946), SEC16B (rs10913469), FAIM2 (rs7138803), GNPDA2......, which could suggest neuronal and peripheral distinctive ways of actions for the protein. SH2B1 rs7498665 associated with type 2 diabetes independently of BMI....

  11. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    Directory of Open Access Journals (Sweden)

    Douglas R Smith

    Full Text Available Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1, were found to be significantly associated with pain sensitivity (especially migraine, sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  12. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study.

    Science.gov (United States)

    Dressen, Amy; Abbas, Alexander R; Cabanski, Christopher; Reeder, Janina; Ramalingam, Thirumalai R; Neighbors, Margaret; Bhangale, Tushar R; Brauer, Matthew J; Hunkapiller, Julie; Reeder, Jens; Mukhyala, Kiran; Cuenco, Karen; Tom, Jennifer; Cowgill, Amy; Vogel, Jan; Forrest, William F; Collard, Harold R; Wolters, Paul J; Kropski, Jonathan A; Lancaster, Lisa H; Blackwell, Timothy S; Arron, Joseph R; Yaspan, Brian L

    2018-06-08

    Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to

  13. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease

    NARCIS (Netherlands)

    Robak, L.A.; Jansen, I.E.; Rooij, J van; Uitterlinden, A.G.; Kraaij, R.; Jankovic, J.; Heutink, P.; Shulman, J.M.; Bloem, B.; Post, B.; Scheffer, H.; Warrenburg, B.P.C. van de; et al.,

    2017-01-01

    Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The

  14. HFE p.C282Y gene variant is associated with varicose veins in Russian population.

    Science.gov (United States)

    Sokolova, Ekaterina A; Shadrina, Alexandra S; Sevost'ianova, Kseniya S; Shevela, Andrey I; Soldatsky, Evgenii Yu; Seliverstov, Evgenii I; Demekhova, Marina Yu; Shonov, Oleg A; Ilyukhin, Evgenii A; Smetanina, Mariya A; Voronina, Elena N; Zolotukhin, Igor A; Filipenko, Maxim L

    2016-08-01

    Recently, the association of polymorphism rs1800562 (p.C282Y) in the hemochromatosis (HFE) gene with the increased risk of venous ulceration was shown. We hypothesized that HFE gene polymorphism might be involved not only in ulceration process, but also in susceptibility to primary varicose veins. We genotyped HFE p.C282Y (rs1800562) and p.H63D (rs1799945) variants in patients with primary varicose veins (n = 463) and in the control group (n = 754). In our study, p.282Y variant (rs1800562 A allele) was significantly associated with the risk of varicose veins (OR 1.79, 95 % CI = 1.11-2.89, P = 0.02). A borderline significant reverse association of p.63D variant (rs1799945 G allele) with venous leg ulcer development was revealed in Russians (OR 0.25, 95 % CI = 0.06-1.00, P = 0.05), but not in the meta-analysis (P = 0.56). We conclude that the HFE gene polymorphism can affect the risk of developing primary varicose veins.

  15. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease.

    Science.gov (United States)

    Sims, Rebecca; van der Lee, Sven J; Naj, Adam C; Bellenguez, Céline; Badarinarayan, Nandini; Jakobsdottir, Johanna; Kunkle, Brian W; Boland, Anne; Raybould, Rachel; Bis, Joshua C; Martin, Eden R; Grenier-Boley, Benjamin; Heilmann-Heimbach, Stefanie; Chouraki, Vincent; Kuzma, Amanda B; Sleegers, Kristel; Vronskaya, Maria; Ruiz, Agustin; Graham, Robert R; Olaso, Robert; Hoffmann, Per; Grove, Megan L; Vardarajan, Badri N; Hiltunen, Mikko; Nöthen, Markus M; White, Charles C; Hamilton-Nelson, Kara L; Epelbaum, Jacques; Maier, Wolfgang; Choi, Seung-Hoan; Beecham, Gary W; Dulary, Cécile; Herms, Stefan; Smith, Albert V; Funk, Cory C; Derbois, Céline; Forstner, Andreas J; Ahmad, Shahzad; Li, Hongdong; Bacq, Delphine; Harold, Denise; Satizabal, Claudia L; Valladares, Otto; Squassina, Alessio; Thomas, Rhodri; Brody, Jennifer A; Qu, Liming; Sánchez-Juan, Pascual; Morgan, Taniesha; Wolters, Frank J; Zhao, Yi; Garcia, Florentino Sanchez; Denning, Nicola; Fornage, Myriam; Malamon, John; Naranjo, Maria Candida Deniz; Majounie, Elisa; Mosley, Thomas H; Dombroski, Beth; Wallon, David; Lupton, Michelle K; Dupuis, Josée; Whitehead, Patrice; Fratiglioni, Laura; Medway, Christopher; Jian, Xueqiu; Mukherjee, Shubhabrata; Keller, Lina; Brown, Kristelle; Lin, Honghuang; Cantwell, Laura B; Panza, Francesco; McGuinness, Bernadette; Moreno-Grau, Sonia; Burgess, Jeremy D; Solfrizzi, Vincenzo; Proitsi, Petra; Adams, Hieab H; Allen, Mariet; Seripa, Davide; Pastor, Pau; Cupples, L Adrienne; Price, Nathan D; Hannequin, Didier; Frank-García, Ana; Levy, Daniel; Chakrabarty, Paramita; Caffarra, Paolo; Giegling, Ina; Beiser, Alexa S; Giedraitis, Vilmantas; Hampel, Harald; Garcia, Melissa E; Wang, Xue; Lannfelt, Lars; Mecocci, Patrizia; Eiriksdottir, Gudny; Crane, Paul K; Pasquier, Florence; Boccardi, Virginia; Henández, Isabel; Barber, Robert C; Scherer, Martin; Tarraga, Lluis; Adams, Perrie M; Leber, Markus; Chen, Yuning; Albert, Marilyn S; Riedel-Heller, Steffi; Emilsson, Valur; Beekly, Duane; Braae, Anne; Schmidt, Reinhold; Blacker, Deborah; Masullo, Carlo; Schmidt, Helena; Doody, Rachelle S; Spalletta, Gianfranco; Longstreth, W T; Fairchild, Thomas J; Bossù, Paola; Lopez, Oscar L; Frosch, Matthew P; Sacchinelli, Eleonora; Ghetti, Bernardino; Yang, Qiong; Huebinger, Ryan M; Jessen, Frank; Li, Shuo; Kamboh, M Ilyas; Morris, John; Sotolongo-Grau, Oscar; Katz, Mindy J; Corcoran, Chris; Dunstan, Melanie; Braddel, Amy; Thomas, Charlene; Meggy, Alun; Marshall, Rachel; Gerrish, Amy; Chapman, Jade; Aguilar, Miquel; Taylor, Sarah; Hill, Matt; Fairén, Mònica Díez; Hodges, Angela; Vellas, Bruno; Soininen, Hilkka; Kloszewska, Iwona; Daniilidou, Makrina; Uphill, James; Patel, Yogen; Hughes, Joseph T; Lord, Jenny; Turton, James; Hartmann, Annette M; Cecchetti, Roberta; Fenoglio, Chiara; Serpente, Maria; Arcaro, Marina; Caltagirone, Carlo; Orfei, Maria Donata; Ciaramella, Antonio; Pichler, Sabrina; Mayhaus, Manuel; Gu, Wei; Lleó, Alberto; Fortea, Juan; Blesa, Rafael; Barber, Imelda S; Brookes, Keeley; Cupidi, Chiara; Maletta, Raffaele Giovanni; Carrell, David; Sorbi, Sandro; Moebus, Susanne; Urbano, Maria; Pilotto, Alberto; Kornhuber, Johannes; Bosco, Paolo; Todd, Stephen; Craig, David; Johnston, Janet; Gill, Michael; Lawlor, Brian; Lynch, Aoibhinn; Fox, Nick C; Hardy, John; Albin, Roger L; Apostolova, Liana G; Arnold, Steven E; Asthana, Sanjay; Atwood, Craig S; Baldwin, Clinton T; Barnes, Lisa L; Barral, Sandra; Beach, Thomas G; Becker, James T; Bigio, Eileen H; Bird, Thomas D; Boeve, Bradley F; Bowen, James D; Boxer, Adam; Burke, James R; Burns, Jeffrey M; Buxbaum, Joseph D; Cairns, Nigel J; Cao, Chuanhai; Carlson, Chris S; Carlsson, Cynthia M; Carney, Regina M; Carrasquillo, Minerva M; Carroll, Steven L; Diaz, Carolina Ceballos; Chui, Helena C; Clark, David G; Cribbs, David H; Crocco, Elizabeth A; DeCarli, Charles; Dick, Malcolm; Duara, Ranjan; Evans, Denis A; Faber, Kelley M; Fallon, Kenneth B; Fardo, David W; Farlow, Martin R; Ferris, Steven; Foroud, Tatiana M; Galasko, Douglas R; Gearing, Marla; Geschwind, Daniel H; Gilbert, John R; Graff-Radford, Neill R; Green, Robert C; Growdon, John H; Hamilton, Ronald L; Harrell, Lindy E; Honig, Lawrence S; Huentelman, Matthew J; Hulette, Christine M; Hyman, Bradley T; Jarvik, Gail P; Abner, Erin; Jin, Lee-Way; Jun, Gyungah; Karydas, Anna; Kaye, Jeffrey A; Kim, Ronald; Kowall, Neil W; Kramer, Joel H; LaFerla, Frank M; Lah, James J; Leverenz, James B; Levey, Allan I; Li, Ge; Lieberman, Andrew P; Lunetta, Kathryn L; Lyketsos, Constantine G; Marson, Daniel C; Martiniuk, Frank; Mash, Deborah C; Masliah, Eliezer; McCormick, Wayne C; McCurry, Susan M; McDavid, Andrew N; McKee, Ann C; Mesulam, Marsel; Miller, Bruce L; Miller, Carol A; Miller, Joshua W; Morris, John C; Murrell, Jill R; Myers, Amanda J; O'Bryant, Sid; Olichney, John M; Pankratz, Vernon S; Parisi, Joseph E; Paulson, Henry L; Perry, William; Peskind, Elaine; Pierce, Aimee; Poon, Wayne W; Potter, Huntington; Quinn, Joseph F; Raj, Ashok; Raskind, Murray; Reisberg, Barry; Reitz, Christiane; Ringman, John M; Roberson, Erik D; Rogaeva, Ekaterina; Rosen, Howard J; Rosenberg, Roger N; Sager, Mark A; Saykin, Andrew J; Schneider, Julie A; Schneider, Lon S; Seeley, William W; Smith, Amanda G; Sonnen, Joshua A; Spina, Salvatore; Stern, Robert A; Swerdlow, Russell H; Tanzi, Rudolph E; Thornton-Wells, Tricia A; Trojanowski, John Q; Troncoso, Juan C; Van Deerlin, Vivianna M; Van Eldik, Linda J; Vinters, Harry V; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A; Wilhelmsen, Kirk C; Williamson, Jennifer; Wingo, Thomas S; Woltjer, Randall L; Wright, Clinton B; Yu, Chang-En; Yu, Lei; Garzia, Fabienne; Golamaully, Feroze; Septier, Gislain; Engelborghs, Sebastien; Vandenberghe, Rik; De Deyn, Peter P; Fernadez, Carmen Muñoz; Benito, Yoland Aladro; Thonberg, Hakan; Forsell, Charlotte; Lilius, Lena; Kinhult-Stählbom, Anne; Kilander, Lena; Brundin, RoseMarie; Concari, Letizia; Helisalmi, Seppo; Koivisto, Anne Maria; Haapasalo, Annakaisa; Dermecourt, Vincent; Fievet, Nathalie; Hanon, Olivier; Dufouil, Carole; Brice, Alexis; Ritchie, Karen; Dubois, Bruno; Himali, Jayanadra J; Keene, C Dirk; Tschanz, JoAnn; Fitzpatrick, Annette L; Kukull, Walter A; Norton, Maria; Aspelund, Thor; Larson, Eric B; Munger, Ron; Rotter, Jerome I; Lipton, Richard B; Bullido, María J; Hofman, Albert; Montine, Thomas J; Coto, Eliecer; Boerwinkle, Eric; Petersen, Ronald C; Alvarez, Victoria; Rivadeneira, Fernando; Reiman, Eric M; Gallo, Maura; O'Donnell, Christopher J; Reisch, Joan S; Bruni, Amalia Cecilia; Royall, Donald R; Dichgans, Martin; Sano, Mary; Galimberti, Daniela; St George-Hyslop, Peter; Scarpini, Elio; Tsuang, Debby W; Mancuso, Michelangelo; Bonuccelli, Ubaldo; Winslow, Ashley R; Daniele, Antonio; Wu, Chuang-Kuo; Peters, Oliver; Nacmias, Benedetta; Riemenschneider, Matthias; Heun, Reinhard; Brayne, Carol; Rubinsztein, David C; Bras, Jose; Guerreiro, Rita; Al-Chalabi, Ammar; Shaw, Christopher E; Collinge, John; Mann, David; Tsolaki, Magda; Clarimón, Jordi; Sussams, Rebecca; Lovestone, Simon; O'Donovan, Michael C; Owen, Michael J; Behrens, Timothy W; Mead, Simon; Goate, Alison M; Uitterlinden, Andre G; Holmes, Clive; Cruchaga, Carlos; Ingelsson, Martin; Bennett, David A; Powell, John; Golde, Todd E; Graff, Caroline; De Jager, Philip L; Morgan, Kevin; Ertekin-Taner, Nilufer; Combarros, Onofre; Psaty, Bruce M; Passmore, Peter; Younkin, Steven G; Berr, Claudine; Gudnason, Vilmundur; Rujescu, Dan; Dickson, Dennis W; Dartigues, Jean-François; DeStefano, Anita L; Ortega-Cubero, Sara; Hakonarson, Hakon; Campion, Dominique; Boada, Merce; Kauwe, John Keoni; Farrer, Lindsay A; Van Broeckhoven, Christine; Ikram, M Arfan; Jones, Lesley; Haines, Jonathan L; Tzourio, Christophe; Launer, Lenore J; Escott-Price, Valentina; Mayeux, Richard; Deleuze, Jean-François; Amin, Najaf; Holmans, Peter A; Pericak-Vance, Margaret A; Amouyel, Philippe; van Duijn, Cornelia M; Ramirez, Alfredo; Wang, Li-San; Lambert, Jean-Charles; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D

    2017-09-01

    We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10 -4 ) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10 -8 ) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10 -10 , odds ratio (OR) = 0.68, minor allele frequency (MAF) cases = 0.0059, MAF controls = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10 -10 , OR = 1.43, MAF cases = 0.011, MAF controls = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10 -14 , OR = 1.67, MAF cases = 0.0143, MAF controls = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

  16. Rare coding variants in PLCG2, ABI3 and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease

    Science.gov (United States)

