WorldWideScience

Sample records for hydroxylase genes lysine

  1. Antisense-induced suppression of taxoid 14β- hydroxylase gene ...

    African Journals Online (AJOL)

    The enzyme taxoid 14β-hydroxylase (14OH) directs a side-route of taxol pathway to 14β-hydroxy taxoids. Suppression of this side-route could increase the production of taxol. To suppress taxoid 14β- hydroxylase gene (14OH) expression in the Taxus × media TM3 cell line, antisense RNA inhibition approach was used in ...

  2. The human tyrosine hydroxylase gene promoter.

    Science.gov (United States)

    Kessler, Mark A; Yang, Ming; Gollomp, Kandace L; Jin, Hao; Iacovitti, Lorraine

    2003-04-10

    13.329 kilobases of the single copy human tyrosine hydroxylase (hTH) gene were isolated from a genomic library. The 5' flanking 11 kilobases fused to the reporter green fluorescent protein (GFP) drove high level expression in TH+ cells of the substantia nigra of embryonic and adult transgenic mice as determined by double label fluorescence microscopy. To provide a basis for future analysis of polymorphisms and structure-function studies, the previously unreported distal 10.5 kilobases of the hTH promoter were sequenced with an average coverage of 20-fold, the remainder with 4-fold coverage. Sequence features identified included four perfect matches to the bicoid binding element (BBE, consensus: BBTAATCYV) all of which exhibited specific binding by electrophoretic mobility shift assay (EMSA). Comparison to published sequences of mouse and rat TH promoters revealed five areas of exceptional homology shared by these species in the upstream TH promoter region -2 kb to -9 kb relative to the transcription start site. Within these conserved regions (CRs I-V), potential recognition sites for NR4A2 (Nurr1), HNF-3beta, HOXA4, and HOXA5 were shared across human, mouse, and rat TH promoters.

  3. Association between Tryptophan Hydroxylase 2 Gene Polymorphism and Completed Suicide

    Science.gov (United States)

    Fudalej, Sylwia; Ilgen, Mark; Fudalej, Marcin; Kostrzewa, Grazyna; Barry, Kristen; Wojnar, Marcin; Krajewski, Pawel; Blow, Frederic; Ploski, Rafal

    2010-01-01

    The association between suicide and a single nucleotide polymorphism (rs1386483) was examined in the recently identified tryptophan hydroxylase 2 (TPH2) gene. Blood samples of 143 suicide victims and 162 age- and sex-matched controls were examined. The frequency of the TT genotype in the TPH2 polymorphism was higher in suicide victims than in…

  4. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Marwa Kamel

    2017-01-01

    Full Text Available The role of the extracellular matrix (ECM in uterine fibroids (UF has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP and lysylpyridinoline (LP cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH and lysyl oxidases (LOX], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b and LOX. Also, increased resistance to matrix metalloproteinases (MMP proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA, growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1, and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.

  5. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  6. Tryptophan hydroxylase 2 gene and alcohol use among college students.

    Science.gov (United States)

    Gacek, Paul; Conner, Tamlin S; Tennen, Howard; Kranzler, Henry R; Covault, Jonathan

    2008-09-01

    Genes that regulate serotonin activity are regarded as promising predictors of heavy alcohol use. Tryptophan hydroxylase (TPH2) plays an important role in serotonergic neurotransmission by serving as the rate-limiting enzyme for serotonin biosynthesis in the midbrain and serotonergic neurons. Despite the link between TPH2 and serotonergic function, TPH2's role in the pathogenesis of alcohol-use disorders remains unclear. The goal of this study was to examine whether a variation in the TPH2 gene is associated with risky alcohol consumption. Specifically, this study examined whether the TPH2 G-703T polymorphism predicted alcohol consumption among college students. In two successive years, 351 undergraduates were asked to record their alcohol use each day for 30 days using an Internet-based electronic diary. Participants' DNA was collected and polymerase chain reaction genotyping was performed. Results show that alcohol consumption was not associated with the TPH2 G-703T polymorphism alone, or the interaction of TPH2 with two other candidate polymorphisms (TPH1 C218A and the SLC6A4 tri-allelic 5-HTTLPR), or negative life events. In conclusion, this study supports recent null findings relating TPH2 to drinking outcomes. It also extends these findings by showing null interactions with the TPH1 C218A polymorphism, the SLC6A4 tri-allelic 5-HTTLPR polymorphism and environmental stressors in predicting sub-clinical alcohol use among Caucasian American young adults.

  7. Structure and expression of the human Lysyl hydroxylase gene (PLOD): Introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.; Hautala, T.; Kivirikko, K.I. [Univ. of Oulu (Finland)] [and others

    1994-12-01

    Lysyl hydroxylase (EC 1.14.11.4) catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. This enzyme activity is known to be reduced in patients with the type VI variant of the Ehlers-Danlos syndrome, and the first mutations in the lysyl hydroxylase gene (PLOD) have recently been identified. We have now isolated genomic clones for human lysyl hydroxylase and determined the complete structure of the gene, which contains 19 exons and a 5{prime} flanking region with characteristics shared by housekeeping genes. The constitutive expression of the gene in different tissues further suggests that lysyl hydroxylase has an essential function. We have sequenced the introns of the gene in the region where many mutations and rearrangements analyzed to date are concentrated. Intron 9 and intron 16 show extensive homology resulting from the many Alu sequences found in these introns. Intron 9 contains five and intron 16 eight Alu sequences. The high homology and many short identical or complementary sequences in these introns generate many potential recombination sites with the gene. The delineation of the structure of the lysyl hydroxylase gene contributes significantly to our understanding of the rearrangements in the genome of Ehlers-Danlos type VI patients. 21 refs., 2 figs., 2 tabs.

  8. Seed-Specific Expression of a Lysine-Rich Protein Gene, GhLRP, from Cotton Significantly Increases the Lysine Content in Maize Seeds

    Directory of Open Access Journals (Sweden)

    Jing Yue

    2014-03-01

    Full Text Available Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.

  9. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    hydroxylase gene mutations in a Chinese vitamin-D-dependent rickets type I patient. Lihua Cao Fang Liu Yu Wang Jian Ma Shusen Wang Libo Wang Yang Zhang Chen Chen Yang Luo Hongwei Ma. Research Note Volume 90 Issue 2 August ...

  10. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    hydroxylase gene mutations in a Chinese vitamin-D-dependent rickets type I patient. LIHUA CAO1, FANG LIU2, YU WANG1, JIAN MA2, SHUSEN WANG1, LIBO WANG2, YANG ZHANG1,. CHEN CHEN1, YANG LUO1∗ and HONGWEI ...

  11. Tryptophan hydroxylase 2 gene polymorphism in anxiety and depressive disorder in kashmiri population.

    Science.gov (United States)

    Mushtaq, Raheel; Shoib, Sheikh; Shah, Tabindah; Mushtaq, Sahil

    2014-06-01

    The gene of tryptophan hydroxylase is widely recognized as a major candidate gene in many psychiatric disorders. However, no study has been done which investigates tryptophan hydroxylase 2 gene polymorphism in anxiety and depressive disorders in Kashmiri population (India). To study tryptophan hydroxylase 2 (TPH2) C 11993 A gene polymorphism in anxiety and depressive disorders. Sixty patients of depression disorder, 60 patients of anxiety disorder and 40 unrelated healthy volunteers (control) were studied in a case control design. Polymorphism was determined using polymerase chain reaction (PCR) and agarose gel electrophoresis after digestion with HAP II enzyme. Genotypes and allele frequencies were compared using Chi-square tests, Fischer's exact test, odds ratio, 95% confidence interval (C.I) and p-value of <0.05 was considered to be statistical significant. The mean age ± SD of anxiety, depression and control group was 32.73±10.99, 32.20±10 and 29.75±10.12 respectively and the difference was found to be statistically non significant (p=0.349).The mean HAM-A (Hamilton rating scale for anxiety) score and HAM-D (Hamilton rating scale for depression) score was high in both groups (anxiety and depression) and found to be statistically significant (p=0.001).Depression group had AA genotype (55.2%) than control (37.5%) and was found to be statistically non significant (p=0.890).Comparison of allelic frequency revealed no association of A allele in anxiety group (76.67%) compared with control (75.5%) and was found to be statistically non significant (p= 0.866), OR 1.09 (0.56-2.11). TPH2C 11993 A gene was not found to be associated with major depressive disorder (MDD) and anxiety disorder in Kashmiri population.

  12. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Junfeng Chen

    Full Text Available Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD using transcriptome sequencing (RNA-seq. The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease.

  13. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene.

    Science.gov (United States)

    Chang, Shu; Berman, Judit; Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.

  14. Cloning and Functional Characterization of the Maize (Zea mays L. Carotenoid Epsilon Hydroxylase Gene.

    Directory of Open Access Journals (Sweden)

    Shu Chang

    Full Text Available The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73 and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1 gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.

  15. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  16. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  17. Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.

    Science.gov (United States)

    Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine

    2005-08-01

    Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.

  18. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation.

    Directory of Open Access Journals (Sweden)

    Benoit Guillemette

    2011-03-01

    Full Text Available Methylation of histone H3 lysine 4 (H3K4me is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP, we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3, a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS, which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me.

  19. The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat

    Science.gov (United States)

    The Toxoplasma gondii genome contains two aromatic amino acid hydroxylase genes, AAH1 and AAH2, which encode proteins that produce L-DOPA, which can serve as a precursor of catecholamine neurotransmitters. It has been suggested that this pathway elevates host dopamine levels thus making infected rod...

  20. Sequence variation at the phenylalanine hydroxylase gene in the British Isles

    Energy Technology Data Exchange (ETDEWEB)

    Tyfield, L.A. [Southmead Hospital, Bristol (United Kingdom)]|[Univ. of Bristol (United Kingdom); Stephenson, A. [Southmead Hospital, Bristol (United Kingdom); Cockburn, F. [Royal Hospital for Sick Children, Glasgow (United Kingdom)] [and others

    1997-02-01

    Using mutation and haplotype analysis, we have examined the phenylalanine hydroxylase gene in the phenylketonuria populations of four geographical areas of the British Isles: the west of Scotland, southern Wales, and southwestern and southeastern England. The enormous genetic diversity of this locus within the British Isles is demonstrated in the large number of different mutations characterized and in the variety of genetic backgrounds on which individual mutations are found. Allele frequencies of the more common mutations exhibited significant nonrandom distribution in a north/south differentiation. Differences between the west of Scotland and southwestern England may be related to different events in the recent and past histories of their respective populations. Similarities between southern Wales and southeastern England are likely to reflect the heterogeneity that is seen in and around two large capital cities. Finally, comparison with more recently colonized areas of the world corroborates the genealogical origin by range expansion of several mutations. 38 refs., 2 tabs.

  1. 2 Novel deletions of the sterol 27-hydroxylase gene in a Chinese Family with Cerebrotendinous Xanthomatosis

    Directory of Open Access Journals (Sweden)

    Tian Di

    2011-10-01

    Full Text Available Abstract Background Cerebrotendinous xanthomatosis (CTX is a rare lipid-storage disease. We investigated the clinic manifestation, histopathology and sterol 27-hydroxylase gene (CYP27A1 in a Chinese family with Cerebrotendinous Xanthomatosis (CTX. Case Presentation A 36-year-old female with typical CTX clinical manifestation had Spindle-shaped lipid crystal clefts in xanthomas and "onion-like demyelination" in sural nerve. The patient was compound heterozygote carrying two deletions in exon 1 (c.73delG and exon 2 (c.369_375delGTACCCA. The family memebers were carriers. Conclusions A Chinese family with Cerebrotendinous Xanthomatosis had typical clinical manifestation. CYP27A1 mutations were found in the proband and all other family members.

  2. Enhanced efficiency of lactosylated poly-L-lysine-mediated gene transfer into cystic fibrosis airway epithelial cells

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Knollen, W.J.W.; Schembri, F.M.; Gerwig, G.J.; Glick, M.C.; Scanlin, T.F.

    1999-01-01

    Lactosylated poly-L-lysine is a nonviral vector that transfers genes into airway epithelial cells, including those from individuals with cystic fibrosis (CF). Substitution of 40% of the -amino groups of poly-L-lysine with lactosyl residues not only provided a ligand for receptor-mediated

  3. Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F.; Kimura, A.; Iwanaga, T.; Shimozawa, K.; Yata, J.; Sasazuki,T.

