WorldWideScience

Sample records for hydroxylase immunoreactive neurons

  1. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  2. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    International Nuclear Information System (INIS)

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-01-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues

  3. Tyrosine Hydroxylase (TH)- and Aromatic-L-Amino Acid Decarboxylase (AADC)-Immunoreactive Neurons of the Common Marmoset (Callithrix jacchus) Brain: An Immunohistochemical Analysis

    Science.gov (United States)

    Karasawa, Nobuyuki; Hayashi, Motoharu; Yamada, Keiki; Nagatsu, Ikuko; Iwasa, Mineo; Takeuchi, Terumi; Uematsu, Mitsutoshi; Watanabe, Kazuko; Onozuka, Minoru

    2007-01-01

    From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC). TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents. PMID:17653300

  4. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  5. Tyrosine hydroxylase-immunoreactivity and its relations with gonadotropin-releasing hormone and neuropeptide Y in the preoptic area of the guinea pig.

    Science.gov (United States)

    Bogus-Nowakowska, Krystyna; Równiak, Maciej; Hermanowicz-Sobieraj, Beata; Wasilewska, Barbara; Najdzion, Janusz; Robak, Anna

    2016-12-01

    The present study examines the distribution of tyrosine hydroxylase (TH) immunoreactivity and its morphological relationships with neuropeptide Y (NPY)- and gonadoliberin (GnRH)-immunoreactive (IR) structures in the preoptic area (POA) of the male guinea pig. Tyrosine hydroxylase was expressed in relatively small population of perikarya and they were mostly observed in the periventricular preoptic nucleus and medial preoptic area. The tyrosine hydroxylase-immunoreactive (TH-IR) fibers were dispersed troughout the whole POA. The highest density of these fibers was observed in the median preoptic nucleus, however, in the periventricular preoptic nucleus and medial preoptic area they were only slightly less numerous. In the lateral preoptic area, the density of TH-IR fibers was moderate. Two morphological types of TH-IR fibers were distinguished: smooth and varicose. Double immunofluorescence staining showed that TH and GnRH overlapped in the guinea pig POA but they never coexisted in the same structures. TH-IR fibers often intersected with GnRH-IR structures and many of them touched the GnRH-IR perikarya or dendrites. NPY wchich was abundantly present in the POA only in fibers showed topographical proximity with TH-IR structures. Althoug TH-IR perikarya and fibers were often touched by NPY-IR fibers, colocalization of TH and NPY in the same structures was very rare. There was only a small population of fibers which contained both NPY and TH. In conclusion, the morphological evidence of contacts between TH- and GnRH-IR nerve structures may be the basis of catecholaminergic control of GnRH release in the preoptic area of the male guinea pig. Moreover, TH-IR neurons were conatcted by NPY-IR fibers and TH and NPY colocalized in some fibers, thus NPY may regulate catecholaminergic neurons in the POA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    DEFF Research Database (Denmark)

    Hundahl, C A; Fahrenkrug, J; Luuk, H

    2012-01-01

    level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin...... and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study...

  7. Increased expression of tyrosine hydroxylase immunoreactivity in paraventricular and supraoptic neurons in illnesses with prolonged osmotic or nonosmotic stimulation of vasopressin release

    NARCIS (Netherlands)

    Panayotacopoulou, Maria T.; Malidelis, Yiannis I.; Fliers, Eric; Bouras, Constantin; Ravid, Rivka; Swaab, Dick F.

    2002-01-01

    Our previous studies indicated that in the human para-ventricular (PVN) and supraoptic (SON) nuclei, tyrosine hydroxylase (TH) - the first and rate-limiting enzyme in catecholamine synthesis - is localized mainly in magnocellular neurons and that antemortem factors regulate its expression. The

  8. Neuroanatomy of pars intercerebralis neurons with special reference to their connections with neurons immunoreactive for pigment-dispersing factor in the blow fly Protophormia terraenovae.

    Science.gov (United States)

    Yasuyama, Kouji; Hase, Hiroaki; Shiga, Sakiko

    2015-10-01

    Input regions of pars intercerebralis (PI) neurons are examined by confocal and electron microscopies with special reference to their connections with neurons immunoreactive for pigment-dispersing factor (PDF) in the blow fly, Protophormia terraenovae. PI neurons are a prerequisite for ovarian development under long-day conditions. Backfills from the cardiac recurrent nerve after severance of the posterior lateral tracts labeled thin fibers derived from the PI neurons in the superior medial protocerebrum. These PI fibers were mainly synapsin-negative and postsynaptic to unknown varicose profiles containing dense-core vesicles. Backfilled fibers in the periesophageal neuropils, derived from the PI neurons or neurons with somata in the subesophageal zone, were varicose and some were synapsin-positive. Electron microscopy revealed the presence of both presynaptic and postsynaptic sites in backfilled fibers in the periesophageal neuropils. Many PDF-immunoreactive varicosities were found in the superior medial and lateral protocerebrum and double-labeling showed that 60-88 % of PDF-immunoreactive varicosities were also synapsin-immunoreactive. Double-labeling with the backfills and PDF immunocytochemistry showed that the PI fibers and PDF-immunoreactive varicosities were located close to each other in the superior medial protocerebrum. Results of triple-labeling of PI neurons, PDF-immunoreactive neurons and synapsin-immunoreactive terminals demonstrated that the synapsin-positive PDF-immunoreactive varicosities contacted the PI fibers. These data suggest that PI neurons receive synaptic contacts from PDF-immunoreactive fibers, which are derived from circadian clock neurons, of small ventral lateral neurons (previously called OL2) or posterior dorsal (PD) neurons with somata in the pars lateralis.

  9. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Science.gov (United States)

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing

    2015-01-01

    The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  10. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Directory of Open Access Journals (Sweden)

    Xiaolu Wang

    Full Text Available The laryngeal chemoreflex (LCR induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS, the vestibular nuclear complex (VNC, the loose formation of the nucleus ambiguus (AmbL, the rostral ventral respiratory group (RVRG, the ventrolateral reticular complex (VLR, the pre-Bötzinger complex (PrBöt, the Bötzinger complex (Böt, the spinal trigeminal nucleus (SP5, and the raphe obscurus nucleus (ROb bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic, and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  11. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    Science.gov (United States)

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O 2 ). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Spatial patterns of FUS-immunoreactive neuronal cytoplasmic inclusions (NCI) in neuronal intermediate filament inclusion disease (NIFID).

    Science.gov (United States)

    Armstrong, Richard A; Gearing, Marla; Bigio, Eileen H; Cruz-Sanchez, Felix F; Duyckaerts, Charles; Mackenzie, Ian R A; Perry, Robert H; Skullerud, Kari; Yokoo, Hideaki; Cairns, Nigel J

    2011-11-01

    Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or α-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ΙΝΑ, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.

  13. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry.

    Science.gov (United States)

    Lee, Keon-Cheol; Sharma, Seema; Tuttle, Jeremy B; Steers, William D

    2010-10-01

    Autonomic innervation of urethral smooth muscle may influence urinary continence after prostatectomy. It is unclear whether the cavernous nerves carry fibers that influence continence. Using a retrograde axonal tracer combined with real-time in vivo imaging and ex vivo immunohistochemistry we determined the course and type of neurons supplying urethral smooth muscle distal to the prostate in the rat. We injected the retrograde axonal tracers cholera toxin B fragment-Alexa Fluor 488 and Fast Blue in the distal urethral smooth muscle in 10 rats each. Five days later the cavernous nerves and pelvic ganglion were imaged using fiberoptic confocal fluorescence microscopy (cholera toxin B fragment-Alexa Fluor 488) or harvested for immunohistochemistry (Fast Blue). Dual immunofluorescence of Fast Blue neurons with tyrosine hydroxylase or neuronal nitric oxide synthase was done to characterize neurons as noradrenergic or nitrergic. To ascertain whether the cavernous nerves contain fibers to the urethra that originate in the pelvic ganglia we cut the cavernous nerves with their ancillary branches in 3 rats and imaged them for Fast Blue. Fluorescent neurons and axons were detected in cavernous nerves and the pelvic ganglion. Few neurons were seen in rats with cavernous nerve section. Of urethral neurons 53.1% showed neuronal nitric oxide synthase positivity while 40.6% were immunoreactive for tyrosine hydroxylase. About 6.2% of urethral neurons failed to show tyrosine hydroxylase or neuronal nitric oxide synthase immunoreactivity. Most of the autonomic innervation to the urethra beyond the prostatic apex travels in the cavernous nerves. Many nerves may be parasympathetic based on neuronal nitric oxide synthase immunoreactivity. Nerves supplying the urethra outside the cavernous nerves may course posterior to the prostate. Along with afferent fibers, tyrosine hydroxylase immunoreactivity expressing neuron fibers, ie noradrenergic nerves, traveling in the cavernous nerves may

  14. Organisation and tyrosine hydroxylase and calretinin immunoreactivity in the main olfactory bulb of paca (Cuniculus paca): a large caviomorph rodent.

    Science.gov (United States)

    Sasahara, Tais Harumi de Castro; Leal, Leonardo Martins; Spillantini, Maria Grazia; Machado, Márcia Rita Fernandes

    2015-04-01

    The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.

  15. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    Directory of Open Access Journals (Sweden)

    Stevanus R. Tedjakumala

    2017-07-01

    Full Text Available Dopamine (DA plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US. Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH immunoreactivity (ir to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES and the antennal lobe (AL; the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL of the mushroom body (MB; the C3 cluster is located below the calyces (CA of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning.

  16. Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex

    Science.gov (United States)

    Asmus, Stephen E.; Cocanougher, Benjamin T.; Allen, Donald L.; Boone, John B.; Brooks, Elizabeth A.; Hawkins, Sarah M.; Hench, Laura A.; Ijaz, Talha; Mayfield, Meredith N.

    2011-01-01

    Cortical interneurons are critical for information processing, and their dysfunction has been implicated in neurological disorders. One subset of this diverse cell population expresses tyrosine hydroxylase (TH) during postnatal rat development. Cortical TH-immunoreactive neurons appear at postnatal day (P) 16. The number of TH cells sharply increases between P16 and P20 and subsequently decreases to adult values. The absence of apoptotic markers in these cells suggests that the reduction in cell number is not due to cell death but is due to a decline in TH production. Cortical TH cells lack all additional catecholaminergic enzymes, and many coexpress GABA and calretinin, but little else is known about their phenotype or function. Because interneurons containing choline acetyltransferase (ChAT) or vasoactive intestinal peptide (VIP) share characteristics with cortical TH neurons, the coexpression of TH with ChAT or VIP was examined throughout the neocortex at P16, P20, and P30. The proportions of TH cell profiles double-labeled for ChAT or VIP significantly increased between P16 and P30. Based on their proximity to blood vessels, intrinsic cholinergic and VIPergic cells have been hypothesized to regulate cortical microcirculation. Labeling with the gliovascular marker aquaporin-4 revealed that at least half of the TH cells were apposed to microvessels at these ages, and many of these cells contained ChAT or VIP. Cortical TH neurons did not coproduce nitric oxide synthase. These results suggest that increasing proportions of cortical TH neurons express ChAT or VIP developmentally and that a subset of these TH neurons may regulate local blood flow. PMID:21295554

  17. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    International Nuclear Information System (INIS)

    Nobrega, J.N.; Gernert, M.; Loescher, W.; Raymond, R.; Belej, T.; Richter, A.

    1999-01-01

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt sz ), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [ 3 H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [ 3 H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [ 3 H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Oxaliplatin-induced loss of phosphorylated heavy neurofilament subunit neuronal immunoreactivity in rat DRG tissue

    Directory of Open Access Journals (Sweden)

    Connor Bronwen

    2009-11-01

    Full Text Available Abstract Background Oxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel. Results After treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; P P P = 0.82, NF-M (-1%, P = 0.96 or NF-H (0%; P = 0.93 after oxaliplatin treatment, although the sizes of parvalbumin (-29%, P = 0.047, NF-M (-11%, P = 0.038 and NF-H (-28%; P = 0.0033 immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; P P = 0.03 but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; P = 0.008 but not by cisplatin, carboplatin or paclitaxel. Conclusion This study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.

  19. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    Science.gov (United States)

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon

  20. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    International Nuclear Information System (INIS)

    Hundahl, C.A.; Fahrenkrug, J.; Luuk, H.; Hay-Schmidt, A.; Hannibal, J.

    2012-01-01

    Highlights: ► Restricted Neuroglobin expression in the mouse retina. ► Antibody validation using Neuroglobin-null mice. ► Co-expression of Neuroglobin with Melanopsin and tyrosine hydroxylase. ► No effect of Neuroglobin deficiency on neuronal survival. -- Abstract: Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb’s function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.

  1. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    Energy Technology Data Exchange (ETDEWEB)

    Hundahl, C.A., E-mail: c.hundahl@gmail.com [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Centre of Excellence for Translational Medicine, University of Tartu, Tartu (Estonia); Department of Physiology, University of Tartu, Tartu (Estonia); Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen (Denmark); Fahrenkrug, J. [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Luuk, H. [Centre of Excellence for Translational Medicine, University of Tartu, Tartu (Estonia); Department of Physiology, University of Tartu, Tartu (Estonia); Hay-Schmidt, A. [Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen (Denmark); Hannibal, J. [Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Restricted Neuroglobin expression in the mouse retina. Black-Right-Pointing-Pointer Antibody validation using Neuroglobin-null mice. Black-Right-Pointing-Pointer Co-expression of Neuroglobin with Melanopsin and tyrosine hydroxylase. Black-Right-Pointing-Pointer No effect of Neuroglobin deficiency on neuronal survival. -- Abstract: Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb's function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.

  2. Tyrosine hydroxylase immunoreactivity and [{sup 3}H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, J.N. [Neuroimaging Research Section, Clarke Institute of Psychiatry, Toronto (Canada); Gernert, M.; Loescher, W. [Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Buenteweg 17, D-30559 Hannover (Germany); Raymond, R.; Belej, T. [Neuroimaging Research Section, Clarke Institute of Psychiatry, Toronto (Canada); Richter, A. [Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Buenteweg 17, D-30559 Hannover (Germany)

    1999-08-01

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt{sup sz}), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [{sup 3}H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [{sup 3}H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [{sup 3}H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved000.

  3. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    Science.gov (United States)

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  4. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  5. Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida--support for individually identifiable neurons as ancestral feature of the arthropod nervous system.

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2015-07-10

    The arthropod ventral nerve cord features a comparably low number of serotonin-immunoreactive neurons, occurring in segmentally repeated arrays. In different crustaceans and hexapods, these neurons have been individually identified and even inter-specifically homologized, based on their soma positions and neurite morphologies. Stereotypic sets of serotonin-immunoreactive neurons are also present in myriapods, whereas in the investigated chelicerates segmental neuron clusters with higher and variable cell numbers have been reported. This led to the suggestion that individually identifiable serotonin-immunoreactive neurons are an apomorphic feature of the Mandibulata. To test the validity of this neurophylogenetic hypothesis, we studied serotonin-immunoreactivity in three species of Pycnogonida (sea spiders). This group of marine arthropods is nowadays most plausibly resolved as sister group to all other extant chelicerates, rendering its investigation crucial for a reliable reconstruction of arthropod nervous system evolution. In all three investigated pycnogonids, the ventral walking leg ganglia contain different types of serotonin-immunoreactive neurons, the somata of which occurring mostly singly or in pairs within the ganglionic cortex. Several of these neurons are readily and consistently identifiable due to their stereotypic soma position and characteristic neurite morphology. They can be clearly homologized across different ganglia and different specimens as well as across the three species. Based on these homologous neurons, we reconstruct for their last common ancestor (presumably the pycnogonid stem species) a minimal repertoire of at least seven identified serotonin-immunoreactive neurons per hemiganglion. Beyond that, each studied species features specific pattern variations, which include also some neurons that were not reliably labeled in all specimens. Our results unequivocally demonstrate the presence of individually identifiable serotonin-immunoreactive

  6. Ultrastructure of GABA- and tachykinin-immunoreactive neurons in the lower division of the central body of the desert locust

    Directory of Open Access Journals (Sweden)

    Uwe Homberg

    2016-12-01

    Full Text Available The central complex, a group of neuropils spanning the midline of the insect brain, plays a key role in spatial orientation and navigation. In the desert locust and other species, many neurons of the central complex are sensitive to the oscillation plane of polarized light above the animal and are likely involved in the coding of compass directions derived from the polarization pattern of the sky. Polarized light signals enter the locust central complex primarily through two types of -aminobutyric acid (GABA-immunoreactive tangential neurons, termed TL2 and TL3 that innervate specific layers of the lower division of the central body (CBL. Candidate postsynaptic partners are columnar neurons (CL1 connecting the CBL to the protocerebral bridge. Subsets of CL1 neurons are immunoreactive to antisera against locustatachykinin (LomTK. To better understand the synaptic connectivities of tangential and columnar neurons in the CBL, we studied its ultrastructural organization in the desert locust, both with conventional electron microscopy and in preparations immunolabeled for GABA or LomTK. Neuronal profiles in the CBL were rich in mitochondria and vesicles. Three types of vesicles were distinguished: small clear vesicles with diameters of 20-40 nm, dark dense-core vesicles (diameter 70-120 nm, and granular dense-core vesicles (diameter 70-80 nm. Neurons were connected via divergent dyads and, less frequently, through convergent dyads. GABA-immunoreactive neurons contained small clear vesicles and small numbers of dark dense core vesicles. They had both pre- and postsynaptic contacts but output synapses were observed more frequently than input synapses. LomTK immunostaining was concentrated on large granular vesicles; neurons had pre- and postsynaptic connections often with neurons assumed to be GABAergic. The data suggest that GABA-immunoreactive tangential neurons provide signals to postsynaptic neurons in the CBL, including LomTK-immunolabeled CL1

  7. Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

    Directory of Open Access Journals (Sweden)

    Seung Min Park

    2016-05-01

    Full Text Available Objective(s: The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults.

  8. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Science.gov (United States)

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  9. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  10. Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Utz, Sandra; Schachtner, Joachim

    2005-04-01

    The antennal lobe (AL) of the sphinx moth Manduca sexta is a well-established model system for studying mechanisms of neuronal development. To understand whether neuropeptides are suited to playing a role during AL development, we have studied the cellular localization and temporal expression pattern of neuropeptides of the A-type allatostatin family. Based on morphology and developmental appearance, we distinguished four types of AST-A-immunoreactive cell types. The majority of the cells were local interneurons of the AL (type Ia) which acquired AST-A immunostaining in a complex pattern consisting of three rising (RI-RIII) and two declining phases (DI, DII). Type Ib neurons consisted of two local neurons with large cell bodies not appearing before 7/8 days after pupal ecdysis (P7/P8). Types II and III neurons accounted for single centrifugal neurons, with type II neurons present in the larva and disappearing in the early pupa. The type III neuron did not appear before P7/P8. RI and RII coincided with the rises of the ecdysteroid hemolymph titer. Artificially shifting the pupal 20-hydroxyecdysone (20E) peak to an earlier developmental time point resulted in the precocious appearance of AST-A immunostaining in types Ia, Ib, and III neurons. This result supports the hypothesis that the pupal rise in 20E plays a role in AST-A expression during AL development. Because of their early appearance in newly forming glomeruli, AST-A-immunoreactive fibers could be involved in glomerulus formation. Diffuse AST-A labeling during early AL development is discussed as a possible signal providing information for ingrowing olfactory receptor neurons.

  11. FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Spencer, A N

    1984-01-01

    with several antisera to oxytocin/vasopressin and bombesin/gastrin-releasing peptide. The morphology and location of most FMRFamide-immunoreactive neurons in Polyorchis coincides with two identified neuronal systems, which have been recently discovered from neurophysiological studies....... immunoreactivity was found in neurons of the ectodermal nerve nets of the manubrium and tentacles, in neurons of the sensory epithelium, and in neurons at the periphery of the sphincter muscle. Strong immunoreactivity was also present in processes and perikarya of the whole outer nerve ring, in the ocellar nerves...

  12. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    Science.gov (United States)

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  13. Projections from estrogen receptor-alpha immunoreactive neurons in the periaqueductal gray to the lateral medulla oblongata in the rhesus monkey

    NARCIS (Netherlands)

    Vanderhorst, VGJM; Terasawa, E; Ralston, HJ

    2004-01-01

    The periaqueductal gray (PAG) contains numerous estrogen receptor-alpha immunoreactive (ER-alpha IR) neurons that are distributed in a species-specific way. These neurons might modulate different types of behavior that are mediated by the PAG such as active and passive coping responses, analgesia,

  14. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    Science.gov (United States)

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  15. Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    International Nuclear Information System (INIS)

    Sakamoto, Hiroshi; Kawate, Toyoko; Li, Yongnan; Atsumi, Saoko

    2009-01-01

    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

  16. Estrogen receptor-alpha-immunoreactive neurons in the mesencephalon, pons and medulla oblongata of the female golden hamster

    NARCIS (Netherlands)

    Boers, J; Gerrits, PO; Holstege, G

    1999-01-01

    Recent studies have revealed brainstem-spinal pathways involved in the generation of receptive behavior in hamster and cat, and the enormous influence of estrogen on these pathways. The present study gives an overview of the location of estrogen receptor-alpha-immunoreactive neurons (ER-alpha-IR) in

  17. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    Science.gov (United States)

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  18. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.

    Science.gov (United States)

    Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P

    1991-12-01

    The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat

  19. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  20. Distribution and chemical coding of neurons in intramural ganglia of the porcine urinary bladder trigone.

    Directory of Open Access Journals (Sweden)

    Zenon Pidsudko

    2004-03-01

    Full Text Available This study presents the distribution and chemical coding of neurons in the porcine intramural ganglia of the urinary bladder trigone (IG-UBT demonstrated using combined retrograde tracing and double-labelling immunohistochemistry. Retrograde fluorescent tracer Fast Blue (FB was injected into the wall of both the left and right side of the bladder trigone during laparotomy performed under pentobarbital anaesthesia. Ten-microm-thick cryostat sections were processed for double-labelling immunofluorescence with antibodies against tyrosine hydroxylase (TH, dopamine beta-hydroxylase (DBH, neuropeptide Y (NPY, somatostatin (SOM, galanin (GAL, vasoactive intestinal polypeptide (VIP, nitric oxide synthase (NOS, calcitonin gene-related peptide (CGRP, substance P (SP, Leu5-enkephalin (LENK and choline acetyltransferase (ChAT. IG-UBT neurons formed characteristic clusters (from a few to tens neuronal cells found under visceral peritoneum or in the outer muscular layer. Immunohistochemistry revealed four main populations of IG-UBT neurons: SOM- (ca. 35%, SP- (ca. 32%, ChAT- and NPY- immunoreactive (-IR (ca. 23% as well as non-adrenergic non-cholinergic nerve cells (ca. 6%. This study has demonstrated a relatively large population of differently coded IG-UBT neurons, which constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.

  1. Substance P immunoreactivity in the enteric nervous system in Rett syndrome.

    Science.gov (United States)

    Deguchi, K; Reyes, C; Chakraborty, S; Antalffy, B; Glaze, D; Armstrong, D

    2001-12-01

    Rett syndrome is associated with profound mental retardation and motor disability in girls. It has a characteristic clinical phenotype which includes abnormalities of the autonomic nervous system. Feeding impairment and severe constipation are two symptoms of this autonomic dysfunction. Substance P, an important peptide in the autonomic nervous system, is decreased in the cerebrospinal fluid of Rett syndrome. We have demonstrated that substance P immunoreactivity is significantly decreased in Rett syndrome brain-stem and may be related to the autonomic dysfunction. In this study, we have continued the investigation of substance P in the enteric nervous system. We immunohistochemically examined the normal developing bowel in 22 controls (ages, 14 gestational weeks to 31 years) using formalin fixed tissue, with antibodies to substance P, tyrosine hydroxylase and vasoactive intestinal peptide. We compared the immunoreactivity of normal controls with 14 cases of Rett syndrome (ages, 5-41 years) and observed that the expression of substance P, tyrosine hydroxylase and vasoactive intestinal peptide immunoreactivity in the bowel in Rett syndrome was not significantly different from that of controls. This suggests that the feeding impairment and constipation in Rett syndrome relate to dysfunction of the autonomic nervous system originating outside of the bowel, in the brain-stem, as suggested by our previous study.

  2. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein.

    Science.gov (United States)

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A; Cohen, Akiva S

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60.

  3. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  4. The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease.

    Science.gov (United States)

    Armstrong, Richard A; Gearing, Marla; Bigio, Eileen H; Cruz-Sanchez, Felix F; Duyckaerts, Charles; Mackenzie, Ian R A; Perry, Robert H; Skullerud, Kari; Yokoo, Hedeaki; Cairns, Nigel J

    2011-02-01

    Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than α-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than α-internexin IHC.

  5. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease.

    Science.gov (United States)

    Thangavel, R; Sahu, S K; Van Hoesen, G W; Zaheer, A

    2009-05-05

    The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.

  6. Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins.

    NARCIS (Netherlands)

    Molenaar, W M; Lee, V M; Trojanowski, J Q

    1990-01-01

    The development of chromaffin and neuronal features in the adrenal medulla was studied in normal human fetuses with gestational ages (GAs) of 6-34 weeks. Monoclonal antibodies specific for chromogranin A, synaptophysin, and tyrosine hydroxylase; for different subunits and phosphoisoforms of

  7. Octopamine-like immunoreactive neurons in the brain and subesophageal ganglion of the parasitic wasps Nasonia vitripennis and N. giraulti

    NARCIS (Netherlands)

    Haverkamp, A.; Smid, H.M.

    2014-01-01

    Octopamine is an important neuromodulator in the insect nervous system, influencing memory formation, sensory perception and motor control. In this study, we compare the distribution of octopamine-like immunoreactive neurons in two parasitic wasp species of the Nasonia genus, N. vitripennis and N.

  8. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  9. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    Science.gov (United States)

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  10. ESTROGEN RECEPTOR-alpha IMMUNOREACTIVE NEURONS IN THE BRAINSTEM AND SPINAL CORD OF THE FEMALE RHESUS MONKEY : SPECIES-SPECIFIC CHARACTERISTICS

    NARCIS (Netherlands)

    Vanderhorst, V. G. J. M.; Terasawa, E.; Ralston, H. J.

    2009-01-01

    The distribution pattern of estrogen receptors in the rodent CNS has been reported extensively, but mapping of estrogen receptors in primates is incomplete. In this study we describe the distribution of estrogen receptor alpha immunoreactive (ER-alpha 1R) neurons in the brainstem and spinal cord of

  11. Development of neuropeptide Y (NPY) immunoreactive neurons in the rat occipital cortex: A combined immunohistochemical-autoradiographic study

    International Nuclear Information System (INIS)

    Cavanagh, M.E.; Parnavelas, J.G.

    1990-01-01

    The postnatal development of neuropeptide Y (NPY)-immunoreactive neurons, previously labeled with [3H]thymidine on embryonic days E14-E21, has been studied in the rat occipital cortex. Immunohistochemistry combined with autoradiography showed evidence of a modified inside-out pattern of maturation. NPY-neurons are generated between E14 and E20 and are found in layers II-VI of the cortex and the subcortical white matter. NPY neurons from all these birthdates are overproduced at first, although cells generated at E16 produce the greatest excess, followed by E15 and E17. Some of these transient neurons are found in the wrong layer for their birthdates, and their elimination produces a more correct alignment at maturity. However, most of the NPY neurons that survive are generated at E17, and these cells are found throughout layers II-VI with a preponderance in layer VI. This evidence is strongly suggestive of cell death rather than merely cessation of production of NPY

  12. Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus).

    Science.gov (United States)

    Ferrer, I; Zujar, M J; Admella, C; Alcantara, S

    1992-01-01

    To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472

  13. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    Science.gov (United States)

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  14. A sandwich immunoassay for human prolyl 4-hydroxylase using monoclonal antibody

    International Nuclear Information System (INIS)

    Yoshida, Shinichi

    1986-01-01

    Monoclonal antibody was used in a sandwich enzyme immunoassay and in a radioimmunoassay for human serum immunoreactive prolyl 4-hydroxylase. The enzyme immunoassay utilized a monoclonal antibody as a solid phase and horseradish peroxidase-labeled rabbit antibody to human prolyl 4-hydroxylase as a conjugate. Sensitivity was 0.1 ng of enzyme per tube. With a conjugate purified by an enzyme-bound affinity column, sensitivity was increased to 0.01 ng per tube, and linearity was obtained between 0.01 to 30 ng per tube. The radioimmunoassay used a 125 I-labeled rabbit antibody (IgG) as the conjugate. Sensitivity of this technique was 0.4 ng of enzyme per tube. (Auth.)

  15. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    Science.gov (United States)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  16. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats.

    Science.gov (United States)

    I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue

    2003-10-01

    We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.

  17. Synaptology of luteinizing hormone-releasing hormone (LHRH)-immunoreactive cells in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica).

    Science.gov (United States)

    Zheng, L M; Pfaff, D W; Schwanzel-Fukuda, M

    1990-05-08

    Light and electron microscopic immunocytochemistry were used to examine the structure of LHRH neurons and fibers in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica). LHRH-immunoreactive neurons and fibers form a loose plexus within the fascicular network of the ganglion terminale on the median surface of the olfactory bulb. There are at least two populations of LHRH-immunoreactive neurons within the network of the ganglion terminale: fusiform and round neurons similar to those described in the forebrain. At the ultrastructural level, axosomatic and axodendritic contacts were seen between LHRH-immunoreactive and nonimmunoreactive elements in the ganglion terminale. These contacts were classified as 1) synaptic input, with asymmetric synapses seen between a nonimmunoreactive axon terminal and a LHRH-immunoreactive cell body or a nonimmunoreactive axon terminal and a LHRH-immunoreactive dendritic process. 2) synaptic output, with symmetric synapses seen between LHRH-immunoreactive and nonimmunoreactive processes. This study is the first systematic examination of the ultrastructure of the LHRH-immunoreactive neurons and their synaptic contacts in the nervus terminalis. The possible integrative roles for this LHRH-immunoreactive system are discussed.

  18. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans.

    Directory of Open Access Journals (Sweden)

    Tim D Aumann

    Full Text Available Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA synthesis in extant neurons ('DA neurotransmitter switching'. If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis and DA transporter (DAT immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5 versus winter (short-day photoperiod, n = 5. TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+ neurons was significantly (~6-fold higher whereas the density of TH immunonegative (TH- neurons was significantly (~2.5-fold lower in summer compared with winter. The density of total neurons (TH+ and TH- combined was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells, and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association.

  19. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhang

    Full Text Available Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH expression of dopaminergic (DA neurons induced by 6-hydroxydopamine (6-OHDA toxicity that is most commonly used to create a rat model of Parkinson's disease (PD. In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.

  20. Human Albumin Prevents 6-Hydroxydopamine-Induced Loss of Tyrosine Hydroxylase in In Vitro and In Vivo

    Science.gov (United States)

    Zhang, Li-Juan; Xue, Yue-Qiang; Yang, Chun; Yang, Wei-Hua; Chen, Long; Zhang, Qian-Jin; Qu, Ting-Yu; Huang, Shile; Zhao, Li-Ru; Wang, Xiao-Min; Duan, Wei-Ming

    2012-01-01

    Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis. PMID:22815976

  1. Anatomical and electrophysiological characterization of presumed dopamine-containing neurons within the supramammillary region of the rat.

    Science.gov (United States)

    Shepard, P D; Mihailoff, G A; German, D C

    1988-03-01

    A combination of immunocytochemical, electrophysiological and pharmacological techniques were employed to study the properties of neurons within the supramammillary (SUM) complex of the rat. The SUM region contains a small, but dense, population of tyrosine hydroxylase immunoreactive neurons. Following injection of the orthograde neuroanatomical tracer, Phaseolus Vulgaris leucoagglutinin, into the SUM region, heavy terminal labeling was observed in the lateral septal nucleus, diagonal band of Broca and bed nucleus of the stria terminalis. The electrophysiological and pharmacological properties of antidromically-activated SUM neurons revealed evidence of two neuronal populations. Both groups of neurons exhibited long duration action potentials (greater than 2 msec) and slow conduction velocities (less than 0.5 m/sec). However, cells in one group were characterized by slow and erratic firing rates and insensitivity to dopamine (DA) autoreceptor agonists. Cells in the other group typically exhibited no spontaneous activity but could be induced to discharge by iontophoretic application of glutamate. These latter cells were sensitive to DA autoreceptor stimulation. Of the two populations of mammilloseptal SUM neurons, the silent population exhibited several properties similar to those of midbrain DA neurons.

  2. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  3. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    Science.gov (United States)

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  4. The alpha(2)-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons ion the Long Evans and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J; Pirnik, Z; Zelena, D

    2010-01-01

    The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of alpha(2)-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), cort...