    Sims, Rebecca; van der Lee, Sven J.; Naj, Adam C.; Bellenguez, Céline; Badarinarayan, Nandini; Jakobsdottir, Johanna; Kunkle, Brian W.; Boland, Anne; Raybould, Rachel; Bis, Joshua C.; Martin, Eden R.; Grenier-Boley, Benjamin; Heilmann-Heimbach, Stefanie; Chouraki, Vincent; Kuzma, Amanda B.; Sleegers, Kristel; Vronskaya, Maria; Ruiz, Agustin; Graham, Robert R.; Olaso, Robert; Hoffmann, Per; Grove, Megan L.; Vardarajan, Badri N.; Hiltunen, Mikko; Nöthen, Markus M.; White, Charles C.; Hamilton-Nelson, Kara L.; Epelbaum, Jacques; Maier, Wolfgang; Choi, Seung-Hoan; Beecham, Gary W.; Dulary, Cécile; Herms, Stefan; Smith, Albert V.; Funk, Cory C.; Derbois, Céline; Forstner, Andreas J.; Ahmad, Shahzad; Li, Hongdong; Bacq, Delphine; Harold, Denise; Satizabal, Claudia L.; Valladares, Otto; Squassina, Alessio; Thomas, Rhodri; Brody, Jennifer A.; Qu, Liming; Sanchez-Juan, Pascual; Morgan, Taniesha; Wolters, Frank J.; Zhao, Yi; Garcia, Florentino Sanchez; Denning, Nicola; Fornage, Myriam; Malamon, John; Naranjo, Maria Candida Deniz; Majounie, Elisa; Mosley, Thomas H.; Dombroski, Beth; Wallon, David; Lupton, Michelle K; Dupuis, Josée; Whitehead, Patrice; Fratiglioni, Laura; Medway, Christopher; Jian, Xueqiu; Mukherjee, Shubhabrata; Keller, Lina; Brown, Kristelle; Lin, Honghuang; Cantwell, Laura B.; Panza, Francesco; McGuinness, Bernadette; Moreno-Grau, Sonia; Burgess, Jeremy D.; Solfrizzi, Vincenzo; Proitsi, Petra; Adams, Hieab H.; Allen, Mariet; Seripa, Davide; Pastor, Pau; Cupples, L. Adrienne; Price, Nathan D; Hannequin, Didier; Frank-García, Ana; Levy, Daniel; Chakrabarty, Paramita; Caffarra, Paolo; Giegling, Ina; Beiser, Alexa S.; Giedraitis, Vimantas; Hampel, Harald; Garcia, Melissa E.; Wang, Xue; Lannfelt, Lars; Mecocci, Patrizia; Eiriksdottir, Gudny; Crane, Paul K.; Pasquier, Florence; Boccardi, Virginia; Henández, Isabel; Barber, Robert C.; Scherer, Martin; Tarraga, Lluis; Adams, Perrie M.; Leber, Markus; Chen, Yuning; Albert, Marilyn S.; Riedel-Heller, Steffi; Emilsson, Valur; Beekly, Duane; Braae, Anne; Schmidt, Reinhold; Blacker, Deborah; Masullo, Carlo; Schmidt, Helena; Doody, Rachelle S.; Spalletta, Gianfranco; Longstreth, WT; Fairchild, Thomas J.; Bossù, Paola; Lopez, Oscar L.; Frosch, Matthew P.; Sacchinelli, Eleonora; Ghetti, Bernardino; Sánchez-Juan, Pascual; Yang, Qiong; Huebinger, Ryan M.; Jessen, Frank; Li, Shuo; Kamboh, M. Ilyas; Morris, John; Sotolongo-Grau, Oscar; Katz, Mindy J.; Corcoran, Chris; Himali, Jayanadra J.; Keene, C. Dirk; Tschanz, JoAnn; Fitzpatrick, Annette L.; Kukull, Walter A.; Norton, Maria; Aspelund, Thor; Larson, Eric B.; Munger, Ron; Rotter, Jerome I.; Lipton, Richard B.; Bullido, María J; Hofman, Albert; Montine, Thomas J.; Coto, Eliecer; Boerwinkle, Eric; Petersen, Ronald C.; Alvarez, Victoria; Rivadeneira, Fernando; Reiman, Eric M.; Gallo, Maura; O’Donnell, Christopher J.; Reisch, Joan S.; Bruni, Amalia Cecilia; Royall, Donald R.; Dichgans, Martin; Sano, Mary; Galimberti, Daniela; St George-Hyslop, Peter; Scarpini, Elio; Tsuang, Debby W.; Mancuso, Michelangelo; Bonuccelli, Ubaldo; Winslow, Ashley R.; Daniele, Antonio; Wu, Chuang-Kuo; Peters, Oliver; Nacmias, Benedetta; Riemenschneider, Matthias; Heun, Reinhard; Brayne, Carol; Rubinsztein, David C; Bras, Jose; Guerreiro, Rita; Hardy, John; Al-Chalabi, Ammar; Shaw, Christopher E; Collinge, John; Mann, David; Tsolaki, Magda; Clarimón, Jordi; Sussams, Rebecca; Lovestone, Simon; O’Donovan, Michael C; Owen, Michael J; Behrens, Timothy W.; Mead, Simon; Goate, Alison M.; Uitterlinden, Andre G.; Holmes, Clive; Cruchaga, Carlos; Ingelsson, Martin; Bennett, David A.; Powell, John; Golde, Todd E.; Graff, Caroline; De Jager, Philip L.; Morgan, Kevin; Ertekin-Taner, Nilufer; Combarros, Onofre; Psaty, Bruce M.; Passmore, Peter; Younkin, Steven G; Berr, Claudine; Gudnason, Vilmundur; Rujescu, Dan; Dickson, Dennis W.; Dartigues, Jean-Francois; DeStefano, Anita L.; Ortega-Cubero, Sara; Hakonarson, Hakon; Campion, Dominique; Boada, Merce; Kauwe, John “Keoni”; Farrer, Lindsay A.; Van Broeckhoven, Christine; Ikram, M. Arfan; Jones, Lesley; Haines, Johnathan; Tzourio, Christophe; Launer, Lenore J.; Escott-Price, Valentina; Mayeux, Richard; Deleuze, Jean-François; Amin, Najaf; Holmans, Peter A; Pericak-Vance, Margaret A.; Amouyel, Philippe; van Duijn, Cornelia M.; Ramirez, Alfredo; Wang, Li-San; Lambert, Jean-Charles; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D.

    2017-01-01

    Introduction We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development. PMID:28714976

  17. Sexually dimorphic effects of oxytocin receptor gene (OXTR variants on Harm Avoidance

    Directory of Open Access Journals (Sweden)

    Stankova Trayana

    2012-07-01

    Full Text Available Abstract Background Recent research has suggested that oxytocin receptor gene (OXTR variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits. Methods We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory. Results When sex was controlled for and an OXTR genotype*sex interaction term was included in the regression model, 11% of the variance in Harm Avoidance could be explained (uncorrected p ≤ 0.01. Female carriers of the minor alleles scored highest, and a novel A217T mutation emerged in the most harm avoidant male participant. Conclusions Findings lend support to a modulatory effect of common OXTR variants on Harm Avoidance in healthy caucasian women and invite resequencing of the gene in anxiety phenotypes to identify more explanatory functional variation.

  18. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding

    DEFF Research Database (Denmark)

    Fager Ferrari, Marcus; Leinoe, Eva; Rossing, Maria

    2018-01-01

    Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised...

  19. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    Science.gov (United States)

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  20. Increased burden of deleterious variants in essential genes in autism spectrum disorder.

    Science.gov (United States)

    Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja

    2016-12-27

    Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.

  1. Characterization of mutations at the mouse phenylalanine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Charlton, C.K. [Wichita State Univ., KS (United States)

    1997-02-01

    Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. In PAH{sup ENU1}, the phenotype is mild. The Pah{sup enu1} mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. In PAH{sup ENU2} the phenotype is severe. The Pah{sup enu2} mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. In PAH{sup ENU2}, the sequence information was used to devise a direct genotyping system based on the creation of a new Alw26I restriction endonuclease site. 26 refs., 2 figs., 1 tab.

  2. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    Science.gov (United States)

    Grinde, Kelsey E.; Arbet, Jaron; Green, Alden; O'Connell, Michael; Valcarcel, Alessandra; Westra, Jason; Tintle, Nathan

    2017-01-01

    To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures. PMID:28959274

  3. Canine parvovirus (CPV-2) variants circulating in Nigerian dogs

    Science.gov (United States)

    Apaa, T. T.; Daly, J. M.; Tarlinton, R. E.

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is a highly contagious viral disease with three variants (CPV-2a, CPV-2b and CPV-2c) currently circulating in dogs worldwide. The main aim of this study was to determine the prevalent CPV-2 variant in faecal samples from 53 dogs presenting with acute gastroenteritis suspected to be and consistent with CPV-2 to Nigerian Veterinary Clinics in 2013–2014. Seventy-five per cent of these dogs tested positive for CPV-2 in a commercial antigen test and/or by PCR. Partial sequencing of the VP2 gene of six of these demonstrated them to be CPV-2a. Most of the dogs (60 per cent) were vaccinated, with 74 per cent of them puppies less than six months old. PMID:27933190

  4. Toxin Gene Analysis of a Variant Strain of Clostridium difficile That Causes Human Clinical Disease

    Science.gov (United States)

    Sambol, Susan P.; Merrigan, Michelle M.; Lyerly, David; Gerding, Dale N.; Johnson, Stuart

    2000-01-01

    A toxin variant strain of Clostridium difficile was isolated from two patients with C. difficile-associated disease (CDAD), one of whom died from extensive pseudomembranous colitis. This strain, identified by restriction endonuclease analysis (REA) as type CF2, was not detected by an immunoassay for C. difficile toxin A. Culture supernatants of CF2 failed to elicit significant enterotoxic activity in the rabbit ileal loop assay but did produce atypical cytopathic effects in cell culture assay. Southern hybridization, PCR amplification, and DNA sequence analyses were performed on the toxin A (tcdA) and toxin B (tcdB) genes of type CF2 isolate 5340. Type CF2 5340 tcdA exhibited a 1,821-bp truncation, due to three deletions in the 3′ end of the gene, and a point mutation in the 5′ end of the gene, resulting in a premature stop codon at tcdA position 139. Type CF2 5340 tcdB exhibited multiple nucleotide base substitutions in the 5′ end of the gene compared to tcdB of the standard toxigenic strain VPI 10463. Type CF2 5340 toxin gene nucleotide sequences and deduced amino acid sequences showed a strong resemblance to those of the previously described variant C. difficile strain 1470, a strain reported to have reduced pathogenicity and no association with clinical illness in humans. REA of strain 1470 identified this strain as a distinct type (CF1) within the same REA group as the closely related type CF2. A review of our clinical-isolate collection identified five additional patients infected with type CF2, three of whom had documented CDAD. PCR amplification of the 3′ end of tcdA demonstrated identical 1.8-kb deletions in all seven type CF2 isolates. REA type CF2 is a toxin variant strain of C. difficile that retains the ability to cause disease in humans but is not detected in clinical immunoassays for toxin A. PMID:10992443

  5. Association of usf1s2 variant in the upstream stimulatory factor 1 gene with premature coronary artery disease in southern population of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2015-03-01

    Conclusion: It appears that the usf1s2 variant in upstream transcription factor 1 gene is an independent predictor of premature coronary artery disease in our population and applies its effects without affecting blood sugar and lipid levels.

  6. Common variants of the liver fatty acid binding protein gene influence the risk of type 2 diabetes and insulin resistance in Spanish population.

    Directory of Open Access Journals (Sweden)

    Maria Luisa Mansego

    Full Text Available SUMMARY: The main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated. METHODS: 1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes. DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model. RESULTS: One polymorphism (rs2197076 and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population. CONCLUSIONS: The study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians.

  7. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Science.gov (United States)

    Clark, Lorraine N; Chan, Robin; Cheng, Rong; Liu, Xinmin; Park, Naeun; Parmalee, Nancy; Kisselev, Sergey; Cortes, Etty; Torres, Paola A; Pastores, Gregory M; Vonsattel, Jean P; Alcalay, Roy; Marder, Karen; Honig, Lawrence L; Fahn, Stanley; Mayeux, Richard; Shelanski, Michael; Di Paolo, Gilbert; Lee, Joseph H

    2015-01-01

    Variants in GBA are associated with Lewy Body (LB) pathology. We investigated whether variants in other lysosomal storage disorder (LSD) genes also contribute to disease pathogenesis. We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD) changes (n = 59), AD without significant LB pathology (n = 71), Alzheimer disease and lewy body variant (ADLBV) (n = 68), and control brains without LB or AD neuropathology (n = 33). Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64) that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67) which included LBD (n = 34), ADLBV (n = 3), AD (n = 4), PD (n = 9) and control brains (n = 17), comparing GBA mutation carriers to non-carriers. In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5)). Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (plipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01). Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  8. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Directory of Open Access Journals (Sweden)

    Lorraine N Clark

    Full Text Available Variants in GBA are associated with Lewy Body (LB pathology. We investigated whether variants in other lysosomal storage disorder (LSD genes also contribute to disease pathogenesis.We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD changes (n = 59, AD without significant LB pathology (n = 71, Alzheimer disease and lewy body variant (ADLBV (n = 68, and control brains without LB or AD neuropathology (n = 33. Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64 that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67 which included LBD (n = 34, ADLBV (n = 3, AD (n = 4, PD (n = 9 and control brains (n = 17, comparing GBA mutation carriers to non-carriers.In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5. Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (p<0.001. A significant increase and accumulation of several species for the lipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01.Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  9. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder.

    Science.gov (United States)

    Gadow, Kenneth D; Pinsonneault, Julia K; Perlman, Greg; Sadee, Wolfgang

    2014-07-01

    The aim of the present study was to evaluate the association of dopaminergic gene variants with emotion dysregulation (EMD) and attention-deficit/hyperactivity disorder (ADHD) symptoms in children with autism spectrum disorder (ASD). Three dopamine transporter gene (SLC6A3/DAT1) polymorphisms (intron8 5/6 VNTR, 3'-UTR 9/10 VNTR, rs27072 in the 3'-UTR) and one dopamine D2 receptor gene (DRD2) variant (rs2283265) were selected for genotyping based on à priori evidence of regulatory activity or, in the case of DAT1 9/10 VNTR, commonly reported associations with ADHD. A sample of 110 children with ASD was assessed with a rigorously validated DSM-IV-referenced rating scale. Global EMD severity (parents' ratings) was associated with DAT1 intron8 (ηp(2)=.063) and rs2283265 (ηp(2)=.044). Findings for DAT1 intron8 were also significant for two EMD subscales, generalized anxiety (ηp(2)=.065) and depression (ηp(2)=.059), and for DRD2 rs2283265, depression (ηp(2)=.053). DRD2 rs2283265 was associated with teachers' global ratings of ADHD (ηp(2)=.052). DAT1 intron8 was associated with parent-rated hyperactivity (ηp(2)=.045) and both DAT1 9/10 VNTR (ηp(2)=.105) and DRD2 rs2283265 (ηp(2)=.069) were associated with teacher-rated inattention. These findings suggest that dopaminergic gene polymorphisms may modulate EMD and ADHD symptoms in children with ASD but require replication with larger independent samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Difference between age-related macular degeneration and polypoidal choroidal vasculopathy in the hereditary contribution of the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2).