    1987-11-01

    Genomic DNAs from twelve Japanese patients with steroid 21-hydroxylase deficiency were analyzed by Southern blot hybridization. A 3.7-kilobase (kb) Taq I and a 1.7-kb Pvu II restriction endonuclease fragment that correspond to a 21-OHase B gene were absent from the DNA of two unrelated patients with the salt-wasting form of the disease. However, a 10.5-kb Bgl II fragment corresponding to the region encompassing the 21-OHase B gene was still present in these two patients. The genes encoding 21-OHase were cloned from one of these two patients, who was homozygous by descent for HLA-A26;B39;C4A3;C4B1;DR4. Restriction endonuclease mapping as well as partial nucleotide sequencing analysis revealed that the 21-OHase B gene of the patient has been converted to the pseudogene, 21-OHase A, as far as the critical 0.5-kb sequence was concerned. Thus, the defect was due to both chromosomes each carrying two copies of 21-OHase A pseudogene and lacking functional 21-OHase B gene.

  4. Cloning and characterization of cinnamate-4-hydroxylase gene from Rubus occidentalis L

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Mi; Lee, Seung Sik; An, Byung Chull; Barampuram, Shyamkuma; Kim, Jae Sung; Chung, Byung Yeoup [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Cho, Jae Young [Dept. of Applied Life Sciences, Chonbuk National University, Jeonju (Korea, Republic of); Lee, In Chul [Senior Industry Cluster Agency, Youngdong University, Youngdong (Korea, Republic of)

    2008-08-15

    Cinnamate-4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which leads a variety of secondary metabolites to participate in differentiation and protection of plant against environmental stresses. In this study, we isolated a full-length cDNA of the C4H gene from a black raspberry (Rubus occidentalis L.), using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of the RocC4H gene contained a 1,515 bp open reading frame (ORF) encoding a 504 amino acid protein with a calculated molecular weight of about 57.9 kDa and an isoelectric point (pI) value of 9.1. The genomic DNA analysis revealed that RocC4H gene had three exons and two introns. By multiple sequence alignment, RocC4H protein was highly homologous with other plant C4Hs, and the cytochrome P450-featured motifs, such as the heme-binding domain, the T-containing binding pocket motif (AAIETT), the ERR triad, and the tetrapeptide (PPGP) hinge motif, were highly conserved. Southern blot analysis revealed that RocC4H is a single copy gene in R. occidentalis.

  5. Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli.

    Science.gov (United States)

    Imaizumi, Akira; Takikawa, Rie; Koseki, Chie; Usuda, Yoshihiro; Yasueda, Hisashi; Kojima, Hiroyuki; Matsui, Kazuhiko; Sugimoto, Shin-Ichi

    2005-04-20

    Growth and rate, at which fermentation products are formed in cells, generally decreases during the stationary phase as a result of changes in gene expression. We focused on the rmf gene, which encodes the ribosome modulation factor protein, as a target for strain modification in order to improve the rate of L-lysine production in Escherichia coli. Increased expression of the rmf gene during the stationary phase was confirmed under various cultivation conditions using DNA macroarray analysis. Mutants with disrupted rmf were then generated from an L-lysine-producing E. coli strain. The rates of L-lysine accumulation and production were significantly increased in disruptants that were cultivated with excess phosphate. By contrast, a higher biomass was generated in disruptants that were grown under limited phosphate conditions. These results demonstrate that disruption of the rmf gene significantly affects L-lysine production and growth in E. coli.

  6. Allele-specific marker development and selection efficiencies for both flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes in soybean subgenus soja.

    Science.gov (United States)

    Guo, Yong; Qiu, Li-Juan

    2013-06-01

    Color is one of the phenotypic markers mostly used to study soybean (Glycine max L. Merr.) genetic, molecular and biochemical processes. Two P450-dependent mono-oxygenases, flavonoid 3'-hydroxylase (F3'H; EC1.14.3.21) and flavonoid 3',5'-hydroxylase (F3'5'H, EC1.14.13.88), both catalyzing the hydroxylation of the B-ring in flavonoids, play an important role in coloration. Previous studies showed that the T locus was a gene encoding F3'H and the W1 locus co-segregated with a gene encoding F3'5'H in soybean. These two genetic loci have identified to control seed coat, flower and pubescence colors. However, the allelic distributions of both F3'H and F3'5'H genes in soybean were unknown. In this study, three novel alleles were identified (two of four alleles for GmF3'H and one of three alleles for GmF3'5'H). A set of gene-tagged markers was developed and verified based on the sequence diversity of all seven alleles. Furthermore, the markers were used to analyze soybean accessions including 170 cultivated soybeans (G. max) from a mini core collection and 102 wild soybeans (G. soja). For both F3'H and F3'5'H, the marker selection efficiencies for pubescence color and flower color were determined. The results showed that one GmF3'H allele explained 92.2 % of the variation in tawny and two gmf3'h alleles explained 63.8 % of the variation in gray pubescence colors. In addition, two GmF3'5'H alleles and one gmF3'5'h allele explained 94.0 % of the variation in purple and 75.3 % in white flowers, respectively. By the combination of the two loci, seed coat color was determined. In total, 90.9 % of accessions possessing both the gmf3'h-b and gmf3'5'h alleles had yellow seed coats. Therefore, seed coat colors are controlled by more than two loci.

  7. Molecular cloning and characterization of a flavanone-3-hydroxylase gene from rubus occidentalis L

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; An, Byung Chull; Barampuram, Shyamkumar; Kim, Jae Sung; Chung, Jae Sung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Cho, Jae Young [Dept. of Applied Life Sciences, Chonbuk National University, Jeonju (Korea, Republic of); Lee, In Chul [Senior Industry Cluster Agency, Youngdong University, Youngdong (Korea, Republic of)

    2008-08-15

    Flavanone-3-hydroxylase (F3H) is one of the key enzymes for the biosynthesis of flavonals, anthocyanins, catechins and proanthocyanins. F3H catalyzes the 3β-hydroxylation of (2S)-flavonones to form (2R, 3R)-dihydroflavonols. In this report, we isolated a full-length cDNA of RocF3H from black raspberry (Rubus occidentalis L.) using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of RocF3H contains a 1,098 bp open reading frame (ORF) encoding a 365 amino acid protein with a calculated molecular weight of about 41.1 kDa and isoelectric point (pI) of 5.45. The genomic DNA analysis revealed that the RocF3H gene had three exons and two introns. Comparison of the deduced amino acid sequence of the RocF3H with other F3Hs revealed that the protein is highly homologous with various plant species. The conserved amino acids ligating the ferrous iron and the residues participating in the 2-oxoglutarate binding (R-X-S) were found in RocF3H at the similar positions to other F3Hs. Southern blot analysis indicated that RocF3H exist a multi-gene family. The isolation of RocF3H gene will be helpful to further study the role of F3H gene in the biosynthesis of flavonoids in R. occidnetalis.

  8. Tryptophan hydroxylase gene 1 (TPH1) variants associated with cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid concentrations in healthy volunteers

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas

    2010-01-01

    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin synthesis. We investigated possible relationships between five TPH1 gene polymorphisms and cerebrospinal fluid (CSF) concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), the major dopamine...

  9. Diversifying selection on flavanone 3-hydroxylase and isoflavone synthase genes in cultivated soybean and its wild progenitors.

    Directory of Open Access Journals (Sweden)

    Hao Cheng

    Full Text Available Soybean isoflavone synthase (IFS and flavanone 3-hydroxylase (F3H are two key enzymes catalyzing the biosynthesis of isoflavonoids and flavonoids, both of which play diverse roles in stress responses. However, little is known about the evolutionary pattern of these genes in cultivated soybean and its wild progenitors. Herein, we investigated the nucleotide polymorphisms in Isoflavone synthase (IFS1, IFS2 and Flavanone 3-hydroxylase (F3H2 genes from 33 soybean accessions, including 17 cultivars (Glycine max and 16 their wild progenitors (Glycine soja. Our data showed that the target genes shared the levels of nucleotide polymorphism with three reference genes involved in plant-microbe interactions, but possessed a much higher nucleotide polymorphism than other reference genes. Moreover, no significant genetic differentiation was found between cultivated soybean and its wild relatives in three target genes, despite of considering bottleneck and founder effect during domestication. These results indicate that IFS and F3H genes could have experienced gene introgressions or diversifying selection events during domestication process. Especially, F3H2 gene appears to evolve under positive selection and enjoy a faster evolutionary rate than IFS1 and IFS2 genes.

  10. Serotonin Transporter and Tryptophan Hydroxylase Gene Variations Mediate Working Memory Deficits of Cocaine Users.

    Science.gov (United States)

    Havranek, Michael M; Vonmoos, Matthias; Müller, Christian P; Büetiger, Jessica R; Tasiudi, Eve; Hulka, Lea M; Preller, Katrin H; Mössner, Rainald; Grünblatt, Edna; Seifritz, Erich; Quednow, Boris B

    2015-12-01

    Cocaine users consistently develop working memory (WM) impairments but the mediating molecular mechanisms are unknown so far. Recent evidence suggests that the serotonin (5-HT) system is altered by chronic cocaine use, while also being involved in WM processing. Thus, we investigated the effects of genetic variations impacting 5-HT activity and of peripheral 5-HT transporter (5-HTT) mRNA expression on WM performance in cocaine users and stimulant naive controls. Two hundred twenty participants (126 cocaine users, 94 controls) were assessed with visuospatial, spatial, and verbal WM tasks, genotyped for the length polymorphism in the promoter region of the 5-HTT (5-HTTLPR), the variable number of tandem repeats in the second intron of the 5-HTT (VNTR In2), two single-nucleotide polymorphisms (rs4570625 and rs1386497) in the tryptophan hydroxylase-2 (TPH2) gene and quantified for peripheral 5-HTT mRNA expression in whole-blood samples. Several significant gene × environment interactions between 5-HT genotypes and cocaine use on WM emerged: in cocaine users, the long/long (5-HTTLPR), 9+10/9+10 (VNTR In2) and C/C (TPH2 rs1386497) genotypes were risk alleles for WM impairments, whereas in healthy controls these polymorphisms were associated with improved WM performance. Analogously, high 5-HTT mRNA levels were associated with worse executive WM performance in cocaine users but with increased performance in controls. These gene × environment interactions suggest that the 5-HT system has an important role in the development of cognitive deficits in chronic cocaine users. Hence, pharmacological compounds targeting 5-HT neurotransmission might be promising for the treatment of cognitive deficits in cocaine dependence.

  11. Evolutionary conservation of an atypical glucocorticoid-responsive element in the human tyrosine hydroxylase gene.

    Science.gov (United States)

    Sheela Rani, C S; Soto-Pina, Alexandra; Iacovitti, Lorraine; Strong, Randy

    2013-07-01

    The human tyrosine hydroxylase (hTH) gene has a 42 bp evolutionarily conserved region designated (CR) II at -7.24 kb, which bears 93% homology to the region we earlier identified as containing the glucocorticoid response element, a 7 bp activator protein-1 (AP-1)-like motif in the rat TH gene. We cloned this hTH-CRII region upstream of minimal basal hTH promoter in luciferase (Luc) reporter vector, and tested glucocorticoid responsiveness in human cell lines. Dexamethasone (Dex) stimulated Luc activity of hTH-CRII in HeLa cells, while mifepristone, a glucocorticoid receptor (GR) antagonist, prevented Dex stimulation. Deletion of the 7 bp 5'-TGACTAA at -7243 bp completely abolished the Dex-stimulated Luc activity of hTH-CRII construct. The AP-1 agonist, tetradeconoyl-12,13-phorbol acetate (TPA), also stimulated hTH promoter activity, and Dex and TPA together further accentuated this response. Chromatin immunoprecipitation assays revealed the presence of both GR and AP-1 proteins, especially Jun family members, at this hTH promoter site. Dex did not stimulate hTH promoter activity in a catecholaminergic cell line, which had low endogenous GR levels, but did activate the response when GR was expressed exogenously. Thus, our studies have clearly identified a glucocorticoid-responsive element in a 7 bp AP-1-like motif in the promoter region at -7.24 kb of the human TH gene. © 2013 International Society for Neurochemistry.

  12. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency

    Science.gov (United States)

    Kim, Chun-Hyung; Zabetian, Cyrus P.; Cubells, Joseph F.; Cho, Sonhae; Biaggioni, Italo; Cohen, Bruce M.; Robertson, David; Kim, Kwang-Soo

    2002-01-01

    Norepinephrine (NE), a key neurotransmitter of the central and peripheral nervous systems, is synthesized by dopamine beta-hydroxylase (DBH) that catalyzes oxidation of dopamine (DA) to NE. NE deficiency is a congenital disorder of unknown etiology, in which affected patients suffer profound autonomic failure. Biochemical features of the syndrome include undetectable tissue and circulating levels of NE and epinephrine, elevated levels of DA, and undetectable levels of DBH. Here, we report identification of seven novel variants including four potentially pathogenic mutations in the human DBH gene (OMIM 223360) from analysis of two unrelated patients and their families. Both patients are compound heterozygotes for variants affecting expression of DBH protein. Each carries one copy of a T-->C transversion in the splice donor site of DBH intron 1, creating a premature stop codon. In patient 1, there is a missense mutation in DBH exon 2. Patient 2 carries missense mutations in exons 1 and 6 residing in cis. We propose that NE deficiency is an autosomal recessive disorder resulting from heterogeneous molecular lesions at DBH. Copyright 2002 Wiley-Liss, Inc.