  5. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    Science.gov (United States)

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent

  6. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  7. Effects of combined BDNF and GDNF treatment on cultured dopaminergic midbrain neurons

    DEFF Research Database (Denmark)

    Sautter, J; Meyer, Morten; Spenger, C

    1998-01-01

    Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain-derived neuro......Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain......-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), or a combination of both. Dopamine content of the culture medium, the number of tyrosine hydroxylase-immunoreactive neurons, and culture volumes were moderately increased in the BDNF- and GDNF-treated cultures but significantly...... increased by 6.8-, 3.2- and 2.4-fold, respectively after treatment with the combination of both factors. We conclude that pretreatment of dopaminergic tissue in culture with a combination of BDNF and GDNF may be an effective means to improve the quality of tissue prior to grafting....

  8. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis.

    Science.gov (United States)

    Carter, David A

    2017-07-01

    The bed nucleus of the stria terminalis (BNST) is a complex integrative centre in the forebrain, composed of multiple sub-nuclei, each with discrete populations of neurons. Progress in understanding BNST function, both in the adult and during postnatal maturation, is dependent upon a more complete characterization of neuronal phenotypes in the BNST. The aim of the current study was to define the molecular phenotype of one postnatal BNST neuronal population, in order to identify molecular factors that may underlie both (protein marker-related) immaturity, and secondly, the transience of this phenotype. This BNST population was originally identified by high, but transient expression of the EGR1 transcription factor (TF) in postnatal rat lateral intermediate BNST (BNSTLI). The current results confirm a high level of Egr1 activation in postnatal day 10 (PN10) male BNSTLI that is lost at PN40, and now demonstrate a similar pattern of transient activation in female brains. Apparent cellular immaturity in this population, as indicated by low levels of the adult neuronal marker NeuN/RBFOX3, was found to be uncorrelated with both key neuronal regulator protein expression (SOX2 and REST), and also RBFOX2 protein levels. The BNSTLI neurons have a partial catecholaminergic phenotype (tyrosine hydroxylase-positive/dopa decarboxylase-negative; TH+ve/DDC-ve) that is lost at PN40. In contrast, the co-expressed neuropeptide, somatostatin, is maintained, albeit at lower levels, at PN40. The transcriptional basis of the transient and partial catecholaminergic phenotype was investigated by analysing TFs known to maintain adult dopaminergic (TH+ve/DDC+ve) neuronal phenotypes. The BNSTLI neurons were shown to lack forkhead TFs including FOXA1, FOXA2 and FOXO1. In addition, the BNSTLI neurons had low, primarily cytoplasmic, expression of NR4A2/NURR1, an orphan nuclear receptor that is critical for adult maintenance of midbrain dopamine neurons. These results detail the molecular features

  9. Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex

    Science.gov (United States)

    Erickson, Susan L.; Gandhi, Anjalika R.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Miner, LeeAnn; Blakely, Randy D.; Sesack, Susan R.

    2011-01-01

    Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabeling for NET and colocalization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 days, 15 mg/kg/day), NET-immunoreactive (-ir) axons were significantly less likely to colocalize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI and vehicle treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labeling. Our findings encourage consideration of possible postranslational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance. PMID:21208501

  10. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  11. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  12. Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration

    NARCIS (Netherlands)

    Wegiel, Jerzy; Kuchna, Izabela; Nowicki, Krzysztof; Frackowiak, Janusz; Mazur-Kolecka, Bozena; Imaki, Humi; Wegiel, Jarek; Mehta, Pankaj; Silverman, Wayne; Reisberg, Barry; deLeon, Mony; Wisniewski, Thomas; Pirttilla, Tuula; Frey, Harry; Lehtimäki, Terho; Kivimäki, Tarmo; Visser, Frank; Kamphorst, Wouter; Potempska, Anna; Bolton, David; Currie, Julia; Miller, David

    2007-01-01

    Amyloid β (Aβ) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer’s disease to determine if intraneuronal Aβ immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar

  13. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia.

    Science.gov (United States)

    Bernstein, Hans-Gert; Müller, Susan; Dobrowolny, Hendrik; Wolke, Carmen; Lendeckel, Uwe; Bukowska, Alicja; Keilhoff, Gerburg; Becker, Axel; Trübner, Kurt; Steiner, Johann; Bogerts, Bernhard

    2017-08-01

    The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.

  14. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor.

    Science.gov (United States)

    Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H

    2012-10-01

    Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. FMRF-amide-like immunoreactivity in brain and pituitary of the hagfish Eptatretus burgeri (Cyclostomata)

    DEFF Research Database (Denmark)

    Jirikowski, G; Erhart, G; Grimmelikhuijzen, C J

    1984-01-01

    Paraffin sections of brain and pituitary of the hagfish Eptatretus burgeri were immunostained with an antiserum to FMRF-amide. Immunoreactivity was visible in a large number of neurons in the posterior part of the ventromedial hypothalamus and in long neuronal processes extending cranially from...... the hypothalamus to the olfactory system and caudally to the medulla oblongata. FMRF-amide-like immunoreactivity was also found in cells of the adenohypophysis. These observations suggest that the hagfish possesses a brain FMRF-amide-like transmitter system and pituitary cells containing FMRF-amide-like material...

  16. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    Science.gov (United States)

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  17. Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Schachtner, Joachim; Trosowski, Björn; D'Hanis, Wolfgang; Stubner, Stephan; Homberg, Uwe

    2004-06-01

    During metamorphosis, the insect nervous system undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. To understand further the mechanisms involved in transforming larval to adult tissue we have mapped the metamorphic changes in a particularly well established brain area, the antennal lobe of the sphinx moth Manduca sexta, using an antiserum recognizing RFamide-related neuropeptides. Five types of RFamide-immunoreactive (ir) neurons could be distinguished in the antennal lobe, based on morphology and developmental appearance. Four cell types (types II-V, each consisting of one or two cells) showed RFamide immunostaining in the larva that persisted into metamorphosis. By contrast, the most prominent group (type I), a mixed population of local and projection neurons consisting of about 60 neurons in the adult antennal lobe, acquired immunostaining in a two-step process during metamorphosis. In a first step, from 5 to 7 days after pupal ecdysis, the number of labeled neurons reached about 25. In a second step, starting about 4 days later, the number of RFamide-ir neurons increased within 6 days to about 60. This two-step process parallels the rise and fall of the developmental hormone 20-hydroxyecdysone (20E) in the hemolymph. Artificially shifting the 20E peak to an earlier developmental time point resulted in the precocious appearance of RFamide immunostaining and led to premature formation of glomeruli. Prolonging high 20E concentrations to stages when the hormone titer starts to decline had no effect on the second increase of immunostained cell numbers. These results support the idea that the rise in 20E, which occurs after pupal ecdysis, plays a role in the first phase of RFamide expression and in glomeruli formation in the developing antennal lobes. The role of 20E in the second phase of RFamide expression is less clear, but increased cell numbers showing RFamide-ir do not appear to be a consequence of

  18. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  19. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    Science.gov (United States)

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase.

    Science.gov (United States)

    Block, M L; Wu, X; Pei, Z; Li, G; Wang, T; Qin, L; Wilson, B; Yang, J; Hong, J S; Veronesi, B

    2004-10-01

    The contributing role of environmental factors to the development of Parkinson's disease has become increasingly evident. We report that mesencephalic neuron-glia cultures treated with diesel exhaust particles (DEP; 0.22 microM) (5-50 microg/ml) resulted in a dose-dependent decrease in dopaminergic (DA) neurons, as determined by DA-uptake assay and tyrosine-hydroxylase immunocytochemistry (ICC). The selective toxicity of DEP for DA neurons was demonstrated by the lack of DEP effect on both GABA uptake and Neu-N immunoreactive cell number. The critical role of microglia was demonstrated by the failure of neuron-enriched cultures to exhibit DEP-induced DA neurotoxicity, where DEP-induced DA neuron death was reinstated with the addition of microglia to neuron-enriched cultures. OX-42 ICC staining of DEP treated neuron-glia cultures revealed changes in microglia morphology indicative of activation. Intracellular reactive oxygen species and superoxide were produced from enriched-microglia cultures in response to DEP. Neuron-glia cultures from NADPH oxidase deficient (PHOX-/-) mice were insensitive to DEP neurotoxicity when compared with control mice (PHOX+/+). Cytochalasin D inhibited DEP-induced superoxide production in enriched-microglia cultures, implying that DEP must be phagocytized by microglia to produce superoxide. Together, these in vitro data indicate that DEP selectively damages DA neurons through the phagocytic activation of microglial NADPH oxidase and consequent oxidative insult.

  1. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart.

    Science.gov (United States)

    Richardson, R J; Grkovic, I; Allen, A M; Anderson, C R

    2006-04-01

    The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.

  2. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Science.gov (United States)

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  3. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury

    OpenAIRE

    Partata, Wania Aparecida; Krepsky, Ana Maria Rocha; Xavier, Leder Leal; Marques, Maria; Achaval-Elena, Matilde

    2003-01-01

    Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anteri...

  4. Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.).

    Science.gov (United States)

    Biju, K C; Singru, Praful S; Schreibman, Martin P; Subhedar, Nishikant

    2003-10-01

    The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.

  5. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    Science.gov (United States)

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  6. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  7. Pathological effects of chronic myocardial infarction on peripheral neurons mediating cardiac neurotransmission.

    Science.gov (United States)

    Nakamura, Keijiro; Ajijola, Olujimi A; Aliotta, Eric; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2016-05-01

    To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n=8) vs. chronic MI (n=8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreactive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  9. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    Science.gov (United States)

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  10. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon.

    Science.gov (United States)

    Smolilo, D J; Costa, M; Hibberd, T J; Wattchow, D A; Spencer, Nick J

    2018-07-01

    The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility. © 2018 Wiley Periodicals, Inc.

  11. Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Jansen, Pernille; Hesslinger, Christian

    2003-01-01

    Complex-I inhibition and oxidative processes have been implicated in the loss of nigral dopamine neurones in Parkinson's disease and the toxicity of MPTP and its metabolite MPP+. Tetrahydrobiopterin, an essential cofactor for tyrosine hydroxylase, may act as an antioxidant in dopaminergic neurones...... and protects against the toxic consequences of glutathione depletion. Here we studied the effects of manipulating tetrahydrobiopterin levels on MPP+ toxicity in organotypic, rat ventral mesencephalic slice cultures. In cultures exposed to 30 micro m MPP+ for 2 days, followed by 8 days 'recovery' in control...... medium, we measured dopamine and its metabolites in the tissue and culture medium by HPLC, lactate dehydrogenase release to the culture medium, cellular uptake of propidium iodide and counted the tyrosine hydroxylase-immunoreactive neurones. Inhibition of tetrahydrobiopterin synthesis by 2,4-diamino-6...

  12. Tyrosine hydroxylase in the ventral tegmental area of rams with high or low libido-A role for dopamine.

    Science.gov (United States)

    Kramer, A C; Mirto, A J; Austin, K J; Roselli, C E; Alexander, B M

    2017-12-01

    Dopamine synthesis in the ventral tegmental area (VTA) is necessary for the reinforcement of sexual behavior. The objective of this study determined if sexual stimuli initiates reward, and whether reward is attenuated in sexually inactive rams. Sexually active rams were exposed to urine from estrous (n=4) or ovariectomized (n=3) ewes with inactive rams (n=3) exposed to urine from estrous ewes. Following exposure, rams were exsanguinated and brains perfused. Alternating sections of the VTA were stained for Fos related antigens (FRA), tyrosine hydroxylase, and dopamine beta-hydroxylase activity. Forebrain tissue, mid-sagittal ventral to the anterior corpus callosum, was stained for dopamine D 2 receptors. Concentrations of cortisol was determined prior to and following exposure. Exposure to ovariectomized-ewe urine in sexually active rams did not influence (P=0.6) FRA expression, but fewer (PSexually inactive rams had fewer (Psexually active rams following exposure to estrous ewe urine. VTA neurons staining positive for dopamine beta-hydroxylase did not differ by sexual activity (P=0.44) or urine exposure (P=0.07). Exposure to stimulus did not influence (P=0.46) numbers of forebrain neurons staining positive for dopamine D2 receptors in sexually active rams, but fewer (P=0.04) neurons stain positive in inactive rams. Serum concentrations of cortisol did not differ (P≥0.52) among rams prior to or following stimulus. In conclusion sexual inactivity is unlikely due to stress, but may be partially a result of decreased tyrosine hydroxylase and/or the response to dopamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Role of neuropsin in parvalbumin immunoreactivity changes in hippocampal basket terminals of mice reared in various environments

    Directory of Open Access Journals (Sweden)

    Harumitsu eSuzuki

    2014-12-01

    Full Text Available In vitro approaches have suggested that neuropsin (or kallikrein 8/KLK8, which controls gamma-aminobutyric acid (GABA neurotransmission through neuregulin-1 and its receptor (ErbB4, is involved in neural plasticity (Tamura et al., 2012, 2013. In the present study, we examined whether parvalbumin (PV-positive neuronal networks, the majority of which are ErbB4-positive GABAergic interneurons, are controlled by neuropsin in tranquil and stimulated voluntarily behaving mice.PV-immunoreactive fibers surrounding hippocampal pyramidal and granular neurons in mice reared in their home cage were decreased in neuropsin-deficient mice, suggesting that neuropsin controls PV immunoreactivity. One- or two-week exposures of wild mice to novel environments, in which they could behave freely and run voluntarily in a wheel resulted in a marked upregulation of both neuropsin mRNA and protein in the hippocampus. To elucidate the functional relevance of the increase in neuropsin during exposure to a rich environment, the intensities of PV-immunoreactive fibers were compared between neuropsin-deficient and wild-type mice under environmental stimuli. When mice were transferred into novel cages (large cages with toys, the intensity of PV-immunoreactive fibers increased in wild-type mice and neuropsin-deficient mice. Therefore, behavioral stimuli control a neuropsin-independent form of PV immunoreactivity. However, the neuropsin-dependent part of the change in PV-immunoreactive fibers may occur in the stimulated hippocampus because increased levels of neuropsin continued during these enriched conditions.

  14. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Tena-Sempere, Manuel; Franceschini, Isabelle

    2013-01-01

    cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC......-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing...... contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats....

  15. Increases in Doublecortin Immunoreactivity in the Dentate Gyrus following Extinction of Heroin-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Megan P. Hicks

    2012-01-01

    Full Text Available Adult-generated neurons in the dentate gyrus (DG of the hippocampus play a role in various forms of learning and memory. However, adult born neurons in the DG, while still at an immature stage, exhibit unique electrophysiological properties and are also functionally implicated in learning and memory processes. We investigated the effects of extinction of drug-seeking behavior on the formation of immature neurons in the DG as assessed by quantification of doublecortin (DCX immunoreactivity. Rats were allowed to self-administer heroin (0.03 mg/kg/infusion for 12 days and then subjected either to 10 days of extinction training or forced abstinence. We also examined extinction responding patterns following heroin self-administration in glial fibrillary acidic protein thymidine kinase (GFAP-tk transgenic mice, which have been previously demonstrated to show reduced formation of immature and mature neurons in the DG following treatment with ganciclovir (GCV. We found that extinction training increased DCX immunoreactivity in the dorsal DG as compared with animals undergoing forced abstinence, and that GCV-treated GFAP-tk mice displayed impaired extinction learning as compared to saline-treated mice. Our results suggest that extinction of drug-seeking behavior increases the formation of immature neurons in the DG and that these neurons may play a functional role in extinction learning.

  16. Aspartyl-(asparaginyl β-Hydroxylase, Hypoxia-Inducible Factor-1α and Notch Cross-Talk in Regulating Neuronal Motility

    Directory of Open Access Journals (Sweden)

    Margot Lawton

    2010-01-01

    Full Text Available Aspartyl-(Asparaginyl-β-Hydroxylase (AAH promotes cell motility by hydroxylating Notch. Insulin and insulin-like growth factor, type 1 (IGF-I stimulate AAH through Erk MAP K and phosphoinositol-3-kinase-Akt (PI3K-Akt. However, hypoxia/oxidative stress may also regulate AAH . Hypoxia-inducible factor-1alpha (HIF-1α regulates cell migration, signals through Notch, and is regulated by hypoxia/oxidative stress, insulin/IGF signaling and factor inhibiting HIF-1α (FIH hydroxylation. To examine cross-talk between HIF-1α and AAH , we measured AAH , Notch-1, Jagged-1, FIH, HIF-1α, HIF-1β and the hairy and enhancer of split 1 (HE S-1 transcription factor expression and directional motility in primitive neuroectodermal tumor 2 (PNET2 human neuronal cells that were exposed to H2O2 or transfected with short interfering RNA duplexes (siRNA targeting AAH , Notch-1 or HIF-1α. We found that: (1 AAH , HIF-1α and neuronal migration were stimulated by H2O2; (2 si-HIF-1α reduced AAH expression and cell motility; (3 si-AAH inhibited Notch and cell migration, but not HIF-1α and (4 si-Notch-1 increased FIH and inhibited HIF-1α. These findings suggest that AAH and HIF-1α crosstalk within a hydroxylation-regulated signaling pathway that may be transiently driven by oxidative stress and chronically regulated by insulin/IGF signaling.

  17. Distribution and densitometry mapping of L1-CAM Immunoreactivity in the adult mouse brain – light microscopic observation

    Directory of Open Access Journals (Sweden)

    Yamasaki Hironobu

    2003-04-01

    Full Text Available Abstract Background The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain. Results We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc. Conclusion L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

  18. CXCL14-like Immunoreactivity Exists in Somatostatin-containing Endocrine Cells, and in the Lamina Propria and Submucosal Somatostatinergic Nervous System of Mouse Alimentary Tract.

    Science.gov (United States)

    Suzuki, Hirohumi; Yamada, Kentaro; Matsuda, Yasuhiro; Onozuka, Minoru; Yamamoto, Toshiharu

    2017-12-26

    In the present study, we investigated the distribution of CXCL14 immunoreactive endocrine cells and neurons in mouse alimentary tract by immunohistochemistry. CXCL14 immunoreactive endocrine cells were found as closed-type cells in the stomach and open-type cells in the small intestine. The immunostaining of these endocrine cells corresponded with that of the somatostatin-containing endocrine cells. Only a few CXCL14 immunoreactive endocrine cells were seen in the large intestine. CXCL14 immunoreactive fibers were observed in the muscular layer from the stomach to the rectum with most abundance in the rectum. Many CXCL14 immunoreactive fibers were observed in the lamina propria and submucosal layer from the duodenum to the rectum with most abundance in the rectum; these fibers corresponded to the somatostatin-containing nerve fibers. Some CXCL14 immunoreactive neuronal somata that were also immuno-positive for somatostatin, were noted in the submucosal layer of the rectum. However, the remaining parts of the alimentary tract presented with almost negligible immunoreactive somata. The co-localization of CXCL14 and somatostatin suggests that CXCL14 contributes to the function of somatostatin, which include the inhibition of other endocrine and exocrine cells and the enteric nervous systems.

  19. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  20. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lappi, D. A.; Robertson, D.

    1994-01-01

    Sympathectomy has been achieved by a variety of methods but each has its limitations. These include lack of tissue specificity, incomplete lesioning, and the age range of susceptibility to the lesioning. To circumvent these drawbacks, an immunotoxin was constructed using a monoclonal antibody against the noradrenergic specific enzyme dopamine beta-hydroxylase (D beta H) coupled via a disulfide bond to saporin, a ribosomal inactivating protein. Three days after intravenous injection of the anti-D beta H immunotoxin (50 micrograms) into adult Sprague-Dawley rats, 66% of neurons in the superior cervical ganglia were chromatolytic. Superior cervical ganglia neurons were poisoned in 1 day old and 1 week old (86% of neurons) neonatal rats following subcutaneous injection of 3.75 and 15 micrograms, respectively. The anti-D beta H immunotoxin will be a useful tool in the study of the peripheral noradrenergic system in adult and neonatal animals.

  2. Changes in RFamide-Related Peptide-1 (RFRP-1)-Immunoreactivity During Postnatal Development and the Estrous Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sara R; Andersen, Mille D; Overgaard, Agnete

    2014-01-01

    and inhibit GnRH neurons. The RFRP precursor is processed into 2 mature peptides, RFRP-1 and RFRP-3. These are characterized by a conserved C-terminal motif RF-NH2 but display highly different N termini. Even though the 2 peptides are equally potent in vitro, little is known about their relative distribution...... and their distinct roles in vivo. In this study, we raised an antiserum selective for RFRP-1 and defined the distribution of RFRP-1-immunoreactive (ir) neurons in the rat brain. Next, we analyzed the level of RFRP-1-ir during postnatal development in males and females and investigated changes in RFRP-1-ir during....... The number of RFRP-1-ir neurons and the density of cellular immunoreactivity were unchanged from juvenile to adulthood in male rats during the postnatal development. However, both parameters were significantly increased in female rats from peripuberty to adulthood, demonstrating prominent gender difference...

  3. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.

    Science.gov (United States)

    Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima

    2011-10-01

    Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. The Influence of Low Doses of Zearalenone and T-2 Toxin on Calcitonin Gene Related Peptide-Like Immunoreactive (CGRP-LI Neurons in the ENS of the Porcine Descending Colon

    Directory of Open Access Journals (Sweden)

    Krystyna Makowska

    2017-03-01

    Full Text Available The enteric nervous system (ENS can undergo adaptive and reparative changes in response to physiological and pathological stimuli. These manifest primarily as alterations in the levels of active substances expressed by the enteric neuron. While it is known that mycotoxins can affect the function of the central and peripheral nervous systems, knowledge about their influence on the ENS is limited. Therefore, the aim of the present study was to investigate the influence of low doses of zearalenone (ZEN and T-2 toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI neurons in the ENS of the porcine descending colon using a double immunofluorescence technique. Both mycotoxins led to an increase in the percentage of CGRP-LI neurons in all types of enteric plexuses and changed the degree of co-localization of CGRP with other neuronal active substances, such as substance P, galanin, nitric oxide synthase, and cocaine- and amphetamine-regulated transcript peptide. The obtained results demonstrate that even low doses of ZEN and T-2 can affect living organisms and cause changes in the neurochemical profile of enteric neurons.

  5. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  6. PATHOLOGICAL EFFECTS OF CHRONIC MYOCARDIAL INFARCTION ON PERIPHERAL NEURONS MEDIATING CARDIAC NEUROTRANSMISSION

    Science.gov (United States)

    Nakamura, Keijiro; Ajijola, Olujimi A.; Aliotta, Eric; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2016-01-01

    Objective To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. Methods Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n = 8) vs. chronic MI (n = 8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Results Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreacitive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. Conclusions Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart. PMID:27209472

  7. Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats.

    Science.gov (United States)

    Abekawa, Tomohiro; Ito, Koki; Nakagawa, Shin; Koyama, Tsukasa

    2007-06-01

    Neurodevelopmental deficits of parvalbumin-immunoreactive gamma-aminobutyric acid (GABA)ergic interneurons in prefrontal cortex have been reported in schizophrenia. Glutamate influences the proliferation of this type of interneuron by an N-methyl-D-aspartate (NMDA)-receptor-mediated mechanism. The present study hypothesized that prenatal blockade of NMDA receptors would disrupt GABAergic neurodevelopment, resulting in differences in effects on behavioral responses to a noncompetitive NMDA antagonist, phencyclidine (PCP), and a dopamine releaser, methamphetamine (METH). GABAergic neurons were immunohistochemically stained with parvalbumin antibody. Psychostimulant-induced hyperlocomotion was measured using an infrared sensor. Prenatal exposure (E15-E18) to the NMDA receptor antagonist MK-801 reduced the density of parvalbumin-immunoreactive neurons in rat medial prefrontal cortex on postnatal day 63 (P63) and enhanced PCP-induced hyperlocomotion but not the acute effects of METH on P63 or the development of behavioral sensitization. Prenatal exposure to MK-801 reduced the number of parvalbumin-immunoreactive neurons even on postnatal day 35 (P35) and did not enhance PCP-induced hyperlocomotion, the acute effects of METH on P35, or the development of behavioral sensitization to METH. These findings suggest that prenatal blockade of NMDA receptors disrupts GABAergic neurodevelopment in medial prefrontal cortex, and that this disruption of GABAergic development may be related to the enhancement of the locomotion-inducing effect of PCP in postpubertal but not juvenile offspring. GABAergic deficit is unrelated to the effects of METH. This GABAergic neurodevelopmental disruption and the enhanced PCP-induced hyperlocomotion in adult offspring prenatally exposed to MK-801 may prove useful as a new model of the neurodevelopmental process of pathogenesis of treatment-resistant schizophrenia via an NMDA-receptor-mediated hypoglutamatergic mechanism.

  8. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  9. Localization of SSeCKS in unmyelinated primary sensory neurons

    Directory of Open Access Journals (Sweden)

    Siegel Sandra M

    2008-03-01

    Full Text Available Abstract Background SSeCKS (Src SupprEssed C Kinase Substrate is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%, calcitonin gene related peptide (95.3%, or fluoride resistant acid phosphatase (55.0% labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43

  10. Exclusive neuronal expression of SUCLA2 in the human brain

    DEFF Research Database (Denmark)

    Dobolyi, Arpád; Ostergaard, Elsebet; Bagó, Attila G

    2015-01-01

    associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here, we show that immunoreactivity of A-SUCL-β in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling...... was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming β subunit (G......-SUCL-β) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL-β immunoreactivity that was, however, not upregulated in samples obtained from diabetic versus non...

  11. Immunohistochemical characteristics of neurons in nodose ganglia projecting to the different chambers of the rat heart.

    Science.gov (United States)

    Kosta, Vana; Guić, Maja Marinović; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-06-24

    Despite the contribution of nodose ganglia neurons to the innervation of the heart being the subject of several studies, specific neuronal subpopulations innervating the four different chambers of the heart have not been distinguished. In our study, the application of Fast Blue-loaded patch to the epicardial surface of different chambers of the rat heart (the right or left atrium or the right or left ventricle) resulted in labeling of discrete populations of immunohistochemically diverse neurons. About one half (55%) of these neurons showed immunoreactivity for the 200-kDa neurofilament protein (marker of myelinated neurons), with a higher proportion of positive staining among neurons projecting to the left than to the right ventricle. Isolectin B4 immunoreactivity (characteristic for a subset of nonmyelinated non-peptidergic neurons) was more abundant among neurons projecting to the right side of the heart (right atria and right ventricles) compared to the left side (23% vs. 16%). Calretinin immunoreactivity (possible marker of mechanosensitive neurons) was significantly higher among neurons projecting to the ventricles than among those projecting to atria (36% vs. 11%). These findings reveal that chambers of the rat heart are innervated with immunohistochemically different subpopulations of neurons from the nodose ganglia.

  12. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    Science.gov (United States)

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  13. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    Science.gov (United States)

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    Science.gov (United States)

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  15. Alkaloids from piper longum protect dopaminergic neurons against inflammation-mediated damage induced by intranigral injection of lipopolysaccharide.

    Science.gov (United States)

    He, Huan; Guo, Wei-Wei; Xu, Rong-Rong; Chen, Xiao-Qing; Zhang, Nan; Wu, Xia; Wang, Xiao-Min

    2016-10-24

    Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.

  16. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  17. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  18. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  19. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses.

    Science.gov (United States)

    Salaj, Martin; Druga, Rastislav; Cerman, Jiří; Kubová, Hana; Barinka, Filip

    2015-11-19

    The retrosplenial cortex (RSC) is a mesocortical region broadly involved with memory and navigation. It shares many characteristics with the perirhinal cortex (PRC), both of which appear to be significantly involved in the spreading of epileptic activity. We hypothesized that RSC possesses an interneuronal composition similar to that of PRC. To prove the hypothesis we studied the general pattern of calretinin (CR) and parvalbumin (PV) immunoreactivity in the RSC of the rat brain, its optical density as well as the morphological features and density of CR- and PV-immunoreactive (CR+ and PV+) interneurons. We also analyzed the overall neuronal density on Nissl-stained sections in RSC. Finally, we compared our results with our earlier analysis of PRC (Barinka et al., 2012). Compared to PRC, RSC was observed to have a higher intensity of PV staining and lower intensity of CR staining of neuropil. Vertically-oriented bipolar neurons were the most common morphological type among CR+ neurons. The staining pattern did not allow for a similarly detailed analysis of somatodendritic morphology of PV+ neurons. RSC possessed lower absolute (i.e., neurons/mm(3)) and relative (i.e., percentage of the overall neuronal population) densities of CR+ neurons and similar absolute and lower relative densities of PV+ neurons relative to PRC. CR: PV neuronal ratio in RSC (1:2 in area 29 and 1:2.2 in area 30) differed from PRC (1:1.2 in area 35 and 1:1.7 in area 36). In conclusion, RSC, although similar in many aspects to PRC, differs strikingly in the interneuronal composition relative to PRC. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  1. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  2. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    International Nuclear Information System (INIS)

    Hei, Ming-Yan; Luo, Ya-Li; Zhang, Xiao-Chun; Liu, Hong; Gao, Ru; Wu, Jing-Jiang

    2011-01-01

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O 2 /92% N 2 ) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI

  3. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    Directory of Open Access Journals (Sweden)

    Hei Ming-Yan

    2012-01-01

    Full Text Available Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI, and severe HI groups (N = 10 in each group at each time on postnatal day 7 (P7 to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH in the substantia nigra (SN. The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2 for 90 and 150 min, respectively. The elevated plus-maze (EPM test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05. The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2% and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05. The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

  4. Effects of oxaliplatin on mouse myenteric neurons and colonic motility

    Science.gov (United States)

    Wafai, Linah; Taher, Mohammadali; Jovanovska, Valentina; Bornstein, Joel C.; Dass, Crispin R.; Nurgali, Kulmira

    2013-01-01

    Oxaliplatin, an anti-cancer chemotherapeutic agent used for the treatment of colorectal cancer, commonly causes gastrointestinal side-effects such as constipation, diarrhoea, nausea, and vomiting. Damage to enteric neurons may underlie some of these gastrointestinal side-effects, as the enteric nervous system (ENS) controls functions of the bowel. In this study, neuronal loss and changes to the structure and immunoreactivity of myenteric neuronal nitric oxide synthase (nNOS) neurons were examined in colonic segments from mice following exposure to oxaliplatin ex vivo and following repeated intraperitoneal injections of oxaliplatin over 3 weeks in vivo, using immunohistochemistry and confocal microscopy. Significant morphological alterations and increases in the proportion of NOS-immunoreactive (IR) neurons were associated with both short-term oxaliplatin exposure and long-term oxaliplatin administration, confirming that oxaliplatin causes changes to the myenteric neurons. Long-term oxaliplatin administration induced substantial neuronal loss that was correlated with a reduction in both the frequency and propagation speed of colonic migrating motor complexes (CMMCs) in vitro. Similar changes probably produce some symptoms experienced by patients undergoing oxaliplatin treatment. PMID:23486839

  5. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    Science.gov (United States)

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P HDA stimulation were reduced (P HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  6. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    -hyperactive disorder (ADHD) among others. Since all these diseases are the cause of huge economical and personal costs it is very important to gain more knowledge of TPH and DβH since these two enzymes could be possible targets for medicine against the diseases mentioned above. TPH a three-domain, iron......-containing enzyme which belongs to the aromatic amino acid hydroxylase (AAAH) family. It exist in two isoforms, TPH1 and TPH2, which are expressed in different tissues and have different properties. TPH is known as a very diffcult protein to work with especially due to instability and only truncated forms of TPH1...... have been purified and crystallized. This project concern the human neuronal TPH or TPH2. In an attempt to overcome the problems with recombinant TPH two stability and solubility optimized variants of TPH2 are designed. Escherichia coli (E. coli) expression strains for these variants and full length...

  7. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    Science.gov (United States)

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  8. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    Science.gov (United States)

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach.