    Science.gov (United States)

    Yanagisawa, Suiho; Kondo, Naoshi; Miki, Akiko; Matsumiya, Wataru; Kusuhara, Sentaro; Tsukahara, Yasutomo; Honda, Shigeru; Negi, Akira

    2011-01-01

    To investigate whether the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2) has a different hereditary contribution in neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). We initially conducted a comparative genetic analysis of neovascular AMD and PCV, genotyping the ARMS2 A69S variant in 181 subjects with neovascular AMD, 198 subjects with PCV, and 203 controls in a Japanese population. Genotyping was conducted using TaqMan technology. Results were then integrated into a meta-analysis of previous studies representing an assessment of the association between the ARMS2 A69S variant and neovascular AMD and/or PCV, comprising a total of 3,828 subjects of Asian descent. The Q-statistic test was used to assess between-study heterogeneity. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using a fixed effects model. The genetic effect of the A69S variant was stronger in neovascular AMD (allelic summary OR=3.09 [95% CI, 2.71-3.51], fixed effects parchitecture of this phenotypically heterogeneous disorder.

  11. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  12. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  13. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  14. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  15. Rare A2ML1 variants confer susceptibility to otitis media

    Science.gov (United States)

    Santos-Cortez, Regie Lyn P.; Chiong, Charlotte M.; Reyes-Quintos, Ma. Rina T.; Tantoco, Ma. Leah C.; Wang, Xin; Acharya, Anushree; Abbe, Izoduwa; Giese, Arnaud P.; Smith, Joshua D.; Allen, E. Kaitlynn; Li, Biao; Cutiongco-de la Paz, Eva Maria; Garcia, Marieflor Cristy; Llanes, Erasmo Gonzalo D.V.; Labra, Patrick John; Gloria-Cruz, Teresa Luisa I.; Chan, Abner L.; Wang, Gao T.; Daly, Kathleen A.; Shendure, Jay; Bamshad, Michael J.; Nickerson, Deborah A.; Patel, Janak A.; Riazuddin, Saima; Sale, Michele M.; Chonmaitree, Tasnee; Ahmed, Zubair M.; Abes, Generoso T.; Leal, Suzanne M.

    2015-01-01

    A duplication variant within middle-ear-specific gene A2ML1 co-segregates with otitis media in an indigenous Filipino pedigree (LOD score=7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by three otitis-prone European- and Hispanic-American children, but is absent in non-otitis-prone children and >62,000 next-generation sequences. Seven additional A2ML1 variants were identified in six otitis-prone children. Collectively our studies support a role for A2ML1 in the pathophysiology of otitis media. PMID:26121085

  16. Study on the IFNL4 gene ss469415590 variant in Ukrainian population

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2014-09-01

    Full Text Available Aim. To determine genotype and allele disribution for the IFNL4 gene ss469415590 and examine it for linkage with the IL28B gene rs12979860 in Ukrainian population. Methods. The studied group consisted of 100 unrelated donors of Eastern European origin representing the population of Ukraine. Genotyping for the IFNL4 gene ss469415590 was performed using the amplification-refractory mutation system PCR. Genotyping for the IL28B gene rs12979860 was performed by the PCR-based restriction fragment length polymorphism assay. Results. Genotype frequencies for both studied variants showed no significant deviation from those expected according to Hardy-Weinberg equilibrium. Allelic distribution for ss469415590 was: TT – 0.665, G – 0.335. Allelic frequencies of rs12979860 were: C – 0.655, T – 0.345. The results of likelihood ratio test indicated a linkage disequilibrium between the studied variants (p > 0.0001, the major alleles ss469415590 TT and rs12979860 C were in phase. The genetic structure of Ukrainian population in terms of two studied polymorphic variants is similar to the European population presented in the «1000 genomes» project. Conclusions. Considering a tight linkage revealed in Ukrainian population between the ss469415590 variant and rs12979860, a crucial genetic marker of chronic hepatitis C treatment efficiency, this polymorphism might be a promising target for further investigation as a pharmacogenetic marker.

  17. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  18. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974–2015

    Directory of Open Access Journals (Sweden)

    Takumi Motoya

    2017-12-01

    Full Text Available Human norovirus (HuNoV is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1 gene sequences (466 strains to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1, shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly

  19. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    Science.gov (United States)

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a

  20. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Jin-Ho Choi

    2016-03-01

    Full Text Available The term congenital adrenal hyperplasia (CAH covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency.

  1. Analysis of carboxylesterase 2 transcript variants in cynomolgus macaque liver.

    Science.gov (United States)

    Uno, Yasuhiro; Igawa, Yoshiyuki; Tanaka, Maori; Ohura, Kayoko; Hosokawa, Masakiyo; Imai, Teruko

    2018-04-27

    Carboxylesterase (CES) is important for the detoxification of a wide range of drugs and xenobiotics. In this study, the hepatic level of CES2 mRNA was examined in cynomolgus macaques used widely in preclinical studies for drug metabolism. Three CES2 mRNAs were present in cynomolgus macaque liver. The mRNA level was highest for cynomolgus CES2A (formerly CES2v3), much lower for cynomolgus CES2B (formerly CES2v1) and extremely low for cynomolgus CES2C (formerly CES2v2). Most various transcript variants produced from cynomolgus CES2B gene did not contain a complete coding region. Thus, CES2A is the major CES2 enzyme in cynomolgus liver. A new transcript variant of CES2A, CES2Av2, was identified. CES2Av2 contained exon 3 region different from wild-type (CES2Av1). In cynomolgus macaques expressing only CES2Av2 transcript, CES2A contained the sequence of CES2B in exon 3 and vicinity, probably due to gene conversion. On genotyping, this CES2Av2 allele was prevalent in Indochinese cynomolgus macaques, but not in Indonesian cynomolgus or rhesus macaques. CES2Av2 recombinant protein showed similar activity to CES2Av1 protein for several substrates. It is concluded that CES2A is the major cynomolgus hepatic CES2, and new transcript variant, CES2Av2, has similar functions to CES2Av1.

  2. Gain-of-function HCN2 variants in genetic epilepsy.

    Science.gov (United States)

    Li, Melody; Maljevic, Snezana; Phillips, A Marie; Petrovski, Slave; Hildebrand, Michael S; Burgess, Rosemary; Mount, Therese; Zara, Federico; Striano, Pasquale; Schubert, Julian; Thiele, Holger; Nürnberg, Peter; Wong, Michael; Weisenberg, Judith L; Thio, Liu Lin; Lerche, Holger; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-02-01

    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism. © 2017 Wiley Periodicals, Inc.

  3. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    DEFF Research Database (Denmark)

    Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk ......, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR....... were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA...... of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant...

  4. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... adrenal hyperplasias that impair hormone production and disrupt sexual development. 21-hydroxylase deficiency is responsible for about 95 ... excess production of androgens leads to abnormalities of sexual development in people with 21-hydroxylase deficiency . A lack ...

  5. Evidence for Association of the E23K Variant of KCNJ11 Gene with Type 2 Diabetes in Tunisian Population: Population-Based Study and Meta-Analysis

    Science.gov (United States)

    Lasram, Khaled; Ben Halim, Nizar; Hsouna, Sana; Kefi, Rym; Arfa, Imen; Ghazouani, Welid; Jamoussi, Henda; Benrahma, Houda; Kharrat, Najla; Rebai, Ahmed; Ben Ammar, Slim; Bahri, Sonia; Barakat, Abdelhamid; Abid, Abdelmajid; Abdelhak, Sonia

    2014-01-01

    Aims. Genetic association studies have reported the E23K variant of KCNJ11 gene to be associated with Type 2 diabetes. In Arab populations, only four studies have investigated the role of this variant. We aimed to replicate and validate the association between the E23K variant and Type 2 diabetes in Tunisian and Arab populations. Methods. We have performed a case-control association study including 250 Tunisian patients with Type 2 diabetes and 267 controls. Allelic association has also been evaluated by 2 meta-analyses including all population-based studies among Tunisians and Arabs (2 and 5 populations, resp.). Results. A significant association between the E23K variant and Type 2 diabetes was found (OR = 1.6, 95% CI = 1.14–2.27, and P = 0.007). Furthermore, our meta-analysis has confirmed the significant role of the E23K variant in susceptibility of Type 2 diabetes in Tunisian and Arab populations (OR = 1.29, 95% CI = 1.15–1.46, and P < 10−3 and OR = 1.33, 95% CI = 1.13–1.56, and P = 0.001, resp.). Conclusion. Both case-control and meta-analyses results revealed the significant association between the E23K variant of KCNJ11 and Type 2 diabetes among Tunisians and Arabs. PMID:25165692

  6. Evidence for Association of the E23K Variant of KCNJ11 Gene with Type 2 Diabetes in Tunisian Population: Population-Based Study and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Khaled Lasram

    2014-01-01

    Full Text Available Aims. Genetic association studies have reported the E23K variant of KCNJ11 gene to be associated with Type 2 diabetes. In Arab populations, only four studies have investigated the role of this variant. We aimed to replicate and validate the association between the E23K variant and Type 2 diabetes in Tunisian and Arab populations. Methods. We have performed a case-control association study including 250 Tunisian patients with Type 2 diabetes and 267 controls. Allelic association has also been evaluated by 2 meta-analyses including all population-based studies among Tunisians and Arabs (2 and 5 populations, resp.. Results. A significant association between the E23K variant and Type 2 diabetes was found (OR = 1.6, 95% CI = 1.14–2.27, and P=0.007. Furthermore, our meta-analysis has confirmed the significant role of the E23K variant in susceptibility of Type 2 diabetes in Tunisian and Arab populations (OR = 1.29, 95% CI = 1.15–1.46, and P<10-3 and OR = 1.33, 95% CI = 1.13–1.56, and P=0.001, resp.. Conclusion. Both case-control and meta-analyses results revealed the significant association between the E23K variant of KCNJ11 and Type 2 diabetes among Tunisians and Arabs.

  7. A Population Based Study of the Genetic Association between Catecholamine Gene Variants and Spontaneous Low-Frequency Fluctuations in Reaction Time.

    Directory of Open Access Journals (Sweden)

    Jojanneke A Bastiaansen

    Full Text Available The catecholamines dopamine and noradrenaline have been implicated in spontaneous low-frequency fluctuations in reaction time, which are associated with attention deficit hyperactivity disorder (ADHD and subclinical attentional problems. The molecular genetic substrates of these behavioral phenotypes, which reflect frequency ranges of intrinsic neuronal oscillations (Slow-4: 0.027-0.073 Hz; Slow-5: 0.010-0.027 Hz, have not yet been investigated. In this study, we performed regression analyses with an additive model to examine associations between low-frequency fluctuations in reaction time during a sustained attention task and genetic markers across 23 autosomal catecholamine genes in a large young adult population cohort (n = 964, which yielded greater than 80% power to detect a small effect size (f(2 = 0.02 and 100% power to detect a small/medium effect size (f(2 = 0.15. At significance levels corrected for multiple comparisons, none of the gene variants were associated with the magnitude of low-frequency fluctuations. Given the study's strong statistical power and dense coverage of the catecholamine genes, this either indicates that associations between low-frequency fluctuation measures and catecholamine gene variants are absent or that they are of very small effect size. Nominally significant associations were observed between variations in the alpha-2A adrenergic receptor gene (ADRA2A and the Slow-5 band. This is in line with previous reports of an association between ADRA2A gene variants and general reaction time variability during response selection tasks, but the specific association of these gene variants and low-frequency fluctuations requires further confirmation. Pharmacological challenge studies could in the future provide convergent evidence for the noradrenergic modulation of both general and time sensitive measures of intra-individual variability in reaction time.

  8. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  9. Association of COMT and PRODH gene variants with intelligence quotient (IQ) and executive functions in 22q11.2DS subjects.

    Science.gov (United States)

    Carmel, Miri; Zarchi, Omer; Michaelovsky, Elena; Frisch, Amos; Patya, Miriam; Green, Tamar; Gothelf, Doron; Weizman, Abraham

    2014-09-01

    The 22q11.2 deletion syndrome (22q11.2DS) carries the highest genetic risk factor for the development of schizophrenia. We investigated the association of genetic variants in two schizophrenia candidate genes with executive function (EF) and IQ in 22q11.2DS individuals. Ninety two individuals with 22q11.2 deletion were studied for the genetic association between COMT and PRODH variants and EF and IQ. Subjects were divided into children (under 12 years old), adolescents (between 12 and 18 years old) and adults (older than 18 years), and genotyped for the COMT Val158Met (rs4680) and PRODH Arg185Trp (rs4819756) polymorphisms. The participants underwent psychiatric evaluation and EF assessment. Our main finding is a significant influence of the COMT Val158Met polymorphism on both IQ and EF performance. Specifically, 22q11.2DS subjects with Met allele displayed higher IQ scores in all age groups compared to Val carriers, reaching significance in both adolescents and adults. The Met allele carriers performed better than Val carriers in EF tasks, being statistically significant in the adult group. PRODH Arg185Trp variant did not affect IQ or EF in our 22q11.2DS cohort. In conclusion, functional COMT variant, but not PRODH, affects IQ and EF in 22q11.2DS subjects during neurodevelopment with a maximal effect at adulthood. Future studies should monitor the cognitive performance of the same individuals from childhood to old age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  11. Nonrandom Distribution of miRNAs Genes and Single Nucleotide Variants in Keratoconus Loci.

    Directory of Open Access Journals (Sweden)

    Dorota M Nowak

    Full Text Available Despite numerous studies, the causes of both development and progression of keratoconus remain elusive. Previous studies of this disorder focused mainly on one or two genetic factors only. However, in the analysis of such complex diseases all potential factors should be taken into consideration. The purpose of this study was a comprehensive analysis of known keratoconus loci to uncover genetic factors involved in this disease causation in the general population, which could be omitted in the original studies. In this investigation genomic data available in various databases and experimental own data were assessed. The lists of single nucleotide variants and miRNA genes localized in reported keratoconus loci were obtained from Ensembl and miRBase, respectively. The potential impact of nonsynonymous amino acid substitutions on protein structure and function was assessed with PolyPhen-2 and SIFT. For selected protein genes the ranking was made to choose those most promising for keratoconus development. Ranking results were based on topological features in the protein-protein interaction network. High specificity for the populations in which the causative sequence variants have been identified was found. In addition, the possibility of links between previously analyzed keratoconus loci was confirmed including miRNA-gene interactions. Identified number of genes associated with oxidative stress and inflammatory agents corroborated the hypothesis of their effect on the disease etiology. Distribution of the numerous sequences variants within both exons and mature miRNA which forces you to search for a broader look at the determinants of keratoconus. Our findings highlight the complexity of the keratoconus genetics.

  12. MMP3 and TIMP2 gene variants as predisposing factors for Achilles tendon pathologies: Attempted replication study in a British case-control cohort.

    Science.gov (United States)

    El Khoury, Louis; Ribbans, William J; Raleigh, Stuart M

    2016-09-01

    Variants within the MMP3 (rs679620) and TIMP2 (rs4789932) genes have been associated with the risk of Achilles tendon pathology (ATP) in populations from South Africa and Australia. This study aimed to determine whether these variants were associated with the risk of ATP in British Caucasians. We recruited 118 cases with ATP, including a subset of 25 individuals with Achilles tendon rupture (RUP) and 131 controls. DNA samples were isolated from saliva and genotyped using qPCR. For the TIMP2 rs4789932 variant we found a significant (p = 0.038) difference in the genotype distribution frequency between males with ATP (CC, 39.4%; CT, 43.7%; TT, 16.9%) compared to male controls (CC, 20.7%; CT, 59.8%; TT, 19.5%). We also observed a difference in the TIMP2 rs4789932 genotype distribution between males with rupture compared to male controls (p = 0.038). The MMP3 rs679620 GG genotype was found to be overrepresented in the Achilles tendon rupture (RUP) group (AA, 24.0%; AG, 32.0%; GG, 44.0%) compared to controls (AA, 26.7%; AG, 54.2%; GG, 19.1%). In conclusion, the CT genotype of the TIMP2 rs4789932 variant was associated with lower risk of ATP in males. Furthermore, while we revealed differences for both variants in genotype distribution between the RUP and control groups, the sample size of the RUP group was small and confirmation would be required in additional cohorts. Finally, although both the TIMP2 rs4789932 and MMP3 rs679620 variants tentatively associated with ATP, there were differences in the direction of association compared to earlier work.