  13. Functional polymorphism (C-824T) of the tyrosine hydroxylase gene affects IQ in schizophrenia.

    Science.gov (United States)

    Horiguchi, Mieko; Ohi, Kazutaka; Hashimoto, Ryota; Hao, Qinyu; Yasuda, Yuka; Yamamori, Hidenaga; Fujimoto, Michiko; Umeda-Yano, Satomi; Takeda, Masatoshi; Ichinose, Hiroshi

    2014-06-01

    Progressive cognitive decline has been an important issue in the treatment and care of patients with schizophrenia. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the biosynthesis of catecholamine, including dopamine and noradrenaline. In this report, we examined a possible association of a genetic variant in the TH promoter region. Association of a genetic variant in the TH promoter region, C-824T (rs10770141), with intellectual ability in 132 patients with schizophrenia and 282 healthy subjects was examined. The transcriptional activity of the plasmids harboring the TH promoter region with either C or T nucleotide at -824 was assayed using a luciferase gene as a reporter. We found significant effects of the genotype on the full-scale IQ, verbal IQ, and performance IQ, in patients with schizophrenia. IQ was lower in individuals with the C/C genotype than those with T carriers. The plasmid with the T allele at -824 showed higher transcriptional activity than that with the C allele in a transient transfection experiment using a luciferase gene as a reporter, implying that the T carriers may have higher TH activities and retain higher levels of catecholamines in the brain. The present data suggest that the biosynthesis of catecholamine by the action of TH should be deeply involved in decreased intellectual ability in patients with schizophrenia. This is the first report, as far as we know, showing a correlation between TH expression and IQ in humans. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  14. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  15. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    Science.gov (United States)

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  16. Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis).

    Science.gov (United States)

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-02-22

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3'H, designated as CsF3'H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3'H was highly homologous with the characterized F3'Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3'H-specific conserved motifs were discovered in the protein sequence of CsF3'H. Enzymatic analysis of the heterologously expressed CsF3'H in yeast demonstrated that tea F3'H catalyzed the 3'-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min(-1), respectively. Transcription level of CsF3'H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3',4'-flavan-3-ols, 3',4',5'-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3'H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3'H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3'H in the biosynthesis of 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols in tea leaves.

  17. Hyperglycemia Induces a Dynamic Cooperativity of Histone Methylase and Demethylase Enzymes Associated With Gene-Activating Epigenetic Marks That Coexist on the Lysine Tail

    National Research Council Canada - National Science Library

    Daniella Brasacchio; Jun Okabe; Christos Tikellis; Aneta Balcerczyk; Prince George; Emma K. Baker; Anna C. Calkin; Michael Brownlee; Mark E. Cooper; Assam El-Osta

    2009-01-01

    Hyperglycemia Induces a Dynamic Cooperativity of Histone Methylase and Demethylase Enzymes Associated With Gene-Activating Epigenetic Marks That Coexist on the Lysine Tail Daniella Brasacchio 1 , Jun...

  18. Novel expression of the tyrosine hydroxylase gene requires both acidic fibroblast growth factor and an activator.

    Science.gov (United States)

    Du, X; Stull, N D; Iacovitti, L

    1994-12-01

    Substances found in the soluble extract of muscle can alter the differentiative fate of certain brain neurons in culture by triggering novel expression of the gene for the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) (Iacovitti et al., 1989; Iacovitt, 1991). In this study, we demonstrate that TH induction in cultured noncatecholamine neurons from the mouse striatum requires the cooperative interaction of at least two substances found in muscle. Purification studies, combined with biological assay, revealed that one necessary component is acidic fibroblast growth factor (aFGF), and the other, an unidentified molecule(s) of < 10 kDa molecular weight that activated aFGF. Thus, muscle-derived aFGF, if incubated in the presence but not the absence of the < 10 kDa fraction of muscle, induced a dose-dependent increase in the number of striatal neurons that novelly express TH. This expression was blocked by prior incubation and protein A precipitation of the factor with polyclonal antibodies to aFGF (1:200-1:1000). Similar to muscle-purified aFGF, commercial preparations of native bovine and human recombinant aFGF (0.1-100 ng/ml) were potent inducers of TH when coincubated with the < 10 kDa activator. In contrast, basic FGF produced little and FGF-7 no induction of TH. Unlike the unidentified activating agent in muscle, heparin (20-500 mU), a known activator of aFGF, did not potentiate the factor's TH-inducing activity. Nonetheless, heparatinase (100 mU) prevented TH induction by aFGF and its activator, indicating that binding of heparan sulfated proteoglycans is necessary for the effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2013-01-01

    Full Text Available Abstract Background Tryptophan hydroxylase-2 (TPH2 is a potential candidate gene for screening tic disorder (TD. Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR =3.077, 95% confidence interval (CI: 1.273–7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153–9.040; P = 0.020. The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS than those in controls among the male children (OR = 1.684, 95%: 1.097–2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139–9.513; P = 0.022. We also found that genotype distributions of both SNPs were different between the Asian and European populations. Conclusions Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD,these findings need to be confirmed by studies in much larger samples.

  20. Multiple signaling pathways direct the initiation of tyrosine hydroxylase gene expression in cultured brain neurons.

    Science.gov (United States)

    Du, X; Iacovitti, L

    1997-10-15

    Previous studies have demonstrated that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a second co-activator molecule can novelly induce expression of the CA biosynthetic enzyme tyrosine hydroxylase (TH) in non-TH expressing neurons of the striatum. Several co-activators have been identified, including substances present in L6 muscle cell extract (X. Du et al., J. Neurosci. 14 (1994) 7688-7694) catecholamines, such as dopamine (DA) (X. Du and L. Iacovitti, J. Neurosci. 15 (1995) 5420-5427; X. Du et al., Brain Res. 680 (1995) 229-233) and activators of protein kinase C (PKC) such as TPA (X. Du and L. Iacovitti, J. Neurochem. 68 (1997) 564-569). In the present study, we investigated whether activators of the protein kinase A (PKA) pathway also serve as effective co-activators of aFGF in the induction of TH gene expression. In addition, the combinatorial effects of the various TH-inducing agents were also evaluated. We found that, as with other co-activating molecules, the PKA stimulants IBMX and forskolin had no TH-inducing capacity when administered alone. However, co-treatment of 10 ng/ml aFGF with either (250 microM) IBMX or (10 microM) forskolin resulted in the novel expression of TH in 25% of plated neurons. The number of TH-expressing neurons was increased to 55% in aFGF-treated cultures co-incubated with aFGF and both (250 microM) IBMX and (10 microM) forskolin. Time course studies indicated that TH induction was rapid (peaking within 24 h) and enduring (lasting 4 days in culture). Induction of TH by aFGF and IBMX/forskolin was partially blocked by inhibitors of protein kinase, such as H7, H8 and H89, as well as pretreatment with protein (cyclohexamide) or RNA synthesis (amanitin and actinomycin D) inhibitors. The concomitant addition of combinations of co-activator molecules (DA, TPA and IBMX/forskolin) and aFGF resulted in the additive induction of TH. Maximal expression of TH (80% of striatal neurons) was accomplished when

  1. Childhood asthma and spirometric indices are associated with polymorphic markers of two vitamin D 25-hydroxylase genes.

    Science.gov (United States)

    Leung, Ting Fan; Wang, Susan Shuxin; Tang, Man Fung; Kong, Alice Pik-Shan; Sy, Hing Yee; Hon, Kam Lun; Chan, Juliana Chung-ngor; Wong, Gary Wing-kin

    2015-06-01

    Polymorphic markers of vitamin D pathway genes have been associated with asthma traits in different White populations. This study investigated the relationship between asthma phenotypes and single nucleotide polymorphisms (SNPs) of vitamin D receptor (VDR), vitamin D binding protein (GC), two 25-hydroxylases (CYP2R1 and CYP27A1), and 1α-hydroxylase (CYP27B1) in Hong Kong Chinese children. 23 SNPs of the five vitamin D pathway genes were successfully genotyped in 914 asthmatic children and 1231 non-allergic controls. Genotypic and haplotypic associations with asthma phenotypes (diagnosis, spirometric indices, total IgE, and eosinophil percentage) were analyzed by multivariate regression. Generalized multifactor dimensionality reduction was used to detect epistatic interactions between SNPs for asthma phenotypes. Several SNPs of CYP27A1, CYP27B1, GC, and CYP2R1 were associated with asthma or spirometric indices, although only the association between FEV1 and CYP2R1 rs7935792 passed Bonferroni correction (p = 2.73 × 10(-4) ). Patients with CC genotype of rs7935792 had higher FEV1 than those with the other two genotypes. Asthma was also associated with TT haplotype of CYP27A1 and AGGATA haplotype of CYP2R1 (p = 0.021 and 0.024, respectively). Besides, strong association was found between FEV1 and GATAG of CYP2R1 (β = 13.37, p = 4.83 × 10(-4) ). GMDR failed to identify any 2-locus to 4-locus interaction that modulated asthma or spirometric indices. Several SNPs and haplotypes of CYP2R1 are associated with asthma diagnosis and FEV1 in children. Asthma is also modestly associated with a CYP27A1 haplotype. These two 25-hydroxylase genes may be genetic determinants for asthma phenotypes in children. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang Rongqin; Liu Shuhuan; Shao Kun; Han Liang; Ke Weilun; Liu Yang; Li Jianfeng; Huang Shixian; Jiang Chen, E-mail: jiangchen@shmu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2010-07-02

    Dendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes. The result of gel retardation assay showed that pDNA could be effectively packed by all the vectors at a DGLs to pDNA weight ratio greater than 2. An increase in the PEGylation extent of vectors resulted in a decrease in the incorporation efficiency and cytotoxicity of complexes in 293 cells, which also decreased the zeta potential a little but did not affect the mean diameter of complexes. Higher generation of DGLs could mediate higher gene transfection in vitro. Confocal microscopy and cellular uptake inhibition studies demonstrated that caveolae-mediated process and macropinocytosis were involved in the cellular uptake of DGLs-based complexes. Also the results indicate that proper PEGylated DGLs could mediate efficient gene transfection, showing their potential as an alternate biodegradable vector in the field of nonviral gene delivery.

  3. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors

    Science.gov (United States)

    Huang, Rongqin; Liu, Shuhuan; Shao, Kun; Han, Liang; Ke, Weilun; Liu, Yang; Li, Jianfeng; Huang, Shixian; Jiang, Chen

    2010-07-01

    Dendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes. The result of gel retardation assay showed that pDNA could be effectively packed by all the vectors at a DGLs to pDNA weight ratio greater than 2. An increase in the PEGylation extent of vectors resulted in a decrease in the incorporation efficiency and cytotoxicity of complexes in 293 cells, which also decreased the zeta potential a little but did not affect the mean diameter of complexes. Higher generation of DGLs could mediate higher gene transfection in vitro. Confocal microscopy and cellular uptake inhibition studies demonstrated that caveolae-mediated process and macropinocytosis were involved in the cellular uptake of DGLs-based complexes. Also the results indicate that proper PEGylated DGLs could mediate efficient gene transfection, showing their potential as an alternate biodegradable vector in the field of nonviral gene delivery.

  4. Transcription and epigenetic profile of the promoter, first exon and first intron of the human tyrosine hydroxylase gene.