    Directory of Open Access Journals (Sweden)

    Katarzyna Palus

    Full Text Available This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group animals were injected with neuronal retrograde tracer Fast Blue (FB. Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH, dopamine β-hydroxylase (DβH, neuropeptide Y (NPY, galanin (GAL, neuronal nitric oxide synthase (nNOS, leu 5-enkephalin (LENK, cocaine- and amphetamine- regulated transcript peptide (CART, calcitonin gene-related peptide (CGRP, substance P (SP and vasoactive intestinal peptide (VIP. The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG. In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%, DβH (97.10 ± 0.97%, NPY (46.88 ± 2.53% and GAL (8.40 ± 0.53%. In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively. Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02% and GAL (26.45 ± 2.75% as well as the novo-synthesis of nNOS (6.13 ± 1.11% and LENK (4.77 ± 0.42% in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA

  10. Neurochemistry of olivocochlear neurons in the hamster.

    Science.gov (United States)

    Reuss, Stefan; Disque-Kaiser, Ursula; Antoniou-Lipfert, Patricia; Gholi, Maryam Najaf; Riemann, Elke; Riemann, Randolf

    2009-04-01

    The present study was conducted to characterize the superior olivary complex (SOC) of the lower brain stem in the pigmented Djungarian hamster Phodopus sungorus. Using Nissl-stained serial cryostat sections from fresh-frozen brains, we determined the borders of the SOC nuclei. We also identified olivocochlear (OC) neurons by retrograde neuronal tracing upon injection of Fluoro-Gold into the scala tympani. To evaluate the SOC as a putative source of neuronal nitric oxide synthase (nNOS), arginine-vasopressin (AVP), oxytocin (OT), vasoactive intestinal polypeptide (VIP), or pituitary adenylate cyclase-activating polypeptide (PACAP) that were all found in the cochlea, we conducted immunohistochemistry on sections exhibiting retrogradely labeled neurons. We did not observe AVP-, OT-, or VIP-immunoreactivity, neither in OC neurons nor in the SOC at all, revealing that cochlear AVP, OT, and VIP are of nonolivary origin. However, we found nNOS, the enzyme responsible for nitric oxide synthesis in neurons, and PACAP in neuronal perikarya of the SOC. Retrogradely labeled neurons of the lateral olivocochlear (LOC) system in the lateral superior olive did not contain PACAP and were only infrequently nNOS-immunoreactive. In contrast, some shell neurons and some of the medial OC (MOC) system exhibited immunofluorescence for either substance. Our data obtained from the dwarf hamster Phodopus sungorus confirm previous observations that a part of the LOC system is nitrergic. They further demonstrate that the medial olivocochlear system is partly nitrergic and use PACAP as neurotransmitter or modulator.

  11. Localisation of NG2 immunoreactive neuroglia cells in the rat locus coeruleus and their plasticity in response to stress

    Directory of Open Access Journals (Sweden)

    Mohsen eSeifi

    2014-05-01

    Full Text Available The locus coeruleus (LC nucleus modulates adaptive behavioural responses to stress and dysregulation of LC neuronal activity is implicated in stress-induced mental illnesses. The LC is composed primarily of noradrenergic neurons together with various glial populations. A neuroglia cell-type largely unexplored within the LC is the NG2 cell. NG2 cells serve primarily as oligodendrocyte precursor cells throughout the brain. However, some NG2 cells are in synaptic contact with neurons suggesting a role in information processing. The aim of this study was to neurochemically and anatomically characterise NG2 cells within the rat LC. Furthermore, since NG2 cells have been shown to proliferate in response to traumatic brain injury, we investigated whether such NG2 cells plasticity also occurs in response to emotive insults such as stress. Immunohistochemistry and confocal microscopy revealed that NG2 cells were enriched within the pontine region occupied by the LC. Close inspection revealed that a sub-population of NG2 cells were located within unique indentations of LC noradrenergic somata and were immunoreactive for the neuronal marker NeuN whilst NG2 cell processes formed close appositions with clusters immunoreactive for the inhibitory synaptic marker proteins gephyrin and the GABA-A receptor alpha3-subunit, on noradrenergic dendrites. In addition, LC NG2 cell processes were decorated with vesicular glutamate transporter 2 immunoreactive puncta. Finally, ten days of repeated restraint stress significantly increased the density of NG2 cells within the LC. The study demonstrates that NG2 IR cells are integral components of the LC cellular network and they exhibit plasticity as a result of emotive challenges.

  12. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis.

    Science.gov (United States)

    Benson, Jessica R; Xu, Jiameng; Moynes, Derek M; Lapointe, Tamia K; Altier, Christophe; Vanner, Stephen J; Lomax, Alan E

    2014-05-01

    Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

  13. Selective WGA uptake in the hippocampus from the locus coeruleus of DBH-WGA transgenic mice

    Directory of Open Access Journals (Sweden)

    Susan G eWalling

    2012-05-01

    Full Text Available We generated transgenic mice in which a transsynaptic tracer, wheat germ agglutinin (WGA, was specifically expressed in the locus coeruleus neurons under the control of the dopamine-β-hydroxylase gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase-positive locus coeruleus neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to locus coeruleus axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by dopamine-β-hydroxylase-positive fibers suggest that a majority of the tyrosine hydroxylase-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice suggests a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by locus coeruleus activity.

  14. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  15. Species differences in the immunoreactive expression of oxytocin, vasopressin, tyrosine hydroxylase and estrogen receptor alpha in the brain of Mongolian gerbils (Meriones unguiculatus and Chinese striped hamsters (Cricetulus barabensis.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Species differences in neurochemical expression and activity in the brain may play an important role in species-specific patterns of social behavior. In the present study, we used immunoreactive (ir labeling to compare the regional density of cells containing oxytocin (OT, vasopressin (AVP, tyrosine hydroxylase (TH, or estrogen receptor alpha (ERα staining in the brains of social Mongolian gerbils (Meriones unguiculatus and solitary Chinese striped hamsters (Cricetulus barabensis. Multiple region- and neurochemical-specific species differences were found. In the anterior hypothalamus (AH, Mongolian gerbils had higher densities of AVP-ir and ERα-ir cells than Chinese striped hamsters. In the lateral hypothalamus (LH, Mongolian gerbils also had higher densities of AVP-ir and TH-ir cells, but a lower density of OT-ir cells, than Chinese striped hamsters. Furthermore, in the anterior nucleus of the medial preoptic area (MPOAa, Mongolian gerbils had higher densities of OT-ir and AVP-ir cells than Chinese striped hamsters, and an opposite pattern was found in the posterior nucleus of the MPOA (MPOAp. Some sex differences were also observed. Females of both species had higher densities of TH-ir cells in the MPOAa and of OT-ir cells in the intermediate nucleus of the MPOA (MPOAi than males. Given the role of these neurochemicals in social behaviors, our data provide additional evidence to support the notion that species-specific patterns of neurochemical expression in the brain may be involved in species differences in social behaviors associated with different life strategies.

  16. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury.

    Science.gov (United States)

    Partata, W A; Krepsky, A M R; Xavier, L L; Marques, M; Achaval, M

    2003-04-01

    Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.

  17. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    W.A. Partata

    2003-04-01

    Full Text Available Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.

  18. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus.

    Science.gov (United States)

    Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A

    2010-02-01

    Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All

  19. Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse.

    Science.gov (United States)

    Carter, D A; Choong, Y-T; Connelly, A A; Bassi, J K; Hunter, N O; Thongsepee, N; Llewellyn-Smith, I J; Fong, A Y; McDougall, S J; Allen, A M

    2017-10-01

    Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT 1A R) most widely expressed in adult neurons. Activation of the AT 1 R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT 1 R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT 1A R-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT 1A R promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT 1A R-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT 1A R-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT 1A R-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT 1A R-GFP neurons and TH-GFP neurons showed similar AT 1A R-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT 1A R-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing. Copyright © 2017 the American Physiological Society.

  20. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  1. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population

    International Nuclear Information System (INIS)

    Chun, J.J.; Shatz, C.J.

    1989-01-01

    The postnatal fate of the first-generated neurons of the cat cerebral cortex was examined. These neurons can be identified uniquely by 3H-thymidine exposure during the week preceding the neurogenesis of cortical layer 6. Previous studies in which 3H-thymidine birthdating at embryonic day 27 (E27) was combined with immunohistochemistry have shown that these neurons are present in large numbers during fetal and early postnatal life within the subplate (future white matter), that they are immunoreactive for the neuron-specific protein MAP2 and for the putative neurotransmitters GABA, NPY, SRIF, and CCK. Here, the same techniques were used to follow the postnatal location and disappearance of the early generated subplate neuron population. At birth (P0), subplate neurons showing immunoreactivity for GABA, NPY, SRIF, or CCK are present in large numbers and at high density within the white matter throughout the neocortex, and the entire population can be observed as a dense MAP2-immunoreactive band situated beneath cortical layer 6. Between P0 and P401 (adulthood), the MAP2-immunostained band disappears so that comparatively few MAP2-immunoreactive neurons remain within the white matter. There is a corresponding decrease in the number and density of neurons stained with antibodies against neurotransmitters. In each instance, these neurons could be double-labeled by the administration of 3H-thymidine at E27, indicating that they are the remnants of the early generated subplate neuron population. The major period of decrease occurs during the first 4 postnatal weeks, and adult values are attained by 5 months. Within the white matter of the lateral gyrus (visual cortex), the density of immunostained neurons decreases dramatically: MAP2, 82%, SRIF, 81%, and NPY, 96%

  2. Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Arendt Thomas

    2005-11-01

    Full Text Available Abstract Neuronal expression of cyclooxygenase-2 (COX-2 and cell cycle proteins is suggested to contribute to neurodegeneration during Alzheimer's disease (AD. The stimulus that induces COX-2 and cell cycle protein expression in AD is still elusive. Activated glia cells are shown to secrete substances that can induce expression of COX-2 and cell cycle proteins in vitro. Using post mortem brain tissue we have investigated whether activation of microglia and astrocytes in AD brain can be correlated with the expression of COX-2 and phosphorylated retinoblastoma protein (ppRb. The highest levels of neuronal COX-2 and ppRb immunoreactivity are observed in the first stages of AD pathology (Braak 0–II, Braak A. No significant difference in COX-2 or ppRb neuronal immunoreactivity is observed between Braak stage 0 and later Braak stages for neurofibrillary changes or amyloid plaques. The mean number of COX-2 or ppRb immunoreactive neurons is significantly decreased in Braak stage C compared to Braak stage A for amyloid deposits. Immunoreactivity for glial markers KP1, CR3/43 and GFAP appears in the later Braak stages and is significantly increased in Braak stage V-VI compared to Braak stage 0 for neurofibrillary changes. In addition, a significant negative correlation is observed between the presence of KP1, CR3/43 and GFAP immunoreactivity and the presence of neuronal immunoreactivity for COX-2 and ppRb. These data show that maximal COX-2 and ppRb immunoreactivity in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia. In contrast to in vitro studies, post mortem data do not support a causal relation between the activation of microglia and astrocytes and the expression of neuronal COX-2 and ppRb in the pathological cascade of AD.

  3. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... adrenal hyperplasias that impair hormone production and disrupt sexual development. 21-hydroxylase deficiency is responsible for about 95 ... excess production of androgens leads to abnormalities of sexual development in people with 21-hydroxylase deficiency . A lack ...

  4. An AAV promoter-driven neuropeptide Y gene delivery system using Sendai virosomes for neurons and rat brain.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; King, M A; Wang, S; Bryant, S O; Gao, Y P; Martin, E J; Meyer, E M

    1996-03-01

    An adeno-associated virus (AAV)-derived construct (pJDT95npy) containing rat neuropeptide Y (NPY) cDNA inserted downstream of endogenous AAV promoters was used to investigate AAV-driven NPY expression in postmitotic neurons in vitro and in the brain. NPY mRNA was expressed in NT2/N and rat brain primary neuronal cultures after transfection. There was a corresponding increase in the number of neurons staining for NPY-like immunoreactivity and an increase in NPY release during depolarization in the primary cultures. Injections of Sendai-virosome encapsulated pJDT95npy into neocortex increased NPY-like immunoreactivity in neurons but not glia indicating that the latter cell type did not have the translational, post-translational or storage capacity to accumulate the peptide. Injections into the rat hypothalamic para-ventricular nucleus increased body weight and food intake for 21 days, though NPY-like immunoreactivity remained elevated for at least 50 days. These studies demonstrate that AAV-derived constructs may be useful for delivering genes into post-mitotic neurons, and that Sendai virosomes are effective for delivering these constructs in vivo.

  5. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    Science.gov (United States)

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the

  6. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  7. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  8. The Influence of Tetrodotoxin (TTX on the Distribution and Chemical Coding of Caudal Mesenteric Ganglion (CaMG Neurons Supplying the Porcine Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Ewa Lepiarczyk

    2017-03-01

    Full Text Available The treatment of micturition disorders creates a serious problem for urologists. Recently, new therapeutic agents, such as neurotoxins, are being considered for the therapy of urological patients. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG neurons supplying the porcine urinary bladder after intravesical instillation of tetrodotoxin (TTX. The CaMG neurons were visualized with retrograde tracer Fast blue (FB and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against tyrosine hydroxylase (TH, neuropeptide Y (NPY, vasoactive intestinal polypeptide (VIP, somatostatin (SOM, calbindin (CB, galanin (GAL and neuronal nitric oxide synthase (nNOS. It was found that in both the control (n = 6 and TTX-treated pigs (n = 6, the vast majority (92.6% ± 3.4% and 88.8% ± 2%, respectively of FB-positive (FB+ nerve cells were TH+. TTX instillation caused a decrease in the number of FB+/TH+ neurons immunopositive to NPY (88.9% ± 5.3% in the control animals vs. 10.6% ± 5.3% in TTX-treated pigs or VIP (1.7% ± 0.6% vs. 0%, and an increase in the number of FB+/TH+ neurons immunoreactive to SOM (8.8% ± 1.6% vs. 39% ± 12.8%, CB (1.8% ± 0.7% vs. 12.6% ± 2.7%, GAL (1.7% ± 0.8% vs. 10.9% ± 2.6% or nNOS (0% vs. 1.1% ± 0.3%. The present study is the first to suggest that TTX modifies the chemical coding of CaMG neurons supplying the porcine urinary bladder.

  9. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    Science.gov (United States)

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  10. Estrogen receptor-alpha-immunoreactive neurons in the periaqueductal gray of the adult ovariectomized female cat

    NARCIS (Netherlands)

    VanderHorst, Veronique G.J.M.; Meijer, Ellie; Schasfoort, Fabienne C.; Leeuwen, Fred van; Holstege, Gert

    1998-01-01

    Anatomical and physiological studies in rodent and cat have shown that distinct parts of the midbrain periaqueductal gray (FAG) are important for the estrogen dependent, female reproductive behavior. The present study gives a detailed overview of the estrogen receptor-alpha-immunoreactive (ER-IR)

  11. Neurotransmitters and putative neuromodulators in the gut of Anguilla anguilla (L.. Localizations in the enteric nervous and endocrine systems

    Directory of Open Access Journals (Sweden)

    A Veggetti

    2009-12-01

    Full Text Available The gut of silver eels (Anguilla anguilla L. was investigated in order to describe both the cholinergic and adrenergic intramural innervations, and the localization of possible accessory neuromediators. Histochemical reactions for the demonstration of nicotinamide adenine dinucleotide phosphate, reduced form-(NADPH-diaphorase and acetylcholinesterese (AChEase were performed, as well as the immunohistochemical testing of tyrosine hydroxylase, met-enkephalin, substance P, calcitonin gene-related peptide (CGRP, bombesin, vasoactive intestinal peptide (VIP, neuropeptide Y (NPY, somatostatin, cholecystokinin-octapeptide (CCK-8, serotonin, cholineacetyltransferase. The results evidenced a different pattern in comparison with other vertebrates, namely mammals, and with other fish. Both NADPH-diaphorase and AChEase activities were histochemically detected all along the gut in the myenteric plexus, the inner musculature and the propria-submucosa. Tyrosine hydroxylase immunoreactivity was observed in the intestinal tract only, both in the myenteric plexus and in the inner musculature. Several neuropeptides (metenkephalin, CGRP, bombesin, substance P, VIP, NPY, somatostatin were, in addition, detected in the intramural innervation; some of them also in epithelial cells of the diffuse endocrine system (met-enkephalin, substance P, NPY, somatostatin. Serotonin was only present in endocrine cells. Tyrosine hydroxylase immunoreactivity was present in localizations to those of similar NADPHdiaphorase- reactivity, and in the same nerve bundles in which substance P- and CGRP-likeimmunoreactivities were detectable in the intestinal tract. In addition, NADPH-diaphorase-reactive neurons showed an anatomical relationship with AChEase-reactive nerve terminals, and a similar relationship existed between the latter and substance P-like immunoreactivity.

  12. Some intrinsic neurons of the guinea-pig heart contain substance P.

    Science.gov (United States)

    Bałuk, P; Gabella, G

    1989-10-09

    Whole-mount preparations of the posterior wall of the atria of the guinea pig heart containing intrinsic ganglion cells and nerve plexuses were stained for substance P-like immunoreactivity by the peroxidase-antiperoxidase method. Substance P-like nerve fibres are present as pericellular baskets around most, but not all, of the neuronal cell bodies, and are also found in the connecting nerve bundles, as perivascular nerve plexuses and in the myocardium and pericardium. The majority of ganglion cell bodies are negative for substance P, as reported previously, but we describe for the first time, a small subpopulation of intrinsic neuronal cell bodies which show immunoreactivity for substance P. Therefore, not all cardiac substance P nerves are extrinsic afferent fibres. At present, the physiological role of intrinsic substance P neurones is not clear.

  13. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    Science.gov (United States)

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  14. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.

    Science.gov (United States)

    Nakamura, Y; Nakamura, K; Morrison, S F

    2009-06-30

    The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT

  15. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  16. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  17. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.

    Science.gov (United States)

    Larsen, P J; Seier, V; Fink-Jensen, A; Holst, J J; Warberg, J; Vrang, N

    2003-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic neuroendocrine neurones. Adult male rats received a systemic injection of the neuronal tracer Fluorogold (FG) 2 days before fixation, and subsequent double- and triple-labelling immunoflourescence analysis demonstrated that neuroendocrine CART-containing neurones were present in the anteroventral periventricular, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro-opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland. Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42

  18. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  19. Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and beta-LPH.

    Science.gov (United States)

    Bugnon, C; Bloch, B; Lenys, D; Fellmann, D

    1979-06-27

    In man, discrete neurons of the infundibular (arcuate) nucleus contain compounds that can be stained with anti-endorphin (alpha and beta), anti-ACTH, anti-MSH (alpha and beta) and anti-beta-LPH immune sera (I.S.). In the fetus, certain neurons stain with anti-beta-endorphin or anti((17--39)ACTH starting from the 11th week of fetal life. At the ultrastructural level, these neurons contain elementary granules that are immunoreactive with anti-beta-endorphin. In the adult, neurons immunoreactive with anti-beta-endorphin are found in the infundibular nucleus. Their axonal fibers terminate around blood vessels in the neurovascular zone and in the pituitary stalk, or establish contacts with non-immunoreactive perikarya of the infundibular nucleus. These neurons can be stained with anti(17--39)ACTH and anti-beta-endorphin I.S. The most reactive are also stained moderately with anti-alpha-MSH, anti-beta-MSH, anti-beta-LPH, anti-alpha-endorphin, or anti(1--24)ACTH I.S. These results indicate that, in man, compound(s) identical with or immunologically related to endorphins, beta-LPH, ACTH and MSH are secreted by certain hypothalamic neurons. These agents probably originate from a common precursor molecula similar to the so-called pro-opiocortin.

  20. Topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus).

    Science.gov (United States)

    Ashwell, K W S

    2008-09-01

    The topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus) have been studied using Nissl staining in conjunction with myelin staining, enzyme reactivity to acetylcholinesterase and NADPH diaphorase, and immunoreactivity to parvalbumin, calbindin, calretinin, tyrosine hydroxylase, neuropeptide Y, and neurofilament protein (SMI-32 antibody). All those components of the striatum and pallidum found in eutherian mammals could also be identified in the echidna's brain, with broad chemoarchitectural similarities to those regions in eutherian brains also apparent. There was a clear chemoarchitectural gradient visible with parvalbumin immunoreactivity of neurons and fibers, suggesting a subdivision of the echidna caudatoputamen into weakly reactive rostrodorsomedial and strongly reactive caudoventrolateral components. This may, in turn, relate to subdivision into associative versus sensorimotor CPu and reflect homology to the caudate and putamen of primates. Moreover, the chemoarchitecture of the echidna striatum suggested the presence of striosome-matrix architecture. The morphology of identified neuronal groups (i.e., parvalbumin, calbindin, and neuropeptide Y immunoreactive) in the echidna striatum and pallidum showed many similarities to those seen in eutherians, although the pattern of distribution of calbindin immunoreactive neurons was more uniform in the caudatoputamen of the echidna than in therians. These observations indicate that the same broad features of striatal and pallidal organization apply across all mammals and suggest that these common features may have arisen before the divergence of the monotreme and therian lineages.

  1. Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotropin-releasing hormone neuronal system of the rabbit

    Science.gov (United States)

    Wadas, B.C.; Hartshorn, C.A.; Aurand, E.R.; Palmer, J.S.; Roselli, C.E.; Noel, M.L.; Gore, A.C.; Veeramachaneni, D.N.R.; Tobet, S.A.

    2010-01-01

    Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotropin-releasing hormone (ir-GnRH) neurons in the region of the organum vasculosum of the lamina terminalis (OVLT) and rostral preoptic area (rPOA) by postnatal week (PNW) 6. To further examine the disruption of GnRH neurons by fetal vinclozolin exposure, in the current study, pregnant rabbits were dosed orally with vinclozolin, flutamide, or carrot paste vehicle for the last two weeks of gestation. Offspring were euthanized at birth (males and females), PNW6 (females), PNW26 (adult males), or PNW30 (adult females) of age. At birth and in adults, brains were sectioned and processed for immunoreactive GnRH. The numbers of immunoreactive GnRH neuronal perikarya were significantly decreased in vinclozolin-treated rabbits at birth and in adult littermates. By contrast, there was an increase in GnRH immunoreactivity in the terminals in the region of the median eminence. Analysis of PNW6 female brains by radioimmunoassay (RIA) revealed a two-fold increase in GnRH peptide content in the mediobasal hypothalamus in vinclozolin-treated rabbits. This finding was complemented by immunofluorescence analyses that showed a 2.8-fold increase in GnRH immunoreactivity in the median eminence of vinclozolin compared to vehicle-treated females at PNW30. However, there was no difference between treatment groups in the measures of reproduction that were evaluated: ejaculation latency, conception rates or litter size. These results indicate that subacute, prenatal vinclozolin treatment is sufficient to create perdurable alterations in the GnRH neuronal network that forms an important input into the reproductive axis. Finally, the effect of vinclozolin on the GnRH neuronal network was not comparable to that of flutamide, suggesting that vinclozolin was not acting through anti-androgenic mechanisms. PMID

  2. Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotrophin-releasing hormone neuronal system of the rabbit.

    Science.gov (United States)

    Wadas, B C; Hartshorn, C A; Aurand, E R; Palmer, J S; Roselli, C E; Noel, M L; Gore, A C; Veeramachaneni, D N R; Tobet, S A

    2010-06-01

    Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotrophin-releasing hormone (GnRH) neurones in the region of the organum vasculosum of the lamina terminalis and rostral preoptic area by postnatal week (PNW) 6. In the present study, in an aim to further examine the disruption of GnRH neurones by foetal vinclozolin exposure, pregnant rabbits were dosed orally with vinclozolin, flutamide or carrot paste vehicle for the last 2 weeks of gestation. Offspring were euthanised at birth (males and females), PNW 6 (females), PNW 26 (adult males) or PNW 30 (adult females) of age. At birth and in adults, brains were sectioned and processed for immunoreactive GnRH. The numbers of immunoreactive GnRH neuronal perikarya were significantly decreased in vinclozolin-treated rabbits at birth and in adult littermates. By contrast, there was an increase in GnRH immunoreactivity in the terminals in the region of the median eminence. Analysis of PNW 6 female brains by radioimmunoassay revealed a two-fold increase in GnRH peptide content in the mediobasal hypothalamus in vinclozolin-treated rabbits. This finding was complemented by immunofluorescence analyses, which revealed a 2.8-fold increase in GnRH immunoreactivity in the median eminence of vinclozolin compared to vehicle-treated females at PNW 30. However, there was no difference between treatment groups in the measures of reproduction that were evaluated: ejaculation latency, conception rates or litter size. These results indicate that sub-acute, prenatal vinclozolin treatment is sufficient to create perdurable alterations in the GnRH neuronal network that forms an important input into the reproductive axis. Finally, the effect of vinclozolin on the GnRH neuronal network was not comparable to that of flutamide, suggesting that vinclozolin was not acting through anti-androgenic mechanisms.

  3. Expansion and characterization of ventral mesencephalic precursor cells: effect of mitogens and investigation of FA1 as a potential dopaminergic marker

    DEFF Research Database (Denmark)

    Jensen, Pia; Bauer, Matthias; Jensen, Charlotte H

    2007-01-01

    factor 8 (FGF8) for expansion of such dopaminergic precursor cells, and fetal antigen-1 (FA1), a secreted neuronal protein of unknown function, as a non-invasive dopaminergic marker. Tissue from embryonic day (ED) 12 rat ventral mesencephalon was dissociated mechanically and cultured for 4 days...... to controls. After differentiation, biochemical analyses showed significantly more dopamine and FA1 in conditioned medium from both FGF2 and FGF8 expanded cultures than in controls. Correspondingly, numbers of tyrosine hydroxylase (TH)- and FA1-immunoreactive cells had increased 16-fold (P ... for these cells. Furthermore, FA1 was identified as a potential supplementary non-invasive marker of cultured dopaminergic neurons....

  4. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  5. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Activity-based anorexia activates nesfatin-1 immunoreactive neurons in distinct brain nuclei of female rats.

    Science.gov (United States)

    Scharner, Sophie; Prinz, Philip; Goebel-Stengel, Miriam; Lommel, Reinhard; Kobelt, Peter; Hofmann, Tobias; Rose, Matthias; Stengel, Andreas

    2017-12-15

    Activity-based anorexia (ABA) is an established animal model for the eating disorder anorexia nervosa (AN). The pathophysiology of AN and the involvement of food intake-regulatory peptides is still poorly understood. Nesfatin-1, an anorexigenic peptide also involved in the mediation of stress, anxiety and depression might be a likely candidate involved in the pathogenesis of AN. Therefore, activation of nesfatin-1 immunoreactive (ir) brain nuclei was investigated under conditions of ABA. Female Sprague-Dawley rats were used and divided into four groups (n=6/group): activity-based anorexia (ABA), restricted feeding (RF), activity (AC) and ad libitum fed (AL). After the 21-day experimental period and development of ABA, brains were processed for c-Fos/nesfatin-1 double labeling immunohistochemistry. ABA increased the number of nesfatin-1 immunopositive neurons in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, locus coeruleus and in the rostral part of the nucleus of the solitary tract compared to AL and AC groups (p0.05). Moreover, we observed significantly more c-Fos and nesfatin-1 ir double-labeled cells in ABA rats compared to RF, AL and AC in the supraoptic nucleus (p<0.05) and compared to AL and AC in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, dorsal raphe nucleus and the rostral raphe pallidus (p<0.05). Since nesfatin-1 plays a role in the inhibition of food intake and the response to stress, we hypothesize that the observed changes of brain nesfatin-1 might play a role in the pathophysiology and symptomatology under conditions of ABA and potentially also in patients with AN. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  8. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    Science.gov (United States)

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  9. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    Science.gov (United States)

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  10. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  11. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2015-01-01

    Full Text Available The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson′s disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.

  12. Involvement of serotonergic pathways in mediating the neuronal activity and genetic transcription of neuroendocrine corticotropin-releasing factor in the brain of systemically endotoxin-challenged rats

    Energy Technology Data Exchange (ETDEWEB)

    Laflamme, N.; Feuvrier, E.; Richard, D.; Rivest, S. [Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 boul. Laurier, Ste-Foy Quebec (Canada)

    1999-01-01

    The present study investigated the effect of serotonin depletion on the neuronal activity and transcription of corticotropin-releasing factor in the rat brain during the acute-phase response. Conscious male rats received an intraperitoneal (i.p.) injection with the immune activator lipopolysaccaride (25 {mu}g/100 g body wt) after being treated for three consecutive days with para-chlorophenylalanine (30 mg/100 g/day). This irreversible inhibitor of tryptophane-5-hydroxylase decreased hypothalamic serotonin levels by 96%. One, 3 and 6 h after a single i.p. injection of lipopolysaccharide or vehicle solution, rats were killed and their brains cut in 30-{mu}m coronal sections. Messenger RNAs encoding c-fos, nerve-growth factor inducible-B gene, corticotropin-releasing factor and the heteronuclear RNA encoding corticotropin-releasing factor primary transcript were assayed by in situ hybridization using {sup 35}S-labeled riboprobes, whereas Fos-immunoreactive nuclei were labeled by immunocytochemistry. Lipopolysaccharide induced a wide neuronal activation indicated by the expression of both immediate-early gene transcripts and Fos protein in numerous structures of the brain. The signal for both immediate-early gene transcripts was low to moderate 1 h after lipopolysaccharide administration, maximal at 3 h and decline at 6 h post-injection, whereas at that time, Fos-immunoreactive nuclei were still detected in most of the c-fos messenger RNA-positive structures. Interestingly, the strong and widespread induction of both immediate-early gene transcripts was almost totally inhibited by para-chlorophenylalanine treatment; in the hypothalamic paraventricular nucleus for example, c-fos messenger RNA signal and the number of Fos-immunoreactive positive cells were reduced by 80 and 48%, respectively, in serotonin-depleted rats treated with the bacterial endotoxin. This blunted neuronal response was also associated with an attenuated stimulation of neuroendocrine corticotropin

  13. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  14. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior.

    Science.gov (United States)

    Balthazart, J; Foidart, A; Absil, P; Harada, N

    1996-01-01

    locally formed estrogens cannot control the behavior and the aromatase synthesis in an autocrine fashion in the cells where they were formed. Multi-neuronal networks need therefore to be considered. The behavioral activation could result from the action of estrogens in ER-positive cells located in the vicinity of the ARO-ir cells where they were produced (paracrine action). Alternatively, actions that do not involve the nuclear ER could be important. Immunocytochemical studies at the electron microscope level and biochemical assays of AA in purified synaptosomes indicate the presence of aromatase in presynaptic boutons. Estrogens formed at this level could directly affect the pre-and post-synaptic membrane or could directly modulate neurotransmission namely through their metabolization into catecholestrogens (CE) which are known to be powerful inhibitors of the catechol- omicron - methyl transferase (COMT). The inhibition of COMT should increase the catecholaminergic transmission. It is significant to note, in this respect, that high levels of 2-hydroxylase activity, the enzyme that catalyzes the transformation of estrogens in CE, are found in all brain areas that contain aromatase. On the other hand, the synthesis of aromatase should also be controlled by estrogens in an indirect, transynaptic manner very reminiscent of the way in which steroids indirectly control the production of LHRH. Fibers that are immunoreactive for tyrosine hydroxylase (synthesis of dopamine), dopamine beta-hydroxylase (synthesis of norepinephrine) or vasotocine have been identified in the close vicinity of ARO-ir cells in the POM and retrograde tracing has identified the origin of the dopaminergic and noradrenergic innervation of these areas. A few preliminary physiological experiments suggest that these catecholaminergic inputs regulate AA and presumably synthesis.

  15. Calcium-binding Protein Calretinin Immunoreactivity in the Dog Superior Colliculus

    International Nuclear Information System (INIS)

    Lee, Jea-Young; Choi, Jae-Sik; Ahn, Chang-Hyun; Kim, In-Suk; Ha, Ji-Hong; Jeon, Chang-Jin

    2006-01-01

    We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti-calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the

  16. IGF-1 Protects Dopamine Neurons Against Oxidative Stress: Association with Changes in Phosphokinases

    Science.gov (United States)

    El Ayadi, Amina; Zigmond, Michael J.; Smith, Amanda D.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson’s disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 μg) 6 hrs prior to infusion of 4 μg 6-OHDA into the same site and were sacrificed 1 or 4 wks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 wks but not at 1 wk, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 μg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain if their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 (pERK1/2) were maximal 6 hrs after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 hrs, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6–24 hrs post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades PMID:26894890

  17. Activity-based anorexia activates CRF immunoreactive neurons in female rats.

    Science.gov (United States)

    Scharner, Sophie; Friedrich, Tiemo; Goebel-Stengel, Miriam; Kobelt, Peter; Rose, Matthias; Stengel, Andreas

    2018-05-01

    Activity-based anorexia (ABA) is a well-established animal model mimicking the eating disorder anorexia nervosa (AN). Since the pathophysiology of AN is yet poorly understood and specific drug treatments are lacking so far, animal models might be useful to further understand this disease. ABA consists of time-restricted access to food for 1.5 h/day and the possibility to exercise in a running wheel for 24 h/day. This combination leads to robust body weight loss as observed in AN. Here, we investigated the activation of brain corticotropin-releasing factor (CRF) neurons, a transmitter involved in the response to stress, emotional processes and also food intake. After development of ABA, rat brains were processed for c-Fos and CRF double immunohistochemistry. ABA increased the number of c-Fos/CRF double labeled neurons in the paraventricular nucleus (PVN) and the dorsomedial hypothalamic nucleus (DMH) compared to the ad libitum (AL, ad libitum fed, no running wheel) and activity (AC, ad libitum fed, running wheel, p  0.05) group. Also the number of CRF neurons was increased in the DMH of ABA rats compared to AL and AC (p  0.05). Taken together, brain CRF activated under conditions of ABA might play a role in the development and maintenance of this animal model and possibly also in human AN. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    Directory of Open Access Journals (Sweden)

    Eun Joo Bae

    2015-01-01

    Full Text Available The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1- 3 between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.