  13. Association of fat mass and obesity-associated gene variant with lifestyle factors and body fat in Indian Children

    Directory of Open Access Journals (Sweden)

    Lavanya S Parthasarthy

    2017-01-01

    Full Text Available Context: Common intronic variants of the fat mass and obesity-associated (FTO gene have been associated with obesity-related traits in humans. Aims: (1 The aim of this study is to study the distribution of FTO gene variants across different body mass index (BMI categories and (2 to explore the association between FTO gene variants and lifestyle factors in obese and normal weight Indian children. Subjects and Methods: Fifty-six children (26 boys, mean age 10.3 ± 2.2 years were studied. Height, weight, and waist and hip circumference were measured. Physical activity (questionnaire and food intake (food frequency questionnaire were assessed. Body fat percentage (%BF was measured by dual-energy X-ray absorptiometry. FTO allelic variants at rs9939609 site were detected by SYBR Green Amplification Refractory Mutation System real-time polymerase chain reaction using allele-specific primers. Generalized linear model was used to investigate the simultaneous influence of genetic and lifestyle factors on %BF. Results: Mean height, weight, and BMI of normal and obese children were 130.6 ± 7.1 versus 143.2 ± 15.6, 24.0 ± 5.2 versus 53.1 ± 15.8, and 13.9 ± 2.1 versus 25.3 ± 3.2, respectively. The frequency of AA allele was 57% among obese children and 35% in normal weight children. Children with the AA allele who were obese had least physical activity, whereas children with AT allele and obesity had the highest intake of calories when compared to children who had AT allele and were normal. %BF was positively associated with AA alleles and junk food intake and negatively with healthy food intake and moderate physical activity. Conclusions: Healthy lifestyle with high physical activity and diet low in calories and fat may help in modifying the risk imposed by FTO variants in children.

  14. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  15. Common Gene Variants Account for Most Genetic Risk for Autism

    Science.gov (United States)

    ... gene variants account for most genetic risk for autism Roles of heritability, mutations, environment estimated – NIH-funded study. The bulk of risk, or liability, for autism spectrum disorders (ASD) was traced to inherited variations ...

  16. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  17. Functional assays for analysis of variants of uncertain significance in BRCA2

    DEFF Research Database (Denmark)

    Guidugli, Lucia; Carreira, Aura; Caputo, Sandrine M

    2014-01-01

    Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may...... of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant...

  18. PCSK9 genetic variants and risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Amand F; Swerdlow, Daniel I; Holmes, Michael V

    2017-01-01

    used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using...... diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. METHODS: In this mendelian randomisation study, we...... a standardised analysis plan, meta-analyses, and weighted gene-centric scores. FINDINGS: Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL...

  19. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation

    Directory of Open Access Journals (Sweden)

    Asmat Ullah

    2018-01-01

    Full Text Available Abstract Split-hand/split-foot malformation (SHFM, also known as ectrodactyly is a rare genetic disorder. It is a clinically and genetically heterogeneous group of limb malformations characterized by absence/hypoplasia and/or median cleft of hands and/or feet. To date, seven genes underlying SHFM have been identified. This study described four consanguineous families (A-D segregating SHFM in an autosomal recessive manner. Linkage in the families was established to chromosome 12p11.1–q13.13 harboring WNT10B gene. Sequence analysis identified a novel homozygous nonsense variant (p.Gln154* in exon 4 of the WNT10B gene in two families (A and B. In the other two families (C and D, a previously reported variant (c.300_306dupAGGGCGG; p.Leu103Argfs*53 was detected. This study further expands the spectrum of the sequence variants reported in the WNT10B gene, which result in the split hand/foot malformation.

  20. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese.

    Science.gov (United States)

    Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing

    2017-03-01

    To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients.

    Directory of Open Access Journals (Sweden)

    Carolina Minutolo

    2011-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90-95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients.

  2. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy.

    Directory of Open Access Journals (Sweden)

    Vinicius M Fava

    2016-02-01

    Full Text Available Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R. The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility.An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs. Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels.A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863 that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen.The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn's disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.

  3. Risk and protective genetic variants in suicidal behaviour: association with SLC1A2, SLC1A3, 5-HTR1B &NTRK2 polymorphisms.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2012-02-01

    BACKGROUND: Suicidal behaviour is known to aggregate in families. Patients with psychiatric disorders are at higher risk for suicide attempts (SA), however protective and risk genetic variants for suicide appear to be independent of underlying psychiatric disorders. Here we investigate genetic variants in genes important for neurobiological pathways linked to suicidal behaviour and\\/or associated endophenotypes, for association with SA among patients with co-existing psychiatric illness. Selected gene-gene and gene-environment interactions were also tested. METHODS: DNA was obtained from bloods of 159 patients (76 suicide attempters and 83 non-attempters), who were profiled for DSM-IV Axis I psychiatric diagnosis. Twenty-eight single nucleotide polymorphisms (SNPs) from 18 candidate genes (COMT, 5-HT2A, 5-HT1A, 5-HTR1B, TPH1, MAO-A, TPH2, DBH, CNR1, BDNF, ABCG1, GABRA5, GABRG2, GABRB2, SLC1A2, SLC1A3, NTRK2, CRHR1) were genotyped. Genotyping was performed by KBioscience. Tests of association between genetic variants and SA were conducted using Chi squared and Armitage Trend tests. Binary logistical regression analyses were performed to evaluate the contribution of individual genetic variants to the prediction of SA, and to examine SNPs for potential gene-gene and gene-environment interactions. RESULTS: Our analysis identified 4 SNPs (rs4755404, rs2269272, rs6296 and rs1659400), which showed evidence of association with SA compared to a non-attempter control group. We provide evidence of a 3-locus gene-gene interaction, and a putative gene-environment interaction, whereby genetic variation at the NTRK2 locus may moderate the risk associated with history of childhood abuse. CONCLUSION: Preliminary findings suggest that allelic variability in SLC1A2\\/3, 5-HTR1B and NTRK2 may be relevant to the underlying diathesis for suicidal acts.

  4. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    Science.gov (United States)

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats with the asymptomatic infection of BN (Brown Norway. Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains, displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus named Hse6 towards the end of chromosome 4 (160.89-174Mb containing the Vwf (von Willebrand factor gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism. Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008 after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  6. Association of gene variants of transcription factors PPARγ, RUNX2, Osterix genes and COL2A1, IGFBP3 genes with the development of osteonecrosis of the femoral head in Chinese population.

    Science.gov (United States)

    Song, Yang; Du, Zhenwu; Ren, Ming; Yang, Qiwei; Wang, Qingyu; Chen, Gaoyang; Zhao, Haiyue; Li, Zhaoyan; Wang, Jincheng; Zhang, Guizhen

    2017-08-01

    The molecular pathogenesis of osteonecrosis of the femoral head (ONFH) has been remained obscure so that its prevalence has been increasing in recent decades. Different transcription factors play critical roles in maintaining the balance between osteogenesis and adipogenesis. However, it has been unclear that the genes variants of the transcription factors exert the effects on the imbalance between steogenesis and adipogenesis during the development of ONFH. Here, we selected the 11SNPs from steogenesis, adipogenesis-specific transcription factors RUNX2, Osterix, and PPARγ genes, chondrogenesis or adipogenesis key factors COL2A1, IGFBP3 genes and analysed the genotypes, alleles, haplotypes and their association with the risk and clinical phenotypes of ONFH through Mass ARRAY® platformin in 200 ONFH patients and 177controls. The patients with ONFH (132 males, 68 females; age: 53.46±11.48yr) were consecutively enrolled at the Department of Orthopedics, the Second Clinical College of Jilin University, from March 2014 to June 2015 and were diagnosed and classified into 10 cases of stage II (5.6%), 54 cases of stage III (30.2%) and 115 cases (64.2%) of stage IV and alcohol-induced (71 cases (39.7%)), idiopathic (64 cases (34.0%)), and steroid-induced osteonecrosis (47 cases (26.3%)) subgroup, respectively. Our results showed that all models of logistical regression analysis, the co-dominants, dominants, and recessives of PPARγrs2920502, significantly associated with the increased risk of ONFH (p=0.004, p=0.013, p=0.016), respectively. Both the minor homozygous CC genotype and the allele C of rs2920502 were evidently correlated with the enhanced risk of ONFH (p=0.005, p=0.0005),respectively. The recessives models of IGFBP3rs2132572 (G/A) as well as RUNX2 rs3763190(G/A) were statistically associated with the higher ONFH risk, p=0.030, p=0.029, respectively; the minor homozygous(AA) of IGFBP3rs2132572 (G/A) was also related to the increased risk of bilateral hips

  7. Novel variant in the TP63 gene associated to ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome.

    Science.gov (United States)

    Gonzalez, Francisco; Loidi, Lourdes; Abalo-Lojo, Jose M

    2017-01-01

    Ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome is a disorder resulting from anomalous embryonic development of ectodermal tissues. There is evidence that AEC syndrome is caused by mutations in the TP63 gene, which encodes the p63 protein. This is an important regulatory protein involved in epidermal proliferation and differentiation. Genome sequencing was performed in DNA from peripheral blood leukocytes of a newborn with AEC syndrome and her parents. Variants were searched in all coding exons and intron-exon boundaries of the TP63 gene. A heterozygous missense variant (NM_003722.4:c.1063G>C (p.Asp355His) was found in the newborn patient. No variants were found in either of the parents. We identified a previously unreported variant in TP63 gene which seems to be involved in the somatic malformations found in the AEC syndrome. The absence of this variant in both parents suggests that the variant appeared de novo.

  8. Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Novakovic, Srdjan; Stegel, Vida; Jereb, Berta

    2011-01-01

    Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer. Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes. Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer

  9. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  10. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  11. KIR And HLA Haplotype Analysis in a Family Lacking The KIR 2DL1-2DP1 Genes

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2015-06-01

    Full Text Available The killer cell immunoglobulin-like receptor (KIR gene cluster exhibits extensive allelic and haplotypic diversity that is observed as presence/absence of genes, resulting in expansion and contraction of KIR haplotypes and by allelic variation of individual KIR genes. We report a case of KIR pseudogene 2DP1 and 2DL1 gene absence in members of one family with the children suffering from acute myelogenous leukemia (AML. Killer cell immunoglo-bulin-like receptor low resolution genotyping was performed by the polymerase chain reaction (PCR-sequencespecific primers (SSP/sequence-specific oligonucleotide (SSO method and haplotype assignment was done by gene content analysis. Both parents and the maternal grandfather, shared the same Cen-B2 KIR haplotype, containing KIR 3DL3, -2DS2, -2DL2 and -3DP1 genes. The second haplotype in the KIR genotype of the mother and grandfather was Tel-A1 with KIR 2DL4 (normal and deleted variant, -3DL1, -22 bp deletion variant of the 2DS4 gene and -3DL2, while the second haplotype in the KIR genotype of the father was Tel-B1 with 2DL4 (normal variant, -3DS1, -2DL5, -2DS5, -2DS1 and 3DL2 genes. Haplotype analysis in all three offsprings revealed that the children inherited the Cen-B2 haplotype with the same gene content but two of the children inherited a deleted variant of the 2DL4 gene, while the third child inherited a normal one. The second haplotype of all three offspring contained KIR 2DL4, -2DL5, -2DS1, -2DS4 (del 22bp variant, -2DS5, -3DL1 and -3DL2 genes, which was the basis of the assumption that there is a hybrid haplotype and that the present 3DL1 gene is a variant of the 3DS1 gene. Due to consanguinity among the ancestors, the results of KIR segregation analysis showed the existence of a very rare KIR genotype in the offspring. The family who is the subject of this case is even more interesting because the father was 10/10 human leukocyte antigen (HLA-matched to his daughter, all members of the family have

  12. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic fracture risk prediction.

    Science.gov (United States)

    Lee, Seung Hun; Kang, Moo Il; Ahn, Seong Hee; Lim, Kyeong-Hye; Lee, Gun Eui; Shin, Eun-Soon; Lee, Jong-Eun; Kim, Beom-Jun; Cho, Eun-Hee; Kim, Sang-Wook; Kim, Tae-Ho; Kim, Hyun-Ju; Yoon, Kun-Ho; Lee, Won Chul; Kim, Ghi Su; Koh, Jung-Min; Kim, Shin-Yoon

    2014-11-01

    Osteoporotic fracture risk is highly heritable, but genome-wide association studies have explained only a small proportion of the heritability to date. Genetic data may improve prediction of fracture risk in osteopenic subjects and assist early intervention and management. To detect common and rare variants in coding and regulatory regions related to osteoporosis-related traits, and to investigate whether genetic profiling improves the prediction of fracture risk. This cross-sectional study was conducted in three clinical units in Korea. Postmenopausal women with extreme phenotypes (n = 982) were used for the discovery set, and 3895 participants were used for the replication set. We performed targeted resequencing of 198 genes. Genetic risk scores from common variants (GRS-C) and from common and rare variants (GRS-T) were calculated. Nineteen common variants in 17 genes (of the discovered 34 functional variants in 26 genes) and 31 rare variants in five genes (of the discovered 87 functional variants in 15 genes) were associated with one or more osteoporosis-related traits. Accuracy of fracture risk classification was improved in the osteopenic patients by adding GRS-C to fracture risk assessment models (6.8%; P risk in an osteopenic individual.

  13. DNA Fragmentation Factor 45 (DFF45 Gene at 1p36.2 Is Homozygously Deleted and Encodes Variant Transcripts in Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2001-01-01

    Full Text Available Recently, loss of heterozygosity (LOH studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p in neuroblastoma (NB. To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1 p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45 gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT-polymerase chain reaction (PCR and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region.

  14. Studies of the associations between functional beta2-adrenergic receptor variants and obesity, hypertension and type 2 diabetes in 7,808 white subjects

    DEFF Research Database (Denmark)

    Gjesing, A P; Andersen, G; Burgdorf, K S

    2007-01-01

    Functional and common Arg16Gly and Gln27Glu polymorphisms have been identified in ADRB2, the gene encoding the beta2-adrenergic receptor. These variants have previously been examined for association with obesity, hypertension and diabetes with inconclusive results.......Functional and common Arg16Gly and Gln27Glu polymorphisms have been identified in ADRB2, the gene encoding the beta2-adrenergic receptor. These variants have previously been examined for association with obesity, hypertension and diabetes with inconclusive results....

  15. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss.

    Science.gov (United States)

    DeMille, Desiree; Carlston, Colleen M; Tam, Oliver H; Palumbos, Janice C; Stalker, Heather J; Mao, Rong; Zori, Roberto T; Viskochil, David H; Park, Albert H; Carey, John C

    2018-04-01

    Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene. © 2018 Wiley Periodicals, Inc.

  16. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits.