    Science.gov (United States)

    Romano, Gaetano; Macaluso, Marcella; Lucchetti, Chiara; Iacovitti, Lorraine

    2007-05-01

    The transcriptional and chromatin profile of the promoter, first exon and first intron of the human TH gene were analyzed in human neuroblastoma BE(2)-C-16 and human renal carcinoma 293FT cell lines. The latter is a cell culture system that is not permissive for TH gene expression, whereas the former has a 50% cell fraction that tests positive for TH. The engineering of a 6.3 kb recombinant human TH promoter revealed the presence of repressors of transcription between positions (-6,244/-194). The addition of a 1.2 kb fragment of the first intron of the human TH gene (+730/+1,653) enhanced transcriptional activity of the recombinant promoter. However, both constructs were not specific for TH-positive BE(2)-C-16 cells. Chromatin immunoprecipitation (Chip) analysis was carried out on BE(2)-C-16 and 293FT cells to probe sequences of promoter, first exon and first intron of the human TH gene from position (-448/+1,204). The presence of nucleosomes was observed approximately from position (-20/+473) in both cell lines. Chip analysis was then conducted to determine the acetylation of various lysine residues of H3 and H4 in both cell lines. All analyzed lysine residues of H3 and H4 were acetylated in BE(2)-C-16 cells, whereas 293FT cells tested positive for acetylation only in the external lysine residues of the histone tail. Our data are compatible with an active TH gene expression in a 50% cell fraction of BE(2)-C-16 cells. Further analysis of epigenetic programming might lead to the identification of the factors that determine TH gene expression specifically in dopaminergic neurons. (c) 2007 Wiley-Liss, Inc.

  5. Mutation R96W in cytochrome P450c17 gene causes combined 17{alpha}-hydroxylase/17-20-lyase deficiency in two french canadian patients

    Energy Technology Data Exchange (ETDEWEB)

    LaFlamme, N.; Leblanc, J.F.; Mailloux, J. [Laval Univ., Quebec (Canada)

    1996-01-01

    Congenital adrenal hyperplasia (CAH) is the most frequent cause of adrenal insufficiency and ambiguous genitalia in newborn children. In contrast to CAH caused by 21{alpha}-hydroxylase and 11{beta}-hydroxylase deficiencies, which impairs steroid formation in the adrenal exclusively, 17{alpha}-hydroxylase/17,20-lyase deficiency impairs steroid biosynthesis in the adrenals and gonads. The sequence of CYP17 gene was determined by direct sequencing of asymmetric PCR products in two French-Canadian 46,XY pseudohermaphrodite siblings suffering from combined 17{alpha}-hydroxylase/17,20-lyase deficiency. The two patients are homozygous for the novel missense mutation R96W caused by a C to T transition converting codon Arg{sup 96} (CGG) into a Trp (TGG) in exon 1. Both parents are heterozygous for this missense mutation. We assessed the effect of the R96W mutation on 17{alpha}-hydroxylase/17,20-lyase activity by analysis of mutant enzyme, generated by site-directed mutagenesis, expressed in COS-1 cells. The presence of R96W substitution almost completely abolished the activity of the mutant protein. The present findings provide a molecular explanation for the signs and symptoms of combined 17 {alpha}-hydroxylase/17,20-lyase deficiency in these two patients and provide useful information on the structure-activity relationships of the P450c17 enzyme. 31 refs., 4 figs., 1 tab.

  6. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  7. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy

    NARCIS (Netherlands)

    C.T. Farrar (Christian T.); J.S. Buhrman (Jason); G. Liu (Guanshu); A. Kleijn (Anne); M.L.M. Lamfers (Martine); M.T. McMahon (Michael T.); A.A. Gilad (Assaf A.); G. Fulci (Giulia)

    2015-01-01

    textabstractPurpose: To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex-derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b)

  8. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene.

    Science.gov (United States)

    Moreno-Pérez, Antonio J; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2011-05-15

    Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    Science.gov (United States)

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  10. Screening non-classical 21-hydroxylase gene deficiency from patients diagnosed as polycystic ovary syndrome by gene assay

    Directory of Open Access Journals (Sweden)

    Jie HU

    2016-04-01

    Full Text Available Objective  To screen non-classical 21-hydroxylase deficiency (NC-21OHD from patients diagnosed as polycystic ovary syndrome (PCOS by gene assay. Methods  Ninety-eight patients with PCOS were enrolled according to 2003 Rotterdam criteria from Department of Endocrinology, Tangdu Hospital of Fourth Military Medical University, and they were divided into three groups according to the modified Ferriman-Gallway (mF-G score as follows: group A with score 0-2; group B with score 3-5, and group C with score ≥6. Meanwhile, 30 healthy subjects from the Medical Center of the Hospital were recruited as control group. Peripheral blood of all subjects were collected for extracting DNA, the CYP21A2 gene were amplified by 5 pairs of specific primers, and then the PCR products were sequenced by Shanghai Sangon Co. The subjects would accept test for serum cortisol and adrenocorticotropic hormone (ACTH at 8:00am if their CYP21A2 was proved to be abnormal. Results  Thirty subjects of control group had no any defects in CYP21A2, but 5 of 98 patients with PCOS were proved to be deficient in CYP21A2, and the genotypes were V281L/920-921insT (P1, V281L/I230M (P2, V281L/Normal (P3, P4, P5, respectively, and all of them were heterozygous mutations. The incidences of NC-21OHD in group C and B were 28.6% and 3.3%, respectively. Genotype P1 had been identified to belong to NC-21OHD, which was consistent with its clinical phenotype. All genotypes P3, P4 and P5 belonged to carriers. But for P2, since I230M hadn't been reported in literature, the patient with V281L/I230M couldn't be classified now. Serum biochemical results showed that only in P1 the cortisol was close to the normal lower level, and ACTH was close to the normal upper limit of the reported level in the literature, and the remainders were all normal. Conclusions  Although PCOS and NC-21OHD are very similar in clinical manifestations, they are different completely in the pathogenesis and treatment. So it

  11. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives.

    Science.gov (United States)

    Jin, Ji-Qiang; Ma, Jian-Qiang; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2017-03-01

    Functional allelic variants of the flavonoid 3',5'-hydroxylase (F3'5'H) gene provides new information of F3'5'H function of tea plant and its relatives. This insight may serve as the foundation upon which to advance molecular breeding in the tea plant. Catechins are the active components of tea that determine its quality and health attributes. This study established the first integrated genomic strategy for deciphering the genetic basis of catechin traits of tea plant. With the RNA-sequencing analysis of bulked segregants representing the tails of a F1 population segregated for total catechin content, we identified a flavonoid 3',5'-hydroxylase (F3'5'H) gene. F3'5'H had one copy in the genomic DNA of tea plant. Among 202 tea accessions, we identified 120 single nucleotide polymorphisms (SNPs) at F3'5'H locus. Seventeen significant marker-trait associations were identified by association mapping in multiple environments, which were involved in 10 SNP markers, and the traits including the ratio of di/tri-hydroxylated catechins and catechin contents. The associated individual and combination of SNPs explained 4.5-25.2 and 53.0-63.0% phenotypic variations, respectively. In the F1 population (validation population), the catechin trait variation percentages explained by F3'5'H diplotype were 6.9-74.3%. The genotype effects of ten functional SNPs in the F1 population were all consistent with the association population. Furthermore, the function of SNP-711/-655 within F3'5'H was validated by gene expression analysis. Altogether, our work indicated functional SNP allelic variants within F3'5'H governing the ratio of di/tri-hydroxylated catechins and catechin contents. The strong catechin-associated SNPs identified in this study can be used for future marker-assisted selection to improve tea quality.

  12. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  13. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: a multi-centre case-control study and meta-analysis

    DEFF Research Database (Denmark)

    Saetre, Peter; Lundmark, Per; Wang, August

    2010-01-01

    Serotonin (5-hydroxytryptamin; 5-HT) alternations has since long been suspected in the pathophysiology of schizophrenia. Tryptophan hydroxylase (tryptophan 5-monooxygenase; TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT, and sequence variation in intron 6 of the TPH1 gene has been...

  14. Serotonin and Early Cognitive Development: Variation in the Tryptophan Hydroxylase 2 Gene Is Associated with Visual Attention in 7-Month-Old Infants

    Science.gov (United States)

    Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho

    2011-01-01

    Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…

  15. Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus.

    Science.gov (United States)

    Stepansky, Asya; Yao, Youli; Tang, Guiliang; Galili, G

    2005-02-01

    Lysine catabolism in plants is initiated by a bifunctional LKR/SDH (lysine-ketoglutarate reductase/saccharopine dehydrogenase) enzyme encoded by a single LKR/SDH gene. Yet, the AtLKR/SDH gene of Arabidopsis also encodes a second gene product, namely a monofunctional SDH. To elucidate the regulation of lysine catabolism in Arabidopsis through these two gene products of the AtLKR/SDH gene, an analysis was carried out on the effects of the hormones, abscisic acid and jasmonate, as well as various metabolic and stress signals, including lysine itself, on their mRNA and protein levels. The response of the two gene products to the various treatments was only partially co-ordinated, but the levels of the monofunctional SDH mRNA and protein were always in excess over their bifunctional LKR/SDH counterparts. These results suggest that lysine catabolism is regulated primarily by the first enzyme LKR, while the excess level of SDH enables efficient flux of lysine catabolism following the LKR step. Analysis of transgenic plants expressing beta-glucoronidase fusion constructs with the AtLKR/SDH and monofunctional AtSDH promoters demonstrated that transcriptional regulation contributes to the modulation of expression of the bifunctional LKR/SDH and monofunctional SDH gene products in response to hormonal and metabolic signals. To test whether the enhanced expression of the LKR/SDH gene under various hormonal and metabolic signals is correlated with enhanced lysine catabolism, wild-type Arabidopsis and a knockout mutant lacking lysine catabolism were exposed to abscisic acid and sugar starvation. Free lysine accumulated to significantly higher levels in this knockout mutant than in the wild-type plants.

  16. Expression of gibberellin 3 beta-hydroxylase gene in a gravi-response mutant, weeping Japanese flowering cherry

    Science.gov (United States)

    Sugano, Mami; Nakagawa, Yuriko; Nyunoya, Hiroshi; Nakamura, Teruko

    2004-01-01

    Expressions of the gibberellin biosynthesis gene were investigated in a normal upright type and a gravi-response mutant, a weeping type of Japanese flowering cherry (Prunus spachiana), that is unable to support its own weight and elongates downward. A segment of the gibberellin 3 beta-hydroxylase cDNA of Prunus spachiana (Ps3ox), which is responsible for active gibberellin synthesis, was amplified by using real-time RT-PCR. The content of Ps3ox mRNA in the weeping type was much greater than that in the upright type, while the endogenous gibberellin level was much higher in the elongating zone of the weeping type. These results suggest that the amount and distribution of synthesized gibberellin regulate secondary xylem formation, and the unbalanced distribution of gibberellin affects the gravi-response of the Prunus tree.

  17. Molecular analysis of exons 6 and 7 of phenylalanine hydroxylase gene mutations in Phenylketonuria patients in Western Iran

    Science.gov (United States)

    Moradi, Keyvan; Alibakhshi, Reza; Ghadiri, Keyghobad; Khatami, Saeid Reza; Galehdari, Hamid

    2012-01-01

    BACKGROUND: Phenylketonuria (PKU) is an inborn error of amino acid metabolism that results from a deficiency of phenylalanine hydroxylase (PAH). According to PAH database, exons 6 and 7 and their flanking introns of PAH gene contain the greatest number of mutant alleles. Therefore, as a preliminary study, nucleotide sequence analysis of exons 6 and 7 of the PAH gene has been performed in 25 PKU patients whose ancestors lived in Kermanshah province of Iran. To date, there has been no mutation data describing the genotypes of the PKU disease in this Kurdish ethnic region background. MATERIALS AND METHODS: Twenty-five patients (aged between 2 and 23 years) participated in this study. The DNA fragments containing two exons of the PAH gene [6 and 7] and their exon-flanking intronic sequences were amplified and sequenced. RESULTS: The total of detected mutations were R261X (8%), R176X (4%), R243Q (4%), R243X (2%) and R261Q (2%), as they accounted for 20% of all mutant alleles in this study. The identified polymorphisms are: IVS5 -54 G > A (22%), Q232Q (8%) and V245V (4%). All of the detected mutations in this study are related to CpG dinucleotides in the PAH gene sequence. CONCLUSION: The frequency of R261X, the most common mutation in our study, in Iranian population is Iran. Therefore, it may be necessary to study the PAH gene mutations in other provinces of Iran separately. PMID:23716935

  18. Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms.