  19. The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons.

    Science.gov (United States)

    Stern, Michael

    2009-02-01

    The locust's optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.

  20. The effects of cysteamine on thyrotropin and immunoreactive beta-endorphin secretion in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Millard, W.J.; Sagar, S.M.; Badger, T.M.; Carr, D.B.; Arnold, M.A.; Spindel, E.; Kasting, N.W.; Martin, J.B.

    1983-02-01

    We examined the effects of the thiol agent cysteamine (CSH), which is known to deplete the hypothalamus of immunoreactive somatostatin, on physiological TSH and beta- endorphin secretion in the adult male rat. CSH at doses of 90 and 300 mg/kg CSH produced a rapid decline in plasma TSH, whereas a dose of 30 mg/kg did not alter plasma TSH levels. After the higher doses of CSH, TSH levels in the blood remained lower than control values on day 2, but returned to normal by 1 week. This decrease in TSH within the plasma was not associated with a reduction in hypothalamic TRH concentrations. The TSH response to 500 ng/kg TRH was normal in CSH-treated animals. Blockade of norepinephrine synthesis with diethyldithiocarbamate (500 mg/kg) or fusaric acid (100 mg/kg) inhibited TSH secretion in a manner similar to that of CSH. beta-Endorphin-like immunoreactivity (bet-End-LI) was elevated in the plasma immediately after CSH (300 mg/kg) administration. This was associated with a 58% reduction in anterior pituitary beta-End-LI and no change in hypothalmic beta-End-LI. Plasma beta-End-LI returned to normal on day 2. The increase in plasma beta-End-LI induced by immobilization stress was not compromised by CSH treatment. The observed effects of CSH on both TSH and beta-End-LI are consistent with a reduction in central norepinephrine neurotransmission through the known actin of CSH to inhibit dopamine-beta-hydroxylase. Acute stress may play a role as well in the observed changes in TSH and beta-End-LI secretion.

  1. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  2. Search for a non-metabolizable PET tracer for heart neuronal imaging

    International Nuclear Information System (INIS)

    Wieland, D.M.; Rosenspire, K.C.; Van Dort, M.E.; Haka, M.S.; Jung, Y.W.; Gildersleeve, D.L.

    1990-01-01

    The tracer (1R,2S)-(-)-[ 11 C]-meta-hydroxyephedrine (MHED) is used successfully at the authors' institution to study neuronal heart diseases and neuroendocrine tumors. However, MHED is rapidly metabolized in humans, most likely to alpha-methylepinephrine and its 3-O-methyl ether by the initial action of liver microsomal hydroxylase. This presentation will describe efforts to develop a [ 11 C]-labelled neuronal tracer that is completely resistant to metabolism on the PET-imaging time scale

  3. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content...... of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells...

  4. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  5. 25-Hydroxyvitamin D depletion does not exacerbate MPTP-induced dopamine neuron damage in mice.

    Directory of Open Access Journals (Sweden)

    E Danielle Dean

    Full Text Available Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OHD] levels <30 ng/mL and Parkinson's disease. To investigate the effect of 25(OHD depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OHD deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. We found there was no significant difference between control and 25(OHD-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OHD serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism.

  6. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  7. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  9. Anatomical Organization of Urocortin 3-Synthesizing Neurons and Immunoreactive Terminals in the Central Nervous System of Non-Human Primates [Sapajus spp.

    Directory of Open Access Journals (Sweden)

    Daniella S. Battagello

    2017-07-01

    Full Text Available Urocortin 3 (UCN3 is a neuropeptide member of the corticotropin-releasing factor (CRF peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2 receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS, such as the medial preoptic nucleus, the rostral perifornical area (PFA, the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH and the lateral septal nucleus (LS. Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates.

  10. A possible role of the non-GAT1 GABA transporters in transfer of GABA from GABAergic to glutamatergic neurons in mouse cerebellar neuronal cultures

    DEFF Research Database (Denmark)

    Suñol, C; Babot, Z; Cristòfol, R

    2010-01-01

    Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons......3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule......M concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1...

  11. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  12. The ontogenetic development of neurons containing calcium-binding proteins in the septum of the guinea pig: Late onset of parvalbumin immunoreactivity versus calbindin and calretinin.

    Science.gov (United States)

    Hermanowicz-Sobieraj, Beata; Robak, Anna

    2017-01-01

    The study describes the immunoreactivity of calbindin (CB), calretinin (CR) and parvalbumin (PV), their distribution pattern and the co-distribution of CB and CR as well as CB and PV in the septum of the guinea pig during development. Immunohistochemistry was conducted on embryonic (E40, E50, E60), newborn (P0) and postnatal (P5, P10, P20, P40, P100) guinea pig brains. The presence of both CB and CR was detected at E40, while PV began to be observed at E60. Immunoreactivity for CB was constant throughout ontogeny. In contrast to CR immunoreactivity, PV immunoreactivity was higher in the postnatal stages than in the prenatal and newborn stages. Double immunostaining showed that CB co-localized with CR from E40 onwards, while with PV from P5 onwards, suggesting that CB co-operates with these proteins in the guinea pig septum during different periods of ontogeny. Our results also indicate that among the studied CaBPs, CB exhibited the highest immunoreactivity during both embryonic and postnatal development. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig.

    Science.gov (United States)

    Zalecki, Michal

    2012-01-01

    The pylorus, an important part of the digestive tract controlling the flow of chyme between the stomach and the duodenum, is widely innervated by intrinsic and extrinsic nerves. To determine the locations of postganglionic sympathetic perikarya that innervate the pylorus of the domestic pig, a retrograde tracing method with application of Fast Blue tracer was used. All positive neuronal cell bodies (ca. 1750) were found in the celiac-cranial mesenteric ganglion complex (CSMG), however, the coeliac poles of this complex provided the major input to the pylorus. Afterwards, the immunohistochemical staining procedure was applied to determine biologically active substances expressed in the FB-labeled perikarya. Approximately 77% of the FB-positive cell bodies contained tyrosine hydroxylase (TH), 87% dopamine β-hydroxylase (DβH), 40% neuropeptide Y (NPY), 12% somatostatin (SOM) and 7% galanin (GAL). The presence of all these substances in the ganglion tissue was confirmed by RT-PCR technique. Double immunocytochemistry revealed that all of the TH-positive perikarya contained DβH, about 40% NPY, 12% SOM and 8% GAL. Additionally, all above-cited immunohistochemical markers as well as VIP, PACAP, ChAT, LEU, MET, SP and nNOS were observed within nerve fibers associated with the FB-positive perikarya. Immunocytochemical labeling of the pyloric wall tissue disclosed that TH+, DβH+ and NPY+ nerve fibers innervated ganglia of the myenteric and submucosal plexuses, blood vessels, both muscular layers and the muscularis mucosae; nerve fibers immunoreactive to GAL mostly innervated both muscular layers, while SOM+ nerve fibers were observed within the myenteric plexus. Presented study revealed sources of origin and immunohistochemical characteristics of the sympathetic postganglionic perikarya innervating the porcine pylorus. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Quantitative Study of NPY-Expressing GABAergic Neurons and Axons in Rat Spinal Dorsal Horn*

    OpenAIRE

    Polg?r, Erika; Sardella, Thomas CP; Watanabe, Masahiko; Todd, Andrew J

    2010-01-01

    Between 25?40% of neurons in laminae I?III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4?6% of ne...

  15. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  16. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction

    Directory of Open Access Journals (Sweden)

    Nara Szostaczuk

    2018-03-01

    Full Text Available Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction.Methods: Three groups of male rats were studied at a juvenile age (25 days old and during adulthood (3 and 6 months old: the offspring of ad libitum fed dams (controls, the offspring of dams that were diet restricted (20% from days 1 to 12 of gestation (CR, and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk throughout lactation (CR-Leptin. The density of TyrOH-immunoreactive (TyrOH+ fibers and the levels of Tyrosine hydroxylase (TyrOH—used as potential markers of functional sympathetic innervation—were measured in stomach. Plasma leptin and ghrelin levels were also determined.Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (−46% and TyrOH levels (−47% in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%, and a lower leptin/ghrelin ratio (−28 and −37% at 3 and 6 months, respectively.Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an

  17. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The effect of repeated stress on KCC2 and NKCC1 immunoreactivity in the hippocampus of female mice

    Directory of Open Access Journals (Sweden)

    Takao Tsukahara

    2016-03-01

    Full Text Available K+–Cl− co-transporter (KCC2 and Na+–K+–2Cl− co-transporter (NKCC1 are the main regulators of neuronal intracellular chloride concentration; altered expression patterns of KCC2 and NKCC1 have been reported in several neurodegenerative diseases. In this paper, we show the effect of repeated stress on KCC2, NKCC1, and serine 940 phosphorylated KCC2 (pKCC2ser940 immunoreactivity.The data were obtained from the hippocampus of female mice using single-plane confocal microscopy images. The mean fluorescence intensity of the perisomatic area of neurons, defined as raw fluorescence intensity (RFI was calculated. Repeated stress (RS resulted in a decrease in perisomatic area of immunoreactive (IR-KCC2 and an increase of the IR-NKCC1. In addition, RS decreased perisomatic IR-pKCC2ser940, corresponding to that of KCC2. The data in this article support the results of a previous study [1] and provide the details of immunohistological methods. Interpretation of the data in this article can be found in “Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice” by Tsukahara et al. [1]. Keywords: KCC2, NKCC1, repeated stress, IHC

  19. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    Science.gov (United States)

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  20. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  1. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis.

    Directory of Open Access Journals (Sweden)

    Cecilia Gonzalez Campo

    Full Text Available BACKGROUND: Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR. We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. CONCLUSIONS/SIGNIFICANCE: Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose

  2. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    Science.gov (United States)

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  3. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.

    Science.gov (United States)

    Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R

    2009-02-01

    Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

  4. Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide

    DEFF Research Database (Denmark)

    Nässel, D R; Ohlsson, Lisbeth; Johansson, K U

    1988-01-01

    Different antisera to the molluscan cardioexcitatory peptide FMRFamide, and its fragment, RFamide (Arg-Phe-NH2), label a distinct population of neurons in the optic lobe of the blowfly, Calliphora erythrocephala. Seven morphological types of RFamide/FMRFamide-like immunoreactive neurons could be ...

  5. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  6. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    Science.gov (United States)

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  7. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  8. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  9. Application of the Physical Disector Principle for Quantification of Dopaminergic Neuronal Loss in a Rat 6-Hydroxydopamine Nigral Lesion Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Katrine Fabricius

    2017-12-01

    Full Text Available Stereological analysis is the optimal tool for quantitative assessment of brain morphological and cellular changes induced by neurotoxic lesions or treatment interventions. Stereological methods based on random sampling techniques yield unbiased estimates of particle counts within a defined volume, thereby providing a true quantitative estimate of the target cell population. Neurodegenerative diseases involve loss of specific neuron types, such as the midbrain tyrosine hydroxylase-positive dopamine neurons in Parkinson's disease and in animal models of nigrostriatal degeneration. Therefore, we applied an established automated physical disector principle in a fractionator design for efficient stereological quantitative analysis of tyrosine hydroxylase (TH-positive dopamine neurons in the substantia nigra pars compacta of hemiparkinsonian rats with unilateral 6-hydroxydopamine (6-OHDA lesions. We obtained reliable estimates of dopamine neuron numbers, and established the relationship between behavioral asymmetry and dopamine neuron loss on the lesioned side. In conclusion, the automated physical disector principle provided a useful and efficient tool for unbiased estimation of TH-positive neurons in rat midbrain, and should prove valuable for investigating neuroprotective strategies in 6-OHDA model of parkinsonism, while generalizing to other immunohistochemically-defined cell populations.

  10. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    Science.gov (United States)

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  11. Maturation of kisspeptinergic neurons coincides with puberty onset in male rats

    DEFF Research Database (Denmark)

    Bentsen, Agnete H; Ansel, Laura; Simonneaux, Valerie

    2010-01-01

    receptor is the primary component in the initiation of puberty and where in the hypothalamus regulation of the kisspeptin/Kiss1R system occurs is unresolved. Using immunohistochemistry and in situ hybridization, we analyzed the level of Kiss1 mRNA and kisspeptin-immunoreactivity in the anteroventral...... periventricular nucleus (AVPV) and the arcuate nucleus of male rats along pubertal development. Neurons expressing Kiss1 mRNA were first detected at PND15, but increased significantly around puberty, and declined again in the adult rat. While virtually no immunoreactive cell bodies were detectable in the AVPV...... at any age, numerous kisspeptin-positive neurons in the arcuate nucleus were detected in the adult rat. Increasing doses of kisspeptin-54 given peripherally to male rats at PND15, 30, 45, and 60 evoked roughly similar effects, as revealed by the induction of c-Fos in the pituitary and secretion of LH...

  12. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation.

    Science.gov (United States)

    Berthoud, Hans-Rudolf; Patterson, Laurel M; Sutton, Gregory M; Morrison, Christopher; Zheng, Huiyuan

    2005-02-01

    Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphe nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphe nuclei, raphe pallidus, raphe obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphe pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphe nuclei, and support the idea that orexin's simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.

  13. The effect of streptozotocin-induced diabetes on phenylalanine hydroxylase expression in rat liver.

    OpenAIRE

    Taylor, D S; Dahl, H H; Mercer, J F; Green, A K; Fisher, M J

    1989-01-01

    The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabe...

  14. Neuronal NOS localises to human airway cilia.

    Science.gov (United States)

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  16. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  17. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons.

    Science.gov (United States)

    Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J; Mandyam, Chitra D

    2016-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also

  18. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  19. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    Science.gov (United States)

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Supplementation with 0.1% and 2% vitamin e in diabetic rats: analysis of myenteric neurons immunostained for myosin-V and nNOS in the jejunum

    Directory of Open Access Journals (Sweden)

    Eleandro Aparecido Tronchini

    2012-12-01

    Full Text Available CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05. Nitrergic density did not change with diabetes (P>0.05. The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.

  1. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  2. Hydralazine administration activates sympathetic preganglionic neurons whose activity mobilizes glucose and increases cardiovascular function.

    Science.gov (United States)

    Parker, Lindsay M; Damanhuri, Hanafi A; Fletcher, Sophie P S; Goodchild, Ann K

    2015-04-16

    Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    Science.gov (United States)

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  4. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    Science.gov (United States)

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  5. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    Science.gov (United States)

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  6. The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate.

    Science.gov (United States)

    Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Fukui, Shinji; Otani, Naoki; Osumi, Atsushi; Toyooka, Terushige; Shima, Katsuji

    2006-10-01

    We studied the fate of Nissl-stained dark neurons (N-DNs) following traumatic brain injury (TBI). N-DNs were investigated in the cerebral neocortex and the hippocampus using a rat lateral fluid percussion injury model. Nissl stain, acid fuchsin stain and immunohistochemistry with phosphorylated extracellular signal-regulated protein kinase (pERK) antibody were used in order to assess posttraumatic neurons. In the neocortex, the number of dead neurons at 24 h postinjury was significantly less than that of the observed N-DNs in the earlier phase. Only a few N-DNs increased their pERK immunoreactivity. On the other hand, in the hippocampus the number of dead neurons was approximately the same number as that of the N-DNs, and most N-DNs showed an increased pERK immunoreactivity. These data suggest that not all N-DNs inevitably die especially in the neocortex after TBI. The fate of N-DNs is thus considered to differ depending on brain subfields.

  7. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra.

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Orozco-Barrios

    Full Text Available BACKGROUND: Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII to the reticulum through its fusion with Oleosin (OLEO. METHODOLOGY: Gene constructs including transcobalamin-oleosin (TCII-OLEO and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO, oleosin-transcobalamin (OLEO-TCII, TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS: The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE: In conclusion, the TCII-OLEO transfection

  8. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Thompson, Lachlan; Kirik, Deniz

    2005-01-01

    in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries......., the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control...... of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted...

  9. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  10. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    Directory of Open Access Journals (Sweden)

    Daniel Powell

    2017-01-01

    Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  11. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    Science.gov (United States)

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  12. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  13. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  14. Immunohistochemical detection of ganglia in the rat stomach serosa, containing neurons immunoreactive for gastrin-releasing peptide and vasoactive intestinal peptide

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1987-01-01

    Ganglia, not previously described, were identified in the rat stomach serosa along the minor curvature. The ganglia consisted of varying number of cell bodies lying in clusters along or within nerve bundles. The ganglia were shown to contain GRP and VIP immunoreactive nerve fibers and cell bodies...

  15. Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain.

    Science.gov (United States)

    Guidolin, D; Zunarelli, E; Genedani, S; Trentini, G P; De Gaetani, C; Fuxe, K; Benegiamo, C; Agnati, L F

    2008-06-01

    In an autopsy series of 19 individuals, age-ranged 24-94, a relatively age-spared region, the anterior-ventral thalamus, was analyzed by immunohistochemical techniques to visualize neurons (neurofilament protein), astrocytes (glial fibrillary acidic protein), microglial cells (CD68) and amyloid precursor protein. The pattern of immunoreactivity was determined by surface fractal dimension and lacunarity, the size by the field area (FA) and the spatial uniformity by the uniformity index. From the normalized FA values of immunoreactivity for the four markers studied, a global parameter was defined to give an overall characterization of the age-dependent changes in the glio-neuronal networks. A significant exponential decline of the GP was observed with increasing age. This finding suggests that early in life (ageage>70 years) could be due to the non-trophic reserve still available.

  16. Prominent increased calcineurin immunoreactivity in the superior temporal gyrus in schizophrenia: A postmortem study.

    Science.gov (United States)

    Wada, Akira; Kunii, Yasuto; Matsumoto, Jyunya; Hino, Mizuki; Yang, Qiaohui; Niwa, Shin-Ichi; Yabe, Hirooki

    2017-01-01

    Many neuroimaging studies have demonstrated structural changes in the superior temporal gyrus (STG) in patients with schizophrenia. Several postmortem studies have reported on the pathogenesis of schizophrenia, but few reports have investigated alterations in molecules in the STG. In addition, several studies have suggested that calcineurin (CaN) inadequacy may be a risk factor for schizophrenia, but no reports about CaN expression in the STG in schizophrenia have been published. We compared the density of CaN-immunoreactive (CaN-IR) neurons in the STG from 11 patients with schizophrenia with that of 11 sex- and age-matched controls. We used immunohistochemical analysis with rabbit polyclonal antibodies against human CaN. In the STG, the density of CaN-IR neurons in layers II - VI in the group with schizophrenia was significantly higher than that in the control group. Our results confirmed pathological changes in the STG in patients with schizophrenia, suggesting that alterations in the CaN pathway play a role in the pathogenesis of schizophrenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The nervus terminalis of the guinea pig: a new luteinizing hormone-releasing hormone (LHRH) neuronal system.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Silverman, A J

    1980-05-15

    Immunoreactive LHRH-like material has been found in the cells and fibers of the nervus terminalis in fetal and adult guinea pig brains. LHRH-containing neurons and axons are seen in the nasal mucosa intermingled with fibers of the olfactory nerves, in ganglia along the ventromedial surfaces of the olfactory bulbs and forebrain, and in clusters surrounding perforating branches of the anterior cerebral artery in the regions of the septal nuclei and olfactory tubercle. Nonreactive neurons are found adjacent to the LHRH-positive cells in all of the ganglia. LHRH-immunoreactive cells and axons of the nervus terminalis are in intimate contact with cerebral blood vessels and the cerebrospinal fluid along the intracranial course of this nerve, deep to the meninges. The possible involvement of these structures in the neural mechanisms of sexual behavior and the neurohormonal regulation of reproductive function are discussed.

  18. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  19. Maturation of kisspeptinergic neurons coincides with puberty onset in male rats

    DEFF Research Database (Denmark)

    Bentsen, Agnete H; Ansel, Laura; Simonneaux, Valerie

    2010-01-01

    receptor is the primary component in the initiation of puberty and where in the hypothalamus regulation of the kisspeptin/Kiss1R system occurs is unresolved. Using immunohistochemistry and in situ hybridization, we analyzed the level of Kiss1 mRNA and kisspeptin-immunoreactivity in the anteroventral...... periventricular nucleus (AVPV) and the arcuate nucleus of male rats along pubertal development. Neurons expressing Kiss1 mRNA were first detected at PND15, but increased significantly around puberty, and declined again in the adult rat. While virtually no immunoreactive cell bodies were detectable in the AVPV...... that the regulation of kisspeptin synthesis and release are key events in puberty onset in the male rat....

  20. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    Science.gov (United States)

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  1. FMRFamide-like immunoreactivity in the nervous system of Hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Schot, L P

    1982-01-01

    FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles...

  2. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    Science.gov (United States)

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  3. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    Science.gov (United States)

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  4. DEVELOPMENTAL HYPOTHYROIDISM REDUCES PARVALBUMIN EXPRESSION IN GABAERGIC NEURONS OF CORTEX AND HIPPOCAMPUS: IMMUNOHISTOCHEMICAL FINDINGS AND FUNCTIONAL CORRELATES.

    Science.gov (United States)

    GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry in cortex and hippocampus and a subpopulation of these interneurons contain the calcium binding protein, parvalbumin (PV). A previous report indicated that severe hypothyroidism reduced PV immunoreact...

  5. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin.

    Science.gov (United States)

    Furigo, Isadora C; Kim, Ki Woo; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; de Alencar, Amanda; Pedroso, João A B; Metzger, Martin; Donato, Jose

    2014-05-30

    Estrogens and prolactin share important target tissues, including the gonads, brain, liver, kidneys and some types of cancer cells. Herein, we sought anatomical and functional evidence of possible crosstalk between prolactin and estrogens in the mouse brain. First, we determined the distribution of prolactin-responsive neurons that express the estrogen receptor α (ERα). A large number of prolactin-induced pSTAT5-immunoreactive neurons expressing ERα mRNA were observed in several brain areas, including the anteroventral periventricular nucleus, medial preoptic nucleus, arcuate nucleus of the hypothalamus, ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), medial nucleus of the amygdala and nucleus of the solitary tract. However, although the medial preoptic area, periventricular nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, retrochiasmatic area, dorsomedial subdivision of the VMH, lateral hypothalamic area, dorsomedial nucleus of the hypothalamus and ventral premammillary nucleus contained significant numbers of prolactin-responsive neurons, these areas showed very few pSTAT5-immunoreactive cells expressing ERα mRNA. Second, we evaluated prolactin sensitivity in ovariectomized mice and observed that sex hormones are required for a normal responsiveness to prolactin as ovariectomized mice showed a lower number of prolactin-induced pSTAT5 immunoreactive neurons in all analyzed brain nuclei compared to gonad-intact females. In addition, we performed hypothalamic gene expression analyses to determine possible post-ovariectomy changes in components of prolactin signaling. We observed no significant changes in the mRNA expression of prolactin receptor, STAT5a or STAT5b. In summary, sex hormones exert a permissive role in maintaining the brain's prolactin sensitivity, most likely through post-transcriptional mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit

    DEFF Research Database (Denmark)

    Bjarkam, C R; Sørensen, J C; Geneser, F A

    1997-01-01

    The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which......, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher...

  7. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Zimering

    Full Text Available Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2. Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation.

  8. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  9. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    Science.gov (United States)

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  10. Effect of nerve activity on transport of nerve growth factor and dopamine β-hydroxylase antibodies in sympathetic neurones

    International Nuclear Information System (INIS)

    Lees, G.; Chubb, I.; Freeman, C.; Geffen, L.; Rush, R.

    1981-01-01

    The effect of nerve activity on the uptake and retrograde transport of nerve growth factor (NGF) and dopamine β-hydroxylase (DBH) antibodies was studied by injecting 125 I-labelled NGF and anti-DBH into the anterior eye chamber of guinea-pigs. Decentralization of the ipsilateral superior cervical ganglion (SCG) had no significant effect on the retrograde transport of either NGF or anti-DBH. Phenoxybenzamine produced a 50% increase in anti-DBH but not NGF accumulation and this effect was prevented by prior decentralization. This demonstrates that NGF is taken up independently of the retrieval of synaptic vesicle components. (Auth.)

  11. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles.

    Science.gov (United States)

    Wang, Jianli; Fang, Qianqian; Yang, Chenxi

    2017-09-15

    Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  13. Serotonin Immunoreactive Cells and Nerve Fibers in the Mucosa of ...

    African Journals Online (AJOL)

    hydroxytryptamine) immunoreactivity in the pyloric mucosa of the rat stomach. The immunoreactive elements included the endocrine cells, mast cells and mucosal nerve fibers in the lamina propria. The immunopositive endocrine cells were oval in ...

  14. Mechanism of action of cysteamine in depleting prolactin immunoreactivity

    International Nuclear Information System (INIS)

    Sagar, S.M.; Millard, W.J.; Martin, J.B.; Murchison, S.C.

    1985-01-01

    The thiol reagent cysteamine (CSH) depletes anterior pituitary cells of immunoreactive PRL both in vivo and in vitro. The authors examined the hypothesis that CSH affects either the solubility or immunoreactivity of PRL through a mechanism involving thiol-disulfide exchange. Adult female rats were treated with either CSH (300 mg/kg, sc) or an equimolar dose of ethanolamine as a control. Anterior pituitary glands were extracted in 0.1 M sodium borate buffer, pH 9.0. Treatment of pituitary extracts with beta-mercaptoethanol (BME) destroys the immunoreactivity of PRL. However, extraction in the presence of reduced glutathione or CSH of pituitaries of rats treated with CSH restores immunoreactive PRL to control levels. Extracts were also subjected to polyacrylamide gel electrophoresis (PAGE). On gels of pituitary extracts of CSH-treated rats, the band that comigrates with purified PRL is diminished compared to that in ethanolamine-treated controls. However, extraction of the pituitaries in sodium dodecyl sulfate-containing buffer followed by chemical reduction with BME restores the PRL band. Therefore, CSH acts on PRL through a thiol-related mechanism to yield a product that is poorly soluble in aqueous buffer at pH 9 and is poorly immunoreactive. Dispersed anterior pituitary cells in tissue culture were incubated with L-[ 35 S]methionine to radiolabel newly synthesized peptides. PAGE followed by autoradiography confirmed the above results obtained in vivo

  15. Orofacial neuropathic pain induced by oxaliplatin: downregulation of KCNQ2 channels in V2 trigeminal ganglion neurons and treatment by the KCNQ2 channel potentiator retigabine.

    Science.gov (United States)

    Ling, Jennifer; Erol, Ferhat; Viatchenko-Karpinski, Viacheslav; Kanda, Hirosato; Gu, Jianguo G

    2017-01-01

    Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.

  16. The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats.

    Directory of Open Access Journals (Sweden)

    Sebastián eHormigo

    2012-06-01

    Full Text Available The inferior colliculus (IC and the locus coeruleus (LC are two midbrain nuclei that integrate multimodal information and play a major role in novelty detection to elicit an orienting response. Despite the reciprocal connections between these two structures, the projection pattern and target areas of the LC within the subdivisions of the rat IC are still unknown. Here, we used tract-tracing approaches combined with immunohistochemistry, densitometry and confocal microscopy analysis to describe a projection from the LC to the IC. Biotinylated dextran amine (BDA injections into the LC showed that the LC-IC projection is mainly ipsilateral (90% and reaches, to a major extent, the dorsal and lateral part of the IC and the intercollicular commissure. Additionally, some LC fibers extend into the central nucleus of the IC. The neurochemical nature of this projection is noradrenergic, given that tyrosine hydroxylase (TH and dopamine beta hydroxylase (DBH colocalize with the BDA-labeled fibers from the LC. To determine the total field of the LC innervations in the IC, we destroyed the LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then studied the distribution and density of TH- and DBH-immunolabeled axons in the IC. In the DSP-4 treated animals, the number of axonal fibers immunolabeled for TH and DBH were deeply decreased throughout the entire rostrocaudal extent of the IC and its subdivisions compared to controls. Our densitometry results showed that the IC receives up to 97% of its noradrenergic innervations from the LC neurons and only 3% from non-coeruleus neurons. Our results also indicate that TH immunoreactivity in the IC was less impaired than the immunoreactivity for DBH after DSP-4 administration. This is consistent with the existence of an important dopaminergic projection from the substantia nigra to the IC. In conclusion, our study demonstrates and quantifies the noradrenergic projection from the LC to the IC and its

  17. Temperature dependence of immunoreactions using shear horizontal surface acoustic wave immunosensors

    Science.gov (United States)

    Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun

    2017-07-01

    In this paper, the temperature dependence of immunoreactions, which are antibody-antigen reactions, on a shear horizontal surface acoustic wave (SH-SAW) immunosensor is described. The immunosensor is based on a reflection-type delay line on a 36° Y-cut 90° X-propagation quartz substrate, where the delay line is composed of a floating electrode unidirectional transducer (FEUDT), a grating reflector, and a sensing area between them. In order to evaluate the temperature dependence of immunoreactions, human serum albumin (HSA) antigen-antibody reactions are investigated. The SH-SAW immunosensor chip is placed in a thermostatic chamber and the changes in the SH-SAW velocity resulting from the immunoreactions are measured at different temperatures. As a result, it is observed that the HSA immunoreactions are influenced by the ambient temperature and that higher temperatures provide more active reactions. In order to analyze the immunoreactions, an analytical approach using an exponential fitting method for changes in SH-SAW velocity is employed.

  18. [The distribution of NADPH-diaphorase and neuronal no synthase in rat medulla oblongata nuclei].

    Science.gov (United States)

    Chertok, V M; Kotsuba, A E

    2013-01-01

    The distribution of nitroxide ergic neurons in the medulla oblongata nuclei in Wistar rats (n = 8) was studied histochemically (NADPH-diaphorase) and using immunohistochemistry with an antiserum against neuronal form of nitric oxide synthase (nNOS). NADPH-diaphorase activity was found in large and small neurons of the sensory, autonomic and motor nuclei. The latter were especially rich in the cells demonstrating the activity of the enzyme. Unlike NADPH-diaphorase, nNOS in the corresponding nuclei was always detected in the fewer number of neurons, predominantly of small sizes. The sensory nuclei (nucleus of solitary tract, reticular parvocellular and lateral nuclei, spinal nucleus of the trigeminal nerve) contained 1.5-3 times more nNOS neurons than in motor nuclei. In some nuclei (nucleus ambiguus, hypoglossal nerve nucleus), containing numerous NADPH-diaphorase-positive neurons, immunoreactive cells were particularly rare.

  19. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  20. Ontogenesis of neurons producing luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis of the rat.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Morrell, J I; Pfaff, D W

    1985-08-15

    Immunoreactive luteinizing hormone-releasing hormone (LHRH) was first detected at 15 days of gestation in ganglion cells associated with the peripheral, intracranial, and central parts of the nervus terminalis of the rat. LHRH was not detected in any other structure of the central nervous system at this age. In the 17-day-old fetal rat, 62% of the total LHRH-reactive neuronal population was found in ganglion cells of the nervus terminalis. At this same age, immunoreactive beta-luteinizing hormone (beta-LH) was first seen in gonadotropes of the anterior pituitary gland. At 19 days of gestation, 31% of the total number of LHRH-reactive neurons observed in the rat brain was found in the nervus terminalis, and immunoreactive processes were first seen in the organum vasculosum of the lamina terminalis and in the median eminence. Our data indicate that from 15 to 19 days of gestation the nervus terminalis is a principal source of LHRH in the fetal rat. Presence of the decapeptide in the nervus terminalis prior to appearance of beta-LH in the anterior pituitary suggests a possible role for LHRH in this system on maturation of the gonadotropes and differentiation of the brain-pituitary-gonadal axis.

  1. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  2. Localization of endogenous amyloid-β to the coeruleo-cortical pathway: consequences of noradrenergic depletion.

    Science.gov (United States)

    Ross, Jennifer A; Reyes, Beverly A S; Thomas, Steven A; Van Bockstaele, Elisabeth J

    2018-01-01

    The locus coeruleus (LC)-norepinephrine (NE) system is an understudied circuit in the context of Alzheimer's disease (AD), and is thought to play an important role in neurodegenerative and neuropsychiatric diseases involving catecholamine neurotransmitters. Understanding the expression and distribution of the amyloid beta (Aβ) peptide, a primary component of AD, under basal conditions and under conditions of NE perturbation within the coeruleo-cortical pathway may be important for understanding its putative role in pathological states. Thus, the goal of this study is to define expression levels and the subcellular distribution of endogenous Aβ with respect to noradrenergic profiles in the rodent LC and medial prefrontal cortex (mPFC) and, further, to determine the functional relevance of NE in modulating endogenous Aβ 42 levels. We report that endogenous Aβ 42 is localized to tyrosine hydroxylase (TH) immunoreactive somatodendritic profiles of the LC and dopamine-β-hydroxylase (DβH) immunoreactive axon terminals of the infralimbic mPFC (ILmPFC). Male and female naïve rats have similar levels of amyloid precursor protein (APP) cleavage products demonstrated by western blot, as well as similar levels of endogenous Aβ 42 as determined by enzyme-linked immunosorbent assay. Two models of NE depletion, DSP-4 lesion and DβH knockout (KO) mice, were used to assess the functional relevance of NE on endogenous Aβ 42 levels. DSP-4 lesioned rats and DβH-KO mice show significantly lower levels of endogenous Aβ 42 . Noradrenergic depletion did not change APP-cleavage products resulting from β-secretase processing. Thus, resultant decreases in endogenous Aβ 42 may be due to decreased neuronal activity of noradrenergic neurons, or, by decreased stimulation of adrenergic receptors which are known to contribute to Aβ 42 production by enhancing γ-secretase processing under normal physiological conditions.