    Science.gov (United States)

    Cirera, S; Clop, A; Jacobsen, M J; Guerin, M; Lesnik, P; Jørgensen, C B; Fredholm, M; Karlskov-Mortensen, P

    2018-04-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost-effective approach for increasing the power of genetic association studies. © 2018 Stichting International Foundation for Animal Genetics.

  17. Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population.

    Science.gov (United States)

    Sun, Rui; Liu, Jian-Ping; Gao, Chang; Xiong, Ying-Ying; Li, Min; Wang, Ya-Ping; Su, Yan-Wei; Lin, Mei; Jiang, An-Li; Xiong, Ling-Fan; Xie, Yan; Feng, Jue-Ping

    2016-05-17

    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ2 test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (pCRC was observed in TC or TC/CC than CC individuals (pCRC risk was observed in AG, GG, and AG/GG than AA individuals (pCRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation.

  18. Cerebral 5-HT2A receptor binding, but not mGluR2, is increased in tryptophan hydroxylase 2 decrease-of-function mice

    DEFF Research Database (Denmark)

    Jørgensen, Christinna Vangsgaard; Jacobsen, Jacob P; Caron, Marc G

    2013-01-01

    Transgenic mice with a knock-in (KI) of a tryptophan hydroxylase 2 (Tph2) R439H mutation, analogous to the Tph2 R441H single-nucleotide polymorphism originally identified in a late life depression cohort, have markedly reduced levels of 5-hydroxytryptamine (5-HT). These Tph2KI mice are therefore...

  19. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    Science.gov (United States)

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  20. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene.

    Science.gov (United States)

    Thonberg, Håkan; Chiang, Huei-Hsin; Lilius, Lena; Forsell, Charlotte; Lindström, Anna-Karin; Johansson, Charlotte; Björkström, Jenny; Thordardottir, Steinunn; Sleegers, Kristel; Van Broeckhoven, Christine; Rönnbäck, Annica; Graff, Caroline

    2017-06-09

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them.

  1. HABP2 p.G534E variant in patients with family history of thyroid and breast cancer

    Science.gov (United States)

    Pinheiro, Maisa; Drigo, Sandra Aparecida; Tonhosolo, Renata; Andrade, Sonia C.S.; Marchi, Fabio Albuquerque; Jurisica, Igor; Kowalski, Luiz Paulo; Achatz, Maria Isabel; Rogatto, Silvia Regina

    2017-01-01

    Familial Papillary Thyroid Carcinoma (PTC) has been described as a hereditary predisposition cancer syndrome associated with mutations in candidate genes including HABP2. Two of 20 probands from families with history of PTC and breast carcinoma (BC) were evaluated by whole exome sequencing (WES) revealing HABP2 p.G534E. Sanger sequencing was used to confirm the involvement of this variant in three families (F1: 7 relatives; F2: 3 and F3: 3). The proband and his sister (with no malignant tumor so far) from F1 were homozygous for the variant whereas one relative with PTC from F2 was negative for the variant. Although the proband of the F3 with PTC was HABP2 wild type, three relatives presented the variant. Five of 170 healthy Brazilian individuals with no family history of BC or PTC and three of 50 sporadic PTC presented the p.G534E. These findings suggested no association of this variant with our familial PTC cases. Genes potentially associated with deregulation of the extracellular matrix organization pathway (CTSB, TNXB, COL4A3, COL16A1, COL24A1, COL5A2, NID1, LOXL2, MMP11, TRIM24 and MUSK) and DNA repair function (NBN and MSH2) were detected by WES, suggesting that other cancer-associated genes have pathogenic effects in the risk of familial PTC development. PMID:28402931

  2. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    Science.gov (United States)

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  3. The rs3857059 variant of the SNCA gene is associated with Parkinson’s disease in Mexican Mestizos

    Directory of Open Access Journals (Sweden)

    S. García

    2016-06-01

    Full Text Available ABSTRACT Among the candidate genes for Parkinson’s disease (PD, SNCA has replicated association in different populations. Besides other known mutations in the SNCA gene, the rs3857059 variant has also been linked to various neurodegenerative disorders. Therefore, the aim of the present study was to search for association of this variant and sporadic PD in Mexican Mestizo patients. A case-control study was performed including 241 individuals, 106 patients, and 135 healthy controls. Genotyping was performed using real-time PCR. The rs3857059 variant demonstrated an association with PD in Mexican Mestizos (OR = 2.40, CI, 1.1 to 5.1, p = 0.02 under the recessive model. In addition, a gender effect was found for the GG genotype in females (OR = 1.31, CI, 1.01 to 1.7, p = 0.037. This is the first study to confirm an association of the rs3857059 variant with PD and also to show a gender effect. Our data contribute to the elucidation of the link between rs3857059 and susceptibility to PD observed in the Mexican Mestizo population.

  4. Screening non-classical 21-hydroxylase gene deficiency from patients diagnosed as polycystic ovary syndrome by gene assay

    Directory of Open Access Journals (Sweden)

    Jie HU

    2016-04-01

    Full Text Available Objective  To screen non-classical 21-hydroxylase deficiency (NC-21OHD from patients diagnosed as polycystic ovary syndrome (PCOS by gene assay. Methods  Ninety-eight patients with PCOS were enrolled according to 2003 Rotterdam criteria from Department of Endocrinology, Tangdu Hospital of Fourth Military Medical University, and they were divided into three groups according to the modified Ferriman-Gallway (mF-G score as follows: group A with score 0-2; group B with score 3-5, and group C with score ≥6. Meanwhile, 30 healthy subjects from the Medical Center of the Hospital were recruited as control group. Peripheral blood of all subjects were collected for extracting DNA, the CYP21A2 gene were amplified by 5 pairs of specific primers, and then the PCR products were sequenced by Shanghai Sangon Co. The subjects would accept test for serum cortisol and adrenocorticotropic hormone (ACTH at 8:00am if their CYP21A2 was proved to be abnormal. Results  Thirty subjects of control group had no any defects in CYP21A2, but 5 of 98 patients with PCOS were proved to be deficient in CYP21A2, and the genotypes were V281L/920-921insT (P1, V281L/I230M (P2, V281L/Normal (P3, P4, P5, respectively, and all of them were heterozygous mutations. The incidences of NC-21OHD in group C and B were 28.6% and 3.3%, respectively. Genotype P1 had been identified to belong to NC-21OHD, which was consistent with its clinical phenotype. All genotypes P3, P4 and P5 belonged to carriers. But for P2, since I230M hadn't been reported in literature, the patient with V281L/I230M couldn't be classified now. Serum biochemical results showed that only in P1 the cortisol was close to the normal lower level, and ACTH was close to the normal upper limit of the reported level in the literature, and the remainders were all normal. Conclusions  Although PCOS and NC-21OHD are very similar in clinical manifestations, they are different completely in the pathogenesis and treatment. So it

  5. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered

    2005-01-01

    in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1......,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter...... and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting...

  6. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.

  7. Variants in congenital hypogonadotrophic hypogonadism genes identified in an Indonesian cohort of 46,XY under-virilised boys.

    Science.gov (United States)

    Ayers, Katie L; Bouty, Aurore; Robevska, Gorjana; van den Bergen, Jocelyn A; Juniarto, Achmad Zulfa; Listyasari, Nurin Aisyiyah; Sinclair, Andrew H; Faradz, Sultana M H

    2017-02-16

    Congenital hypogonadotrophic hypogonadism (CHH) and Kallmann syndrome (KS) are caused by disruption to the hypothalamic-pituitary-gonadal (H-P-G) axis. In particular, reduced production, secretion or action of gonadotrophin-releasing hormone (GnRH) is often responsible. Various genes, many of which play a role in the development and function of the GnRH neurons, have been implicated in these disorders. Clinically, CHH and KS are heterogeneous; however, in 46,XY patients, they can be characterised by under-virilisation phenotypes such as cryptorchidism and micropenis or delayed puberty. In rare cases, hypospadias may also be present. Here, we describe genetic mutational analysis of CHH genes in Indonesian 46,XY disorder of sex development patients with under-virilisation. We present 11 male patients with varying degrees of under-virilisation who have rare variants in known CHH genes. Interestingly, many of these patients had hypospadias. We postulate that variants in CHH genes, in particular PROKR2, PROK2, WDR11 and FGFR1 with CHD7, may contribute to under-virilisation phenotypes including hypospadias in Indonesia.

  8. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  9. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    Science.gov (United States)

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  10. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    Science.gov (United States)

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). © 2015 WILEY PERIODICALS, INC.

  11. Common variants in mendelian kidney disease genes and their association with renal function

    NARCIS (Netherlands)

    A. Parsa (Afshin); C. Fuchsberger (Christian); A. Köttgen (Anna); C.M. O'Seaghdha (Conall); C. Pattaro (Cristian); M. de Andrade (Mariza); D.I. Chasman (Daniel); A. Teumer (Alexander); K. Endlich (Karlhans); M. Olden (Matthias); M-H. Chen (Ming-Huei); A. Tin (Adrienne); Y-J. Kim (Yong-Jin); D. Taliun (Daniel); M. Li (Man); M.F. Feitosa (Mary Furlan); M. Gorski (Mathias); Q. Yang (Qiong); C. Hundertmark (Claudia); M.C. Foster (Michael); N. Glazer (Nicole); A.J. Isaacs (Aaron); M. Rao (Madhumathi); G.D. Smith; J.R. O´Connell; M.V. Struchalin (Maksim); T. Tanaka (Toshiko); G. Li (Guo); S.J. Hwang; E.J. Atkinson (Elizabeth); K. Lohman (Kurt); M. Cornelis (Marilyn); A. Johansson (Åsa); A. Tönjes (Anke); A. Dehghan (Abbas); V. Couraki (Vincent); E.G. Holliday (Elizabeth); R. Sorice; Z. Kutalik (Zoltán); T. Lehtimäki (Terho); T. Esko (Tõnu); H. Deshmukh (Harshal); S. Ulivi (Shelia); A.Y. Chu (Audrey); D. Murgia (Daniela); S. Trompet (Stella); M. Imboden (Medea); B. Kollerits (Barbara); G. Pistis (Giorgio); T.B. Harris (Tamara); L.J. Launer (Lenore); T. Aspelund (Thor); G. Eiriksdottir (Gudny); B.D. Mitchell (Braxton); E.A. Boerwinkle (Eric); H. Schmidt (Helena); E. Hofer (Edith); F.B. Hu (Frank); A. Demirkan (Ayşe); B.A. Oostra (Ben); S.T. Turner (Stephen); J. Ding (Jingzhong); J.S. Andrews (Jeanette); B.I. Freedman (Barry); F. Giulianini (Franco); W. Koenig (Wolfgang); T. Illig (Thomas); A. Döring (Angela); H.E. Wichmann (Heinz Erich); L. Zgaga (Lina); T. Zemunik (Tatijana); M. Boban (Mladen); C. Minelli (Cosetta); H.E. Wheeler (Heather); W. Igl (Wilmar); G. Zaboli (Ghazal); S.H. Wild (Sarah); A.F. Wright (Alan); H. Campbell (Harry); D. Ellinghaus (David); U. Nöthlings (Ute); G. Jacobs (Gunnar); R. Biffar (Reiner); F.D.J. Ernst (Florian); G. Homuth (Georg); H.K. Kroemer (Heyo); M. Nauck (Matthias); S. Stracke (Sylvia); U. Vol̈ker (Uwe); H. Völzke (Henry); P. Kovacs (Peter); M. Stumvoll (Michael); R. Mägi (Reedik); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); O. Polasek (Ozren); N. Hastie (Nick); V. Vitart (Veronique); C. Helmer (Catherine); J.J. Wang (Jie Jin); B. Stengel (Bernd); D. Ruggiero; S.M. Bergmann (Sven); M. Kähönen (Mika); J. Viikari (Jorma); T. Nikopensius (Tiit); M.A. Province (Mike); H.M. Colhoun (H.); A.S.F. Doney (Alex); A. Robino (Antonietta); B.K. Krämer (Bernhard); L. Portas (Laura); I. Ford (Ian); B.M. Buckley (Brendan M.); M. Adam (Martin); G.-A. Thun (Gian-Andri); B. Paulweber (Bernhard); M. Haun (Margot); C. Sala (Cinzia); P. Mitchell (Paul); M. Ciullo; P. Vollenweider (Peter); O. Raitakari (Olli); A. Metspalu (Andres); C.N.A. Palmer (Colin); P. Gasparini (Paolo); M. Pirastu (Mario); J.W. Jukema (Jan Wouter); N.M. Probst-Hensch (Nicole M.); F. Kronenberg (Florian); D. Toniolo (Daniela); V. Gudnason (Vilmundur); A.R. Shuldiner (Alan); J. Coresh (Josef); R. Schmidt (Reinhold); L. Ferrucci (Luigi); C.M. van Duijn (Cornelia); I.B. Borecki (Ingrid); S.L.R. Kardia (Sharon); Y. Liu (YongMei); G.C. Curhan (Gary); I. Rudan (Igor); U. Gyllensten (Ulf); J.F. Wilson (James); A. Franke (Andre); P.P. Pramstaller (Peter Paul); R. Rettig (Rainer); I. Prokopenko (Inga); J.C.M. Witteman (Jacqueline); C. Hayward (Caroline); P.M. Ridker (Paul); M. Bochud (Murielle); I.M. Heid (Iris); D.S. Siscovick (David); C.S. Fox (Caroline); W.H.L. Kao (Wen); C.A. Böger (Carsten)

    2013-01-01

    textabstractMany common genetic variants identified by genome-wide association studies for complex traitsmap to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with

  12. Penetrance of NOD2/CARD15 genetic variants in the general population

    DEFF Research Database (Denmark)

    Yazdanyar, Shiva; Kamstrup, Pia R; Tybjaerg-Hansen, Anne

    2010-01-01

    In case-control studies of Europeans, heterozygosity for Arg702Trp(rs2066844), Gly908Arg(rs2066845) and Leu1007fsinsC(rs5743293) on the NOD2/CARD15 gene is associated with a 2-fold greater risk of Crohn disease, whereas homozygosity or compound heterozygosity is associated with a 17-fold greater ...... risk. However, the importance of these genetic variants if identified in particular individuals within the general population is unknown. We undertook this study to estimate the penetrance of these variants in the general population....

  13. Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration

    Directory of Open Access Journals (Sweden)

    Bryant L

    2017-12-01

    Full Text Available Laura Bryant,1 Olga Lozynska,1 Albert M Maguire,1–3 Tomas S Aleman,1–3 Jean Bennett1–3 1Center for Advanced Retinal and Ocular Therapeutics (CAROT, FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Department of Ophthalmology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 3Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Background: Accurate clinical diagnosis and prognosis of retinal degeneration can be aided by the identification of the disease-causing genetic variant. It can confirm the clinical diagnosis as well as inform the clinician of the risk for potential involvement of other organs such as kidneys. It also aids in genetic counseling for affected individuals who want to have a child. Finally, knowledge of disease-causing variants informs laboratory investigators involved in translational research. With the advent of next-generation sequencing, identifying pathogenic mutations is becoming easier, especially the identification of novel pathogenic variants.Methods: We used whole exome sequencing on a cohort of 69 patients with various forms of retinal degeneration and in whom screens for previously identified disease-causing variants had been inconclusive. All potential pathogenic variants were verified by Sanger sequencing and, when possible, segregation analysis of immediate relatives. Potential variants were identified by using a semi-masked approach in which rare variants in candidate genes were identified without knowledge of the clinical diagnosis (beyond “retinal degeneration” or inheritance pattern. After the initial list of genes was prioritized, genetic diagnosis and inheritance pattern were taken into account.Results: We identified the likely pathogenic variants in 64% of the subjects. Seven percent had a single

  14. A Novel Heme Pocket Hemoglobin Variant Associated with Normal Hematology: Hb Zara or α91(FG3)Leu→Ile (α2) (HBA2: c.274C > A).