    Science.gov (United States)

    Deng, Jie; Gao, Hua; Gao, Zhen; Zhao, Huaxian; Yang, Ying; Wu, Qiaofen; Wu, Bo; Jiang, Chengjian

    2017-01-01

    L-lysine decarboxylase (LDC, EC 4.1.1.18) is a key enzyme in the decarboxylation of L-lysine to 1,5-pentanediamine and efficiently contributes significance to biosynthetic capability. Metagenomic technology is a shortcut approach used to obtain new genes from uncultured microorganisms. In this study, a subtropical soil metagenomic library was constructed, and a putative LDC gene named ldc1E was isolated by function-based screening strategy through the indication of pH change by L-lysine decarboxylation. Amino acid sequence comparison and homology modeling indicated the close relation between Ldc1E and other putative LDCs. Multiple sequence alignment analysis revealed that Ldc1E contained a highly conserved motif Ser-X-His-Lys (Pxl), and molecular docking results showed that this motif was located in the active site and could combine with the cofactor pyridoxal 5'-phosphate. The ldc1E gene was subcloned into the pET-30a(+) vector and highly expressed in Escherichia coli BL21 (DE3) pLysS. The recombinant protein was purified to homogeneity. The maximum activity of Ldc1E occurred at pH 6.5 and 40°C using L-lysine monohydrochloride as the substrate. Recombinant Ldc1E had apparent Km, kcat, and kcat/Km values of 1.08±0.16 mM, 5.09±0.63 s-1, and 4.73×103 s-1 M-1, respectively. The specific activity of Ldc1E was 1.53±0.06 U mg-1 protein. Identifying a metagenome-derived LDC gene provided a rational reference for further gene modifications in industrial applications.

  19. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    Science.gov (United States)

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  20. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  1. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Matteson, K.J.; Phillips, J.A. III; Miller, W.L.; Chung, B.C.; Orlando, P.J.; Frisch, H.; Ferrandez, A.; Burr, I.M.

    1987-08-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 (steroid 21-monooxygenase (steroid 21-hydroxylase)), which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. The authors have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, they conclude that the P450XXIA2 gene deletions widely reported in CAH patients probably represent gene conversions, unequal crossovers,or polymorphisms rather than simple gene deletions.

  2. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia.

    Science.gov (United States)

    Matteson, K J; Phillips, J A; Miller, W L; Chung, B C; Orlando, P J; Frisch, H; Ferrandez, A; Burr, I M

    1987-08-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 [steroid 21-monooxygenase (steroid 21-hydroxylase), EC 1.14.99.10], which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. We have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, we conclude that the P450XXIA2 gene "deletions" widely reported in CAH patients probably represent gene conversions, unequal crossovers, or polymorphisms rather than simple gene deletions.

  3. Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario

    2007-06-21

    Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.

  4. A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics.

    Science.gov (United States)

    Grima, B; Lamouroux, A; Boni, C; Julien, J F; Javoy-Agid, F; Mallet, J

    Catecholaminergic systems in discrete regions of the brain are thought to be important in affective psychoses, learning and memory, reinforcement and sleep-wake cycle regulation. Tyrosine hydroxylase (TH) is the first enzyme in the pathway of catecholamine synthesis. Its importance is reflected in the diversity of the mechanisms that have been described which control its activity; TH levels vary both during development and as a function of the activity of the nervous system. Recently, we deduced the complete amino-acid sequence of rat TH from a complementary DNA clone encoding a functional enzyme. Here we demonstrate that, in man, TH molecules are encoded by at least three distinct messenger RNAs. The expression of these mRNAs varies in different parts of the nervous system. The sequence differences observed are confined to the 5' termini of the messengers and involve alternative splicing events. This variation has clear functional consequences for each putative form of the enzyme and could represent a novel means of regulating catecholamine levels in normal and pathological neurons.

  5. Transcriptome Analysis Reveals Key Flavonoid 3′-Hydroxylase and Flavonoid 3′,5′-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis

    Science.gov (United States)

    Wei, Kang; Wang, Liyuan; Zhang, Chengcai; Wu, Liyun; Li, Hailin; Zhang, Fen; Cheng, Hao

    2015-01-01

    The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3′H and F3′5′H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3′H and F3′5′H genes (including CsF3′5′H1, CsF3′H1, CsF3′H2 and CsF3′H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3′H and F3′5′H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3′H genes and a F3′5′H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea. PMID:26367395

  6. Data on the 21-Hydroxylase deficient CAH patients and the identification of known/novel mutations in CYP21A2 gene

    Directory of Open Access Journals (Sweden)

    Ragini Khajuria

    2017-02-01

    Full Text Available This article presents the dataset regarding spectrum of mutations in 21-Hydroxylase deficient CAH patients as described in “The spectrum of CYP21A2 mutations in Congenital Adrenal Hyperplasia in an Indian cohort” (R. Khajuria, R. Walia, A. Bhansali, R. Prasad, 2017 [1]. This dataset features about the CAH patients in the cohort, their classification into subtypes and finally screening the exon–intron boundaries of 21-Hydroxylase gene (CYP21A2 to detect common mutations, novel mutations along polymorphisms in the CYP21A2 gene. The specified large set of primers and the parameters for the mutation detection allow the identification and molecular characterization of CYP21A2 gene in the CAH patients.

  7. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L.

    Science.gov (United States)

    Xiong, Shuo; Tian, Na; Long, Jinhua; Chen, Yuhong; Qin, Yu; Feng, Jinyu; Xiao, Wenjun; Liu, Shuoqian

    2016-08-01

    Flavonoids were found to synergize anti-malaria and anti-cancer compounds in Artemisia annua, a very important economic crop in China. In order to discover the regulation mechanism of flavonoids in Artemisia annua, the full length cDNA of flavanone 3-hydroxylase (F3H) were isolated from Artemisia annua for the first time by using RACE (rapid amplification of cDNA ends). The completed open read frame of AaF3H was 1095 bp and it encoded a 364-amino acid protein with a predicted molecular mass of 41.18 kDa and a pI of 5.67. The recombinant protein of AaF3H was expressed in E. coli BL21(DE3) as His-tagged protein, purified by Ni-NTA agrose affinity chromatography, and functionally characterized in vitro. The results showed that the His-tagged protein (AaF3H) catalyzed naringenin to dihydrokaempferol in the present of Fe(2+). The Km for naringenin was 218.03 μM. The optimum pH for AaF3H reaction was determined to be pH 8.5, and the optimum temperature was determined to be 35 °C. The AaF3H transcripts were found to be accumulated in the cultivar with higher level of flavonoids than that with lower level of flavonoids, which implied that AaF3H was a potential target for regulation of flavonoids biosynthesis in Artemisia annua through metabolic engineering. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Polymorphism in the tyrosine hydroxylase (TH gene is associated with activity-impulsivity in German Shepherd Dogs.

    Directory of Open Access Journals (Sweden)

    Eniko Kubinyi

    Full Text Available We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1 the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS filled in by the dog owners and (2 the newly developed Activity-impulsivity Behavioural Scale (AIBS containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS. Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023. The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds.

  9. Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs

    Science.gov (United States)

    Kubinyi, Enikő; Vas, Judit; Hejjas, Krisztina; Ronai, Zsolt; Brúder, Ildikó; Turcsán, Borbála; Sasvari-Szekely, Maria; Miklósi, Ádám

    2012-01-01

    We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS. Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023). The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds. PMID:22272320

  10. The Concentration and Yield of Hordein and some Lysine-Rich Proteins as Influenced by the lys gene of Hiproly Barley

    DEFF Research Database (Denmark)

    Balasaraswathi, R.; Køie, B; Doll, Hans

    1984-01-01

    A line having the high-lysine gene lys of ‘Hiproly’ was crossed with a normal variety, and homozygous offspring lines were derived from chromosome-doubled haploids made from the F1. The intluence of the lys gene was tested by comparing the offspring lines having the lys gene with the lines having...

  11. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  12. A large duplication in the gene for lysyl hydroxylase accounts for the type VI variant of Ehlers-Danlos syndrome in two siblings

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, T.; Heikkinen, J.; Kivirikko, K.I.; Myllylae, R. (Univ. of Oulu (Finland))

    1993-02-01

    Ehlers-Danlos syndrome is a deterogeneous disorder characterized by joint hypermobility, skin hyperextensibility, fragility, and other sign of connective tissue involvement. In addition to these, the type VI variant of the disease has some special characteristics such as kyphoscoliosis and ocular abnormalities. The biochemical abnormality in most patients with this autosomal recessively inherited type IV variant is a deficiency in the activity of lysyl hydroxylase (EC 1.14,11.4), the enzyme catalyzing the formation of hydroxylysine in collagens and other proteins with collagen-like amino acid sequences. The type VI variant of Ehlers-Danlos syndrome was first identified in two sisters with a reduced amount of lysyl hydroxylase activity in their skin fibroblasts (S.R. Pinnell, S.M. Krane, J.E. Kenzora, and M.J. Glimcher (1972) N. Engl. J. Med. 286; 1013-1020). Our recent molecular cloning of lysyl hydroxylase has now made it possible to study the mutations leading to the deficiency in lysyl dydroxylase activity in these cells. Our data indicate that the mRNA for lysyl hydroxylase produced in the affected cells is about 4 kb in size, whereas it is 3.2 kb in the control cells. The sequencing of the cDNA for lysyl hydroxylase from the affected cells revealed an apparently homozygous duplication rearrangement of nucleotides 1176 to 1955, corresponding to amino acids 326 to 585 in the normal sequence. From Southern blotting data, the duplicated area in the gene equals about 6-9 kb and corresponds to seven exons. 35 refs., 4 figs.

  13. Regulation of tyrosine hydroxylase gene expression during transdifferentiation of striatal neurons: changes in transcription factors binding the AP-1 site.

    Science.gov (United States)

    Guo, Z; Du, X; Iacovitti, L

    1998-10-15

    We have shown previously that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a coactivator (dopamine, protein kinase A, or protein kinase C activator) will induce the novel expression of tyrosine hydroxylase (TH) in neurons of the developing striatum. In this study we sought to determine whether, concomitant with TH expression, there were unique changes in transcription factors binding the AP-1 regulatory element on the TH gene. Indeed, we found a significant recruitment of proteins into TH-AP-1 complexes as well as a shift from low- to high-affinity binding. Supershift experiments further revealed dramatic changes in the proteins comprising the AP-1 complexes, including recruitment of the transcriptional activators c-Fos, a novel Fos protein, Fos-B, and Jun-D. Concomitantly, there was a decrease in repressor-type factors ATF-2 and CREM-1. aFGF appeared to play a central but insufficient role, requiring the further participation of at least one of the coactivating substances. Experiments examining the signal transduction pathway involved in mediating these nuclear events demonstrated that the presence of only an FGF (1, 2, 4, 9) competent to induce TH caused the phosphorylation of mitogen-activated protein kinase (MAPK). Moreover, the treatment of cells with MEK/ERK inhibitors (apigenin or PD98059) eliminated TH expression and the associated AP-1 changes, suggesting that MAPK was a critical mediator of these events. We conclude that, during transdifferentiation, signals may be transmitted via MAPK to the TH-AP-1 site to increase activators and reduce repressors, helping to shift the balance in favor of TH gene expression at this and possibly other important regulatory sites on the gene.

  14. [Characterisation of three polymorphisms of the tryptophan hydroxylase 2 gene in a sample of Colombian population with major depressive disorder].

    Science.gov (United States)

    Martínez-Idárraga, Adriana; Riveros-Barrera, Irene; Sánchez, Ricardo; Jaramillo, Luis Eduardo; Calvo-Gómez, José Manuel; Yunis-Londoño, Juan José

    Identify whether rs11179000, rs136494 and rs4570625 polymorphisms of the tryptophan hydroxylase 2 gene, are associated with a major depressive disorder in a sample of the Colombian population. Case-control study was conducted in which a comparison was made between subjects diagnosed with major depressive disorder at some point in adulthood or active symptoms at the time of evaluation, and subjects with no psychiatric disease. Subjects were studied in the Department of Psychiatry, Faculty of Medicine and the Institute of Genetics at the National University of Colombia. Polymorphisms were genotyped using Taqman probes in real time PCR. As well as studying the association between major depressive disorder and these (single nucleotide polymorphisms (SNPs), the association with other factors previously associated with depression were also analysed. No statistically significant association between genotypic and allelic frequencies of each polymorphism and major depressive disorder was found. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. There was no association between any polymorphism and major depressive disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Click modification of helical amylose by poly(L-lysine) dendrons for non-viral gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jia-Dong [PCFM Lab and GDHPPC Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Zhuang, Bao-Xiong [Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510102 (China); Mai, Kaijin [PCFM Lab and GDHPPC Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Chen, Ru-Fu [Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510102 (China); Wang, Jie, E-mail: sumsjw@163.com [Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510102 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [PCFM Lab and GDHPPC Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China)

    2015-04-01

    Although amylose as a naturally-occurring helical polysaccharide has been widely used for biomedical applications, few studies have dealt with its chemical modification for non-viral gene delivery. In this work, the click modification of amylose by poly(L-lysine) dendrons was carried out and then characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and elemental analyses. Such a modified polysaccharide exhibited excellent ability to condense plasmid pMSCV-GFP-PARK2 into compact and spherical nanoparticles. Moreover, it displayed much lower cytotoxicity when compared to branched polyethylenimine (bPEI, 25 kDa), a commercially available gene vector. Similar to bPEI, it had a dose-dependent gene transfection activity in human embryonic kidney 293T cells, as observed by confocal laser scanning microscopy and flow cytometry. At each optimized N/P ratio, the percentage of transfected cells by this modified polysaccharide was found to be comparable to that by bPEI. Western blot and cell apoptosis analyses confirmed its effectiveness for the delivery of plasmid pMSCV-GFP-PARK2 to 293T cells. - Highlights: • The click modification of amylose by poly(L-lysine) dendrons was carried out. • This modified amylose could condense plasmid pMSCV-GFP-PARK2 into nanocomplexes. • This modified amylose exhibited much lower cytotoxicity than commercial polyethylenimine. • This modified amylose could delivery efficiently plasmid pMSCV-GFP-PARK2 to 293T cells.