  3. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    Science.gov (United States)

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  4. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deng, Han-Xiang; Zhai, Hong; Bigio, Eileen H; Yan, Jianhua; Fecto, Faisal; Ajroud, Kaouther; Mishra, Manjari; Ajroud-Driss, Senda; Heller, Scott; Sufit, Robert; Siddique, Nailah; Mugnaini, Enrico; Siddique, Teepu

    2010-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS.

  5. Phylogenetic study of the oxytocin-like immunoreactive system in invertebrates.

    Science.gov (United States)

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of oxytocin (OXT)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Oncidium verrucosum, Limax marginatus and Meretrix lamarckii of the Mollusca; and Baratha brassica of the Arthropoda. 3. No immunoreactive cells were found in Bipalium sp. of the Platyhelminthes; Pomacea canaliculata, Aplysia kurodai, Bradybaena similaris and Achatina fulica of the Mollusca; and Gnorimosphaeroma rayi, Procambarus clarkii, Hemigrapsus sanguineus, Helice tridens and Gryllus bimaculatus of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 4. These results demonstrate that an OXT-immunoreactive substance is widely present not only in vertebrates but also in invertebrates. 5. OXT seems to have been introduced into these invertebrates at an early stage of their phylogenetic history.

  6. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit

    DEFF Research Database (Denmark)

    Larsen, P J; Seier, V; Fink-Jensen, A

    2003-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalami......, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART......-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro...

  7. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    Science.gov (United States)

    ... common features include an unusually large range of joint movement (hypermobility) and muscle weakness. Related Information What ... Dopamine beta-hydroxylase deficiency Washington Univeristy, St. Louis: Neuromuscular Disease Center Patient Support and Advocacy Resources (1 ...

  8. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J; Yanagawa, Yuchio; Deuchars, Susan A; Deuchars, Jim

    2015-12-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit

    DEFF Research Database (Denmark)

    Bjarkam, C R; Sørensen, J C; Geneser, F A

    1997-01-01

    The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which......, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher...... and morphology, and this possible subspecialization of the serotonergic system is discussed in the context of present knowledge of serotonergic anatomy and function....

  10. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis.

    Science.gov (United States)

    Toti, Luca; Travagli, R Alberto

    2014-11-15

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. Copyright © 2014 the American Physiological Society.

  11. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Thierry-Palmer, M.; Cullins, S.; Rashada, S.; Gray, T.K.; Free, A.

    1986-01-01

    The authors have determined the ontogeny of vitamin D 3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3 H-vitamin D 3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl 2 . Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D 3 (250HD 3 ) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD 3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D 3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D 3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D 3 25-hydroxylase

  12. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  13. Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area.

    Directory of Open Access Journals (Sweden)

    Alvaro eGarcía-Aviles

    2015-03-01

    Full Text Available Methylphenidate (MPD is a commonly administered drug to treat children suffering from attention deficit hyperactivity disorder (ADHD. Alterations in septal driven hippocampal theta rhythm may underlie attention deficits observed in these patients. Amongst others, the septo-hippocampal connections have long been acknowledged to be important in preserving hippocampal function. Thus, we wanted to ascertain if methylphenidate administration, which improves attention in patients, could affect septal areas connecting with hippocampus. We used low and orally administered methylphenidate doses (1.3; 2.7 and 5mg/Kg to rats what mimics the dosage range in humans. In our model, we observed no effect when using 1.3mg/Kg methylphenidate; whereas 2.7 and 5 mg/Kg induced a significant increase in c-fos expression specifically in the medial septum, an area intimately connected to the hippocampus. We analyzed dopaminergic areas such as nucleus accumbens and striatum, and found that only 5mg/Kg induced c-fos levels increase. In these areas tyrosine hydroxylase correlated well with c-fos staining, whereas in the medial septum the sparse tyrosine hydroxylase fibres did not overlap with c-fos positive neurons. Double immunofluorescence of c-fos with neuronal markers in the septal area revealed that co-localization with choline acethyl transferase, parvalbumin, and calbindin with c-fos did not change with MPD treatment; whereas, calretinin and c-fos double labeled neurons increased after MPD administration. Altogether, these results suggest that low and acute doses of methylphenidate primary target specific populations of caltretinin medial septal neurons.

  14. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain.

    Science.gov (United States)

    Fox, C A; Jeyapalan, M; Ross, L R; Jacobson, C D

    1991-12-17

    We have studied the anatomical distribution of cholecystokinin-like immunoreactive (CCK-IR) somata and fibers in the brain of the adult and developing Brazilian short-tailed opossum, Monodelphis domestica. Animals ranged in age from the day of birth (1PN) to young adulthood (180PN). A nickel enhanced, avidin-biotin, indirect immunohistochemical technique was used to identify CCK-IR structures. Somata containing CCK immunoreactivity were observed in the cerebral cortex, hippocampus, hypothalamus, thalamus, midbrain, and brainstem in the adult. Cholecystokinin immunoreactive fibers had a wide distribution in the adult Monodelphis brain. The only major region of the brain that did not contain CCK-IR fibers was the cerebellum. The earliest expression of CCK immunoreactivity was found in fibers in the dorsal brainstem of 5-day-old opossum pups. It is possible that the CCK-IR fibers in the brainstem at 5PN are of vagal origin. Cholecystokinin immunoreactive somata were observed in the brainstem on 10PN. The CCK-IR cell bodies observed in the brainstem at 10PN may mark the first expression of CCK-IR elements intrinsic to the brain. A broad spectrum of patterns of onset of CCK expression was observed in the opossum brain. The early occurrence and varied ontogenesis of CCK-IR structures indicates CCK may be involved in the function of a variety of circuits from the brainstem to the cerebral cortex. The early expression of CCK-IR structures in the dorsal brainstem suggests that CCK may modulate feeding behavior in the Monodelphis neonate. Cholecystokinin immunoreactivity in forebrain structures such as the suprachiasmatic nucleus, medial preoptic area, thalamus and cortical structures indicates that CCK may also be involved in circadian rhythmicity, reproductive functions, as well as the state of arousal of the Brazilian opossum. The ontogenic timing of CCK immunoreactivity in specific circuitry also indicates that CCK expression does not occur simultaneously throughout the

  15. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager

    2008-01-01

    Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmi......Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...

  16. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    International Nuclear Information System (INIS)

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-01-01

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  17. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  18. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism.

    Science.gov (United States)

    Quaegebeur, Annelies; Segura, Inmaculada; Schmieder, Roberta; Verdegem, Dries; Decimo, Ilaria; Bifari, Francesco; Dresselaers, Tom; Eelen, Guy; Ghosh, Debapriva; Davidson, Shawn M; Schoors, Sandra; Broekaert, Dorien; Cruys, Bert; Govaerts, Kristof; De Legher, Carla; Bouché, Ann; Schoonjans, Luc; Ramer, Matt S; Hung, Gene; Bossaert, Goele; Cleveland, Don W; Himmelreich, Uwe; Voets, Thomas; Lemmens, Robin; Bennett, C Frank; Robberecht, Wim; De Bock, Katrien; Dewerchin, Mieke; Ghesquière, Bart; Fendt, Sarah-Maria; Carmeliet, Peter

    2016-02-09

    The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotropin-releasing hormone neuronal system of the rabbit

    OpenAIRE

    Wadas, B.C.; Hartshorn, C.A.; Aurand, E.R.; Palmer, J.S.; Roselli, C.E.; Noel, M.L.; Gore, A.C.; Veeramachaneni, D.N.R.; Tobet, S.A.

    2010-01-01

    Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotropin-releasing hormone (ir-GnRH) neurons in the region of the organum vasculosum of the lamina terminalis (OVLT) and rostral preoptic area (rPOA) by postnatal week (PNW) 6. To further examine the disruption of GnRH neurons by fetal vinclozolin exposure, in the current study, pregnant rabbits were dosed orall...

  20. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  1. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain.

    Science.gov (United States)

    Yamanaka, Hiroki; Obata, Koichi; Kobayashi, Kimiko; Dai, Yi; Fukuoka, Tetsuo; Noguchi, Koichi

    2007-02-01

    The cell adhesion molecule L1 (L1-CAM) plays important functional roles in the developing and adult nervous systems. Here we show that peripheral nerve injury induced dynamic post-transcriptional alteration of L1-CAM in the rat dorsal root ganglia (DRGs) and spinal cord. Sciatic nerve transection (SCNT) changed the expression of L1-CAM protein but not L1-CAM mRNA. In DRGs, SCNT induced accumulation of the L1-CAM into the surface of somata, which resulted in the formation of immunoreactive ring structures in a number of unmyelinated C-fiber neurons. These neurons with L1-CAM-immunoreactive ring structures were heavily colocalized with phosphorylated p38 MAPK. Western blot analysis revealed the increase of full-length L1-CAM and decrease of fragments of L1-CAM after SCNT in DRGs. Following SCNT, L1-CAM-immunoreactive profiles in the dorsal horn showed an increase mainly in pre-synaptic areas of laminae I-II with a delayed onset and colocalized with growth-associated protein 43. In contrast to DRGs, SCNT increased the proteolytic 80-kDa fragment of L1-CAM and decreased full-length L1-CAM in the spinal cord. The intrathecal injection of L1-CAM antibody for the extracellular domain of L1-CAM inhibited activation of p38 MAPK and emergence of ring structures of L1-CAM immunoreactivity in injured DRG neurons. Moreover, inhibition of extracellular L1-CAM binding by intrathecal administration of antibody suppressed the mechanical allodynia and thermal hyperalgesia induced by partial SCNT. Collectively, these data suggest that the modification of L1-CAM in nociceptive pathways might be an important pathomechanism of neuropathic pain.

  2. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  3. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  4. Serotonin depletion results in a decrease of the neuronal activation caused by rivastigmine in the rat hippocampus

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Weikop, Pia; Moller, Arne

    2006-01-01

    nicotinic receptors located at nerve terminals. The aim of the present study was to determine in which areas and to what extent 5-HT mediates the neuronal response to ACh release. For this purpose, neuronal activity was measured in rats with rivastigmine-induced elevated ACh levels after a 95% 5-HT...... depletion obtained by dosing p-chlorophenylalanine followed by D,L-fenfluramine. Neuronal activation was quantified by stereological measurements of c-Fos immunoreactivity. The brain areas examined were medial prefrontal cortex, septum, dorsal hippocampus, and dorsal raphe nucleus. Rivastigmine...... brain areas examined. It is concluded that 5-HT mediates part of the ACh-induced hippocampal neuronal activation, possibly mediated via locally released 5-HT....

  5. Induction of Fos protein immunoreactivity by spinal cord contusion

    Directory of Open Access Journals (Sweden)

    E.A. Del-Bel

    2000-05-01

    Full Text Available The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group. The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group; intact animals were also subjected to anesthesia (intact control. Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury.

  6. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison's disease patients.

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2014-09-01

    The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  8. Decreased calcineurin immunoreactivity in the postmortem brain of a patient with schizophrenia who had been prescribed the calcineurin inhibitor, tacrolimus, for leukemia

    Directory of Open Access Journals (Sweden)

    Wada A

    2016-07-01

    Full Text Available Akira Wada,1,2 Yasuto Kunii,1 Jyunya Matsumoto,1 Mizuki Hino,1 Atsuko Nagaoka,1 Shin-ichi Niwa,3 Hirooki Yabe1 1Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 2Department of Neuropsychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 3Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Fukushima, Japan Background: The calcineurin (CaN inhibitor, tacrolimus, is widely used in patients undergoing allogeneic organ transplantation and in those with certain allergic diseases. Recently, several reports have suggested that CaN is also associated with schizophrenia. However, little data are currently available on the direct effect of tacrolimus on the human brain.Case: A 23-year-old Japanese female experienced severe delusion of persecution, delusional mood, suspiciousness, aggression, and excitement. She visited our hospital and was diagnosed with schizophrenia. When she was 27 years old, she had severe general fatigue, persistent fever, systemic joint pain, gingival bleeding, and breathlessness and was diagnosed with acute myelomonocytic leukemia. Later she underwent bone marrow transplantation (BMT, she was administered methotrexate and cyclosporin A to prevent graft versus host disease (GVHD. Three weeks after BMT, she showed initial symptoms of GVHD and was prescribed tacrolimus instead of cyclosporin A. Seven months after BMT at the age of 31 years, she died of progression of GVHD. Pathological anatomy was examined after her death, including immunohistochemical analysis of her brain using anti-CaN antibodies. For comparison, we used our previous data from both a schizophrenia group and a healthy control group. No significant differences were observed in the percentage of CaN-immunoreactive neurons among the schizophrenia group, healthy control group, and the tacrolimus case (all P>0.5, analysis of covariance. Compared with the

  9. Chronic alcohol consumption affects gastrointestinal motility and reduces the proportion of neuronal NOS-immunoreactive myenteric neurons in the murine jejunum

    NARCIS (Netherlands)

    Bagyanszki, M.; Krecsmarik, M.; de Winter, B.Y.; de Man, J.G.; Fekete, E.V.A.; Pelckmans, P.A.; Adriaensen, D.; Kroese, A.B.A.; van Nassauw, L.; Timmermans, J-P

    2010-01-01

    Alcohol consumption interferes with gastrointestinal transit causing symptoms in alcoholic patients. Nitric oxide (NO), synthesized by neuronal nitric oxide synthase (nNOS) plays an important role in the control of gastrointestinal motility. Our aim was to investigate whether chronic alcohol intake

  10. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid

    2017-10-01

    There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.

  11. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  12. Immunoreactive neuron-specific enolase (NSE) is expressed in testicular carcinoma-in-situ

    DEFF Research Database (Denmark)

    Kang, J L; Rajpert-De Meyts, E; Skakkebaek, N E

    1996-01-01

    Neuron-specific enolase (NSE) is a well-known marker of tumours that have neuroendocrine origin. High levels of NSE have also been described in various types of testicular germ cell neoplasms, particularly in seminomas. To evaluate the presence of NSE in testicular carcinoma-in situ (CIS), a prei...... are evidence against a relationship between NSE and N-myc in testicular germ cell tumours. The high expression of NSE in CIS and overt germ cell tumours may be due to the increased gene dosage effect associated with the overrepresentation of isochromosome 12p....

  13. Comparative immunocytochemical study of FMRFamide neuronal system in the brain of Danio rerio and Acipenser ruthenus during development.

    Science.gov (United States)

    Pinelli, C; D'Aniello, B; Sordino, P; Meyer, D L; Fiorentino, M; Rastogi, R K

    2000-02-07

    The distribution of FMRFamide-like immunoreactive (ir) neurons and fibers was investigated in the central nervous system of developing zebrafish and juvenile sturgeon (sterlet). Adult zebrafish was also studied. In zebrafish embryos FMRFamide-ir elements first appeared 30 h post-fertilization (PF). Ir somata were located in the olfactory placode and in the ventral diencephalon. FMRFamide-ir fibers originating from diencephalic neurons were found in the ventral telencephalon and in ventral portions of the brainstem. At 48 h PF, the ir perikarya in the olfactory placode displayed increased immunoreactivity and stained fibers emerged from the somata. At 60 h PF, bilaterally, clusters of FMRFamide-ir neurons were found along the rostro-caudal axis of the brain, from the olfactory placode to rostral regions of the ventro-lateral telencephalon. At 60 h PF, numerous ir fibers appeared in the dorsal telencephalon, optic lobes, optic nerves, and retina. Except for ir fibers in the hypophysis at the age of 72 h PF, and a few ir cells in the nucleus olfacto-retinalis (NOR) at the age of 2 months PF, no major re-organization was noted in subsequent ontogenetic stages. The number of stained NOR neurons increased markedly in sexually mature zebrafish. In adult zebrafish, other ir neurons were located in the dorsal zones of the periventricular hypothalamus and in components of the nervus terminalis. We are inclined to believe that neurons expressing FMRFamide originate in the olfactory placode and in the ventricular ependyma in the hypothalamus. On the same grounds, a dual origin of FMRFamide-ir neurons is inferred in the sturgeon, an ancestral bony fish: prior to the observation of ir cells in the nasal area and in the telencephalon stained neurons were noted in circumventricular hypothalamic regions.

  14. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  15. PASSIVE-AVOIDANCE TRAINING INDUCES ENHANCED LEVELS OF IMMUNOREACTIVITY FOR MUSCARINIC ACETYLCHOLINE-RECEPTOR AND COEXPRESSED PKC-GAMMA AND MAP-2 IN RAT CORTICAL-NEURONS

    NARCIS (Netherlands)

    VANDERZEE, EA; DOUMA, BRK; BOHUS, B; LUITEN, PGM

    1994-01-01

    Changes in neocortical immunoreactivity (ir) for muscarinic acetylcholine receptors (mAChRs), protein kinase C gamma (PKC gamma), microtubule-associated protein 2 (MAP-2), and the calcium-binding protein parvalbumin (PARV) induced by the performance of a one-trial passive shock avoidance (PSA) task

  16. Distribution of FMRFamide-like immunoreactivity in the brain, retina and nervus terminalis of the sockeye salmon parr, Oncorhynchus nerka.

    Science.gov (United States)

    Ostholm, T; Ekström, P; Ebbesson, S O

    1990-09-01

    Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.

  17. A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations

    Directory of Open Access Journals (Sweden)

    Ninuo Xia

    2017-03-01

    Full Text Available Generation of midbrain dopaminergic (mDA neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson’s disease (PD. However, heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here, we report the generation of a human embryonic stem cell (hESC line with a tyrosine hydroxylase (TH-RFP (red fluorescent protein reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac, H3K4me1, and 5-hydroxymethylcytosine [5hmC] at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD.

  18. A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations.

    Science.gov (United States)

    Xia, Ninuo; Fang, Fang; Zhang, Pengbo; Cui, Jun; Tep-Cullison, Chhavy; Hamerley, Tim; Lee, Hyun Joo; Palmer, Theo; Bothner, Brian; Lee, Jin Hyung; Pera, Renee Reijo

    2017-03-07

    Generation of midbrain dopaminergic (mDA) neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson's disease (PD). However, heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here, we report the generation of a human embryonic stem cell (hESC) line with a tyrosine hydroxylase (TH)-RFP (red fluorescent protein) reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac, H3K4me1, and 5-hydroxymethylcytosine [5hmC]) at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. DELETION OR INHIBITION OF THE OXYGEN SENSOR PHD1 PROTECTS AGAINST ISCHEMIC STROKE VIA REPROGRAMMING OF NEURONAL METABOLISM

    Science.gov (United States)

    Quaegebeur, Annelies; Segura, Inmaculada; Schmieder, Roberta; Verdegem, Dries; Decimo, Ilaria; Bifari, Francesco; Dresselaers, Tom; Eelen, Guy; Ghosh, Debapriva; Schoors, Sandra; Janaki Raman, Sudha Rani; Cruys, Bert; Govaerts, Kristof; De Legher, Carla; Bouché, Ann; Schoonjans, Luc; Ramer, Matt S.; Hung, Gene; Bossaert, Goele; Cleveland, Don W.; Himmelreich, Uwe; Voets, Thomas; Lemmens, Robin; Bennett, C. Frank; Robberecht, Wim; De Bock, Katrien; Dewerchin, Mieke; Fendt, Sarah-Maria; Ghesquière, Bart; Carmeliet, Peter

    2016-01-01

    Summary The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network, nor to enhanced neurotrophin expression. Instead, PHD1−/− neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1−/− neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose from glycolysis. As a result, PHD1−/− neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a novel regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke. PMID:26774962

  20. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  1. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  2. High frequency of cytolytic 21-Hydroxylase specific CD8+ T cells in autoimmune Addison’s disease patients1

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2016-01-01

    The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864

  3. A beam-walking apparatus to assess behavioural impairments in MPTP-treated mice: pharmacological validation with R-(-)-deprenyl.

    Science.gov (United States)

    Quinn, Leann P; Perren, Marion J; Brackenborough, Kim T; Woodhams, Peter L; Vidgeon-Hart, Martin; Chapman, Helen; Pangalos, Menelas N; Upton, Neil; Virley, David J

    2007-08-15

    A beam-walking apparatus has been evaluated for its ability to detect motor impairments in mice acutely treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg, s.c., single or double administration). Mice subjected to MPTP lesioning showed deficits in motor performance on the beam-walking task, for up to 6 days post-MPTP administration, as compared to saline-treated controls. In addition, MPTP-treated mice were detected to have a marked depletion in striatal dopamine levels and a concomitant reduction in substantia nigra (SN) tyrosine hydroxylase (TH) immunoreactivity, at 7 days post-MPTP administration, indicative of dopaminergic neuronal loss. Pre-administration of the potent MAO-B inhibitor R-(-)-deprenyl at 3 or 10 mg/kg, 30 min, s.c, significantly inhibited the MPTP-induced reduction in SN TH-immunoreactivity, striatal dopamine depletions and impairments in mouse motor function. The data described in the present study provides further evidence that functional deficits following an acute MPTP dosing schedule in mice can be quantified and are related to nigro-striatal dopamine function.

  4. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  5. Effect of Chitosan Properties on Immunoreactivity

    Science.gov (United States)

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  6. Species differences in the regulation of tyrosine hydroxylase in Cnemidophorus whiptail lizards.

    Science.gov (United States)

    Woolley, Sarah C; Crews, David

    2004-09-05

    Evolution of behavioral phenotype involves changes in the underlying neural substrates. Cnemidophorus whiptail lizards enable the study of behavioral and neural evolution because ancestral species involved in producing unisexual, hybrid species still exist. Catecholaminergic systems modulate the expression of social behaviors in a number of vertebrates, including whiptails, and therefore we investigated how changes in catecholamine production correlated with evolutionary changes in behavioral phenotype by measuring the size and number of catecholamine producing (tyrosine hydroxylase-immunoreactive, or TH-ir) cells across the reproductive cycle in females from two related whiptail species. Cnemidophorusuniparens is a triploid, parthenogenetic species that arose from hybridization events involving the diploid, sexual species C. inornatus. Prior to ovulation, females from both species display femalelike receptive behaviors. However, after ovulation, only parthenogenetic individuals display malelike mounting behavior. In all nuclei measured, we found larger TH-ir cells in the parthenogen, a difference consistent with species differences in ploidy. In contrast, species differences in the number of TH-ir cells were nucleus specific. In the preoptic area and anterior hypothalamus, parthenogens had fewer TH-ir cells than females of the sexual species. Reproductive state only affected TH-ir cell number in the substantia nigra pars compacta (SNpc), and C. uniparens individuals had more TH-ir cells after ovulation than when previtellogenic. Thus, species differences over the reproductive cycle in the SNpc are correlated with species differences in behavior, and it appears that the process of speciation may have produced a novel neural and behavioral phenotype in the parthenogen.

  7. Birthdating of myenteric neuron subtypes in the small intestine of the mouse.

    Science.gov (United States)

    Bergner, Annette J; Stamp, Lincon A; Gonsalvez, David G; Allison, Margaret B; Olson, David P; Myers, Martin G; Anderson, Colin R; Young, Heather M

    2014-02-15

    There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. Copyright © 2013 Wiley Periodicals, Inc.

  8. Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging

    Directory of Open Access Journals (Sweden)

    Ladislav eOuda

    2012-09-01

    Full Text Available The inferior colliculus (IC plays a strategic role in the central auditory system in relaying and processing acoustical information, and therefore its age-related changes may significantly influence the quality of the auditory function. A very complex processing of acoustical stimuli occurs in the IC, as supported also by the fact that the rat IC contains more neurons than all other subcortical auditory structures combined. GABAergic neurons, which predominantly co-express parvalbumin, are present in the central nucleus of the IC in large numbers and to a lesser extent in the dorsal and external/lateral cortices of the IC. On the other hand, calbindin and calretinin are prevalent in the dorsal and external cortices of the IC, with only a few positive neurons in the central nucleus. The relationship between calbindin and calretinin expression in the IC and any neurotransmitter system has not yet been well established, but the distribution and morphology of the immunoreactive neurons suggest that they are at least partially non-GABAergic cells. The expression of glutamate decarboxylase (a key enzyme for GABA synthesis and calcium binding proteins in the IC of rats undergoes pronounced changes with aging that involve mostly a decline in protein expression and a decline in the number of immunoreactive neurons. Similar age-related changes in glutamate decarboxylase, calbindin and calretinin expression are present in the IC of two rat strains with differently preserved inner ear function up to late senescence (Long-Evans and Fischer 344, which suggests that these changes do not depend exclusively on peripheral deafferentation but are, at least partially, of central origin. These changes may be associated with the age-related deterioration in the processing of the temporal parameters of acoustical stimuli, which is not correlated with hearing threshold shifts, and therefore may contribute to central presbycusis.

  9. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1 , a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  10. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors.

    Science.gov (United States)

    Wang, Xin; Piñol, Ramón A; Byrne, Peter; Mendelowitz, David

    2014-04-30

    Locus ceruleus (LC) noradrenergic neurons are critical in generating alertness. In addition to inducing cortical arousal, the LC also orchestrates changes in accompanying autonomic system function that compliments increased attention, such as during stress, excitation, and/or exposure to averse or novel stimuli. Although the association between arousal and increased heart rate is well accepted, the neurobiological link between the LC and parasympathetic neurons that control heart rate has not been identified. In this study, we test directly whether activation of noradrenergic neurons in the LC influences brainstem parasympathetic cardiac vagal neurons (CVNs). CVNs were identified in transgenic mice that express channel-rhodopsin-2 (ChR2) in LC tyrosine hydroxylase neurons. Photoactivation evoked a rapid depolarization, increased firing, and excitatory inward currents in ChR2-expressing neurons in the LC. Photostimulation of LC neurons did not alter excitatory currents, but increased inhibitory neurotransmission to CVNs. Optogenetic activation of LC neurons increased the frequency of isolated glycinergic IPSCs by 27 ± 8% (p = 0.003, n = 26) and augmented GABAergic IPSCs in CVNs by 21 ± 5% (p = 0.001, n = 26). Inhibiting α1, but not α2, receptors blocked the evoked responses. Inhibiting β1 receptors prevented the increase in glycinergic, but not GABAergic, IPSCs in CVNs. This study demonstrates LC noradrenergic neurons inhibit the brainstem CVNs that generate parasympathetic activity to the heart. This inhibition of CVNs would increase heart rate and risks associated with tachycardia. The receptors activated within this pathway, α1 and/or β1 receptors, are targets for clinically prescribed antagonists that promote slower, cardioprotective heart rates during heightened vigilant states.

  11. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat.

    Science.gov (United States)

    Baizer, Joan S; Baker, James F

    2005-07-01

    The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.

  12. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson's disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons.

    Science.gov (United States)

    Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun

    2015-08-01

    Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.

  13. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  14. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid......Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about......-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none...

  15. Islet-1 Immunoreactivity in the Developing Retina of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Guadalupe Álvarez-Hernán

    2013-01-01

    Full Text Available The LIM-homeodomain transcription factor Islet1 (Isl1 has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.

  16. Primary cell culture of LHRH neurones from embryonic olfactory placode in the sheep (Ovis aries).

    Science.gov (United States)

    Duittoz, A H; Batailler, M; Caldani, M

    1997-09-01

    The aim of this study was to establish an in vitro model of ovine luteinizing hormone-releasing hormone (LHRH) neurones. Olfactory placodes from 26 day-old sheep embryos (E26) were used for explant culture. Cultures were maintained successfully up to 35 days, but were usually used at 17 days for immunocytochemistry. LHRH and neuronal markers such as neurofilament (NF) were detected by immunocytochemistry within and/or outside the explant. Three main types of LHRH positive cells are described: (1) neuroblastic LHRH and NF immunoreactive cells with round cell body and very short neurites found mainly within the explant, (2) migrating LHRH bipolar neurones with an fusiform cell body, found outside the explant, (3) network LHRH neuron, bipolar or multipolar with long neurites connecting other LHRH neurons. Cell morphology was very similar to that which has been described in the adult sheep brain. These results strongly suggest that LHRH neurones in the sheep originate from the olfactory placode. This mode may represent a useful tool to study LHRH neurones directly in the sheep.

  17. Immunoreactive 'TSH' in urinary concentrates of Graves' disease patients

    International Nuclear Information System (INIS)

    Van Herle, A.; Orgiazzi, J.; Greipel, M.A.; Slucher, J.A.; Honbo, K.S.; Hopital de l'Antiquaille, 69 - Lyon

    1978-01-01

    A double antibody radioimmunoassay was used to analyse immunoreactive thyrotrophin in urinary concentrates from fourteen patients with hyperthyroidism due to Graves' disease, in three subjects with primary hypothyroidism, and in six normal subjects. Immunoreactive thyrotrophin was detectable in eleven subjects with Graves' disease, in one subject with primary hypothyroidism, and in four normal subjects. The mean urinary thyrotrophin concentration was significantly higher in Graves' disease (492+-99.9μU/24h(SEM)(n=11)) than in normal subjects (177+-26.4μU/24h(SEM)(n=4)(P [de

  18. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  19. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology.

    Science.gov (United States)

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A; Corsini, Giovanni U; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague-Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution.

  20. Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide

    DEFF Research Database (Denmark)

    Triepel, J; Grimmelikhuijzen, C J

    1984-01-01

    Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide...

  1. Localization of Nitric Oxide Synthase-containing Neurons in the Bat Visual Cortex and Co-localization with Calcium-binding Proteins

    International Nuclear Information System (INIS)

    Gu, Ya-Nan; Kim, Hang-Gu; Jeon, Chang-Jin

    2015-01-01

    Microchiroptera (microbats) is a suborder of bats thought to have degenerated vision. However, many recent studies have shown that they have visual ability. In this study, we labeled neuronal nitric oxide synthase (nNOS)—the synthesizing enzyme of the gaseous non-synaptic neurotransmitter nitric oxide—and co-localized it with calbindin D28K (CB), calretinin (CR), and parvalbumin (PV) in the visual cortex of the greater horseshoe bat (Rhinolophus ferrumequinum, a species of microbats). nNOS-immunoreactive (IR) neurons were found in all layers of the visual cortex. Intensely labeled neurons were most common in layer IV, and weakly labeled neurons were most common in layer VI. Majority of the nNOS-IR neurons were round- or oval-type neurons; no pyramidal-type neurons were found. None of these neurons co-localized with CB, CR, or PV. However, the synthesis of nitric oxide in the bat visual cortex by nNOS does not depend on CB, CR, or PV

  2. Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress

    Directory of Open Access Journals (Sweden)

    Md. Saydur Rahman

    2014-05-01

    Full Text Available Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT and its precursor, 5-hydroxytryptophan (5-HTP as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks which were partially restored by repeated injections with a nitric oxide synthase (NOS-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress.

  3. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-01-01

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539

  4. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-02-15

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.

  5. Reproduction-associated immunoreactive peptides in the nervous systems of prosobranch gastropods.

    Science.gov (United States)

    Ram, J L; Gallardo, C S; Ram, M L; Croll, R P

    1998-12-01

    Antibodies against reproductive peptides of Aplysia and Lymnaea were used to localize homologous immunoreactive peptides in the nervous systems of three prosobranch species: Busycon canaliculatum, Concholepas concholepas, and Tegula atra. Positive control experiments in L. stagnalis demonstrated the broad species range of the anti-egg-laying hormone (anti-ELH) antibody used in this study, and showed binding of anti-alpha-caudodorsal-cell peptide (anti-alpha-CDCP) to the same cells in cerebral and buccal ganglia. Dot immunoassays with synthetic ELH confirmed the reactivity and sensitivity (concholepas and T atra, ELH-like immunoreactivity was found in cerebral ganglia, and in T. atra in fibers in the cerebral ganglia and cerebral-pedal connectives. Thus, cerebral ganglia are the major locus of the ELH-like immunoreactivity in prosobranchs.

  6. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Changes in Enteric Neurons of Small Intestine in a Rat Model of Irritable Bowel Syndrome with Diarrhea.