    Science.gov (United States)

    Trova, Sandro; Mereu, Paolo; Decandia, Luca; Cocco, Elena; Masala, Bruno; Manca, Laura; Pirastru, Monica

    2015-08-13

    We report a new hemoglobin (Hb) variant on the HBA2 gene, Hb Zara [α91(FG3)Leu→Ile (α2); HBA2: c.274C > A], which was found in a Caucasian man from Croatia. It was observed by routine cation exchange chromatography as an abnormal 21.8% fraction overlapping Hb A 2 , and associated with normal hematology. It was slightly unstable by the standard isopropanol precipitation test. DNA analysis revealed the CTT > ATT mutation at codon 91 on an α2 gene of a normal α-globin gene arrangement. This new variant represents the sixth described mutation at codon α91 and fourth on the α2 locus. As a result of the slight instability due to the significant role of the α91 residue in the α1β2 contact, the level of the Hb Zara variant was lower than levels observed for several stable variants codified by the α2 locus.

  15. Screening of SHOX gene sequence variants in Saudi Arabian children with idiopathic short stature.

    Science.gov (United States)

    Alharthi, Abdulla A; El-Hallous, Ehab I; Talaat, Iman M; Alghamdi, Hamed A; Almalki, Matar I; Gaber, Ahmed

    2017-10-01

    Short stature affects approximately 2%-3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene ( SHOX ) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations. We screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated. A total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX . In Saudi Arabia ISS patients, rather than SHOX , it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease.

  16. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    Science.gov (United States)

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. rs1004819 is the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: The IL23R gene has been identified as a susceptibility gene for inflammatory bowel disease (IBD in the North American population. The aim of our study was to test this association in a large German IBD cohort and to elucidate potential interactions with other IBD genes as well as phenotypic consequences of IL23R variants. METHODS: Genomic DNA from 2670 Caucasian individuals including 833 patients with Crohn's disease (CD, 456 patients with ulcerative colitis (UC, and 1381 healthy unrelated controls was analyzed for 10 IL23R SNPs. Genotyping included the NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007fsX1008 and polymorphisms in SLC22A4/OCTN1 (1672 C-->T and SLC22A5/OCTN2 (-207 G-->C. RESULTS: All IL23R gene variants analyzed displayed highly significant associations with CD. The strongest association was found for the SNP rs1004819 [P = 1.92x10(-11; OR 1.56; 95 % CI (1.37-1.78]. 93.2% of the rs1004819 TT homozygous carriers as compared to 78% of CC wildtype carriers had ileal involvement [P = 0.004; OR 4.24; CI (1.46-12.34]. The coding SNP rs11209026 (p.Arg381Gln was protective for CD [P = 8.04x10(-8; OR 0.43; CI (0.31-0.59]. Similar, but weaker associations were found in UC. There was no evidence for epistasis between the IL23R gene and the CD susceptibility genes CARD15 and SLC22A4/5. CONCLUSION: IL23R is an IBD susceptibility gene, but has no epistatic interaction with CARD15 and SLC22A4/5. rs1004819 is the major IL23R variant associated with CD in the German population, while the p.Arg381Gln IL23R variant is a protective marker for CD and UC.

  18. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  19. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.

    2015-01-01

    women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P ....27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471...

  20. Effect of tryptophan hydroxylase gene polymorphism on aggression in major depressive disorder and undifferentiated somatoform disorder.

    Science.gov (United States)

    Koh, Kyung Bong; Kim, Chan Hyung; Choi, Eun Hee; Lee, Young-joon; Seo, Won Youl

    2012-05-01

    Aggression and anger have been linked with depression, and anger suppression has been linked with somatic symptoms of somatoform disorders. However, the relationship between aggression or anger and genes in patients with depression and somatoform disorders has not been clearly elucidated. The objective of this study was to examine the effect of serotonin-related gene polymorphism on aggression in depressive disorders and somatoform disorders. A serotonin-related polymorphic marker was assessed by using single nucleotide polymorphism (SNP) genotyping. 106 outpatients with major depressive disorder (MDD), 102 outpatients with undifferentiated somatoform disorder, and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Korean version of the Structured Clinical Interview Schedule for DSM-IV. The allele and genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C were compared between groups. The Hamilton Depression Rating Scale and the Aggression Questionnaire were used for psychological assessment. Each of the 2 disorder groups scored significantly higher on all the Aggression Questionnaire subscales and on the total Aggression Questionnaire score than the healthy subjects (P sex and age. However, no significant differences were found in TPH1 C allele and CC homozygote frequencies between the undifferentiated somatoform disorder patients and the healthy subjects. TPH1 CC homozygote in the MDD group scored significantly higher in terms of verbal aggression (P = .03) and total Aggression Questionnaire score (P = .04) than A-carrier genotypes, regardless of sex and age. However, no significant differences were found in the scores of all the Aggression Questionnaire subscales and the total Aggression Questionnaire score between TPH1 CC homozygote and A-carrier genotypes in the undifferentiated somatoform disorder group and the control group, respectively. Aggression in MDD patients is more susceptible to an

  1. An abundance of rare functional variants in 202 drug target genes sequenced in 14.002 people

    DEFF Research Database (Denmark)

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.

    2012-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (1 every 17 bases)...

  2. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome.

    Science.gov (United States)

    Schneider, Nayê Balzan; Pastor, Tatiane; Paula, André Escremim de; Achatz, Maria Isabel; Santos, Ândrea Ribeiro Dos; Vianna, Fernanda Sales Luiz; Rosset, Clévia; Pinheiro, Manuela; Ashton-Prolla, Patricia; Moreira, Miguel Ângelo Martins; Palmero, Edenir Inêz

    2018-05-01

    Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1, MSH2, MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice-site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one-third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Association between gene variants and response to buprenorphine maintenance treatment.

    Science.gov (United States)

    Gerra, Gilberto; Somaini, Lorenzo; Leonardi, Claudio; Cortese, Elena; Maremmani, Icro; Manfredini, Matteo; Donnini, Claudia

    2014-01-30

    A variety of studies were addressed to differentiate responders and non-responders to substitution treatment among heroin dependent patients, without conclusive findings. In particular, preliminary pharmacogenetic findings have been reported to predict treatment effectiveness in mental health and substance use disorders. Aim of the present study was to investigate the possible association of buprenorphine (BUP) treatment outcome with gene variants that may affect kappa-opioid receptors and dopamine system function. One hundred and seven heroin addicts (West European, Caucasians) who underwent buprenorphine maintenance treatment were genotyped and classified into two groups (A and B) on the basis of treatment outcome. Non-responders to buprenorphine (group B) have been identified taking into account early drop out, continuous use of heroin, severe behavioral or psychiatric problems, misbehavior and diversion during the 6 months treatment period. No difference was evidenced between responders and non-responders to BUP in the frequency of kappa opioid receptor (OPRK1) 36G>T SNP. The frequency of dopamine transporter (DAT) gene polymorphism (SLC6A3/DAT1), allele 10, was evidently much higher in "non-responder" than in "responder" individuals (64.9% vs. 55.93%) whereas the frequency of the category of other alleles (6, 7 and 11) was higher in responder than in non-responder individuals (11.02% vs. 2.13% respectively). On one hand, the hypothesis that possible gene-related changes in kappa-opioid receptor could consistently affect buprenorphine pharmacological action and clinical effectiveness was not confirmed in our study, at least in relation to the single nucleotide polymorphism 36G>T. On the other hand, the possibility that gene-related dopamine changes could have reduced BUP effectiveness and impaired maintenance treatment outcome was cautiously supported by our findings. DAT1 gene variants such as allele 10, previously reported in association with personality and

  4. six novel mutations in the TSC1 and TSC2 genes

    Indian Academy of Sciences (India)

    M. GLUSHKOVA

    2018-04-30

    Apr 30, 2018 ... RESEARCH ARTICLE ... nant disorder caused by inactivating TSC1 or TSC2 gene variants (Van ... premature protein truncation, while missense mutations are rare ..... TSC2 variants in our cohort are missense, frame-shift.

  5. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  6. Identification and characterization of two functional variants in the human longevity gene FOXO3

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2017-01-01

    FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SN...

  7. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  8. Genotyping for NOD2 genetic variants and crohn disease: a metaanalysis

    DEFF Research Database (Denmark)

    Yazdanyar, Shiva; Weischer, Maren; Nordestgaard, Børge

    2009-01-01

    BACKGROUND: Arg702Trp, Gly908Arg, and Leu1007fsinsC variants of the NOD2 gene (nucleotide-binding oligomerization domain containing 2; alias, CARD15) influence the risk of Crohn disease. METHODS: We conducted a systematic review to examine whether Arg702Trp, Gly908Arg, and Leu1007fsinsC are equally...

  9. Increased ethanol consumption despite taste aversion in mice with a human tryptophan hydroxylase 2 loss of function mutation.

    Science.gov (United States)

    Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin

    2015-11-16

    Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  11. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    Science.gov (United States)

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  12. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  13. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  14. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: a multi-centre case-control study and meta-analysis

    DEFF Research Database (Denmark)

    Saetre, Peter; Lundmark, Per; Wang, August

    2010-01-01

    Serotonin (5-hydroxytryptamin; 5-HT) alternations has since long been suspected in the pathophysiology of schizophrenia. Tryptophan hydroxylase (tryptophan 5-monooxygenase; TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT, and sequence variation in intron 6 of the TPH1 gene has been...... affected individuals having attempted suicide at least once and patients with no history of suicide attempts (P = 0.84). A systematic literature review and meta-analysis support the A218C polymorphism as a susceptibility locus for schizophrenia (odds ratio 1.17, 95% confidence interval 1.......07-1.29). Association studies on suicide attempts are however conflicting (heterogeneity index I(2) = 0.54) and do not support the A218C/A779C polymorphisms being a susceptibility locus for suicidal behavior among individuals diagnosed with a psychiatric disorder (OR = 0.96 [0.80-1.16]). We conclude that the TPH1 A218...

  15. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available INTRODUCTION: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis. METHODS: Five single nucleotide polymorphisms (SNPs in MYO9B, two SNPs in PARD3, and three SNPs in MAGI2 were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort of 235 patients and 250 controls. RESULTS: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and one in MAGI2 showed association in the German cohort (p < 0.05. Joint analysis of the combined cohorts showed that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031, odds ratio (OR 1.94, 95% confidence interval (95% CI 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI 1.16-1.53. SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of the SNPs showed association to disease severity or etiology. CONCLUSION: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of PARD3 or MAGI2.

  16. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    Science.gov (United States)

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  17. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families.

    Directory of Open Access Journals (Sweden)

    Carlos Cruchaga

    Full Text Available Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD. Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7% carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09 × 10⁻⁵; OR = 2.21; 95%CI = 1.49-3.28 or an unselected population of 12,481 samples (p = 6.82 × 10⁻⁵; OR = 2.19; 95%CI = 1.347-3.26. Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.

  18. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Thierry-Palmer, M.; Cullins, S.; Rashada, S.; Gray, T.K.; Free, A.

    1986-01-01

    The authors have determined the ontogeny of vitamin D 3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3 H-vitamin D 3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl 2 . Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D 3 (250HD 3 ) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD 3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D 3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D 3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D 3 25-hydroxylase

  19. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  20. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    Science.gov (United States)

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  1. Genetic Variants Involved in Mitochondrial Oxidative Metabolism are associated with Type 2 Diabetes Mellitus in studies of 8,441 Danes

    DEFF Research Database (Denmark)

    Snogdal, Lena Sønder; Henriksen, Jan Erik; Beck-Nielsen, Henning

      Aims: Type 2 Diabetes (T2D) is characterized by insulin resistance and failure of the pancreatic beta cells to compensate for this defect. Several studies have demonstrated a link between insulin resistance and impaired mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. Recently...... by the Diabetes Genetics Replication And Meta-analysis Consortium (DIAGRAM), we found that among 1284 SNPs in 119 OxPhos genes, 39 SNPs in 7 genes showed potential association with T2D (p0.8). One SNP...... a surrogate marker (BIG-AIR) for insulin secretion and variants in COX5B (rs11904110) and COX10 (rs10521253), and between fasting p-glucose and a variant in COX5B (rs11904110) and 2-h post-OGTT plasma glucose and a variant in NDUFV3 (rs8134542) (pgenetic variants...

  2. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager

    2008-01-01

    Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmi......Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...

  3. Association of MEP1A gene variants with insulin metabolism in central European women with polycystic ovary syndrome.

    Science.gov (United States)

    Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2014-03-10

    Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, pdisease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  5. Whole-Exome Sequencing of 2,000 Danish Individuals and the Role of Rare Coding Variants in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E.; Sparsø, Thomas; Li, Qibin

    2013-01-01

    number of genes. We applied a series of gene-based tests to detect such susceptibility genes. However, no gene showed a significant association with disease risk after we corrected for the number of genes analyzed. Thus, we could reject a model for the genetic architecture of type 2 diabetes where rare......It has been hypothesized that, in aggregate, rare variants in coding regions of genes explain a substantial fraction of the heritability of common diseases. We sequenced the exomes of 1,000 Danish cases with common forms of type 2 diabetes (including body mass index > 27.5 kg/m2 and hypertension...

  6. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2.

    Science.gov (United States)

    Burrel, Sonia; Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-12-01

    Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Silencing of flavanone-3-hydroxylase in apple (Malus × domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility.

    Science.gov (United States)

    Flachowsky, Henryk; Halbwirth, Heidi; Treutter, Dieter; Richter, Klaus; Hanke, Magda-Viola; Szankowski, Iris; Gosch, Christian; Stich, Karl; Fischer, Thilo C

    2012-02-01

    Transgenic antisense flavanone-3-hydroxylase apple plants were produced to mimic the effect of the agrochemical prohexadione-Ca on apple leaves. This enzyme inhibitor for 2-oxoglutarate dependent dioxygenases is used as a growth retardant and for control of secondary fire blight of leaves. Like using the agent, silencing of flavanone-3-hydroxylase leads to an accumulation of flavanones in leaves, but in contrast not to the formation of 3-deoxyflavonoids. In prohexadione-Ca treated leaves the 3-deoxyflavonoid luteoforol is formed from accumulating flavanones, acting as an antimicrobial compound against the fire blight pathogen Erwinia amylovora. Seemingly, the silencing of just one of the 2-oxoglutarate dependent dioxygenases (in apple also flavonol synthase and anthocyanidin synthase take part downstream in the pathway) does not provide a sufficiently high ratio of flavanones to dihydroflavonols. This seems to be needed to let the dihydroflavonol-4-reductase/flavanone-4-reductase enzyme reduce flavanones to luteoforol, and to let this be reduced by the leucoanthocyanidin-4-reductase/3-deoxyleucoanthocyanidin-4-reductase, each acting with their respective weak secondary activities. Accordingly, also the intended inducible resistance to fire blight by prohexadione-Ca is not observed with the antisense flavanone-3-hydroxylase apple plants. On the other hand, for most transgenic lines with strong flavanone-4-reductase down-regulation, up-regulation of gene expression for the other flavonoid genes was found. This provides further evidence for the feedback regulation of flavonoid gene expression having been previously reported for the prohexadione-Ca inhibited apple plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis.