  16. Effects of methyl jasmonate, on stevioside and rebaudioside A content and expression of the ent-Kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bert. in vitro

    Directory of Open Access Journals (Sweden)

    Mehrdad Behmanesh

    2014-08-01

    Full Text Available Glycosides are a form of secondary metabolites that consist variety compounds and in some cases can play a role in primary metabolism. Steviol is lipophilic skeleton of Stevioside and Rebaudioside A, two main glycosides of Stevia rebuadiana. Steviol glycosides which are synthesized in S.rebaudiana have important medical and nutritional values as high intensity natural sweeteners. Steviol is synthesized from Kaurenoic acid in chloroplastic Terpenoid pathway that mediated by Kaurenoic acid 13-hydroxylase. In this study, HPLC method and RT-PCR were performed for quantification of glycosides and gene expression (ent-Kaurenoic acid 13-hydroxylase respectively. Methyl jasmonate treatment (at 20 micromolar in vitro induced glycoside biosynthesis significantly (P≤0.05 whereas higher concentration of Methyl jasmonate (100 µM caused a decrease in glycoside production and growth. The most glycoside content of the plant was three days after treatment. Also Methyl jasmonate treatment caused an increase in ent-Kaurenoic 13-hydroxylase gene expression from 6 hours to 48 hours (after treatment Results showed that biosynthesis of Stevia glycosides was probably a defense mechanism against pathogens and herbivore insects. Also we found that different concentrations of Methyl jasmonate, alter the ratio between glycosides rather than the increase in glycoside contents.

  17. Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP.

    Science.gov (United States)

    Lavery, D J; Lopez-Molina, L; Margueron, R; Fleury-Olela, F; Conquet, F; Schibler, U; Bonfils, C

    1999-10-01

    To study the molecular mechanisms of circadian gene expression, we have sought to identify genes whose expression in mouse liver is regulated by the transcription factor DBP (albumin D-site-binding protein). This PAR basic leucine zipper protein accumulates according to a robust circadian rhythm in nuclei of hepatocytes and other cell types. Here, we report that the Cyp2a4 gene, encoding the cytochrome P450 steroid 15alpha-hydroxylase, is a novel circadian expression gene. This enzyme catalyzes one of the hydroxylation reactions leading to further metabolism of the sex hormones testosterone and estradiol in the liver. Accumulation of CYP2A4 mRNA in mouse liver displays circadian kinetics indistinguishable from those of the highly related CYP2A5 gene. Proteins encoded by both the Cyp2a4 and Cyp2a5 genes also display daily variation in accumulation, though this is more dramatic for CYP2A4 than for CYP2A5. Biochemical evidence, including in vitro DNase I footprinting on the Cyp2a4 and Cyp2a5 promoters and cotransfection experiments with the human hepatoma cell line HepG2, suggests that the Cyp2a4 and Cyp2a5 genes are indeed regulated by DBP. These conclusions are corroborated by genetic studies, in which the circadian amplitude of CYP2A4 and CYP2A5 mRNAs and protein expression in the liver was significantly impaired in a mutant mouse strain homozygous for a dbp null allele. These experiments strongly suggest that DBP is a major factor controlling circadian expression of the Cyp2a4 and Cyp2a5 genes in the mouse liver.

  18. Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation.

    Science.gov (United States)

    Kress, Sigrid; Wullimann, Mario F

    2012-12-01

    Imprinting on kin occurs during the sixth day of larval development in zebrafish and depends on olfactory signals. In rodents, the immediate early gene egr1 is involved in maintaining the dopaminergic phenotype of periglomerular olfactory bulb cells in an activity dependent way. Furthermore, egr1 is upregulated in medial amygdalar dopamine cells in some rodents (prairie voles) dependent on social pheromone interactions. Thus, we aimed to investigate whether egr1 is involved in imprinting processes and later kin recognition in zebrafish in olfactory centers, such as the olfactory bulb and suspected medial amygdala. In the present paper, we focus on a basic investigation of basal egr1 expression throughout zebrafish brain development and its co-localization with tyrosine hydroxylase as a marker for dopaminergic neurons. Indeed, there is unambiguous co-localization of egr1 and tyrosine hydroxylase in the zebrafish olfactory bulb and hypothetical medial amygdala. Furthermore, as in rodents, ipsilateral transient olfactory deprivation through Triton X-100 treatment of the olfactory epithelium leads to downregulation of egr1 and tyrosine hydroxylase expression in the olfactory bulb, but apparently not in secondary olfactory targets of the zebrafish brain. This indicates that similar processes might be at work in zebrafish and rodent olfactory systems, but their more specific involvement in imprinting in zebrafish has to be further tested. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Diurnal variation in cholesterol 7?-hydroxylase activity is determined by the -203A>C polymorphism of the CYP7A1 gene

    OpenAIRE

    Vlachov?, Milu?e; Blahov?, Tereza; L?nsk?, V?ra; Len??ek, Martin; Pi?ha, Jan; V?tek, Libor; Kov??, Jan

    2016-01-01

    Aim To determine whether the promoter polymorphism -203A>C of cholesterol-7α-hydroxylase encoding gene (CYP7A1) affects diurnal variation in CYP7A1 enzyme activity. Methods The study included 16 healthy male volunteers – 8 homozygous for -203A and 8 homozygous for the -203C allele of CYP7A1. Three 15-hour examinations (from 7am to 10pm) were carried out for each of the participants: after one-day treatment with cholestyramine; after one-day treatment with chenodeoxycho...

  20. Tryptophan hydroxylase gene 1 (TPH1) variants associated with cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid concentrations in healthy volunteers

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas

    2010-01-01

    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin synthesis. We investigated possible relationships between five TPH1 gene polymorphisms and cerebrospinal fluid (CSF) concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), the major dopamine...... metabolite homovanillic acid (HVA), and the major norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy volunteers (n=132). The G-allele of the TPH1 rs4537731 (A-6526G) polymorphism was associated with 5-HIAA and HVA, but not MHPG concentrations. None of the other four TPH1...

  1. Low frequency of Parkin, Tyrosine Hydroxylase, and GTP Cyclohydrolase I gene mutations in a Danish population of early-onset Parkinson's Disease

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Ostergaard, K; juncker, Inger

    2006-01-01

    Autosomal recessive Parkinson's disease (PD) with early-onset may be caused by mutations in the parkin gene (PARK2). We have ascertained 87 Danish patients with an early-onset form of PD (age at onset ... mutation and a missense mutation (A6T) in TH of unknown significance. It cannot be excluded that both mutations contribute to the phenotype. No other putative disease causing TH or GCH1 mutations were found. In conclusion, homozygous, or compound heterozygous PARK2 mutations, and mutations in GCH1 and TH...... to determine the frequency of PARK2 mutations. Analysis of the GTP cyclohydrolase I gene (GCH1) and the tyrosine hydroxylase gene (TH), mutated in dopa-responsive dystonia and juvenile PD, have also been included. Ten different PARK2 mutations were identified in 10 patients. Two of the patients (2.3%) were...

  2. Lesions of nigrostriatal pathway reduce expression of tyrosine hydroxylase gene in residual dopaminergic neurons of substantia nigra.

    Science.gov (United States)

    Shirao, T; Evinger, M J; Iacovitti, L; Reis, D J

    1992-07-20

    The effects of unilateral mechanical transection of the nigrostriatal bundle of rat brain on the level of tyrosine hydroxylase (TH) mRNA and on the activity of TH enzyme in the substantia nigra (SN) were examined. Lesions resulted, by 14 days, in reductions of TH mRNA level to 10% of control and of TH enzyme activity to 39% of control in the ipsilateral SN. The percentage of TH mRNA is lower than either the percentage of surviving dopaminergic neurons or the remaining TH enzyme activity. In situ hybridization analyses also demonstrated the reduction of TH mRNA concentration in surviving dopaminergic neurons in the ipsilateral SN.

  3. Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa.

    Science.gov (United States)

    Smiley, Jeffrey A; Kundracik, Melisa; Landfried, Daniel A; Barnes, Vincient R; Axhemi, Armend A

    2005-05-25

    Genes for two enzymes in the thymidine salvage pathway, thymine-7-hydroxylase (THase; official name thymine dioxygenase) and iso-orotate decarboxylase (IDCase) have been isolated from fungal sources. THase was isolated from a Rhodotorula glutinis cDNA library using a degenerate oligonucleotide based on the published amino acid sequence. The coding sequence was transferred to an Escherichia coli expression system, from which recombinant THase activity was measured using 14C-labeled thymine. The THase sequence shows an almost complete avoidance of codons ending in A or T: 95.8% GC content is present in the third position of codons. A connection between this codon bias and the role of the thymidine salvage pathway in pyrimidine metabolism is proposed. The THase sequence is similar to Group I Fe+2-dependent, alphaKG-dependent dioxygenases. The R. glutinis THase gene was used to locate the probable THase genes in the sequenced genomes of Neurospora crassa and Aspergillus nidulans. The genes neighboring THase in these two genomes are similar to each other, and are similar to the mammalian 2-amino-3-carboxymuconate-6-semialdhyde decarboxylase (ACMSD), leading to their identification as IDCase genes. The N. crassa version was isolated by PCR of genomic DNA, and IDCase activity was measured in recombinant E. coli carrying this gene. A new family of decarboxylases, using similar substrates, is identified by virtue of the protein sequence similarity.

  4. No evidence of an association between A218C polymorphism of the tryptophan hydroxylase 1 gene and aggression in schizophrenia in a Korean population.

    Science.gov (United States)

    Kim, Youl-Ri; Lee, Joo Young; Min, Sung Kil

    2010-01-01

    We investigated the association between the tryptohan hydroxylase 1 (TPH1) gene and aggression in schizophrenia in a Korean population. The sample included 61 aggressive patients as well as 104 non-aggressive patients from psychiatric hospitals and 335 healthy volunteers in Korea. Blood samples were collected from all participants for TPH1 A218C genotyping. The patients were administered standard psychiatric interviews as well as a self-report questionnaire for anger-related traits. In the case-control phenotypic comparisons, there was no significant association between the aggressive patients and the TPH1 A218C polymorphism. There was no significant effect of the TPH1 genotype on the anger-related traits, or no significant interaction between the genotype and group (aggressive and non-aggressive patients). These findings suggest that TPH1 does not play a major role in aggressive behavior via anger in schizophrenic patients.

  5. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum.

    Science.gov (United States)

    Márquez, G; Sousa, J M; Sánchez, F

    1985-01-01

    The Brevibacterium lactofermentum genes which complement Escherichia coli lysA and asd-1 mutants were identified, respectively, as a 1.9-kilobase PstI-ClaI fragment and a 2.5-kilobase PstI fragment by cloning into pBR325. Southern blot transfers show hybridization to chromosomal fragments of identical size. The putative B. lactofermentum asd and lysA products are 44 and 48 kilodaltons, respectively. Images PMID:2864331

  6. The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes1[W

    Science.gov (United States)

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysine motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known. PMID:16844829

  7. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    Directory of Open Access Journals (Sweden)

    Huan Liu

    Full Text Available A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30 as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712 were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18.

  8. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    Science.gov (United States)

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18.

  9. GENE 16S RRNA SEQUENCE PHYLOGENETIC ANALYSIS OF LYSINE PRODUCERS STRAINS

    Directory of Open Access Journals (Sweden)

    G. S. Andriiash

    2014-12-01

    Full Text Available The phylogenetic relationships of strainsproducers of essential amino acids of aspartate family Brevibacterium sp. UCM Ac-674 (Brevibacterium sp. 90, Brevibacterium sp. IMV Ac-5004 (Brevibacterium sp. 90H, Brevibacterium sp. UCM Ac-675 (Brevibacterium sp. E531, mutant strain Brevibacterium sp. IMV B-7447 from the «Collections strains and lines of plants for food and agricultural biotechnology SO “Institute for Food Biotechnology and Genomics” of National Academy of Sciences of Ukraine were investigated. The affiliation strain Brevibacterium sp. IMV B-7447 to the genus Brevibacterium within the sequences of the genes based on 16S rRNA was confirmed. The dendogram of phylogenetic relationships of studied strains and related strains Brevibacterium from database GenBank was constructed. It was shown that by the criterion of homology gene sequences based on 16S rRNA the investigated strains-producers belong to three phylogenetic groups. It was established that the mutant strain Brevibacterium sp. ІMV B-7447 has no analogues in the database GenBank.