    Science.gov (United States)

    Li, Shan; Fei, Guijun; Fang, Xiucai; Yang, Xilin; Sun, Xiaohong; Qian, Jiaming; Wood, Jackie D; Ke, Meiyun

    2016-04-30

    Physical and/or emotional stresses are important factors in the exacerbation of symptoms in irritable bowel syndrome (IBS). Several lines of evidence support that a major impact of stress on the gastrointestinal tract occurs via the enteric nervous system. We aimed to evaluate histological changes in the submucosal plexus (SMP) and myenteric plexus (MP) of the distal ileum in concert with the intestinal motor function in a rat model of IBS with diarrhea. The rat model was induced by heterotypic chronic and acute stress (CAS). The intestinal transit was measured by administering powdered carbon by gastric gavage. Double immunohistochemical fluorescence staining with whole-mount preparations of SMP and MP of enteric nervous system was used to assess changes in expression of choline acetyltransferase, vasoactive intestinal peptide, or nitric oxide synthase in relation to the pan neuronal marker, anti-Hu. The intestinal transit ratio increased significantly from control values of 50.8% to 60.6% in the CAS group. The numbers of enteric ganglia and neurons in the SMP were increased in the CAS group. The proportions of choline acetyltransferase- and vasoactive intestinal peptide-immunoreactive neurons in the SMP were increased (82.1 ± 4.3% vs. 76.0 ± 5.0%, P = 0.021; 40.5 ± 5.9% vs 28.9 ± 3.7%, P = 0.001), while nitric oxide synthase-immunoreactive neurons in the MP were decreased compared with controls (23.3 ± 4.5% vs 32.4 ± 4.5%, P = 0.002). These morphological changes in enteric neurons to CAS might contribute to the dysfunction in motility and secretion in IBS with diarrhea.

  8. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology.

    Directory of Open Access Journals (Sweden)

    Thomas Rotolo

    Full Text Available In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes.In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT-IRES-CreER or tyrosine hydroxylase (TH-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species.Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease.

  9. Insulin-like immunoreactive substances in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J -M; Sutter-Dub, M -T; Legrele, C; Billaudel, B; Sutter, B C.J.; Jacquot, R [Reims Univ., 51 (France). Lab. de Physiologie Animale

    1975-12-01

    Chromatography on G/sub 50/ or G/sub 100/ sephadex column of rat plasma or serum divides up the insulin-like immunoreactive material into three peaks: monomere insulin, proinsulin and a fraction of molecular weight between 50 and 100,000. This fraction is virtually absent (less than 1%) from immunoreactive material extracted from the pancreas. Comparison of the results obtained by methods using double or simple antibodies (charcoal dextran) and study of fixation in vitro of labelled insulin, taken up by various plasma proteins, suggest that the high molecular weight material includes insulin more or less broken down and linked to proteins. Furthermore, when a double antibody method is used, the alpha globulins and albumin in the rat present also an insulin-like reactivity. This disadvantage does not occur with the charcoal dextran method which is more specific.

  10. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  11. In vitro release of cholecystokinin octapeptide-like immunoreactivity from rat brain synaptosomes

    International Nuclear Information System (INIS)

    Klaff, L.J.; Hudson, A.; Sheppard, M.; Tyler, M.

    1981-01-01

    Enriched synaptosome fractions prepared by differential centrifugation and ultracentrifugation of homogenates of rat cortex, striatum, thalamus and hypothalamus contained over 65% of the total immunoreactive cholecystokinin octapeptide (CCK-8) in each area. A calcium dependent release of immunoreactive CCK-8 from these fractions in vitro in response to 2 depolarizing stimuli (60 mM KCl and 75 μM veratrine) has been demonstrated. Released CCK-8 immunoreactivity showed parallelism when serial dilutions were compared with the CCK-8 dose-response curve and eluted similarly to synthetic CCK-8 on Sephadex G-50 superfine chromatography. These results provide further evidence for a neurotransmitter or neuromodulator role for CCK-8 in brain

  12. Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation.

    Science.gov (United States)

    Panickar, Kiran S; Nonner, Doris; White, Michael G; Barrett, John N

    2008-09-01

    Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.

  13. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Directory of Open Access Journals (Sweden)

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  14. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    Science.gov (United States)

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Urocortin-like immunoreactivity in the primary lymphoid organs of the duck (Anas platyrhynchos

    Directory of Open Access Journals (Sweden)

    A. De Luca

    2009-09-01

    Full Text Available Urocortin (UCN is a 40 aminoacid peptide which belongs to corticotropin-releasing factor (CRF family. This family of peptides stimulates the secretion of proopiomelanocortin (POMC-derived peptides, adrenocorticotropic hormone (ACTH, b-endorphin and melanocyte-stimulating hormone (MSH in the pituitary gland. In the present study, using Western blotting and immunohistochemistry, the distribution of UCN in the primary lymphoid organs of the duck was investigated at different ages. In the cloacal burse and thymus, Western blot demonstrated the presence of a peptide having a molecular weight compatible with that of the mammalian UCN. In the cloacal burse, immunoreactivity was located in the medullary epithelial cells and in the follicular associated and cortico-medullary epithelium. In the thymus, immunoreactivity was located in single epithelial cells. Double labelling immunofluorescence studies showed that UCN immunoreactivity completely colocalised with cytokeratin immunoreactivity in both the thymus and cloacal burse. Statistically significant differences in the percentage of UCN immunoreactivity were observed between different age periods in the cloacal burse. The results suggest that, in birds, urocortin has an important role in regulating the function of the immune system.

  16. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris).

    Science.gov (United States)

    Reyes, Laura D; Stimpson, Cheryl D; Gupta, Kanika; Raghanti, Mary Ann; Hof, Patrick R; Reep, Roger L; Sherwood, Chet C

    2015-01-01

    Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved

  17. A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an ehlers-danlos VIA patient

    NARCIS (Netherlands)

    Walker, L.C.; Overstreet, M.A.; Siddiqui, A.; Paepe, A. de; Ceylaner, G.; Malfait, F.; Symoens, S.; Atsawasuwan, P.; Yamauchi, M.; Ceylaner, S.; Bank, R.A.; Yeowell, H.N.

    2005-01-01

    The clinical diagnosis of a patient with the phenotype of Ehlers-Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360 → G in exon 13 of the

  18. Cocaine- and amphetamine-regulated transcript peptide and calcium binding proteins immunoreactivity in the deep layers of the superior colliculus of the guinea pig: Implications for multisensory and visuomotor processing.

    Science.gov (United States)

    Najdzion, Janusz

    2018-03-01

    The superior colliculus (SC) of mammals is a midbrain center, that can be subdivided into the superficial (SCs) and deep layers (SCd). In contrast to the visual SCs, the SCd are involved in multisensory and motor processing. This study investigated the pattern of distribution and colocalization of cocaine- and amphetamine-regulated transcript peptide (CART) and three calcium-binding proteins (CaBPs) i.e. calbindin (CB), calretinin (CR) and parvalbumin (PV) in the SCd of the guinea pig. CART labeling was seen almost exclusively in the neuropil and fibers, which differed in regard to morphology and location. CART-positive neurons were very rare and restricted to a narrow area of the SCd. The most intense CART immunoreactivity was observed in the most dorsally located sublayer of the SCd, which is anatomically and functionally connected with the SCs. CART immunoreactivity in the remaining SCd was less intensive, but still relatively high. This characteristic pattern of immunoreactivity indicates that CART as a putative neurotransmitter or neuromodulator may play an important role in processing of visual information, while its involvement in the auditory and visuomotor processing is less significant, but still possible. CaBPs-positive neurons were morphologically diverse and widely distributed throughout all SCd. From studied CaBPs, CR showed a markedly different distribution compared to CB and PV. Overall, the patterns of distribution of CB and PV were similar in the entire SCd. Consequently, the complementarity of these patterns in the guinea pig was very weak. Double immunostaining revealed that CART did not colocalize with either CaBPs, which suggested that these neurochemical substances might not coexist in the multisensory and visuomotor parts of the SC. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  20. Effect of Chitosan Properties on Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Sruthi Ravindranathan

    2016-05-01

    Full Text Available Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA, viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs. Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells and the amount of tumor necrosis factor-α (TNF-α released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.

  1. Immunoreactive somatomedin A in human serum

    International Nuclear Information System (INIS)

    Hall, K.; Brandt, J.; Enberg, G.; Fryklund, L.

    1979-01-01

    A RIA has been developed for somatomedin A (SM-A) utilizing Sepharose-bound antibodies. This assay, measuring SM-A, the insulin-like growth factors 1 and 2, and somatomedin C, allows determination in serum samples. In comparison with a serum standard, the mean serum levels in patients with acromegaly or GH deficiency and healthy subjects were 8.7 +- 0.7 (n=25), 0.24 +- 0.02 (n=25), and 1.15 +- 0.11 U/ml, respectively. The correlation coefficient between immunoreactive SM-A and SM-A by radioreceptor assay was highly significant (r=0.93), although the potency ratio of SM-A between the two groups of patients was higher in the RIA than in the radioreceptor assay. Gel chromatography revealed that SM-A in acromegalic serum is bound to a carrier protein which is absent in patients with GH deficiency. After gel chromatography at low pH, 90% of applied immunoreactive SM-A was recovered in the low molecular weight fraction and consisted mainly of neutral polypeptides

  2. Neurons of the dentate molecular layer in the rabbit hippocampus.

    Directory of Open Access Journals (Sweden)

    Francisco J Sancho-Bielsa

    Full Text Available The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections, eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  3. Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits

    Directory of Open Access Journals (Sweden)

    Laura G. Hernández-Aragón

    2017-01-01

    Full Text Available We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C, ovariectomized (OVX, and OVX treated with estradiol benzoate (OVX + EB groups to evaluate the neuronal soma area; total serum estradiol (E2 and testosterone (T levels; the percentage of immunoreactive (ir neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ and anti-androgen receptor (AR; the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF and the GDNF family receptor alpha type 1 (GFRα1; and the number of satellite glial cells (SGCs per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC.

  4. Characterization of A11 neurons projecting to the spinal cord of mice.

    Directory of Open Access Journals (Sweden)

    Kathrin Koblinger

    Full Text Available The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC, the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2, which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT. In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.

  5. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex

    International Nuclear Information System (INIS)

    Neale, E.A.; Oertel, W.H.; Bowers, L.M.; Weise, V.K.

    1983-01-01

    In order to evaluate the reliability of high affinity [ 3 H]GABA accumulation as a marker for GABAergic neurons, murine cerebral cortical neurons were studied in dissociated cell culture. Cultures which had been incubated in [ 3 H]GABA were stained immunohistochemically for the GABA-synthesizing enzyme, glutamate decarboxylase, fixed with paraformaldehyde, and subsequently processed for radioautography. In mature cultures, there was an 84 to 94% correlation between the presence of the enzyme and [ 3 H]GABA uptake within the same cortical neurons. These data provide direct evidence that those neurons which synthesize GABA are the same neurons which are labeled by high affinity [ 3 H]GABA uptake

  6. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.E.; Garcia, J.F.; Cohen, R.A.; Cronkite, E.P.; Moccia, G.; Acevedo, J.

    1981-10-01

    Serum levels of immunoreactive erythropoietin (Ep) were measured in 48 normal male and female volunteers, ages 20-60 years, to establish a control value for Ep of 18.5 +/- 5.0 (mean +/- SD) mU/ml. Levels of the hormone were also measured sequentially over a 24 h period of time in an additional 17 normal volunteers with no diurnal variation. Diurnal levels of immunoreactive Ep were also measured in 30 subjects, with chronic lung disease. These patients, in contrast to normal subjects exhibited a diurnal variation in the level of immunoreactive Ep with peak levels occurring at midnight. The only variable measured which correlated with the serum immunoreactive Ep level in subjects with chronic lung disease was the level of carboxyhaemoglobin (P less than 0.02).

  7. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  8. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  9. Comparative tumour localization properties of radiolabelled monoclonal antibody preparations of defined immunoreactivities

    International Nuclear Information System (INIS)

    Pimm, M.V.; Baldwin, R.W.

    1987-01-01

    The immunoreactive fraction of an anti-CEA monoclonal antibody preparation has been progressively decreased by the addition of increasing proportions of impurity in the form of immunologically inert mouse immunoglobulin. Following radioiodination, the immunoreactive fractions of the preparations were determined and their localization in a human tumour xenograft in nude mice was assessed. There was a progressive decline in tumour localization, from tumour to blood ratios of 2:1 with unadulterated antibody to 0.6:1 with preparations only 15% with respect to the initial antibody. These findings demonstrate that the immunoreactive fraction of monoclonal antibody preparations is a major limiting factor in tumour localization and this has implications for experimental and clinical applications of monoclonal antibodies. (orig.)

  10. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents

    Directory of Open Access Journals (Sweden)

    Nixon Joshua P

    2007-06-01

    Full Text Available Abstract Background The orexins (hypocretins are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by systematically examining and directly comparing the distribution of orexinergic neurons and fibers within the forebrains of species with very different patterns of sleep-wake behavior. Methods We compared the distribution of orexin-immunoreactive cell bodies and fibers in two nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus and two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus. For each species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity for orexin A and orexin B (hypocretin-1 and -2. The distribution of orexin-positive cells was noted for each species. Orexin fiber distribution and density was recorded and analyzed using a principal components factor analysis to aid in evaluating potential species differences. Results Orexin-positive cells were observed in the lateral hypothalamic area of each species, though there were differences with respect to distribution within this region. In addition, cells positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the overall distributions of orexin A and B fibers were similar in the four species, some striking differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic nucleus and flocculus. Conclusion The orexin

  11. Retrograde influences of SCG axotomy on uninjured preganglionic neurons.

    Science.gov (United States)

    Gannon, Sean M; Hawk, Kiel; Walsh, Brian F; Coulibaly, Aminata; Isaacson, Lori G

    2018-04-18

    There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons. Copyright © 2018. Published by Elsevier B.V.

  12. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    Science.gov (United States)

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  14. Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats.

    Science.gov (United States)

    Li, Jin; Li, Han-Xia; Shou, Xiao-Jing; Xu, Xin-Jie; Song, Tian-Jia; Han, Song-Ping; Zhang, Rong; Han, Ji-Sheng

    2016-12-01

    Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30min per day for 10days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  16. 1α-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F.; Liu, Nancy Q.; Lisse, Thomas S.; Adams, John S.; Hewison, Martin

    2010-01-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase). In cells such as macrophages, expression of 1α-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and β-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1α-hydroxylase. Alternative activators of 1α-hydroxylase such as transforming growth factor β were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. PMID:20152900

  17. Pressor response to L-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons.

    Science.gov (United States)

    Takemoto, Yumi

    2013-03-01

    The sulfur-containing non-essential amino acid L-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to L-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected D-cysteine produced no cardiovascular changes, while L-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of L-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of L-cysteine-injected rats than those injected with D-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of L-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of L-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

  18. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator.

    Science.gov (United States)

    Cui, X; Pertile, R; Liu, P; Eyles, D W

    2015-09-24

    Vitamin D is a neuroactive steroid. Its genomic actions are mediated via the active form of vitamin D, 1,25(OH)2D3, binding to the vitamin D receptor (VDR). The VDR emerges in the rat mesencephalon at embryonic day 12, representing the peak period of dopaminergic cell birth. Our prior studies reveal that developmental vitamin D (DVD)-deficiency alters the ontogeny of dopaminergic neurons in the developing mesencephalon. There is also consistent evidence from others that 1,25(OH)2D3 promotes the survival of dopaminergic neurons in models of dopaminergic toxicity. In both developmental and toxicological studies it has been proposed that 1,25(OH)2D3 may modulate the differentiation and maturation of dopaminergic neurons; however, to date there is lack of direct evidence. The aim of the current study is to investigate this both in vitro using a human SH-SY5Y cell line transfected with rodent VDR and in vivo using a DVD-deficient model. Here we show that in VDR-expressing SH-SY5Y cells, 1,25(OH)2D3 significantly increased production of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. This effect was dose- and time-dependent, but was not due to an increase in TH-positive cell number, nor was it due to the production of trophic survival factors for dopamine neurons such as glial-derived neurotrophic factor (GDNF). In accordance with 1,25(OH)2D3's anti-proliferative actions in the brain, 1,25(OH)2D3 reduced the percentage of dividing cells from approximately 15-10%. Given the recently reported role of N-cadherin in the direct differentiation of dopaminergic neurons, we examined here whether it may be elevated by 1,25(OH)2D3. We confirmed this in vitro and more importantly, we showed DVD-deficiency decreases N-cadherin expression in the embryonic mesencephalon. In summary, in our in vitro model we have shown 1,25(OH)2D3 increases TH expression, decreases proliferation and elevates N-cadherin, a potential factor that mediates these processes

  19. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  20. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  1. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  2. Estrogen receptor-alpha immunoreactivity in parasympathetic preganglionic neurons innervating the bladder in the adult ovariectomized cat

    NARCIS (Netherlands)

    van der Horst, V. G. J. M.; Meijer, E; Holstege, G

    2001-01-01

    Estrogen affects autonomic functions such as micturition. The sacral cord is important in the control of micturition and contains numerous estrogen receptor-alpha immnoreactive (ER-alpha IR) neurons. Therefore, the present double labeling study examines whether sacral parasympathetic preganglionic

  3. P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-α-mediated pathway in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ryu Hea Jin

    2011-06-01

    Full Text Available Abstract Background The release of tumor necrosis factor-α (TNF-α appears depend on the P2X7 receptor, a purinergic receptor. In the present study, we addressed the question of whether P2X7 receptor-mediated TNF-α regulation is involved in pathogenesis and outcome of status epilepticus (SE. Methods SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, 2',3'-O-(4-benzoylbenzoyl-adenosine 5'-triphosphate (BzATP, adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP, A-438079, or A-740003 prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunit phosphorylations. Results Following SE, P2X7 receptor agonist (BzATP infusion increased TNF-α immunoreactivity in dentate granule cells as compared with that in saline-infused animals. In addition, TNF-α immunoreactivity was readily apparent in the mossy fibers, while TNF-α immunoreactivity in CA1-3 pyramidal cells was unaltered. However, P2X7 receptor antagonist (OxATP-, A-438079, and A-740003 infusion reduced SE-induced TNF-α expression in dentate granule cells. In the CA3 region, BzATP infusion attenuated SE-induced neuronal damage, accompanied by enhancement of p65-Ser276 and p65-Ser311 NF-κB subunit phosphorylations. In contrast, OxATP-, A-438079, and A-740003 infusions increased SE-induced neuronal death. Soluble TNF p55 receptor (sTNFp55R, and cotreatment with BzATP and sTNFp55R infusion also increased SE-induced neuronal damage in CA3 region. However, OxATP-, sTNFp55R or BzATP+sTNFp55R infusions could not exacerbate SE-induced neuronal damages in the dentate gyrus and the CA1 region, as compared to BzATP infusion. Conclusions These findings suggest that TNF-α induction by P2X7 receptor activation may ameliorate SE-induced CA3 neuronal damage via enhancing NF-κB p65-Ser276 and p65-Ser311 phosphorylations.

  4. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats

    Science.gov (United States)

    Sun, Yi-Ning; Luo, Jin-Yan; Rao, Zhi-Ren; Lan, Li; Duan, Li

    2005-01-01

    AIM: To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them. METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS); control group (n = 16), saline was administered intra-luminally. After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP), Fos and GFAP/Fos immunohistochemistry. RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae I-II) of dorsal horn, intermediolateral nucleus (laminae V), posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae IX). Fos-IR (Fos-immunoreactive) neurons were mainly distributed in the deeper laminae of the spinal cord (laminae III-IV, V-VI). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8, 29.2±6.5, 24.1±5.6, P0.05). CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons. With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced. PMID:16097052

  5. Ontogenetic organization of the FMRFamide immunoreactivity in the nervus terminalis of the lungfish, Neoceratodus forsteri.

    Science.gov (United States)

    Fiorentino, Maria; D'Aniello, Biagio; Joss, Jean; Polese, Gianluca; Rastogi, Rakesh K

    2002-08-19

    The development of the nervus terminalis system in the lungfish, Neoceratodus forsteri, was investigated by using FMRFamide as a marker. FMRFamide immunoreactivity appears first within the brain, in the dorsal hypothalamus at a stage around hatching. At a slightly later stage, immunoreactivity appears in the olfactory mucosa. These immunoreactive cells move outside the olfactory organ to form the ganglion of the nervus terminalis. Immunoreactive processes emerge from the ganglion of the nervus terminalis in two directions, one which joins the olfactory nerve to travel to the brain and the other which courses below the brain to enter at the level of the preoptic nucleus. Neither the ganglion of the nervus terminalis nor the two branches of the nervus terminalis form after surgical removal of the olfactory placode at a stage before the development of FMRFamide immunoreactivity external to the brain. Because this study has confirmed that the nervus terminalis in lungfish comprises both an anterior and a posterior branch, it forms the basis for discussion of homology between these branches and the nervus terminalis of other anamniote vertebrates. Copyright 2002 Wiley-Liss, Inc.

  6. Effects of the Maillard Reaction on the Immunoreactivity of Amandin in Food Matrices.

    Science.gov (United States)

    Chhabra, Guneet S; Liu, Changqi; Su, Mengna; Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2017-10-01

    Amandin is the major storage protein and allergen in almond seeds. Foods, containing almonds, subjected to thermal processing typically experience Maillard browning reaction. The resulting destruction of amino groups, protein glycation, and/or denaturation may alter amandin immunoreactivity. Amandin immunoreactivity of variously processed almond containing foods was therefore the focus of the current investigation. Commercial and laboratory prepared foods, including those likely to have been subjected to Maillard browning, were objectively assessed by determining Hunter L * , a * , b * values. The L * values for the tested samples were in the range of 31.75 to 85.28 consistent with Maillard browning. Three murine monoclonal antibodies, 4C10, 4F10, and 2A3, were used to determine the immunoreactivity of the targeted samples using immunoassays (ELISA, Western blot, dot blot). The tested foods did not exhibit cross-reactivity indicating that the immunoassays were amandin specific. For sandwich ELISAs, ratio (R) of sample immunoreactivity to reference immunoreactivity was calculated. The ranges of R values were 0.67 to 15.19 (4C10), 1.00 to 11.83 (4F10), and 0.77 to 23.30 (2A3). The results of dot blot and Western blot were consistent with those of ELISAs. Results of these investigations demonstrate that amandin is a stable marker protein for almond detection regardless of the degree of amandin denaturation and/or destruction as a consequence of Maillard reaction encountered under the tested processing conditions. Foods containing almond are often subjected to processing prior to consumption. Amandin, the major allergen in almond, may experience Maillard reaction. Understanding the change in amandin immunoreactivity as a result of Maillard reaction is important for amandin detection and production of hypoallergenic food products. © 2017 Institute of Food Technologists®.

  7. 1alpha-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines.

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F; Liu, Nancy Q; Lisse, Thomas S; Adams, John S; Hewison, Martin

    2010-07-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). In cells such as macrophages, expression of 1alpha-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and beta-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1alpha-hydroxylase. Alternative activators of 1alpha-hydroxylase such as transforming growth factor beta were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria.

    Science.gov (United States)

    Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W

    2015-03-01

    In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  10. Live-Cell, Label-Free Identification of GABAergic and Non-GABAergic Neurons in Primary Cortical Cultures Using Micropatterned Surface

    Science.gov (United States)

    Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi

    2016-01-01

    Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933

  11. CALBINDIN CONTENT AND DIFFERENTIAL VULNERABILITY OF MIDBRAIN EFFERENT DOPAMINERGIC NEURONS IN MACAQUES

    Directory of Open Access Journals (Sweden)

    Iria G Dopeso-Reyes

    2014-12-01

    Full Text Available Calbindin (CB is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%, followed by neurons located in the SNcd (34.7%. As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%, whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%. Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus. As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not

  12. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Science.gov (United States)

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  13. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    International Nuclear Information System (INIS)

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-01-01

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKCδ) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKCδ negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKCδ-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 μM) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKCδ specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 μM Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKCδ kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKCδ inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKCδ and PP2A activity.

  14. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Wit, E.C.M. de; Princen, H.M.G.

    1995-01-01

    In previous work we have demonstrated suppression of cholesterol 7α-hydroxylase by bile acids at the level of mRNA and transcription, resulting in a similar decline in bile acid synthesis in cultured rat hepatocytes. In view of the substantial contribution of the 'alternative' or '27-hydroxylase'

  15. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    International Nuclear Information System (INIS)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  16. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.

    Science.gov (United States)

    Khanday, Mudasir Ahmad; Somarajan, Bindu I; Mehta, Rachna; Mallick, Birendra Nath

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo . Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo . These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients.

  17. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  18. Prevention of hypoglycemia-induced neuronal death by minocycline

    Science.gov (United States)

    2012-01-01

    Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689

  19. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  20. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3'-Dichlorobiphenyl (PCB 11).

    Science.gov (United States)

    Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J

    2017-12-23

    PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.

  1. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons.

    Science.gov (United States)

    Kupari, Jussi; Airaksinen, Matti S

    2014-01-01

    Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα's, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.

  2. INHIBIN IMMUNOREACTIVITY IN GONADAL AND NON-GONADAL TUMORS

    NARCIS (Netherlands)

    DEJONG, FH; GROOTENHUIS, AJ; STEENBERGEN, J; VANSLUIJS, FJ; FOEKENS, JA; TENKATE, FJW; OOSTERHUIS, JW; LAMBERTS, SWJ; KLIJN, JGM

    1990-01-01

    Inhibin immunoreactivity was estimated in a number of gonadal and non-gonadal tumors. Dog Sertoli cell tumors and human granulosa cell and Leydig cell tumors contained high concentrations of inhibin-like material. Levels, comparable with those in normal testes and ovaries were detected in human

  3. Changes in the interstitial cells of Cajal and neuronal nitric oxide synthase positive neuronal cells with aging in the esophagus of F344 rats.

    Directory of Open Access Journals (Sweden)

    Hee Jin Kim

    Full Text Available The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs, neuronal nitric oxide synthase (nNOS-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years. The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF, nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005 and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, P<0.001, while endomysial area of circular muscle did not significantly decrease. The proportions of NOS-immunoreactive cells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; P<0.001 and P = 0.004, respectively, but there was no significant change of PGP 9.5-immunopositiviy. The expressions of nNOS, c-Kit and SCF mRNA also reduced with aging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively, while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively. The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved

  4. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    Science.gov (United States)

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  5. Immunoreactive serum opsonic alpha 2 sb glycoprotein as a noninvasive index of RES systemic defense after trauma.

    Science.gov (United States)

    Kaplan, J E; Saba, T M

    1979-01-01

    Reticuloendothelial system (RES) depression has been correlated with diminished resistance to trauma, shock, and sepsis in man and animals. Previous studies have related the depression of RES hepatic Kupffer cell phagocytic function after trauma to diminished bioassayable opsonic activity. The present study determined if the loss of biological activity and RES alteration correlated with immunoreactive serum opsonic alpha 2 SB glycoprotein levels after trauma. Serum opsonic activity was measured by liver slice bioassay, and immunoreactive opsonic protein was measured by rocket electroimmunoassay. RE function was determined by colloid clearance over a 24-hour post-trauma period. Anesthetized rats (250-300 gm) subjected to sublethal or severe (greater than LD50) whole-body NCD trauma were the shock models investigated. Immunoreactive levels in 63 rats prior to injury were 518 +/- 24 microgram/ml. Neither biological nor immunoreactive levels were altered over 24 hours in anesthetized sham-traumatized controls. Temporal alteration in the initial decrease and recovery pattern of biologically active and immunoreactive opsonic protein levels significantly correlated following both sublethal and severe injury. Moreover, the patterns of immunoreactive levels of the opsonic protein correlated with the functional phagocytic activity of the RES as determined by vascular clearance of a test dose of blood-borne radiolabeled particulates. This glycoprotein falls after trauma, and the magnitude and duration of the decline increases with severity of injury. Immunoreactive opsonic alpha 2 SB glycoprotein appears to be an accurate measurement of circulating opsonic activity and RE Kupffer cell function after trauma, especially with respect to clearance. Thus, immunoreactive opsonic protein warrants clinical consideration as a noninvasive measure of reticuloendothelial systemic defense in patients after trauma and burn.

  6. Changes in Otx2 and Parvalbumin Immunoreactivity in the Superior Colliculus in the Platelet-Derived Growth Factor Receptor-β Knockout Mice

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2013-01-01

    Full Text Available The superior colliculus (SC, a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO mice displayed socio-emotional deficits associated with parvalbumin (PV-immunoreactive (IR neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.

  7. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity.

    Science.gov (United States)

    Wängler, C; Moldenhauer, G; Eisenhut, M; Haberkorn, U; Mier, W

    2008-04-01

    Radioimmunotherapy using antibodies with favorable tumor targeting properties and high binding affinity is increasingly applied in cancer therapy. The potential of this valuable cancer treatment modality could be further improved by increasing the specific activity of the labeled proteins. This can be done either by coupling a large number of chelators which leads to a decreased immunoreactivity or by conjugating a small number of multimeric chelators. In order to systematically investigate the influence of conjugations on immunoreactivity with respect to size and number of the conjugates, the anti-EGFR antibody hMAb425 was reacted with PAMAM dendrimers of different size containing up to 128 chelating agents per conjugation site. An improved dendrimer synthesis protocol was established to obtain compounds of high homogeneity suitable for the formation of defined protein conjugates. The quantitative derivatization of the PAMAM dendrimers with DOTA moieties and the characterization of the products by isotopic dilution titration using (111)In/(nat)In are shown. The DOTA-containing dendrimers were conjugated with high efficiency to hMAb425 by applying Sulfo-SMCC as cross-linking agent and a 10- to 25-fold excess of the thiol-containing dendrimers. The determination of the immunoreactivities of the antibody-dendrimer conjugates by FACS analysis revealed a median retained immunoreactivity of 62.3% for 1.7 derivatization sites per antibody molecule, 55.4% for 2.8, 27.9% for 5.3, and 17.1% for 10.0 derivatization sites per antibody but no significant differences in immunoreactivity for different dendrimer sizes. These results show that the dendrimer size does not influence the immunoreactivity of the derivatized antibody significantly over a wide molecular weight range, whereas the number of derivatization sites has a crucial effect.

  8. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse

    Directory of Open Access Journals (Sweden)

    Zhang Jun-Ming

    2011-07-01

    Full Text Available Abstract Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71% and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.

  9. Levels of immunoreactive inhibin-like material in urine during the menstrual cycle

    International Nuclear Information System (INIS)

    Dandekar, S.P.; Vanage, G.R.; Arbatti, N.J.; Sheth, A.R.

    1983-01-01

    Using a specific and sensitive radioimmunoassay, the authors determined levels of inhibinlike material in the urine of eight healthy women with normal menstrual cycle length of 28 +- 4 days. The results revealed a cyclic variation in urinary immunoreactive inhibin levels during the menstrual cycles, with a sharp rise in levels three to four days prior to luteinizing hormone (LH) and follicle-stimulating hormone (FSH) peaks. These levels of immunoreactive inhibin may thus serve as a parameter to detect impending LH surge. (author)

  10. Browse Title Index

    African Journals Online (AJOL)

    Items 101 - 150 of 273 ... Vol 32 (2006):, Lead pollution in urban roadside environments of Dar es ... Vol 30 (2004): Special Issue on Lake Victoria, Levels of nitrate and ... of Tyrosine Hydroxylase Immunoreactive Cells in the Mouse Islets of ...

  11. Autoradiographic detection of [125I]-secondary antiserum: a sensitive light and electron microscopic labeling method compatible with peroxidase immunocytochemistry for dual localization of neuronal antigens

    International Nuclear Information System (INIS)

    Pickel, V.M.; Chan, J.; Milner, T.A.

    1986-01-01

    We examined whether autoradiographic localization of [ 125 I]-antirabbit immunoglobulin (IgG) was suitable for light and electron microscopic detection of a rabbit antiserum to the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH), and whether autoradiographic and peroxidase labeling could be combined for simultaneous immunocytochemical identification of TH and neuropeptides in brain. Adult rat brains were fixed by aortic arch perfusion with acrolein and paraformaldehyde. Vibratome sections of the fixed tissues were incubated with various dilutions of TH antiserum followed by [ 125 I]-secondary IgG. These sections were then directly processed for autoradiography or were incubated with rabbit antiserum to substance P (SP) or methionine [Met5]-enkephalin (ME). These latter sections were then processed by the peroxidase-antiperoxidase (PAP) or conjugated peroxidase methods followed by autoradiography. Exposure periods of 12-20 days for light microscopy or 90 days for electron microscopy yielded substantial accumulations of silver grains even at the highest (1:30,000) dilution of TH antiserum. At this dilution, immunoreactivity for TH was virtually nondetectable by PAP and conjugated peroxidase methods. The differential sensitivities of the autoradiographic versus peroxidase methods provided a means for separable identification of rabbit antiserum to TH and to SP or ME. Ultrastructural analysis of the catecholaminergic neurons in the medial nuclei of the solitary tract (NTS) showed selective cytoplasmic localization of silver grains for [ 125 I]-labeling of TH in perikarya, dendrites, and terminals. Within single thin sections prepared for dual labeling, the peroxidase marker for SP and for ME was differentially localized with respect to autoradiographic labeling of TH

  12. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    Science.gov (United States)

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  13. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    International Nuclear Information System (INIS)

    Nakashima, Yoko; Sanada, Hiroo; Suzue, Ryokuero; Kawada, Shoji

    1976-01-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, α, α'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO 4 to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe 2+ . These results suggested that ascorbic acid affected the induction of this enzyme via Fe 2+ . (auth.)