    Science.gov (United States)

    Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J

    2018-01-15

    Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.

  9. MSX ₁ gene variant and non-syndromic clefting: association or rejection?

    Science.gov (United States)

    Reddy, Naveen Admala; Gopinath, Adusumilli; Reddy, Jayaprakash Thirumala; Devanna, Raghu; Saravanan, Pichai; Rohra, Mayur G

    2014-01-01

    Non-syndromic cleft lip/palate (NSCL/P) is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study is to amplify the chosen region (799 G >T) of MSX 1 gene, investigate the degree of association and perform a mutation research from Raichur cleft lip and palate patient sample. Case history and clinical examination of the patient were recorded to rule. Written consent was obtained from patients and controls for in vivo study. STUDY WAS DESIGNED IN FOUR STEPS AS FOLLOWS: a. Collection of a blood sample; b. Genomic deoxyribonucleic acid (DNA) extraction; c. Polymerase chain reaction (PCR); d. Restriction fragment length polymorphism (RFLP). Blood samples were collected from 50 subjects having NSCL/P and 50 controls. Genomic DNA was extracted, PCR and RFLP was performed for digestion products that were evaluated. Chi-square test with P value at 95% confidence intervals. The results showed a positive correlation between MSX 1 799 G >T gene variant and NSCL/P patients in Raichur patients. From a genetically diverse etiology MSX 1 799 G >T gene variant may be a good screening marker for NSCL/P in Raichur patients.

  10. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  11. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    OpenAIRE

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of t...

  12. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Science.gov (United States)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  13. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  14. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Iñigo Landa

    2009-09-01

    Full Text Available In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30-1.70; P = 5.9x10(-9. Functional assays of rs1867277 (NM_004473.3:c.-283G>A within the FOXE1 5' UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/alphaCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

  15. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Science.gov (United States)

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  16. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    Science.gov (United States)

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  17. Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; van Wijk, Erwin; Ebermann, Inga; Kersten, Ferry; García-García, Gema; Voesenek, Krysta; Aparisi, María José; Hoefsloot, Lies; Cremers, Cor; Díaz-Llopis, Manuel; Pennings, Ronald; Bolz, Hanno J.; Kremer, Hannie; Millán, José M.

    2010-01-01

    Purpose It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. Methods DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. Results We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. Conclusions DFNB31 is not a major cause of USH. PMID:20352026

  18. Rapid Identification of Pathogenic Variants in Two Cases of Charcot-Marie-Tooth Disease by Gene-Panel Sequencing

    Directory of Open Access Journals (Sweden)

    Chi-Chun Ho

    2017-04-01

    Full Text Available Charcot-Marie-Tooth disease (CMT is a common inherited peripheral neuropathy affecting up to 1 in 1214 of the general population with more than 60 nuclear genes implicated in its pathogenesis. Traditional molecular diagnostic pathways based on relative prevalence and clinical phenotyping are limited by long turnaround time, population-specific prevalence of causative variants and inability to assess multiple co-existing variants. In this study, a CMT gene panel comprising 27 genes was used to uncover the pathogenic mutations in two index patients. The first patient is a 15-year-old boy, born of consanguineous parents, who has had frequent trips and falls since infancy, and was later found to have inverted champagne bottle appearance of bilateral legs and foot drop. His elder sister is similarly affected. The second patient is a 37-year-old woman referred for pre-pregnancy genetic diagnosis. During early adulthood, she developed progressive lower limb weakness, difficulties in tip-toe walking and thinning of calf muscles. Both patients are clinically compatible with CMT, have undergone multiple genetic testings and have not previously received a definitive genetic diagnosis. Patients 1 and 2 were found to have pathogenic homozygous HSPB1:NM_001540:c.250G>A (p.G84R variant and heterozygous GDAP1:NM_018972:c.358C>T (p.R120W variant, respectively. Advantages and limitations of the current approach are discussed.

  19. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering.

    Science.gov (United States)

    Han, Tae-Un; Park, John; Domingues, Carlos F; Moretti-Ferreira, Danilo; Paris, Emily; Sainz, Eduardo; Gutierrez, Joanne; Drayna, Dennis

    2014-09-01

    A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of

  20. [Cloning and bioinformatics analysis of abscisic acid 8'-hydroxylase from Pseudostellariae Radix].

    Science.gov (United States)

    Li, Jun; Long, Deng-Kai; Zhou, Tao; Ding, Ling; Zheng, Wei; Jiang, Wei-Ke

    2016-07-01

    Abscisic acid 8'-hydroxylase was one of key enzymes genes in the metabolism of abscisic acid (ABA). Seven menbers of abscisic acid 8'-hydroxylase were identified from Pseudostellaria heterophylla transcriptome sequencing results by using sequence homology. The expression profiles of these genes were analyzed by transcriptome data. The coding sequence of ABA8ox1 was cloned and analyzed by informational technology. The full-length cDNA of ABA8ox1 was 1 401 bp,with 480 encoded amino acids. The predicated isoelectric point (pI) and relative molecular mass (MW) were 8.55 and 53 kDa,respectively. Transmembrane structure analysis showed that there were 21 amino acids in-side and 445 amino acids out-side. High level of transcripts can detect in bark of root and fibrous root. Multi-alignment and phylogenetic analysis both show that ABA8ox1 had a high similarity with the CYP707As from other plants,especially with AtCYP707A1 and AtCYP707A3 in Arabidopsis thaliana. These results lay a foundation for molecular mechanism of tuberous root expanding and response to adversity stress. Copyright© by the Chinese Pharmaceutical Association.

  1. Comprehensive Pathway-Based Association Study of DNA Repair Gene Variants and the Risk of Nasopharyngeal Carcinoma

    Science.gov (United States)

    Qin, Hai-De; Shugart, Yin Yao; Bei, Jin-Xin; Pan, Qing-Hua; Chen, Lina; Feng, Qi-Sheng; Chen, Li-Zhen; Huang, Wei; Liu, Jian Jun; Jorgensen, Timothy J.; Zeng, Yi-Xin; Jia, Wei-Hua

    2011-01-01

    DNA repair plays a central role in protecting against environmental carcinogenesis, and genetic variants of DNA repair genes have been reported to be associated with several human malignancies. To assess whether DNA gene variants were associated with nasopharyngeal carcinoma (NPC) risk, a candidate gene association study was conducted among the Cantonese population within the Guangdong Province, China --the ethnic group with the highest risk for NPC. A two-stage study design was utilized. In the discovery stage, 676 tagging SNPs covering 88 DNA repair genes were genotyped in a matched case-control study (cases/controls = 755/755). Eleven SNPs with Ptrend Cantonese population (cases/controls = 1,568/1,297). Two of the SNPs (rs927220 and rs11158728) – both in RAD51L1 – remained strongly associated with NPC. The SNP rs927220 had a significant Pcombined of 5.55 × 10−5, with OR = 1.20 (95%CI = 1.10 to 1.30), Bonferroni corrected P = 0.0381. The other SNP (rs11158728), which is in strong LD with rs927220 (r2 = 0.7), had a significant Pcombined of 2.0 × 10−4, Bonferroni corrected P = 0.1372. Gene-environment interaction analysis suggested that the exposures of salted-fish consumption and cigarette smoking had potential interactions with DNA repair gene variations, but need to be further investigated. Our findings support the notion that DNA repair genes, in particular RAD51L1, play a role in NPC etiology and development. PMID:21368091

  2. Identification of novel mutations and sequence variants in the SOX2 and CHX10 genes in patients with anophthalmia/microphthalmia

    Science.gov (United States)

    Zhou, Jie; Kherani, Femida; Bardakjian, Tanya M.; Katowitz, James; Hughes, Nkecha; Schimmenti, Lisa A.; Schneider, Adele

    2008-01-01

    Purpose Mutations in the SOX2 and CHX10 genes have been reported in patients with anophthalmia and/or microphthalmia. In this study, we evaluated 34 anophthalmic/microphthalmic patient DNA samples (two sets of siblings included) for mutations and sequence variants in SOX2 and CHX10. Methods Conformational sensitive gel electrophoresis (CSGE) was used for the initial SOX2 and CHX10 screening of 34 affected individuals (two sets of siblings), five unaffected family members, and 80 healthy controls. Patient samples containing heteroduplexes were selected for sequence analysis. Base pair changes in SOX2 and CHX10 were confirmed by sequencing bidirectionally in patient samples. Results Two novel heterozygous mutations and two sequence variants (one known) in SOX2 were identified in this cohort. Mutation c.310 G>T (p. Glu104X), found in one patient, was in the region encoding the high mobility group (HMG) DNA-binding domain and resulted in a change from glutamic acid to a stop codon. The second mutation, noted in two affected siblings, was a single nucleotide deletion c.549delC (p. Pro184ArgfsX19) in the region encoding the activation domain, resulting in a frameshift and premature termination of the coding sequence. The shortened protein products may result in the loss of function. In addition, a novel nucleotide substitution c.*557G>A was identified in the 3′-untranslated region in one patient. The relationship between the nucleotide change and the protein function is indeterminate. A known single nucleotide polymorphism (c. *469 C>A, SNP rs11915160) was also detected in 2 of the 34 patients. Screening of CHX10 identified two synonymous sequence variants, c.471 C>T (p.Ser157Ser, rs35435463) and c.579 G>A (p. Gln193Gln, novel SNP), and one non-synonymous sequence variant, c.871 G>A (p. Asp291Asn, novel SNP). The non-synonymous polymorphism was also present in healthy controls, suggesting non-causality. Conclusions These results support the role of SOX2 in ocular

  3. Genotyping of the 19-bp insertion/deletion polymorphism in the 5' flank of beta-hydroxylase gene by dissociation analysis of allele-specific PCR products

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2005-01-01

    The 19-bp insertion/deletion polymorphism in the 5' flank of the dopamine beta-hydroxylase (DBH) gene has been associated with psychiatric disorders. We have developed a simple, reliable and inexpensive closed-tube assay for genotyping of this polymorphism based upon T(m) determination of amplified...... and a conventional approach based upon agarose gel electrophoresis of amplified fragments revealed complete concordance between the two procedures. The insights obtained in this study may be utilized to develop assays based upon dissociation analysis of PCR products for genotyping of other insertion...

  4. A Genetic Biomarker of Oxidative Stress, the Paraoxonase-1 Q192R Gene Variant, Associates with Cardiomyopathy in CKD: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    E. Dounousi

    2016-01-01

    Full Text Available Background. Oxidative stress is a hallmark of CKD and this alteration is strongly implicated in LV hypertrophy and in LV dysfunction. Methods and Patients. We resorted to the strongest genetic biomarker of paraoxonase-1 (PON1 activity, the Q192R variant in the PON1 gene, to unbiasedly assess (Mendelian randomization the cross-sectional and longitudinal association of this gene-variant with LV mass and function in 206 CKD patients with a 3-year follow-up. Results. The R allele of Q192R polymorphism associated with oxidative stress as assessed by plasma 8-isoPGF2α (P=0.03 and was dose-dependently related in a direct fashion to LVMI (QQ: 131.4 ± 42.6 g/m2; RQ: 147.7 ± 51.1 g/m2; RR: 167.3 ± 41.9 g/m2; P=0.001 and in an inverse fashion to systolic function (LV Ejection Fraction (QQ: 79 ± 12%; RQ: 69 ± 9%; RR: 65 ± 10% P=0.002. On longitudinal observation, this gene variant associated with the evolution of the same echocardiographic indicators [LVMI: 13.40 g/m2 per risk allele, P=0.005; LVEF: −2.96% per risk allele, P=0.001]. Multivariate analyses did not modify these associations. Conclusion. In CKD patients, the R allele of the Q192R variant in the PON1 gene is dose-dependently related to the severity of LVH and LV dysfunction and associates with the longitudinal evolution of these cardiac alterations. These results are compatible with the hypothesis that oxidative stress is implicated in cardiomyopathy in CKD patients.

  5. Co-existence of Blau syndrome and NAID? Diagnostic challenges associated with presence of multiple pathogenic variants in NOD2 gene: a case report.

    Science.gov (United States)

    Dziedzic, Magdalena; Marjańska, Agata; Bąbol-Pokora, Katarzyna; Urbańczyk, Anna; Grześk, Elżbieta; Młynarski, Wojciech; Kołtan, Sylwia

    2017-07-27

    Pediatric autoinflammatory diseases are rare and still poorly understood conditions resulting from defective genetic control of innate immune system, inter alia from anomalies of NOD2 gene. The product of this gene is Nod2 protein, taking part in maintenance of immune homeostasis. Clinical form of resultant autoinflammatory condition depends on NOD2 genotype; usually patients with NOD2 defects present with Blau syndrome, NOD2-associated autoinflammatory disease (NAID) or Crohn's disease. We present the case of a 7-year-old girl with co-existing symptoms of two rare diseases, Blau syndrome and NAID. Overlapping manifestations of two syndromes raised a significant diagnostic challenge, until next-generation molecular test (NGS) identified presence of three pathogenic variants of NOD2 gene: P268S, IVS8 +158 , 1007 fs, and established the ultimate diagnosis. Presence of multiple genetical abnormalities resulted in an ambiguous clinical presentation with overlapping symptoms of Blau syndrome and NAID. Final diagnosis of autoinflammatory disease opened new therapeutic possibilities, including the use of biological treatments.

  6. Sequence variants of the LCORL gene and its association with ...

    Indian Academy of Sciences (India)

    Y. J. HAN

    [Han Y. J., Chen Y., Liu Y. and Liu X. L. 2017 Sequence variants of the LCORL gene and its association with growth and carcass traits in. Qinchuan cattle in China. J. Genet. 96, xx–xx]. Introduction. Genetically selecting is a better way to satisfy the growing customer requirement with the development of beef cattle industry ...

  7. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure.

    Science.gov (United States)

    Freedman, B I; Julian, B A; Pastan, S O; Israni, A K; Schladt, D; Gautreaux, M D; Hauptfeld, V; Bray, R A; Gebel, H M; Kirk, A D; Gaston, R S; Rogers, J; Farney, A C; Orlando, G; Stratta, R J; Mohan, S; Ma, L; Langefeld, C D; Hicks, P J; Palmer, N D; Adams, P L; Palanisamy, A; Reeves-Daniel, A M; Divers, J

    2015-06-01

    Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single-center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two-APOL1-nephropathy-variant kidneys (hazard ratio [HR] 2.71; p = 0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p = 0.001) and African American recipient race/ethnicity (HR 1.60; p = 0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed-consent processes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Analysis of common SHOX gene sequence variants and ∼4.9-kb ...

    Indian Academy of Sciences (India)

    [Solc R., Hirschfeldova K., Kebrdlova V. and Baxova A. 2014 Analysis of common SHOX gene sequence variants ... based on a Gibbs sampling strategy were done using .... SHOX (short stature homeobox) are an important cause of growth.