  10. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  11. Enhanced hypocholesterolemic effects of interesterified oils are mediated by upregulating LDL receptor and cholesterol 7-α- hydroxylase gene expression in rats.

    Science.gov (United States)

    Reena, Malongil B; Gowda, Lalitha R; Lokesh, Belur R

    2011-01-01

    The concentration of LDL cholesterol in plasma is strongly influenced by the amount and type of lipid in the diet. Our studies have shown that positional changes in the fatty acids in blended oil introduced using lipase-catalyzed interesterification differentially modulate circulating LDL levels in rats compared with those observed in rats given a physical blend of oils. To investigate the molecular basis of these differences, transcriptional profiling of genes involved in cholesterol homeostasis was studied after feeding rats with a semipurified diet containing 10% fat from native oils; coconut oil (CNO), rice bran oil (RBO), or sesame oil (SESO); blended (B); CNO+RBO(B) or CNO+SESO(B) and interesterified oil (I); CNO+RBO(I) or CNO+SESO(I) for 60 d. Hepatic LDL receptor (LDL-R) expression significantly increased in rats fed interesterified oils by 100-200% compared with rats fed blended oils and by 400-500% compared with rats fed CNO. Positional alteration in fatty acids of oils used in the diet induced changes in LDL-R expression, which was accompanied by parallel changes in cholesterol-7α-hydroxylase (CYP7A1) and SREBP-2 genes. This suggested that not only the fatty acid type but also its position in the TG of dietary lipids play an important role in maintaining plasma cholesterol levels by suitably modulating gene expression for LDL-R in rat liver.

  12. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. Muscle-derived differentiation factor increases expression of the tyrosine hydroxylase gene and enzyme activity in cultured dopamine neurons from the rat midbrain.

    Science.gov (United States)

    Iacovitti, L; Evinger, M J; Stull, N D

    1992-12-01

    Our earlier work demonstrated that certain populations of brain neurons which do not synthesize catecholamine (CA) neurotransmitters in vivo, will, when grown in culture with muscle-derived differentiation factor (MDF), unexpectedly express the gene for the CA biosynthetic enzyme tyrosine hydroxylase (TH). In this paper, we sought to determine whether MDF could also regulate TH expression in those neurons which normally synthesize CA neurotransmitters. Incubation of cultured dopamine neurons from the ventral midbrain with MDF elevated the levels of TH mRNA and TH enzyme activity 5- to 40-fold higher than that measured in control cultures. Sympathetic neurons were unaffected by a similar MDF treatment. Unlike the 2-day critical period for MDF-responsivity in non-CA neurons. CA neurons remained susceptible to MDF's influence over an extended developmental interval (E14-18), suggesting that MDF may be important for TH gene regulation in brain CA neurons even differentiation is complete. Because of these unique properties, MDF may provide a unique opportunity to explore ways in which the TH gene might be directly manipulated in these cell populations in order to correct the CA imbalances that occur in certain neurological diseases and disorders.

  14. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja.

    Science.gov (United States)

    Takahashi, Ryoji; Dubouzet, Joseph G; Matsumura, Hisakazu; Yasuda, Kentaro; Iwashina, Tsukasa

    2010-07-28

    Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of

  15. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    Science.gov (United States)

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  16. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  17. Druggability of methyl-lysine binding sites

    Science.gov (United States)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  18. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1......,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH...... the PPP, increasing the NADPH synthesis and enabling increased lysine production. Synthetic promoter libraries (SPL) enable fine tuning of the expression of genes. To test the feasibility of SPL in C. glutamicum four constitutive SPLs and one inducible SPL were constructed. The libraries were placed...

  19. The DapA gene encoding the lysine biosynthetic enzyme dihydrodipicolinate synthase from Coix lacryma-jobi: cloning, characterization, and expression analysis.

    Science.gov (United States)

    Dante, R A; Neto, G C; Leite, A; Yunes, J A; Arruda, P

    1999-11-01

    Dihydrodipicolinate synthase (DHPS) is the main enzyme of a specific branch of the aspartate pathway leading to lysine biosynthesis in higher plants. We have cloned and characterized the DHPS-encoding Dap)A gene from the maize-related grass Coix lacryiana-jobi. The DapA open reading frame is interrupted by two introns and encodes the 326 amino acid-long Coix DHPS protein, which is 95% identical to the maize DHPS protein. Coix DNA gel blot analysis with maize DHPS cDNA as a probe showed a single strongly hybridizing band along with faint bands. RNA gel blot analysis showed that DHPS transcripts are present in coleoptiles, embryos, endosperms, and roots but are almost undetectable in blades of young leaves of both Coix and maize. The 5'-flanking region of the DapA gene contains a TGACTC GCN4-like element located 372 bp upstream the putative translation start codon. Steady-state levels of DHPS mRNA were slightly reduced in the endosperms and embryos of the maize lysine-rich opaque2 mutants when compared with those in normal kernels. Selective binding assay with the maize Opaque2 protein (O2) showed that the GCN4-like element is not an O2 binding site, suggesting that the DHPS gene is not under the control of O2.

  20. Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase.

    Science.gov (United States)

    Gómez, Daniel; Lucas-Elío, Patricia; Solano, Francisco; Sanchez-Amat, Antonio

    2010-01-01

    The melanogenic marine bacterium Marinomonas mediterranea synthesizes a novel antimicrobial protein (LodA) with lysine-epsilon oxidase activity (EC 1.4.3.20). Homologues to LodA have been detected in several Gram-negative bacteria, where they are involved in biofilm development. Adjacent to lodA is located a second gene, lodB, of unknown function. This genomic organization is maintained in all the microorganisms containing homologues to these genes. In this work we show that lodA and lodB constitute an operon. Western blot analysis and enzymatic determinations revealed that LodA is secreted to the external medium when the culture reaches the stationary phase. LodB, on the other hand, has only been detected inside cells, but it is not secreted. The expression of the lysine-epsilon oxidase (LOD) activity in M. mediterranea requires functional copies of both genes since mutants lacking either lodA or lodB do not show any LOD activity. The active form of LodA containing the quinonic cofactor is intracellularly generated in a process that takes place only in the presence of LodB, suggesting that the latter is involved in this process. Moreover, in the absence of one of the proteins, the stability of the partner protein is compromised leading to a marked decrease in its cellular levels.

  1. Contribution of a common variant in the promoter of the 1-α-hydroxylase gene (CYP27B1) to fracture risk in the elderly.

    Science.gov (United States)

    Clifton-Bligh, Roderick J; Nguyen, Tuan V; Au, Amy; Bullock, Martyn; Cameron, Ian; Cumming, Robert; Chen, Jian Sheng; March, Lyn M; Seibel, Markus J; Sambrook, Philip N

    2011-02-01

    CYP27B1 encodes mitochondrial 1α-hydroxylase, which converts 25-hydroxyvitamin D to its active 1,25-dihydroxylated metabolite. We tested the hypothesis that common variants in the CYP27B1 promoter are associated with fracture risk. The study was designed as a population-based genetic association study, which involved 153 men and 596 women aged 65-101 years, who had been followed for 2.2 years (range 0.1-5.5) between 1999 and 2006. During the follow-up period, the incidence of fragility fractures was ascertained. Bone ultrasound attenuation (BUA) was measured in all individuals, as were serum 25-hydroxyvitamin D and PTH concentrations; 86% subjects had vitamin D insufficiency. Genotypes were determined for the -1260C>A (rs10877012) and +2838T>C (rs4646536) CYP27B1 polymorphisms. A reporter gene assay was used to assess functional expression of the -1260C>A CYP27B1 variants. The association between genotypes and fracture risk was analyzed by Cox's proportional hazards model. We found that genotypic distribution of CYP27B1 -1260 and CYP27B1 +2838 polymorphisms was consistent with the Hardy-Weinberg equilibrium law. The two polymorphisms were in high linkage disequilibrium, with D' = 0.96 and r² = 0.94. Each C allele of the CYP27B1 -1260 polymorphism was associated with increased risk of fracture (hazard ratio = 1.34, 95% CI 1.03-1.73), after adjustment for age, sex, number of falls, and BUA. In transient transfection studies, a reporter gene downstream of the -1260(A)-containing promoter was more highly expressed than that containing the C allele. These data suggest that a common but functional variation within the CYP27B1 promoter gene is associated with fracture risk in the elderly.

  2. Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms.

    Science.gov (United States)

    Ma, Dong; Zhao, Yi; Zhou, Xiao-Yan; Lin, Qian-Ming; Zhang, Yi; Lin, Jian-Tao; Xue, Wei

    2013-09-01

    A star-shaped polymer (PP-PLLD) consisting of a porphyrin (PP) core and poly(L-lysine) dendron arms (PLLD) is synthesized by the click reaction, and its ability to deliver pEGFP is investigated in this paper. It is found that PP-PLLD has a good buffer capacity and can form compact complexes with pEGFP. In vitro assay indicates that PP-PLLD shows photoenhanced gene transfection efficiency. PP-PLLD consisting of only third generation PLLD shows a higher transfected cell number than PEI under a Xe lamp at the N/P ratio of 20, and meanwhile shows a neglectable cytotoxicity to HeLa cells. Therefore, PP-PLLD with suited irradiation is a promising nontoxic and photoinducible effective gene delivery strategy, which should be encouraged in gene therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  4. Is there a link between Depressive Disorders and Tryptophan Hydroxylase 1 (TPH1) Gene Polymorphism? - Study from a Distressed Area, Kashmir (India).

    Science.gov (United States)

    Mushtaq, Raheel; Tarfarosh, Shah Faisal Ahmad; Dar, Mohammad Maqbool; Hussain, Arshad; Shoib, Sheikh; Shah, Tabindah; Shah, Sahil; Manzoor, Mushbiq

    2016-07-06

    The progress that man has made in all domains of life, during all these years of reign over the earth, is utterly remarkable. However, it always came at a price. Each epoch of progress has seen human beings inflicted with trauma and cynical consequences. During the last two decades, Kashmiri (Indian) people have experienced continuous violence, a reign of terror, and political turmoil. Each of these disastrous events has contributed to the increase in psychiatric disorders in this part of the world, especially major depressive disorders. We can observe that besides the environmental influences, gene polymorphism also plays a crucial role in the development of depressive disorders. The role of Tryptophan Hydroxylase 1 (TPH1) gene is implicated in various psychiatric disorders, including depression. However, no study has investigated TPH1 A779C gene polymorphism in depressive disorders in a distressed society like Kashmir (India). To study TPH1 A779C single nucleotide polymorphism in depressive disorders in Kashmiri (Indian) population. Two hundred and forty patients diagnosed with depressive disorder, and 160 unrelated healthy volunteers (control), were studied in a case-control study design. Polymorphism was determined using polymerase chain reaction (PCR) and agarose gel electrophoresis, after digestion with HAP II enzyme. Genotypes and allele frequencies were compared using Chi-square tests, Fisher's exact test, odds ratio, 95% confidence interval (C.I.) and a p-value of <0.05 was considered to be statistically significant. The mean age ± standard deviation (SD) of depression and control group was 32.02±10.99 and 31.75±9.93, respectively (p= 0.512). It was found that the patients from depression group had AA genotype (51.7%) in comparison to control group (17.5%) and these results were statistically significant (p≤0.0001). Calculation of allelic frequency revealed a stronger association of A allele with depression group (70.83%) than with the control

  5. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    Science.gov (United States)

    ... hydroxylase deficiency experience extreme fatigue during exercise (exercise intolerance) due to their problems maintaining a normal blood ... Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. ...

  6. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ingmer, Hanne; Thomsen, Line E.

    2016-01-01

    The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained...... to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S...