  14. FMRFamide- and neurotensin-immunoreactive elements in the intestine of some polyclad and triclad flatworms (Turbellaria).

    Science.gov (United States)

    Punin MYu; Markosova, T G

    2000-01-01

    By means of immunohistochemistry with antisera to tetrapeptide FMRFamide and regulatory peptides neurotensin and calcitonin intestines of marine turbellarians Notoplana atomata, N. humilis (Polycladida) and Procerodes littoralis (Tricladida) were investigated. In all flatworms polymorphous cells and processes reacting with antibodies to FMRFamide and neurotensin but not with calcitonin were revealed. These cell elements are localized both in the epithelium and beneath it. FMRFamide-immunoreactive cells and processes of investigated turbellarians and neurotensin-immunoreactive elements in P. littoralis obviously belong to the nervous system, while intraepithelial neurotensin-immunoreactive cells of polyclads share some morphological features with endocrine-like cells.

  15. Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence

    Directory of Open Access Journals (Sweden)

    Edouard ePearlstein

    2015-05-01

    Full Text Available The spontaneous activity pattern of adult dopaminergic (DA neurons of the substantia nigra pars compacta (SNc results from interactions between intrinsic membrane conductances and afferent inputs. In adult SNc DA neurons, low-frequency tonic background activity is generated by intrinsic pacemaker mechanisms, whereas burst generation depends on intact synaptic inputs in particular the glutamatergic ones. Tonic DA release in the striatum during pacemaking is required to maintain motor activity, and burst firing evokes phasic DA release, necessary for cue-dependent learning tasks. However, it is still unknown how the firing properties of SNc DA neurons mature during postnatal development before reaching the adult state. We studied the postnatal developmental profile of spontaneous and evoked AMPA and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs in SNc DA neurons in brain slices from immature (postnatal days P4-10 and young adult (P30-50 tyrosine hydroxylase (TH-GFP mice. We found that somato-dendritic fields of SNc DA neurons are already mature at P4-10. In contrast, spontaneous glutamatergic EPSCs show a developmental sequence. Spontaneous NMDA EPSCs in particular are larger and more frequent in immature SNc DA neurons than in young adult ones and have a bursty pattern. They are mediated by GluN2B and GluN2D subunit-containing NMDA receptors. The latter generate long-lasting, DQP1105-sensitive, spontaneous EPSCs, which are transiently recorded during this early period. Due to high NMDA activity, immature SNc DA neurons generate large and long lasting NMDA receptor-dependent (APV-sensitive bursts in response to the stimulation of the subthalamic nucleus. We conclude that the transient high NMDA activity allows calcium influx into the dendrites of developing SNc DA neurons.

  16. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-01-01

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125 I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR

  17. Uncaria rhynchophylla (miq) Jack plays a role in neuronal protection in kainic acid-treated rats.

    Science.gov (United States)

    Tang, Nou-Ying; Liu, Chung-Hsiang; Su, Shan-Yu; Jan, Ya-Min; Hsieh, Ching-Tou; Cheng, Chin-Yi; Shyu, Woei-Cherng; Hsieh, Ching-Liang

    2010-01-01

    Uncaria rhynchophylla (Miq) Jack (UR) is one of many Chinese herbs. Our previous studies have shown that UR has both anticonvulsive and free radical-scavenging activities in kainic acid (KA)-treated rats. The aim of the present study was to use the effect of UR on activated microglia, nitric oxide synthase, and apoptotic cells to investigate its function in neuroproction in KA-treated rats. UR of 1.0 or 0.5 g/kg was orally administered for 3 days (first day, second day, and 30 min prior to KA administration on the third day), or 10 mg/kg (intraperitoneal injection, i.p.) N-nitro-L-arginine methyl ester (L-NAME) 30 min prior to KA (2 microg/2 microl) was injected into the right hippocampus region of Sprague-Dawly rats. ED1 (mouse anti rat CD68), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) immunoreactive cells and apoptotic cells were observed in the hippocampus region. The results indicated that 1.0 g/kg, 0.5 g/kg of UR and 10 mg/kg of L-NAME reduced the counts of ED1, nNOS, iNOS immunoreactive cells and apoptotic cells in KA-treated rats. This study demonstrates that UR can reduce microglia activation, nNOS, iNOS and apoptosis, suggesting that UR plays a neuro-protective role against neuronal damage in KA-treated rats.

  18. Angiotensinergic and noradrenergic neurons in the rat and human heart.

    Science.gov (United States)

    Patil, Jaspal; Stucki, Silvan; Nussberger, Juerg; Schaffner, Thomas; Gygax, Susanne; Bohlender, Juergen; Imboden, Hans

    2011-02-25

    Although the physiological and pharmacological evidences suggest a role for angiotensin II (Ang II) with the mammalian heart, the source and precise location of Ang II are unknown. To visualize and quantitate Ang II in atria, ventricular walls and interventricular septum of the rat and human heart and to explore the feasibility of local Ang II production and function, we investigated by different methods the expression of proteins involved in the generation and function of Ang II. We found mRNA of angiotensinogen (Ang-N), of angiotensin converting enzyme, of the angiotensin type receptors AT(1A) and AT₂ (AT(1B) not detected) as well as of cathepsin D in any part of the hearts. No renin mRNA was traceable. Ang-N mRNA was visualized by in situ hybridization in atrial ganglial neurons. Ang II and dopamine-β-hydroxylase (DβH) were either colocalized inside the same neuronal cell or the neurons were specialized for Ang II or DβH. Within these neurons, the vesicular acetylcholine transporter (VAChT) was neither colocalized with Ang II nor DβH, but VAChT-staining was found with synapses en passant encircle these neuronal cells. The fibers containing Ang II exhibited with blood vessels and with cardiomyocytes supposedly angiotensinergic synapses en passant. In rat heart, right atrial median Ang II concentration appeared higher than septal and ventricular Ang II. The distinct colocalization of neuronal Ang II with DβH in the heart may indicate that Ang II participates together with norepinephrine in the regulation of cardiac functions: produced as a cardiac neurotransmitter Ang II may have inotropic, chronotropic or dromotropic effects in atria and ventricles and contributes to blood pressure regulation. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Divergent modulation of neuronal differentiation by caspase-2 and -9.

    Directory of Open Access Journals (Sweden)

    Giuseppa Pistritto

    Full Text Available Human Ntera2/cl.D1 (NT2 cells treated with retinoic acid (RA differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2 or -9 (si-Casp9 was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM, microtubule associated protein-2 (MAP2 and tyrosine hydroxylase (TH mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.

  20. Phytanoyl-CoA hydroxylase activity is induced by phytanic acid

    NARCIS (Netherlands)

    Zomer, A. W.; Jansen, G. A.; van der Burg, B.; Verhoeven, N. M.; Jakobs, C.; van der Saag, P. T.; Wanders, R. J.; Poll-The, B. T.

    2000-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid present in various dietary products such as milk, cheese and fish. In patients with Refsum disease, accumulation of phytanic acid occurs due to a deficiency of phytanoyl-CoA hydroxylase, a peroxisomal enzyme

  1. Levels of immunoreactive inhibin-like material in urine during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dandekar, S.P.; Vanage, G.R.; Arbatti, N.J.; Sheth, A.R. (Institute for Research in Reproduction, Parel, Bombay (India))

    1983-12-01

    Using a specific and sensitive radioimmunoassay, the authors determined levels of inhibin-like material in the urine of eight healthy women with normal menstrual cycle length of 28 +- 4 days. The results revealed a cyclic variation in urinary immunoreactive inhibin levels during the menstrual cycles, with a sharp rise in levels three to four days prior to luteinizing hormone (LH) and follicle-stimulating hormone (FSH) peaks. These levels of immunoreactive inhibin may thus serve as a parameter to detect impending LH surge. 23 refs.

  2. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor.

    Science.gov (United States)

    Kang, Kai-Hsiang; Liou, Horng-Hui; Hour, Mann-Jen; Liou, Houng-Chi; Fu, Wen-Mei

    2013-10-01

    Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Medullary neurons in the core white matter of the olfactory bulb: a new cell type.

    Science.gov (United States)

    Paredes, Raúl G; Larriva-Sahd, Jorge

    2010-02-01

    The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.

  4. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y; Sanada, H; Suzue, R; Kawada, S [National Inst. of Nutrition, Tokyo (Japan)

    1976-10-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, ..cap alpha.., ..cap alpha..'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO/sub 4/ to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe/sup 2 +/. These results suggested that ascorbic acid affected the induction of this enzyme via Fe/sup 2 +/.

  5. Chewing suppresses the stress-induced increase in the number of pERK-immunoreactive cells in the periaqueductal grey.

    Science.gov (United States)

    Yamada, Kentaro; Narimatsu, Yuri; Ono, Yumie; Sasaguri, Ken-Ichi; Onozuka, Minoru; Kawata, Toshitsugu; Yamamoto, Toshiharu

    2015-07-10

    We investigated the effects of chewing under immobilization stress on the periaqueductal gray (PAG) matter using phosphorylated extracellular signal-regulated kinase (pERK) as a marker of responding cells. Immobilization stress increased pERK-immunoreactive cells in the PAG. Among four subdivisions of the PAG, the increase of immunoreactive cells was remarkable in the dorsolateral and ventrolateral subdivisions. However, increase of pERK-immunoreactive cells by the immobilization stress was not so evident in the dorsomedial and lateral subdivisions. The chewing under immobilization stress prevented the stress-induced increase of pERK-immunoreactive cells in the dorsolateral and ventrolateral subdivisions with statistical significances (p<0.05). Again, chewing effects on pERK-immunoreactive cells were not visible in the dorsomedial and lateral subdivisions. These results suggest that the chewing alleviates the PAG (dorsolateral and ventrolateral subdivisions) responses to stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Rat-liver cholesterol 7α-hydroxylase. Pt. 1

    International Nuclear Information System (INIS)

    Cantfort, J. van; Renson, J.; Gielen, J.

    1975-01-01

    A new assay is described to measure the activity of cholesterol 7α-hydroxylase and compared to the conventional 14 C method used by other investigators. This method is based on the mechanism of the enzymic hydroxylation, i.e. a direct and stereospecific substitution of the 7α-hydrogen by a hydroxyl group. [7α- 3 H]cholesterol is incubated at 37 0 C and in the presence of molecular O 2 , in a medium buffered by potassium phosphate at pH 7.4 and containing liver microsomes (or 9,000 x g supernatant), NADPH, MgCl 2 and cysteamine. Tween-80 (1.5 mg/ml) is used to introduce enough substrate (300 μM) in the incubation mixture to saturate the ezyme (K(m) = 100 μM). Under these conditions the tritiated water released into the incubation medium reflects accurately the enzymic activity. The results obtained with this method are similar to the one obtained with a [4- 14 C]cholesterol technique (r = 0.96; P 3 H]cholesterol method is a complete independence from further metabolism of the first enzymic product, the 7α-hydroxycholesterol, the tritiated water representing the entire cholesterol 7α-hydroxylase activity. (orig.) [de

  7. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  8. Colocalization of neurotensin receptors and of the neurotensin-degrading enzyme endopeptidase 24-16 in primary cultures of neurons

    International Nuclear Information System (INIS)

    Chabry, J.; Checler, F.; Vincent, J.P.; Mazella, J.

    1990-01-01

    This paper compares the localization of neurotensin receptors and of endopeptidase 24-16, a peptidase likely involved in the inactivation of neurotensin in primary cultures of neurons. Neurotensin binding sites were radiolabeled with 125 I-Tyr3-neurotensin, whereas endopeptidase 24-16 was stained by immunohistochemical techniques using a monospecific polyclonal antibody. Endopeptidase 24-16 is present in 80-85% of the nondifferentiated neurons. The proportion of immunoreactive neurons decreased during maturation to reach 35-40% after 4-8 d of culture. By contrast, neurotensin receptors were not detectable in nondifferentiated cells and appear during maturation. Specific 125 I-Tyr3-neurotensin labeling is maximal after 4 d of culture and is located on about 10% of differentiated neurons. Double-labeling experiments show that about 90% of cortical, hypothalamic, and mesencephalic neurons bearing the neurotensin receptor also contained endopeptidase 24-16, supporting the hypothesis that one of the functions of endopeptidase 24-16 is the physiological inactivation of neurotensin. However, the presence of endopeptidase 24-16 on numerous neurons that do not contain neurotensin receptors also suggests that the enzyme could be involved in the degradation and/or maturation of other neuropeptides

  9. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  10. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet

    Czech Academy of Sciences Publication Activity Database

    Pirník, Z.; Majerčíková, Z.; Holubová, Martina; Pirník, R.; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 477-486 ISSN 0867-5910 Institutional support: RVO:61388963 Keywords : growth hormone secretagogue receptor * ghrelin receptor agonist * ghrelin receptor antagonist * high fat diet * tyrosine hydroxylase * arcuate nucleus * food intake Subject RIV: CE - Biochemistry Impact factor: 2.386, year: 2014

  11. Neuroprotective and Ameliorating Impacts of Omega-3 Against Aspartame-induced Neuronal and Astrocytic Degeneration.

    Science.gov (United States)

    Ali, Eyad M T; Sonpol, Hany M A

    2017-07-01

    Aspartame (ASP) is one of the commonest artificial sweetener used all over the world and considered as an extremely risky compound and raises a lot of controversy. Therefore, this study was designed to investigate cellular damage of the anterior horn cells in the spinal cord of albino male rats and the possibility of hindering these changes by using omega-3 (OM3).Thirty seven adult male albino rats were divided into three groups: Control, ASP-treated and ASP + OM3-treated groups. Spinal cord sections were prepared and stained with Hx&E, caspase-3 and GFAP immunostaining. All data were morphometrically and statistically analyzed. In ASP-treated group, the cell body of some degenerated neurons was swollen and its cytoplasm was vacuolated. Their nuclei were eccentric and pyknotic. Moreover, other neurons were of a heterogeneous pattern in the form of cell body shrinkage, loss of Nissl substance, intensely stained eosinophilic cytoplasm and a small darkly stained nucleus that may eventually fragment. However, the cells were apparently normal in ASP+ OM3-treated group. Strong +ve caspase-3 stained neurons were detected in ASP-treated group. Furthermore, the immunoreaction was faint on treating the rats with both ASP and OM3. Few number of +ve GFAP- stained astrocytes were observed in ASP-treated rats. On the other hand, the immunoreactivity for GFAP was found to be intense in the ASP + OM3-treated group. Additionally, there was a significant decrease in the surface area percentage of the +ve GFAP-stained astrocytes of the ASP-treated group compared to the control and the ASP + OM3-treated groups. Anat Rec, 300:1290-1298, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Healing human myocardial infarction associated with increased chymase immunoreactivity

    NARCIS (Netherlands)

    Daemen, M. J.; Urata, H.

    1997-01-01

    We studied the immunoreactivity of the chymase protein in normal human myocardium and in human myocardial infarctions at various postinfarction times using immuno-histochemistry. In noninfarcted hearts chymase was mainly present in cardiomyocytes and endothelial cells. At 6 h after infarction the

  13. Bombesin-like immunoreactivity in the nervous system of hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Yanaihara, N

    1981-01-01

    With immunocytochemical methods, nerve cells have been detected in Hydra attenuata containing bombesin-like immunoreactivity. These nerve cells are located in ectoderm of all body regions of the animal and are especially abundant in basal disk and tentacles. Radioimmunoassay of extracts of hydra ...

  14. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Takahashi, Hiroyuki; Takata, Fuyuko; Matsumoto, Junichi; Machida, Takashi; Yamauchi, Atsushi; Dohgu, Shinya; Kataoka, Yasufumi

    2015-02-20

    Insulin signaling in the hypothalamus plays an important role in food intake and glucose homeostasis. Hypothalamic neuronal functions are modulated by glial cells; these form an extensive network connecting the neurons and cerebral vasculature, known as the neurovascular unit (NVU). Brain pericytes are periendothelial accessory structures of the blood-brain barrier and integral members of the NVU. However, the interaction between pericytes and neurons is largely unexplored. Here, we investigate whether brain pericytes could affect hypothalamic neuronal insulin signaling. Our immunohistochemical observations demonstrated the existence of pericytes in the mouse hypothalamus, exhibiting immunoreactivity of platelet-derived growth factor receptor β (a pericyte marker), and laminin, a basal lamina marker. We then exposed a murine hypothalamic neuronal cell line, GT1-7, to conditioned medium obtained from primary cultures of rat brain pericytes. Pericyte-conditioned medium (PCM), but not astrocyte- or aortic smooth muscle cell-conditioned medium, increased the insulin-stimulated phosphorylation of Akt in GT1-7 cells in a concentration-dependent manner. PCM also enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor β without changing its expression or localization in cytosolic or plasma membrane fractions. These results suggest that pericytes, rather than astrocytes, increase insulin sensitivity in hypothalamic neurons by releasing soluble factors under physiological conditions in the NVU. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  16. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    Science.gov (United States)

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  17. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats.

    Science.gov (United States)

    Balfour, Margaret E; Yu, Lei; Coolen, Lique M

    2004-04-01

    The mesolimbic system plays an important role in the regulation of both pathological behaviors such as drug addiction and normal motivated behaviors such as sexual behavior. The present study investigated the mechanism by which this system is endogenously activated during sexual behavior. Specifically, the effects of sexual experience and sex-related environmental cues on the activation of several components of the mesolimbic system were studied. The mesolimbic system consists of a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). Previous studies suggest that these neurons are under tonic inhibition by local GABA interneurons, which are in turn modulated by mu opioid receptor (MOR) ligands. To test the hypothesis that opioids are acting in the VTA during sexual behavior, visualization of MOR internalization in VTA was used as a marker for ligand-induced activation of the receptor. Significant increases in MOR internalization were observed following copulation or exposure to sex-related environmental cues. The next goal was to determine if sexual behavior activates dopamine neurons in the VTA, using tyrosine hydroxylase as a marker for dopaminergic neurons and Fos-immunoreactivity as a marker for neuronal activation. Significant increases in the percentage of activated dopaminergic neurons were observed following copulation or exposure to sex-related environmental cues. In addition, mating and sex-related cues activated a large population of nondopaminergic neurons in VTA as well as neurons in both the NAc Core and Shell. Taken together, our results provide functional neuroanatomical evidence that the mesolimbic system is activated by both sexual behavior and exposure to sex-related environmental cues.

  18. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart.

    Science.gov (United States)

    Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E

    2018-05-22

    The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.

  19. Phylogenetic study of the arginine-vasotocin/arginine-vasopressin-like immunoreactive system in invertebrates.

    Science.gov (United States)

    Mizuno, J; Takeda, N

    1988-01-01

    1. A phylogenetic study of arg-vasotocin (AVT)/arg-vasopressin (AVP)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Pomacea canaliculata, Aplysia kurodai, Oncidium verrucosum, Bradybaena similaris, Achatina fulica, Limax marginatus and Meretrix lamarckii of the Mollusca; Gnorimosphaeroma rayi, Hemigrapsus sanguineus, Gryllus bimaculatus and Baratha brassicae of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 3. No immunoreactivity was detected in Bipalium sp. of the Platyhelminthes, or in Procambarus clarkii and Helice tridens of the Arthropoda. 4. From these results, it appears that AVT/AVP is a phylogenetically ancient peptide which is present in a wide variety of invertebrates. 5. The actions of AVT/AVP and its presence in invertebrates are discussed.

  20. Kinetic mechanism and isotope effects of Pseudomonas cepacia 3-hydroxybenzoate-t-hydroxylase

    International Nuclear Information System (INIS)

    Wang, L.H.; Yu, Y.; Hamzah, R.Y.; Tu, S.C.

    1986-01-01

    The kinetic mechanism of Pseudomonas cepacia 3-hydroxybenzoate-6-hydroxylase has been delineated. Double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a constant level of oxygen and several fixed concentrations of NADH yielded a set of converging lines. Similar reciprocal plots of velocity versus NADH concentration at a constant oxygen level and several fixed m-hydroxybenzoate concentrations also showed converging lines. In contrast, double reciprocal plots of initial rate versus NADH concentration at a fixed m-hydroxybenzoate level and several oxygen concentrations showed a series of parallel lines. Parallel lines were also obtained from double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a fixed NADH level and varying oxygen concentrations. These results suggest a sequential binding of m-hydroxybenzoate and NADH by the hydroxylase. The enzyme-bound FAD is reduced and NAD is released. The reduced enzyme subsequently reacts with oxygen leading to the formation of other products. This hydroxylase exhibited a primary isotope effect of /sup D/V = 3.5 for (4R)-[4- 2 H] NADH but no isotope effect was observed with (4S)-[4- 2 H]NADH. An isotope effect of /sup T/V/K = 5.0 was also observed using (4R)-[4- 3 H]NADH. This tritium isotope effect was apparently independent of m-hydroxybenzoate concentration

  1. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    Science.gov (United States)

    Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  2. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    OpenAIRE

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  3. Monoclonal antibody to the rat glucocorticoid receptor. Relationship between the immunoreactive and DNA-binding domain

    International Nuclear Information System (INIS)

    Eisen, L.P.; Reichman, M.E.; Thompson, E.B.; Gametchu, B.; Harrison, R.W.; Eisen, H.J.

    1985-01-01

    The region of the glucocorticoid receptor that reacted with a monoclonal antibody (BUGR-1) was identified. In order to identify the immunoreactive region, the rat liver glucocorticoid receptor was subjected to limited proteolysis; immunoreactive fragments were identified by Western blotting. The monoclonal antibody reacted with both the undigested Mr approximately 97,000 receptor subunit and a Mr approximately 45,000 fragment containing the steroid-binding and DNA-binding domains. Digestion by trypsin also produced two steroid-binding fragments of Mr approximately 27,000 and 31,000 which did not react with the antibody and an immunoreactive Mr approximately 16,000 fragment. This Mr approximately 16,000 fragment was shown to bind to DNA-cellulose, indicating that it contained a DNA-binding domain of the receptor. The undigested receptor must have steroid associated with it to undergo activation to a DNA-binding form. However, the Mr approximately 16,000 immunoreactive fragment binds to DNA-cellulose even if it is obtained by digestion of the steroid-free holoreceptor which does not itself bind to DNA

  4. Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats.

    Science.gov (United States)

    Mitoh, Yoshihiro; Ueda, Hirotaka; Ichikawa, Hiroyuki; Fujita, Masako; Kobashi, Motoi; Matsuo, Ryuji

    2017-09-01

    The superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats. Additionally, we examined the effects of cevimeline in labeled SSN neurons of brainstem slices using a whole-cell patch-clamp technique. Mainly M1 and M3 receptors were detected by immunohistochemical staining, with low-level detection of M4 and M5 receptors and absence of M2 receptors. Most (110 of 129) SSN neurons exhibited excitatory responses to application of cevimeline. In responding neurons, voltage-clamp recordings showed that 84% (101/120) of the neurons exhibited inward currents. In the neurons displaying inward currents, the effects of the mAChR antagonists were examined. A mixture of M1 and M3 receptor antagonists most effectively reduced the peak amplitude of inward currents, suggesting that the excitatory effects of cevimeline on SSN neurons were mainly mediated by M1 and M3 receptors. Current-clamp recordings showed that application of cevimeline induced membrane depolarization (9/9 neurons). These results suggest that most SSN neurons are excited by cevimeline via M1 and M3 muscarinic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    Science.gov (United States)

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  6. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Hui Hong

    2018-06-01

    Full Text Available In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM, an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV conductances, unique combination of KV subunits and specialized sodium (NaV channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.

  7. Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism.

    Science.gov (United States)

    Fernández-Espejo, Emilio; Bis-Humbert, Cristian

    2018-06-06

    3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in

  8. Diurnal variation of. beta. -endorphin like immunoreactivity in rat brain, pituitary gland, and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, I.A.; Perry, M.L.S.; Carrasco, M.A.; Dias, R.D. (Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Biociencias); Orsingher, O.A. (Universidad Nacional de Cordoba (Argentina))

    1984-09-01

    ..beta..-endorphin like immunoreactivity was measured in the brain, pituitary gland and plasma of rats at 2 A.M, 8 A.M, 2 P.M and 8 P.M. Values were higher in the brain and pituitary gland at 8 P.M and in the plasma at 8 A.M and 2 P.M. The findings suggest a circadian rhythm in the production and release of ..beta..-endorphin immunoreactive material.

  9. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  10. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  11. Changes in the interstitial cells of Cajal and neuronal nitric oxide synthase positive neuronal cells with aging in the esophagus of F344 rats.

    Science.gov (United States)

    Kim, Hee Jin; Kim, Nayoung; Kim, Yong Sung; Nam, Ryoung Hee; Lee, Sun Min; Park, Ji Hyun; Choi, Daeun; Hwang, Young-Jae; Lee, Jongchan; Lee, Hye Seung; Kim, Min-Seob; Lee, Moon Young; Lee, Dong Ho

    2017-01-01

    The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs), neuronal nitric oxide synthase (nNOS)-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years). The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP) 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF), nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005) and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, Pcells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; Paging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively), while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively). The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved total enteric neurons, and contractility in aged rat esophagus may explain the aging-associated esophageal dysmotility.

  12. Chronically reinforced, operant olfactory conditioning increases the number of newborn GABAergic olfactory periglomerular neurons in the adult rat.

    Science.gov (United States)

    Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel

    2012-12-01

    The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparative analysis of Met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic-hypophyseal system.

    Science.gov (United States)

    Rodríguez Díaz, M A; Candal, E; Santos-Durán, G N; Adrio, F; Rodríguez-Moldes, I

    2011-08-01

    We studied the organization of Met-enkephalin-containing cells and fibers in the developing preoptic-hypophyseal system of the brown trout (Salmo trutta fario) by immunohistochemistry and determined the relationship of these cells and fibers to the galaninergic and GABAergic systems. Met-enkephalin immunoreactivity was observed in cells in the preoptic area, the hypothalamus and the pituitary of late larvae. In the hypophysis, a few Met-enkephalin-containing cells were present in all divisions of the adenohypophysis, and some immunoreactive fibers were present in the interdigitations of the neural lobe with the proximal pars distalis. Concurrently, GABAergic fibers innervated the anterior and posterior neural lobe. Galanin cells coexisted with Met-enkephalin cells in neuronal groups of the preoptic-hypophyseal system. Galaninergic and GABAergic fibers innervated the preoptic and hypothalamic areas, but GABAergic fibers containing galanin were not observed. These results indicate that Met-enkephalin, galanin and GABA may modulate neuroendocrine activities in the preoptic area, hypothalamus and pituitary during the transition from larval to juvenile period. To better know how the development of the trout preoptic-hypophyseal system takes place, we studied the patterns of cell proliferation and expression of Pax6, a conserved transcription factor involved in the hypophysis development. Pax6 expressing cells and proliferating cells were present in the Rathke's pouch, the hypothalamus and the hypophysis of early larvae. In late larvae, Pax6 expression was no longer observed in these areas, and the density of proliferating cells largely decreased throughout development, although they remained in the hypophysis of late larvae and juveniles, suggesting that Pax6 might play an important role in the early regionalization of the pituitary in the trout. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Science.gov (United States)

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  15. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  16. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    Directory of Open Access Journals (Sweden)

    Jan Tønnesen

    Full Text Available Intrastriatal grafts of stem cell-derived dopamine (DA neurons induce behavioral recovery in animal models of Parkinson's disease (PD, but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2 and halorhodopsin (NpHR, respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  17. Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Gantulga, Darambazar; Maejima, Yuko; Nakata, Masanori; Yada, Toshihiko

    2012-04-20

    Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Subpopulations of somatostatin-immunoreactive nonpyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

    Directory of Open Access Journals (Sweden)

    Alexander J. McDonald

    2012-07-01

    Full Text Available The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF. The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from nonpyramidal GABAergic neurons that express somatostatin (SOM, calbindin (CB, and neuropeptide Y (NPY. Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata and ventral pallidum. It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic nonpyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG retrograde tract tracing with immunohistochemistry for GABAergic nonpyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD. FG injections into the basal forebrain produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express nonpyramidal cell markers. However, a subpopulation of nonpyramidal SOM+ neurons, termed long range nonpyramidal neurons (LRNP neurons, in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.

  19. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish.

    Science.gov (United States)

    Montgomery, Jacob E; Wiggin, Timothy D; Rivera-Perez, Luis M; Lillesaar, Christina; Masino, Mark A

    2016-06-01

    Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs. © 2015 Wiley Periodicals, Inc.

  20. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  1. Diurnal variation of β-endorphin like immunoreactivity in rat brain, pituitary gland, and plasma

    International Nuclear Information System (INIS)

    Izquierdo, I.A.; Perry, M.L.S.; Carrasco, M.A.; Dias, R.D.

    1984-01-01

    β-endorphin like immunoreactivity was measured in the brain, pituitary gland and plasma of rats at 2 A.M, 8 A.M, 2 P.M and 8 P.M. Values were higher in the brain and pituitary gland at 8 P.M and in the plasma at 8 A.M and 2 P.M. The findings suggest a circadian rhythm in the production and release of β-endorphin immunoreactive material. (Author) [pt

  2. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... known as vitamin D 1α-hydroxylase deficiency or pseu- dovitamin D ... amplicons of the 378 bp were digested with restriction enzyme PvuI and ... have no enzymatic activity; a missense mutation c.473T>C. (p.L158P) in the ...

  3. Estrogen receptor-immunoreactive neurons in the lumbosacral cord projecting to the periaqueductal gray in the ovariectomized female cat

    NARCIS (Netherlands)

    VanderHorst, Veronique G.J.M.; Meijer, Ellie; Schasfoor, Fabienne C.; Leeuwen, Fred W. van; Holstege, Gert

    1997-01-01

    The periaqueductal gray (FAG) plays a crucial role in reproductive behavior. The present study investigates whether lumbosacral FAG-projecting neurons contain estrogen receptors. In four ovariectomized adult female cats, injections with cholera toxin subunit (CTb) were made into the FAG to

  4. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  5. Immunocytochemistry and fluorescence imaging efficiently identify individual neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures.

    Science.gov (United States)

    Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-01

    CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.

  6. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  7. Effects of cannabinoids Δ(9)-tetrahydrocannabinol, Δ(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected murine mesencephalic cultures.

    Science.gov (United States)

    Moldzio, Rudolf; Pacher, Thomas; Krewenka, Christopher; Kranner, Barbara; Novak, Johannes; Duvigneau, Johanna Catharina; Rausch, Wolf-Dieter

    2012-06-15

    Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10

  8. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis.

    Science.gov (United States)

    da Silva, Marcos Vinícius; Marosti, Aline Rosa; Mendes, Cristina Eusébio; Palombit, Kelly; Castelucci, Patricia

    2017-06-01

    The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Neurotensin-like immunoreactivity in the nervous system of hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Carraway, R E; Rökaeus, A

    1981-01-01

    Neurotensin-like immunoreactivity is found in nerve fibers present in all body regions of hydra. The nerve fibers are especially numerous in the ectoderm at the bases of the tentacles and in the ectoderm at a site just above the foot. Radioimmunoassays of acetic-acid extracts of hydra, using vari...

  10. Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence.

    Science.gov (United States)

    Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano

    2017-09-01

    Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Early-life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    Directory of Open Access Journals (Sweden)

    Tomoko eSoga

    2015-11-01

    Full Text Available Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinising hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP-tagged GnIH-transgenic rats. Socially isolated rats were observed for anxious and depressive behaviours. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group -housing. We also inspected serotonergic fibre juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviours. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fibre juxtapositions on EGFP–GnIH neurons was also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  12. Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity.

    Science.gov (United States)

    Su, Mengna; Liu, Changqi; Roux, Kenneth H; Gradziel, Thomas M; Sathe, Shridhar K

    2017-10-01

    A murine monoclonal antibody (mAb)-based enzyme-linked immunosorbent assay (ELISA) was used to assess amandin immunoreactivity in processed and long-term stored almonds. The results demonstrated that amandin immunoreactivity is stable in variously processed almond seeds. Using the ELISA, amandin immunoreactivity could be detected in commercial whole raw and processed (blanched, sliced, dry roasted, and indicated combinations thereof) almond seeds stored for eleven years and eight months, defatted almond seed flours from several almond varieties/hybrids and their borate saline buffer-solubilized protein extracts stored for ten years and seven months, and several almond varieties grown in different California counties (full fat flours and their defatted flour counterparts). Roasting Nonpareil whole full fat almond seeds, full fat flour, and defatted flour at 170°C for 20min each with 2, 5, 10, and 20% w/w corn syrup or sucrose did not prevent amandin detection by ELISA. Similarly, amandin detection in select food matrices spiked with Nonpareil almond protein extract was not inhibited. In conclusion, amandin is a stable target protein for almond detection under the tested processing and storage conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system.