  9. Molecular Characterization of Ferulate 5-Hydroxylase Gene from Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Jonggeun Kim

    2013-01-01

    Full Text Available The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.. Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84, is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ortholog was cloned and characterized. The full-length F5H ortholog consists of a 1,557-bp open reading frame (ORF encoding 518 amino acids (GenBank Accession number JX524278. The deduced amino acid sequence showed that kenaf F5H had the highest similarity (78% with that of Populus trichocarpa. Transcriptional analysis of F5H ortholog was conducted using quantitative real-time PCR during the developmental stages of various tissues and in response to various abiotic stresses. The highest transcript level of the F5H ortholog was observed in immature flower tissues and in early stage (6 week-old of stem tissues, with a certain level of expression in all tissues tested. The highest transcript level of F5H ortholog was observed at the late time points after treatments with NaCl (48 h, wounding (24 h, cold (24 h, abscisic acid (24 h, and methyl jasmonate (24 h.

  10. Mutation analysis of the phenylalanine hydroxylase gene in Azerbaijani population, a report from West Azerbaijan province of Iran

    Directory of Open Access Journals (Sweden)

    Morteza Bagheri

    2015-07-01

    Full Text Available Objective(s:Phenylketonuria (PKU is a genetic inborn error of phenylalanine (Phe metabolism resulting from insufficiency in the hepatic enzyme, phenylalanine hydroxylase (PAH, which leads to elevated levels of Phe in the blood. The present study was carried out for mutation analysis of the PAH gene in West Azerbaijan province of Iran. Materials and Methods:A total of 218 alleles from 40 PKU families were studied using restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR method. Results:The frequencies of IVS10-11, S67P, R261Q, R252W, IVS11nt-1 g>c, R408Q, and Q232Q mutations were 28(35, 17(21.25, 15(18.75, 3(3.75, 3(3.75, 2(2.5, and 1(1.25, in cases group, and 51(23.4, 31(14.2, 27(12.4, 6(2.75, 6(2.75, 4(1.83, and 2(0.92 in total group, respectively. The mutations of R243Q, 364delG, L333F, 261X, I65T, and R408W were not detected in our samples. Conclusion: It can be concluded that the IVS10-11 mutation has the highest frequency in the tested population. To our knowledge, this report is the first in its own kind and provides better understanding of the genetic heterogeneity, the origin and distributions of PAH mutations in West Azerbaijan province of Iran.

  11. CDK5RAP2 gene and tau pathophysiology in late-onset sporadic Alzheimer's disease.

    Science.gov (United States)

    Miron, Justin; Picard, Cynthia; Nilsson, Nathalie; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-06-01

    Because currently known Alzheimer's disease (AD) single-nucleotide polymorphisms only account for a small fraction of the genetic variance in this disease, there is a need to identify new variants associated with AD. Our team performed a genome-wide association study in the Quebec Founder Population isolate to identify novel protective or risk genetic factors for late-onset sporadic AD and examined the impact of these variants on gene expression and AD pathology. The rs10984186 variant is associated with an increased risk of developing AD and with a higher CDK5RAP2 mRNA prevalence in the hippocampus. On the other hand, the rs4837766 variant, which is among the best cis-expression quantitative trait loci in the CDK5RAP2 gene, is associated with lower mild cognitive impairment/AD risk and conversion rate. The rs10984186 risk and rs4837766 protective polymorphic variants of the CDK5RAP2 gene might act as potent genetic modifiers for AD risk and/or conversion by modulating the expression of this gene. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Association Analysis of COQ2 Variant in Dementia and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Yin Xia Chao

    2015-01-01

    Full Text Available Objective. COQ2 mutations have been reported in Japanese multiple system atrophy (MSA patients. We examined the role of COQ2 in patients with dementia and essential tremor (ET, two common neurodegenerative conditions. Materials & Methods. A total of 2064 subjects, including 560 patients with dementia, 466 patients with ET, and 1038 healthy controls, were included. Genotyping for the COQ2 V393A (T>C was carried out. Odds ratio (OR adjusted by age and gender, together with 95% confidence interval (CI, was reported by means of logistic regression. Results. The frequency of the polymorphic variant V393A heterozygous (T/C was 2.7% in dementia, 1.1% in ET, and 2.5% in controls (OR = 0.70, 95% confidence interval is 0.29–1.72 for dementia, and OR = 0.47, 95% confidence interval is 0.17–1.31, p=0.1217 for ET. There was no significant association between V393A variant with dementia and ET. Conclusion. There was no significant association between V393A variant with dementia and ET. COQ2 gene is unlikely to play a significant role in patients with dementia or ET in our population.

  13. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    Science.gov (United States)

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  14. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Larissa Lazzarini Furlan

    2017-11-01

    Conclusions: This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene.

  15. Biochemical characterization of the GM2 gangliosidosis B1 variant

    Directory of Open Access Journals (Sweden)

    Tutor J.C.

    2004-01-01

    Full Text Available The deficiency of the A isoenzyme of ß-hexosaminidase (Hex produced by different mutations of the gene that codes for the alpha subunit (Tay-Sachs disease has two variants with enzymological differences: the B variant consists of the absence of Hex A isoenzyme and the B1 variant produces an inactive Hex A isoenzyme for the hydrolysis of the GM2 ganglioside and synthetic substrates with negative charge. In contrast to the early childhood form of the B variant, the B1 variant appears at a later clinical stage (3 to 7 years of age with neurodegenerative symptoms leading to the death of the patient in the second decade of life. The most frequent mutation responsible for the GM2 gangliosidosis B1 variant is R178H, which has a widespread geographic and ethnic distribution. The highest incidence has been described in Portugal, which has been suggested as the point of origin of this mutation. Biochemical characterization of this lysosomal disease is carried out using negatively charged synthetic alpha subunit-specific sulfated substrates, since Hex A isoenzyme heat-inactivation assays are not applicable. However, the determination of the apparent activation energy of Hex using the neutral substrate 3,3'-dichlorophenolsulfonphthaleinyl N-acetyl-ß-D-glucosaminide, may offer a valid alternative. The presence of an alpha subunit in the alphaß heterodimer Hex A means that its activation energy (41.8 kJ/mol is significantly lower than that of the ßß homodimer Hex B (75.1 kJ/mol; however, as mutation inactivates the alpha subunit, the Hex A of the B1 variant presents an activation energy that is similar to that of the Hex B isoenzyme.

  16. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.

    Science.gov (United States)

    Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso

    2017-03-01

    Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.

  17. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.

    Directory of Open Access Journals (Sweden)

    Anina Bauer

    2017-03-01

    Full Text Available Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase. The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro. ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.

  18. Surfactant proteins gene variants in premature newborn infants with severe respiratory distress syndrome.

    Science.gov (United States)

    Somaschini, Marco; Presi, Silvia; Ferrari, Maurizio; Vergani, Barbara; Carrera, Paola

    2017-12-19

    Genetic surfactant dysfunction causes respiratory failure in term and near-term newborn infants, but little is known of such condition in prematures. We evaluated genetic surfactant dysfunction in premature newborn infants with severe RDS. A total of 68 preterm newborn infants with gestational age ≤32 weeks affected by unusually severe RDS were analysed for mutations in SFTPB, SFTPC and ABCA3. Therapies included oxygen supplementation, nasal CPAP, different modalities of ventilatory support, administration of exogenous surfactant, inhaled nitric oxide and steroids. Molecular analyses were performed on genomic DNA extracted from peripheral blood and Sanger sequencing of whole gene coding regions and intron junctions. In one case histology and electron microscopy on lung tissue was performed. Heterozygous previously described rare or novel variants in surfactant proteins genes ABCA3, SFTPB and SFTPC were identified in 24 newborn infants. In total, 11 infants died at age of 2 to 6 months. Ultrastructural analysis of lung tissue of one infant showed features suggesting ABCA3 dysfunction. Rare or novel genetic variants in genes encoding surfactant proteins were identified in a large proportion (35%) of premature newborn infants with particularly severe RDS. We speculate that interaction of developmental immaturity of surfactant production in association with abnormalities of surfactant metabolism of genetic origin may have a synergic worsening phenotypic effect.

  19. Sequencing of sporadic Attention-Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.

    Science.gov (United States)

    Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P

    2017-06-01

    Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Clinical Relevance of HLA Gene Variants in HBV Infection

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Host gene variants may influence the natural history of hepatitis B virus (HBV infection. The human leukocyte antigen (HLA system, the major histocompatibility complex (MHC in humans, is one of the most important host factors that are correlated with the clinical course of HBV infection. Genome-wide association studies (GWASs have shown that single nucleotide polymorphisms (SNPs near certain HLA gene loci are strongly associated with not only persistent HBV infection but also spontaneous HBV clearance and seroconversion, disease progression, and the development of liver cirrhosis and HBV-related hepatocellular carcinoma (HCC in chronic hepatitis B (CHB. These variations also influence the efficacy of interferon (IFN and nucleot(side analogue (NA treatment and response to HBV vaccines. Meanwhile, discrepant conclusions were reached with different patient cohorts. It is therefore essential to identify the associations of specific HLA allele variants with disease progression and viral clearance in chronic HBV infection among different ethnic populations. A better understanding of HLA polymorphism relevance in HBV infection outcome would enable us to elucidate the roles of HLA SNPs in the pathogenesis and clearance of HBV in different areas and ethnic groups, to improve strategies for the prevention and treatment of chronic HBV infection.

  1. Evidence of trem2 variant associated with triple risk of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Zainularifeen Abduljaleel

    Full Text Available Alzheimer's disease is one of the main causes of dementia among elderly individuals and leads to the neurodegeneration of different areas of the brain, resulting in memory impairments and loss of cognitive functions. Recently, a rare variant that is associated with 3-fold higher risk of Alzheimer's disease onset has been found. The rare variant discovered is a missense mutation in the loop region of exon 2 of Trem2 (rs75932628-T, Arg47His. The aim of this study was to investigate the evidence for potential structural and functional significance of Trem2 gene variant (Arg47His through molecular dynamics simulations. Our results showed the alteration caused due to the variant in TREM2 protein has significant effect on the ligand binding affinity as well as structural configuration. Based on molecular dynamics (MD simulation under salvation, the results confirmed that native form of the variant (Arg47His might be responsible for improved compactness, hence thereby improved protein folding. Protein simulation was carried out at different temperatures. At 300K, the deviation of the theoretical model of TREM2 protein increased from 2.0 Å at 10 ns. In contrast, the deviation of the Arg47His mutation was maintained at 1.2 Å until the end of the simulation (t = 10 ns, which indicated that Arg47His had reached its folded state. The mutant residue was a highly conserved region and was similar to "immunoglobulin V-set" and "immunoglobulin-like folds". Taken together, the result from this study provides a biophysical insight on how the studied variant could contribute to the genetic susceptibility to Alzheimer's disease.

  2. Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls.

    Science.gov (United States)

    Bellenguez, Céline; Charbonnier, Camille; Grenier-Boley, Benjamin; Quenez, Olivier; Le Guennec, Kilan; Nicolas, Gaël; Chauhan, Ganesh; Wallon, David; Rousseau, Stéphane; Richard, Anne Claire; Boland, Anne; Bourque, Guillaume; Munter, Hans Markus; Olaso, Robert; Meyer, Vincent; Rollin-Sillaire, Adeline; Pasquier, Florence; Letenneur, Luc; Redon, Richard; Dartigues, Jean-François; Tzourio, Christophe; Frebourg, Thierry; Lathrop, Mark; Deleuze, Jean-François; Hannequin, Didier; Genin, Emmanuelle; Amouyel, Philippe; Debette, Stéphanie; Lambert, Jean-Charles; Campion, Dominique

    2017-11-01

    We performed whole-exome and whole-genome sequencing in 927 late-onset Alzheimer disease (LOAD) cases, 852 early-onset AD (EOAD) cases, and 1273 controls from France. We assessed the evidence for gene-based association of rare variants with AD in 6 genes for which an association with such variants was previously claimed. When aggregating protein-truncating and missense-predicted damaging variants, we found exome-wide significant association between EOAD risk and rare variants in SORL1, TREM2, and ABCA7. No exome-wide significant signal was obtained in the LOAD sample, and significance of the order of 10 -6 was observed in the whole AD group for TREM2. Our study confirms previous gene-level results for TREM2, SORL1, and ABCA7 and provides a clearer insight into the classes of rare variants involved. Despite different effect sizes and varying cumulative minor allele frequencies, the rare protein-truncating and missense-predicted damaging variants in TREM2, SORL1, and ABCA7 contribute similarly to the heritability of EOAD and explain between 1.1% and 1.5% of EOAD heritability each, compared with 9.12% for APOE ε4. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identification of coagulation gene 3′UTR variants that are potentially regulated by microRNAs

    NARCIS (Netherlands)

    Vossen, Carla Y.; van Hylckama Vlieg, Astrid; Teruel-Montoya, Raúl; Salloum-Asfar, Salam; de Haan, Hugoline G.; Corral, Javier; Reitsma, Pieter H.; Koeleman, Bobby P.C.; Martínez, Constantino

    2017-01-01

    MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3′ untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3′UTR of coagulation genes

  4. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population.

    Science.gov (United States)

    Guo, Liwei; Li, Duan; Li, Mengting; Li, Lin; Huang, Yanmei

    2017-07-01

    Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10 -3 and OR = 0.75, p = 2.51 × 10 -4 , respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.

  5. A frequent regulatory variant of the estrogen-related receptor alpha gene associated with BMD in French-Canadian premenopausal women.

    Science.gov (United States)

    Laflamme, Nathalie; Giroux, Sylvie; Loredo-Osti, J Concepción; Elfassihi, Latifa; Dodin, Sylvie; Blanchet, Claudine; Morgan, Kenneth; Giguère, Vincent; Rousseau, François

    2005-06-01

    Genes are important BMD determinants. We studied the association of an ESRRA gene functional variant with BMD in 1335 premenopausal women. The ESRRA genotype was an independent predictor of L2-L4 BMD, with an effect similar to smoking and equivalent to a 10-kg difference in weight. Several genetic polymorphisms have been associated with osteoporosis or osteoporosis fractures, but no functional effect has been shown for most of these gene variants. Because functional studies have implicated estrogen-related receptor alpha (ESRRA) in bone metabolism, we evaluated whether a recently described regulatory variant of the ESRRA gene is associated with lumbar and hip BMD as measured by DXA and with heel bone parameters as measured by quantitative ultrasound (QUS). Heel bone parameters were measured by right calcaneal QUS in 1335 healthy French-Canadian premenopausal women, and one-half of these women also had their BMD evaluated at two sites: femoral neck and lumbar spine (L2-L4) by DXA. All bone measures were tested separately for association with the ESRRA genotype by analysis of covariance. The significance of the ESRRA contribution to the model was also assessed by two different permutation tests. A statistically significant association between ESRRA genotype and lumbar spine BMD was observed: women carrying the long ESRRA genotype had a 3.9% (0.045 g/cm2) higher lumbar spine BMD than those carrying the short ESRRA genotype (p = 0.004), independently of other risk factors measured. This effect of ESRRA genotype is similar to the effect of smoking and equivalent to a 10-kg difference in weight. This association was confirmed by permutation tests (p = 0.004). The same trend was observed for femoral neck BMD (2.6%, p = 0.07). However, no association was observed between ESRRA and QUS heel bone measures. These results support the genetic influence of this ESRRA regulatory variant on BMD.

  6. Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA.

    Science.gov (United States)

    Seth, Puneet; Yeowell, Heather N

    2010-04-01

    Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease

  7. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  8. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    Science.gov (United States)

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several