    Science.gov (United States)

    de Kloet, Annette D; Wang, Lei; Ludin, Jacob A; Smith, Justin A; Pioquinto, David J; Hiller, Helmut; Steckelings, U Muscha; Scheuer, Deborah A; Sumners, Colin; Krause, Eric G

    2016-03-01

    Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.

  14. Distribution of obestatin and ghrelin in human tissues: immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands

    DEFF Research Database (Denmark)

    Grönberg, Malin; Tsolakis, Apostolos V; Magnusson, Linda

    2008-01-01

    Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody...... that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa...... of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both...

  15. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study.

    Science.gov (United States)

    Podlasz, P; Jakimiuk, A; Chmielewska-Krzesinska, M; Kasica, N; Nowik, N; Kaleczyc, J

    2016-01-01

    The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.

  16. Impact of food processing and simulated gastrointestinal digestion on gliadin immunoreactivity in rolls.

    Science.gov (United States)

    Brzozowski, Bartosz

    2018-07-01

    The enzymatic modification of wheat proteins during dough fermentation and its digestion as supported by peptidases of microbiological origin can result in the degradation of important peptides in the pathogenesis of coeliac disease. However, baking bread and the high temperature associated with this could change the physicochemical and immunological properties of proteins. Thermal changes in the spatial structure of proteins and their hydrolysis can lead to a masking or degrading of immunoreactive peptides. The addition of prolyl endopeptidase (PEP), comprising peptidases isolated from Lactobacillus acidophilus 5e2 (LA) or transglutaminase (TG) in the course of fermentation, decreases its immunoreactivity by 83.9%, 51.9% and 18.5%, respectively. An analysis of the fractional composition of gliadins revealed that γ- and ω-gliadins are the proteins most susceptible to enzymatic modification. Hydrolysis of wheat storage proteins with PEP and LA reduces the content of αβ-, γ- and ω-gliadins by 13.7%, 60.2% and 41.9% for PEP and by 22.1%, 43.5% and 36.9% for LA, respectively. Cross-linking of proteins with TG or their hydrolysis by PEP and LA peptidases during the process of forming wheat dough, followed by digesting bread samples with PEP and LA peptidases, decreases the immunoreactivity of bread hydrolysates from 2.4% to 0.02%. The content of peptide detected in polypeptide sequences is 263.4 ± 3.3, 30.9 ± 1.5 and 7.9 ± 0.4 mg kg -1 in samples of hydrolysates of bread digested with PEP, as produced from dough modified by TG, PEP and LA, respectively. Enzymatic pre-modification of proteins during the process of dough fermentation decreases their immunoreactive potential, such that fewer peptides recognised by R5 antibodies are released during the digestion process from the bread matrix. Immunoreactive peptides are degraded more effectively when digestive enzymes are supported by the addition of PEP. © 2017 Society of Chemical Industry. © 2017

  17. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Jin-Ho Choi

    2016-03-01

    Full Text Available The term congenital adrenal hyperplasia (CAH covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency.

  18. Mapping of FGF1 in the Medulla Oblongata of Macaca fascicularis.

    Science.gov (United States)

    Bisem, Naomi J; Takeuchi, Shigeko; Imamura, Toru; Abdelalim, Essam M; Tooyama, Ikuo

    2012-12-26

    FGF1 is highly expressed in neurons and it has been proposed to play a role in the neuroprotection and in regeneration. Low FGF1 expression in neurons has been linked to increased vulnerability in cholinergic neurons. Previous reports have shown that the expression of FGF1 in rat brain is localized to the cholinergic nuclei of the medulla oblongata, with low ratio of neurons positive for FGF1 in the dorsal motor nucleus of the vagus (DMNV). The role of FGF1 in the primate brain has yet to be clarified. In this study, we mapped FGF1 immunoreactivity in the medulla oblongata of cynomolgus monkey brainstems. Our results demonstrated that FGF1 immunoreactivity follows the pattern of distribution of cholinergic nuclei in the medulla oblongata; with strong localization of FGF1 to cholinergic neurons of the hypoglossal nucleus, the facial nucleus and the nucleus ambiguus. In contrast, the DMNV shows markedly lower FGF1 immunoreactivity. Localization of FGF1 to cholinergic neurons was only observed in the lateral region of the DMNV, with higher immunoreactivity in the rostral ventral-lateral region of the DMNV. These findings are consistent with the distribution of FGF1 immunoreactivity in previous studies of the rat brain.

  19. Mapping of FGF1 in the Medulla Oblongata of Macaca fascicularis

    International Nuclear Information System (INIS)

    Bisem, Naomi J.; Takeuchi, Shigeko; Imamura, Toru; Abdelalim, Essam M.; Tooyama, Ikuo

    2012-01-01

    FGF1 is highly expressed in neurons and it has been proposed to play a role in the neuroprotection and in regeneration. Low FGF1 expression in neurons has been linked to increased vulnerability in cholinergic neurons. Previous reports have shown that the expression of FGF1 in rat brain is localized to the cholinergic nuclei of the medulla oblongata, with low ratio of neurons positive for FGF1 in the dorsal motor nucleus of the vagus (DMNV). The role of FGF1 in the primate brain has yet to be clarified. In this study, we mapped FGF1 immunoreactivity in the medulla oblongata of cynomolgus monkey brainstems. Our results demonstrated that FGF1 immunoreactivity follows the pattern of distribution of cholinergic nuclei in the medulla oblongata; with strong localization of FGF1 to cholinergic neurons of the hypoglossal nucleus, the facial nucleus and the nucleus ambiguus. In contrast, the DMNV shows markedly lower FGF1 immunoreactivity. Localization of FGF1 to cholinergic neurons was only observed in the lateral region of the DMNV, with higher immunoreactivity in the rostral ventral-lateral region of the DMNV. These findings are consistent with the distribution of FGF1 immunoreactivity in previous studies of the rat brain

  20. Nucleus Ambiguus Cholinergic Neurons Activated by Acupuncture: Relation to Enkephalin

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2012-01-01

    Acupuncture regulates autonomic function. Our previous studies have shown that electroacupuncture (EA) at the Jianshi–Neiguan acupoints (P5–P6, underlying the median nerve) inhibits central sympathetic outflow and attenuates excitatory cardiovascular reflexes, in part, through an opioid mechanism. It is unknown if EA at these acupoints influences the parasympathetic system. Thus, using c-Fos expression, we examined activation of nucleus ambiguus (NAmb) neurons by EA, their relation to cholinergic (preganglionic parasympathetic) neurons and those containing enkephalin. To enhance detection of cell bodies containing enkephalin, colchicine (90–100 μg/kg) was administered into the subarachnoid space of cats 30 hr prior to EA or sham-operated controls for EA. Following bilateral barodenervation and cervical vagotomy, either EA for 30 min at P5–P6 acupoints or control stimulation (needle placement at P5–P6 without stimulation) was applied. While perikarya containing enkephalin were observed in some medullary nuclei (e.g., râphe), only enkephalin-containing neuronal processes were found in the NAmb. Compared to controls (n=4), more c-Fos immunoreactivity, located principally in close proximity to fibers containing enkephalin was noted in the NAmb of EA-treated cats (n=5; P<0.01). Moreover, neurons double-labeled with c-Fos and choline acetyltransferase in the NAmb were identified in EA-treated, but not the control animals. These data demonstrate for the first time that EA activates preganglionic parasympathetic neurons in the NAmb. Because of their close proximity, these EA-activated neurons likely interact with nerve fibers containing enkephalin. These results suggest that EA at the P5–P6 acupoints has the potential to influence parasympathetic outflow and cardiovascular function, likely through an enkephalinergic mechanism. PMID:22306033

  1. Immunoreactivity of 125I-papain labelled by different methods

    International Nuclear Information System (INIS)

    Rauch, P.; Fukal, L.; Kas, J.; Tykva, R.

    1984-01-01

    Three different methods of papain iodination (with chloramine-T, lactoperoxidase and conjugation with Bolton-Hunter reagent) have been compared. The highest yield of 125 I-papain could be obtained using lactoperoxidase which enabled to achieve the highest immunoreactivity. 125 I-papain, labelled this way, is suitable for the radioimmunoassay of papain. (author)

  2. Widespread increases in malondialdehyde immunoreactivity in dopamine-rich and dopamine-poor regions of rat brain following multiple, high doses of methamphetamine.

    Directory of Open Access Journals (Sweden)

    Kristen Ashley eHorner

    2011-05-01

    Full Text Available Treatment with multiple high doses of methamphetamine (METH can induce oxidative damage, including dopamine (DA-mediated reactive oxygen species (ROS formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu and substantia nigra pars compacta (SNpc. Malondialdehyde (MDA, a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg every 2h for 6h, sacrificed one week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir in the CPu, SNpc, cortex and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area (VTA and nucleus accumbens (NAc. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system.

  3. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  4. Long-term estradiol-17β administration changes the population of paracervical ganglion neurons supplying the ovary in adult gilts.

    Science.gov (United States)

    Jana, Barbara; Palus, Katarzyna; Czarzasta, Joanna; Całka, Jarosław

    2013-07-01

    The aim of this study was to determine the influence of estradiol-17β (E(2)) overdose on the number and distribution of ovarian parasympathetic neurons in the paracervical ganglion (PCG) in adult pigs. To identify the neurons innervating gonads on day 3 of the estrous cycle, the ovaries of both the control and experimental gilts were injected with retrograde neuronal tracer Fast Blue. From next day to the expected day 20 of the second studied cycle, experimental gilts were injected with E(2), while control gilts received oil. The PCG were then collected and processed for double-labeling immunofluorescence. Injections of E(2) increased the E(2) level in the peripheral blood approximately four- to fivefold and reduced the following in the PCG: the total number of Fast Blue-positive neurons; the number of perikarya in the lateral part of the PCG; the numbers of vesicular acetylcholine transporter (VAChT)(+)/somatostatin(+), VAChT(+)/vasoactive intestinal polypeptide (VIP)(+), VAChT(+)/neuronal isoform of nitric oxide synthase(+), VAChT(+)/VIP(-), VAChT(+)/dopamine β-hydroxylase (DβH)(-), VAChT(-)/VIP(-), and VAChT(-)/DβH(-) perikarya; and the total number of perikarya expressing estrogen receptors (ERs) subtype α and/or β. In summary, long-term E(2) treatment of adult gilts downregulates the population of both cholinergic and ERs expressing the PCG ovary-projecting neurons. Our results suggest that elevated E(2) levels occurring during pathological states may regulate gonadal function(s) by affecting ovary-supplying neurons.

  5. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  6. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Jinfang Yang

    Full Text Available Previous studies have reported inconsistent effects of dietary restriction (DR on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1 of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  7. Co-induction of p75(NTR) and the associated death executor NADE in degenerating hippocampal neurons after kainate-induced seizures in the rat.

    Science.gov (United States)

    Yi, Jung-Sun; Lee, Soon-Keum; Sato, Taka-Aki; Koh, Jae-Young

    2003-08-21

    Zinc induces in cultured cortical neurons both p75(NTR) and p75(NTR)-associated death executor (NADE), which together contribute to caspase-dependent neuronal apoptosis. Since zinc neurotoxicity may contribute to neuronal death following seizures, we examined whether p75(NTR) and NADE are co-induced also in rat hippocampal neurons degenerating after seizures. Staining of brain sections with a zinc-specific fluorescent dye (N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulphonamide) and acid fuchsin revealed zinc accumulation in degenerating neuronal cell bodies in CA1 and CA3 of hippocampus 24 h after kainate injection. Both anti-p75(NTR) and anti-NADE immunoreactivities appeared in zinc-accumulating/degenerating neurons in both areas. Intraventricular injection of CaEDTA, without altering the severity or time course of kainate-induced seizures, markedly attenuated the induction of p75(NTR)/NADE in hippocampus, which correlated with the decrease of caspase-3 activation and zinc accumulation/cell death. The present study has demonstrated that p75(NTR) and NADE are co-induced in neurons degenerating after kainate-induced seizures in rats, likely in a zinc-dependent manner.

  8. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease.

    Science.gov (United States)

    Farrand, Ariana Q; Helke, Kristi L; Gregory, Rebecca A; Gooz, Monika; Hinson, Vanessa K; Boger, Heather A

    Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic. To assess therapeutic potential of VNS in a PD model. To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1). VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1. Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Utilization of Exocellular Mannan from Rhodotorula glutinis as an Immunoreactive Antigen in Diagnosis of Leptospirosis

    Science.gov (United States)

    Matsuo, Kouki; Isogai, Emiko; Araki, Yoshio

    2000-01-01

    Previously, Rhodotorula glutinis was reported to produce a large amount of exocellular mannan, having a repeating unit of →3)-d-Manp-(1→4)-d-Manp-(1→. Recently, we found that antigenic polysaccharides of Leptospira biflexa serovar patoc strain Patoc I have the same repeating unit and cross-react with antisera raised against extended strains of other leptospires (K. Matsuo, E. Isogai, and Y. Araki, Carbohydr. Res., in press). This structural identity and the difficulty of producing and isolating antigens led us to confirm the usefulness of Rhodotorula mannan as an immunoreactive antigen in a serological diagnosis of leptospirosis. In the present investigation, we confirmed the structural identity of an exocellular mannan isolated from R. glutinis AHU 3479 and tried to use it as an immunoreactive antigen in a serological diagnosis of leptospirosis. From its chemical analysis and 1H- and 13C-labeled nuclear magnetic resonance spectrometry, the Rhodotorula mannan was confirmed to consist of the same disaccharide units. Furthermore, such a preparation was shown to immunoreact to various sera from patients suffering with leptospirosis as well as to most rabbit antiserum preparations obtained from immunization with various strains of pathogenic leptospires. Therefore, the Rhodotorula mannan preparation is useful as an immunoreactive antigen in the serological diagnosis for leptospirosis. PMID:11015396

  10. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  11. Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure

    Science.gov (United States)

    Benarroch, E. E.; Smithson, I. L.; Low, P. A.; Parisi, J. E.

    1998-01-01

    The ventrolateral portion of the intermediate reticular formation of the medulla (ventrolateral medulla, VLM), including the C1/A1 groups of catecholaminergic neurons, is thought to be involved in control of sympathetic cardiovascular outflow, cardiorespiratory interactions, and reflex control of vasopressin release. As all these functions are affected in patients with multiple systems atrophy (MSA) with autonomic failure, we sought to test the hypothesis that catecholaminergic (tyrosine hydroxylase [TH]-positive) neurons of the VLM are depleted in these patients. Medullas were obtained at autopsy from 4 patients with MSA with prominent autonomic failure and 5 patients with no neurological disease. Patients with MSA had laboratory evidence of severe adrenergic sudomotor and cardiovagal failure. Tissue was immersion fixed in 2% paraformaldehyde at 4 degrees C for 24 hours and cut into 1-cm blocks in the coronal plane from throughout the medulla. Serial 50-microm sections were collected and one section every 300 microm was stained for TH. There was a pronounced depletion of TH neurons in the rostral VLM in all cases of MSA. There was also significant reduction of TH neurons in the caudal VLM in 3 MSA patients compared with 3 control subjects. In 2 MSA cases and in 2 control subjects, the thoracic spinal cord was available for study. There was also depletion of TH fibers and sympathetic preganglionic neurons (SPNs) in the 2 MSA cases examined. Thus, depletion of catecholaminergic neurons in the VLM may provide a substrate for some of the autonomic and endocrine manifestations of MSA.

  12. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    Directory of Open Access Journals (Sweden)

    Pabla Aguirre

    Full Text Available Neuronal death in Parkinson's disease (PD is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.

  13. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    Science.gov (United States)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  14. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum.

    Science.gov (United States)

    Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu

    2012-05-01

    The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.

  15. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    Directory of Open Access Journals (Sweden)

    Pluchino Stefano

    2011-07-01

    Full Text Available Abstract Background Dopamine-synthesizing (dopaminergic, DA neurons in the ventral midbrain (VM constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+ neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd

  16. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  17. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors.

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available The O(6-methylguanine-methyltransferase (MGMT promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91, breast (n = 72 kidney (n = 49 and from malignant melanomas (n = 113 by methylation-specific polymerase chain reaction (MS-PCR and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6% revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5% followed by those from breast carcinoma (28.8%, malignant melanoma (24.7% and from renal carcinoma (20%. A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43% tumors lacking MGMT immunoreactivity, in 17 of 63 (27% metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9% showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes.

  18. Lack of functional specialization of neurons in the mouse primary visual cortex that have expressed calretinin

    Directory of Open Access Journals (Sweden)

    Daniela eCamillo

    2014-09-01

    Full Text Available Calretinin is a calcium-binding protein often used as a marker for a subset of inhibitory interneurons in the mammalian neocortex. We studied the labeled cells in offspring from a cross of a Cre-dependent reporter line with the CR-ires-Cre mice, which express Cre-recombinase in the same pattern as calretinin. We found that in the mature visual cortex, only a minority of the cells that have expressed calretinin and Cre-recombinase during their lifetime is GABAergic and only about 20% are immunoreactive for calretinin. The reason behind this is that calretinin is transiently expressed in many cortical pyramidal neurons during development. To determine whether neurons that express or have expressed calretinin share any distinct functional characteristics, we recorded their visual response properties using GCaMP6s calcium imaging. The average orientation selectivity, size tuning, and temporal and spatial frequency tuning of this group of cells, however, match the response profile of the general neuronal population, revealing the lack of functional specialization for the features studied.

  19. Anti-Tribbles Pseudokinase 2 (TRIB2)-Immunization Modulates Hypocretin/Orexin Neuronal Functions.

    Science.gov (United States)

    Tanaka, Susumu; Honda, Yoshiko; Honda, Makoto; Yamada, Hisao; Honda, Kazuki; Kodama, Tohru

    2017-01-01

    Recent findings showed that 16%-26% of narcolepsy patients were positive for anti-tribbles pseudokinase 2 (TRIB2) antibody, and the intracerebroventricular administration of immunoglobulin-G purified from anti-TRIB2 positive narcolepsy patients caused hypocretin/orexin neuron loss. We investigated the pathophysiological role of TRIB2 antibody using TRIB2-immunized rats and hypocretin/ataxin-3 transgenic (ataxin-3) mice. Plasma, cerebrospinal fluid (CSF), and hypothalamic tissues from TRIB2-immunized rats were collected. Anti-TRIB2 titers, hypocretin contents, mRNA expressions, the cell count of hypocretin neurons, and immunoreactivity of anti-TRIB2 antibodies on hypocretin neurons were investigated. The plasma from ataxin-3 mice was also used to determine the anti-TRIB2 antibody titer changes following the loss of hypocretin neurons. TRIB2 antibody titers increased in the plasma and CSF of TRIB2-immunized rats. The hypothalamic tissue immunostained with the sera from TRIB2-immunized rats revealed positive signals in the cytoplasm of hypcretin neurons. While no changes were found regarding hypothalamic hypocretin contents or cell counts, but there were significant decreases of the hypocretin mRNA level and release into the CSF. The plasma from over 26-week-old ataxin-3 mice, at the advanced stage of hypocretin cell destruction, showed positive reactions against TRIB2 antigen, and positive plasma also reacted with murine hypothalamic hypocretin neurons. Our results suggest that the general activation of the immune system modulates the functions of hypocretin neurons. The absence of a change in hypocretin cell populations suggested that factors other than anti-TRIB2 antibody play a part in the loss of hypocretin neurons in narcolepsy. The increased anti-TRIB2 antibody after the destruction of hypocretin neurons suggest that anti-TRIB2 antibody in narcolepsy patients is the consequence rather than the inciting cause of hypocretin cell destruction. © Sleep Research

  20. Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Sundler, F; Rehfeld, J F

    1980-01-01

    Using immunocytochemistry, gastrin/CCK-like immunoreactivity is found in sensory nerve cells in the ectoderm of the mouth region of hydra and in nerve cells in the endoderm of all body regions of the sea anemone tealia. These results are corroborated by radioimmunoassay: One hydra contains at lea...

  1. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Xi-Xun Du; Hua-Min Xu; Hong Jiang; Ning Song; Jun Wang; Jun-Xia Xie

    2012-01-01

    [Objective] Curcumin is a plant polyphenolic compound and a major component of spice turmeric (Curcuma longa).It has been reported to possess free radical-scavenging,iron-chelating,and anti-inflammatory properties in different tissues.Our previous study showed that curcumin protects MES23.5 dopaminergic cells from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro.The present study aimed to explore this neuroprotective effect in the 6-OHDAlesioned rat model of Parkinson's disease in vivo.[Methods] Rats were given intragastric curcumin for 24 days.6-OHDA lesioning was conducted on day 4 of curcumin treatment.Dopamine content was assessed by high-performance liquid chromatography with electrochemical detection,tyrosine hydroxylase (TH)-containing neurons by immunohistochemistry,and iron-containing cells by Perls' iron staining.[Results] The dopamine content in the striatum and the number of THimmunoreactive neurons decreased after 6-OHDA treatment.Curcumin pretreatment reversed these changes.Further studies demonstrated that 6-OHDA treatment increased the number of iron-staining cells,which was dramatically decreased by curcumin pretreatment.[Conclusion]The protective effects of curcumin against 6-OHDA may be attributable to the ironchelating activity of curcumin to suppress the iron-induced degeneration of nigral dopaminergic neurons.

  2. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  3. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs.

    Science.gov (United States)

    Lillethorup, Thea P; Glud, Andreas N; Alstrup, Aage K O; Mikkelsen, Trine W; Nielsen, Erik H; Zaer, Hamed; Doudet, Doris J; Brooks, David J; Sørensen, Jens Christian H; Orlowski, Dariusz; Landau, Anne M

    2018-05-01

    Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion -- interaction with the sensory system

    DEFF Research Database (Denmark)

    Csati, Anett; Tajti, Janos; Tuka, Bernadett

    2012-01-01

    , Western blot technique was used to demonstrate the existence of CGRP receptor components in rat SPG. CGRP immunoreactive fibers were frequently found intraganglionic in the SPG in the vicinity of neurons. CLR immunoreactivity was observed in satellite glial cells (SGCs) as well as in nerve fibers......, but not in neurons. RAMP1 immunoreactivity was localized in many neurons and SGCs. Thus, the two CGRP receptor components together were found in the SGCs. In addition, Western blot revealed the presence of RAMP1 and CLR in rat SPG. Our results suggest a possible sensory influence in the parasympathetic cranial...

  5. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations.

    Science.gov (United States)

    Padilla, Stephanie L; Reef, Daniel; Zeltser, Lori M

    2012-03-01

    Melanocortin signaling plays a central role in the regulation of phenotypes related to body weight and energy homeostasis. To specifically target and study the function of proopiomelanocortin (POMC) neurons, Pomc promoter elements have been utilized to generate reporter and Cre recombinase transgenic reagents. Across gestation, we find that Pomc is dynamically expressed in many sites in the developing mouse forebrain, midbrain, hindbrain, spinal cord, and retina. Although Pomc expression in most embryonic brain regions is transient, it is sufficient to direct Cre-mediated recombination of floxed alleles. We visualize the populations affected by this transgene by crossing Pomc-Cre mice to ROSA reporter strains and identify 62 sites of recombination throughout the adult brain, including several nuclei implicated in energy homeostasis regulation. To compare the relationship between acute Pomc promoter activity and Pomc-Cre-mediated recombination at the single cell level, we crossed Pomc-enhanced green fluorescent protein (eGFP) and Pomc-Cre;ROSA-tdTomato lines. We detect the highest concentration of Pomc-eGFP+ cells in the arcuate nucleus of the hypothalamus and dentate gyrus but also observe smaller populations of labeled cells in the nucleus of the solitary tract, periventricular zone of the third ventricle, and cerebellum. Consistent with the dynamic nature of Pomc expression in the embryo, the vast majority of neurons marked with the tdTomato reporter do not express eGFP in the adult. Thus, recombination in off-target sites could contribute to physiological phenotypes using Pomc-Cre transgenics. For example, we find that approximately 83% of the cells in the arcuate nucleus of the hypothalamus immunoreactive for leptin-induced phosphorylated signal transducer and activator of transcription 3 are marked with Pomc-Cre;ROSA-tdTomato; only 13% of these are eGFP+ POMC neurons.

  6. Postresuscitative Changes of Brain-Derived Neurotrophic Factor (BDNF Protein Expression: Association With Neuronal Death

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2017-01-01

    Full Text Available Aim of the study: to evaluate expression level of BDNF and its association with the postresuscitative neuronal death in highly hypoxia-sensitive brain regions.Materials and methods. Cardiac arrest in adult albino male rats was evoked by intrathoracic clamping of supracardiac bundle of vessels for 10 min. Pyramidal neurons of the hippocampus and Purkinje cells of the cerebellum were analyzed at various time points after resuscitation (days 1, 4, 7, 14. Shame-operated rats served as controls. The expression of BDNF protein was immunohistochemically determined. The BDNF expression level was determined by evalution on the base of the average optical density. The number of neurons with different BDNF expression levels and the total number of neurons per 1 mm of the layer length were computed. Image analysis systems (Intel personal computer, Olympus BX-41 microscope, ImageScopeM, ImageJ 1,48v and MS Excel 2007 software packages were used in the study. Data statistical processing was performed with the aid of Statistica 7.0 program and Kolmogorov-Smirnov λ-test, Mann-Whitney U-test and Student's t-test.Results. The dynamics of postresuscitative shifts of BDNF immunoreactivity in neuronal populations of hippocampal pyramidal cells and cerebellar Purkinje cells was established. It was shown that the level of BDNF expression within the two neuronal populations decreased, that was accompanied by neuronal death. In the Purkinje cell population the neuronal death occurred by the 4th day after resuscitation, while in the hippocampus, it occurs only by the 7th day. Notably, only BDNF-negative neurons or neurons with low level of BDNF expression died in both neuronal populations.Conclusion. The results of the study indicate the existence of an interrelation between the shifts in BDNF expression and the postresuscitative neuronal death. It was shown that only the cells with none or poor BDNF expression underwent death in highly hypoxia-sensitive neuronal

  7. CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons.

    Science.gov (United States)

    Qing, Xiaobing; Walter, Jonas; Jarazo, Javier; Arias-Fuenzalida, Jonathan; Hillje, Anna-Lena; Schwamborn, Jens C

    2017-10-01

    The p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) has been identified as the most prevalent genetic cause of familial and sporadic Parkinson's disease (PD). The Cre-LoxP recombination system has been used to correct the LRRK2-G2019S mutation in patient derived human induced pluripotent stem cells (hiPSCs) in order to generate isogenic controls. However, the remaining LoxP site can influence gene expression. In this study, we report the generation of a footprint-free LRRK2-G2019S isogenic hiPS cell line edited with the CRISPR/Cas9 and piggyBac technologies. We observed that the percentage of Tyrosine Hydroxylase (TH) positive neurons with a total neurite length of >2000μm was significantly reduced in LRRK2-G2019S dopaminergic (DA) neurons. The average branch number in LRRK2-G2019S DA neurons was also decreased. In addition, we have shown that in vitro TH positive neurons with a total neurite length of >2000μm were positive for Serine 129 phosphorylated (S129P) alpha-Synuclein (αS) and we hypothesize that S129P-αS plays a role in the maintenance or formation of long neurites. In summary, our footprint-free LRRK2-G2019S isogenic cell lines allow standardized, genetic background independent, in vitro PD modeling and provide new insights into the role of LRRK2-G2019S and S129P-αS in the pathogenesis of PD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. © 2016 Federation of European Neuroscience Societies and John

  9. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    The purpose of this research was to clone and characterize the expression pattern of a kenaf (Hibiscus cannabinus L.) F5H gene that encodes ferulate 5-hydroxylase in the phenylpropanoid pathway. Kenaf is well known as a fast growing dicotyledonous plant, which makes it a valuable biomass plant. The ...

  10. Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.

    Science.gov (United States)

    Seven, Yasin B; Perim, Raphael R; Hobson, Orinda R; Simon, Alec K; Tadjalli, Arash; Mitchell, Gordon S

    2018-04-15

    Although adenosine 2A (A 2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A 2A receptor siRNA injections. A 2A receptor siRNA injections selectively knocked down A 2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A 2A receptors relevant to A 2A receptor-induced phrenic motor facilitation. Upregulation of A 2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A 2A receptors for pMF are unknown. This is an important question since the physiological outcome of A 2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A 2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A 2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A 2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A 2A receptor knock-down was verified by a ∼45% decrease in A 2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, p

  11. FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J

    1983-01-01

    Abundant FMRFamide immunoreactivity has been found in the nervous systems of all hydrozoan, anthozoan, scyphozoan and ctenophoran species that were looked upon. This general and abundant occurrence shows that FMRFamide-like material must play a crucial role in the functioning of primitive nervous...

  12. Further RFLPs at the human tyrosine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J; Uhlhaas, S; Propping, P; Gal, A [Institut fuer Humangenetik der Universitaet, Bonn (West Germany); Mallet, J [CNRS, Gif-sur-Yvette (France)

    1988-09-26

    The human cDNA clone (Ty7) of tyrosine hydroxylase was used. A two-allele (C1 and C2) Bg1II RFLP has been described recently with bands either at 6.9 or 8.4 kb (2). In addition, a faint invariant band appears at 9.0 kb. A third Bg1II allele (C3) with a band at 8.0 kb was detected. The allele frequency was studied in 35 and 39 unrelated Caucasians. Co-dominant inheritance for both RFLPs described here was demonstrated in 6 nuclear kindreds. RFLPs were observed under normal hybridization and wash stringencies.

  13. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    Science.gov (United States)

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell

  14. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  15. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  16. Resistance of neurofilaments to degradation, and lack of neuronal death and mossy fiber sprouting after kainic acid-induced status epilepticus in the developing rat hippocampus.

    Science.gov (United States)

    Lopez-Picon, Francisco; Puustinen, Niina; Kukko-Lukjanov, Tiina-Kaisa; Holopainen, Irma E

    2004-12-01

    Neurofilament (NF) proteins, the major constituent of intermediate filaments in neurons, have an important role in cellular stability and plasticity. We have now studied the short-term (hours) and long-term (up to 1 week) effects of kainic acid (KA)-induced status epilepticus (SE) on the reactivity of NF proteins, and mossy fiber (MF) sprouting and neuronal death up to 4 weeks in 9-day-old rats. In Western blotting, the expression of the phosphorylation-independent epitopes of NF-L, NF-M, and NF-H rapidly but transiently increased after the treatment, whereas the phosphorylated NF-M remained elevated for 7 days. However, the treatment did not change the immunoreactivity of NF proteins, and no neuronal death or mossy fiber sprouting was detected at any time point. Our findings indicate seizure-induced reactivity of NF proteins but their resistance to degradation, which could be of importance in neuronal survival and may also prevent MF sprouting in the developing hippocampus.

  17. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities

    Directory of Open Access Journals (Sweden)

    Maekawa Tatsunori

    2012-04-01

    Full Text Available Abstract Background Leucine-rich repeat kinase 2 (LRRK2 is the gene responsible for autosomal-dominant Parkinson’s disease (PD, PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. Results The TG mouse expressed I2020T LRRK2 in dopaminergic (DA neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. Conclusions The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.

  18. SUBSTRATE-SPECIFICITY OF THE ALKANE HYDROXYLASE SYSTEM OF PSEUDOMONAS-OLEOVORANS GPO1

    NARCIS (Netherlands)

    van Beilen, J.B.; Kingma, Jacob; Witholt, Bernard

    1994-01-01

    We have studied the hydroxylation of a wide range of linear, branched and cyclic alkanes and alkylbenzenes by the alkane hydroxylase system of Pseudomonas oleovorans GPo1 in vivo and in vitro. In vivo hydroxylation was determined with whole cells of the recombinant PpS8141; P. putida PpS81 carrying

  19. Adrenal scan in 17-alpha-hydroxylase deficiency: false indication of adrenal adenoma

    International Nuclear Information System (INIS)

    Shore, R.M.; Lieberman, L.M.; Newman, T.J.; Friedman, A.; Bargman, G.J.

    1981-01-01

    A patient who was thought to have testicular feminization syndrome and primary aldosteronism had an adrenal scan that suggested an adrenal adenoma. After later diagnosis of 17-alpha-hydroxylase deficiency, she was treated with glucocorticoids rather than surgery. Her clinical course and a repeat adrenal scan confirmed she did not have a tumor

  20. Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine beta-hydroxylase

    DEFF Research Database (Denmark)

    Bjerrum, Ole Jannik; Helle, K B; Bock, Elisabeth Marianne

    1979-01-01

    . The dopamine beta-hydroxylases of the buffer and membrane fractions were antigenically identical, but differed in their amphiphilicity, as demonstrated by the change in precipitation patterns on removal of Triton X-100 from the gel, on charge-shift crossed immunoelectrophoresis and on crossed hydrophobic...