  7. Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Rasmussen, Lene Juel; Andersen, Ole

    2005-01-01

    of the heme binding domain resulted in complete loss of monooxygenase activity of both CYP enzymes, indicating that this cysteine residue is indispensable for monooxygenase activity of invertebrate CYP enzymes, as has been well documented in vertebrates. Considering the important role of CYP enzymes...... genes isolated from N. virens gut tissue are reported. One named CYP342A1, the first member of a new family and the other named CYP4BB1, the first member of a new subfamily. This is the first investigation of specific CYP enzymes from marine polychaetes in which catalytic activity has been determined....... Both CYP enzymes had monooxygenase activity and catalysed hydroxylation of pyrene to 1-hydroxypyrene. Based on the present results it is likely that both CYP4BB1 and CYP342A1 are involved in xenobiotic biotransformation. Furthermore, site-directed mutagenesis of the conserved cysteine residue...

  8. Improved nutritive quality and salt resistance in transgenic maize by simultaneously overexpression of a natural lysine-rich protein gene, SBgLR, and an ERF transcription factor gene, TSRF1.

    Science.gov (United States)

    Wang, Meizhen; Liu, Chen; Li, Shixue; Zhu, Dengyun; Zhao, Qian; Yu, Jingjuan

    2013-04-29

    Maize (Zea mays L.), as one of the most important crops in the world, is deficient in lysine and tryptophan. Environmental conditions greatly impact plant growth, development and productivity. In this study, we used particle bombardment mediated co-transformation to obtain marker-free transgenic maize inbred X178 lines harboring a lysine-rich protein gene SBgLR from potato and an ethylene responsive factor (ERF) transcription factor gene, TSRF1, from tomato. Both of the target genes were successfully expressed and showed various expression levels in different transgenic lines. Analysis showed that the protein and lysine content in T1 transgenic maize seeds increased significantly. Compared to non-transformed maize, the protein and lysine content increased by 7.7% to 24.38% and 8.70% to 30.43%, respectively. Moreover, transgenic maize exhibited more tolerance to salt stress. When treated with 200 mM NaCl for 48 h, both non-transformed and transgenic plant leaves displayed wilting and losing green symptoms and dramatic increase of the free proline contents. However, the degree of control seedlings was much more serious than that of transgenic lines and much more increases of the free proline contents in the transgenic lines than that in the control seedlings were observed. Meanwhile, lower extent decreases of the chlorophyll contents were detected in the transgenic seedlings. Quantitative RT-PCR was performed to analyze the expression of ten stress-related genes, including stress responsive transcription factor genes, ZmMYB59 and ZmMYC1, proline synthesis related genes, ZmP5CS1 and ZmP5CS2, photosynthesis-related genes, ZmELIP, ZmPSI-N, ZmOEE, Zmrbcs and ZmPLAS, and one ABA biosynthesis related gene, ZmSDR. The results showed that with the exception of ZmP5CS1 and ZmP5CS2 in line 9-10 and 19-11, ZmMYC1 in line 19-11 and ZmSDR in line 19-11, the expression of other stress-related genes were inhibited in transgenic lines under normal conditions. After salt treatment

  9. Improved Nutritive Quality and Salt Resistance in Transgenic Maize by Simultaneously Overexpression of a Natural Lysine-Rich Protein Gene, SBgLR, and an ERF Transcription Factor Gene, TSRF1

    Directory of Open Access Journals (Sweden)

    Meizhen Wang

    2013-04-01

    Full Text Available Maize (Zea mays L., as one of the most important crops in the world, is deficient in lysine and tryptophan. Environmental conditions greatly impact plant growth, development and productivity. In this study, we used particle bombardment mediated co-transformation to obtain marker-free transgenic maize inbred X178 lines harboring a lysine-rich protein gene SBgLR from potato and an ethylene responsive factor (ERF transcription factor gene, TSRF1, from tomato. Both of the target genes were successfully expressed and showed various expression levels in different transgenic lines. Analysis showed that the protein and lysine content in T1 transgenic maize seeds increased significantly. Compared to non-transformed maize, the protein and lysine content increased by 7.7% to 24.38% and 8.70% to 30.43%, respectively. Moreover, transgenic maize exhibited more tolerance to salt stress. When treated with 200 mM NaCl for 48 h, both non-transformed and transgenic plant leaves displayed wilting and losing green symptoms and dramatic increase of the free proline contents. However, the degree of control seedlings was much more serious than that of transgenic lines and much more increases of the free proline contents in the transgenic lines than that in the control seedlings were observed. Meanwhile, lower extent decreases of the chlorophyll contents were detected in the transgenic seedlings. Quantitative RT-PCR was performed to analyze the expression of ten stress-related genes, including stress responsive transcription factor genes, ZmMYB59 and ZmMYC1, proline synthesis related genes, ZmP5CS1 and ZmP5CS2, photosynthesis-related genes, ZmELIP, ZmPSI-N, ZmOEE, Zmrbcs and ZmPLAS, and one ABA biosynthesis related gene, ZmSDR. The results showed that with the exception of ZmP5CS1 and ZmP5CS2 in line 9–10 and 19–11, ZmMYC1 in line 19–11 and ZmSDR in line 19–11, the expression of other stress-related genes were inhibited in transgenic lines under normal

  10. Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily.

    Science.gov (United States)

    van Gorcom, R F; Boschloo, J G; Kuijvenhoven, A; Lange, J; van Vark, A J; Bos, C J; van Balken, J A; Pouwels, P H; van den Hondel, C A

    1990-09-01

    The gene coding for benzoate-para-hydroxylase (bphA) of Aspergillus niger was cloned using differential hybridisation techniques and complementation of mutants deficient in this enzyme activity. The nucleotide sequence of the gene was determined, the presence of two introns was shown and the transcription start and termination sites were determined. The structure of the mRNA upstream from the long open reading frame (ORF) is unusual. It contains two small, overlapping ORFs whose function is unknown. Comparison of the deduced amino acid sequence of the protein with the sequences present in the databanks, indicated a significant similarity of BPH to the superfamily of cytochrome P450 enzymes. Further analysis revealed that this protein is a member of a new P450 gene family designated P450LIII. The gene is designated CYP53. To increase the BPH activity of A. niger, multiple copies of the bphA gene were introduced into the genome of a recipient strain by transformation. Although increased intracellular levels of the BPH protein could be detected, the BPH enzyme activity was decreased, suggesting titration of another essential component.

  11. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-06-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis, is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview®. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  12. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-01-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview ((R. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  13. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  14. Tyrosine hydroxylase gene regulation in human neuronal progenitor cells does not depend on Nurr1 as in the murine and rat systems.

    Science.gov (United States)

    Jin, Hao; Romano, Gaetano; Marshall, Cheryl; Donaldson, Angela E; Suon, Sokreine; Iacovitti, Lorraine

    2006-04-01

    A previous study on the human tyrosine hydroxylase (TH) promoter revealed remarkable differences in the mechanism of TH gene regulation between the human and murine models. Indeed, a low degree of homology was observed in the sequence of TH promoters among human, mouse, and rat systems. Only five short conserved regions (CRs) could be identified among the three species. A human TH minimal promoter was engineered and assembled into a self-inactivating lentiviral vector system. This human TH minimal promoter contained the five CRs plus the first -194 bp from the transcription start of the human TH promoter and the first 35 bp of the untranslated messenger RNA leader of the human TH gene. A significant degree of specificity for this human TH minimal promoter was observed only for human neuronal progenitor cells (hNPCs), but not for TH-positive differentiated mouse primary striatal and substantia nigra cells, indicating a significant difference in TH gene regulation between the human and mouse systems. Not only is the degree of homology between the human and mouse promoters in the range of only 46%, but also those few elements that share a high degree of homology display totally different functions in human and mouse brain-derived cells. In the rodent system, NR4A2 (Nurr1) is required for the transactivation of TH minimal promoters. Intriguingly, neither the dimeric nor the heterodimeric binding sites for Nurr1 are present in the 13 kb DNA sequence that contains the human TH promoter. Instead, the CRs termed one and four of the human TH promoter encode only for a half palindromic binding site sequence for Nurr1, which failed to bind Nurr1 in an in vitro electrophoretic mobility shift assay (EMSA). Additionally, of the three monomeric NGFI-B response element (NBRE) core sites (AGGTCA) and two NBRE-related sites present in the human TH promoter, only one core and two NBRE-related sites formed protein binding complexes. Interestingly, there was no increase of protein

  15. Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds.

    Science.gov (United States)

    Ozga, Jocelyn A; Yu, Jody; Reinecke, Dennis M

    2003-03-01

    To understand further how pollination, seeds, auxin (4-chloroindole-3-acetic acid [4-Cl-IAA]), and gibberellins (GAs) regulate GA biosynthesis in pea (Pisum sativum) fruit, we studied expression of the gene PsGA3ox1 that codes for the enzyme that converts GA(20) to biologically active GA(1) using real-time reverse transcription-polymerase chain reaction analysis. PsGA3ox1 mRNA levels were minimally detectable in prepollinated pericarps and ovules (-2 d after anthesis [DAA]), increased dramatically after pollination (0 DAA), then decreased by 1 DAA. Seed PsGA3ox1 mRNA levels increased at 4 DAA and again 8 to 12 DAA, when seed development was rapid. Pericarp PsGA3ox1 mRNA levels peaked coincidentally with rapid pod diameter expansion (6-10 DAA) to accommodate the growing seeds. The effects of seeds and hormones on the expression of pericarp PsGA3ox1 were investigated over a 24-h treatment period. Pericarp PsGA3ox1 mRNA levels gradually increased from 2 to 3 DAA when seeds were present; however, when the seeds were removed, the pericarp transcript levels dramatically declined. When 2-DAA deseeded pericarps were treated with 4-Cl-IAA, PsGA3ox1 mRNA levels peaked 4 h after hormone treatment (270-fold increase), then decreased. PsGA3ox1 mRNA levels in deseeded pericarps treated with indole-3-acetic acid or GA(3) were the same or lower than deseeded controls. These data show that PsGA3ox1 is expressed and developmentally regulated in pea pericarps and seeds. These data also show that pericarp PsGA3ox1 expression is hormonally regulated and suggest that the conversion of GA(20) to GA(1) occurs in the pericarp and is regulated by the presence of seeds and 4-Cl-IAA for fruit growth.

  16. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s.

    Science.gov (United States)

    Hiromoto, Takeshi; Matsue, Hanako; Yoshida, Mariko; Tanaka, Takeshi; Higashibata, Hiroki; Hosokawa, Keiichi; Yamaguchi, Hiroshi; Fujiwara, Shinsuke

    2006-12-15

    Comamonas testosteroni KH122-3s is an aerobic soil bacterium that utilizes 3-hydroxybenzoate as a sole carbon and energy source. In this strain, 3-hydroxybenzoate hydroxylase (MobA) acts on the initial step of the degradation to produce 3,4-dihydroxybenzoate, which is subsequently subjected to the meta-cleavage pathway leading to tricarboxylic acid cycle intermediates. Gene walking analysis of the upstream region of mobA revealed an open reading frame (mobR) that encodes a transcriptional regulator of the MarR family. Here, we report that MobR negatively regulates the expression of mobA, and that the repression is relieved by binding of 3-hydroxybenzoate, the substrate for MobA. A primer extension experiment was performed to determine the transcription start site for mobA and identified it at 83 bp upstream of the mobA start codon, accompanied by a typical sigma70-type promoter. The mobR gene was expressed in Escherichia coli cells and the recombinant product was purified to homogeneity. Gel mobility-shift assays and DNase I footprinting analyses indicated that MobR binds as a homodimer to an imperfect inverted repeat within the mobA-mobR intergenic region, with an apparent dissociation constant of 11.5(+/- 0.5) nM. The operator site is located between the start codon and the promoter region for mobA, suggesting that MobR functions as a transcriptional repressor for mobA expression. The results of effector-binding assays indicated that MobR, but not its isomers 4-hydroxybenzoate and salicylate, is released from the operator site by the addition of 3-hydroxybenzoate. This dissociation process is highly cooperative, with a Hill coefficient of approximately 2. In addition, CD spectroscopic studies demonstrated that MobR adopts two conformational states corresponding to the effector-bound and unbound forms. These results suggest that the MobR dimer possesses at least two effector-binding sites, and that the effector binding to MobR induces an allosteric conformational

  17. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    Science.gov (United States)

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-25

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.

  18. Lysine-based amino-functionalized lipids for gene transfection: the protonation state in monolayers at the air-liquid interface.

    Science.gov (United States)

    Tassler, Stephanie; Wölk, Christian; Janich, Christopher; Dobner, Bodo; Brezesinski, Gerald

    2017-08-02

    Cationic lipids are considered as non-viral carriers for genetic material used in gene therapy. They have no carcinogenic potential and cause low immune response compared to existing viral systems. The protonation degree of these cationic lipids is a crucial parameter for the binding behavior of polynucleotides (e.g., DNA). Newly synthesized peptide-mimic lysine-based amino-functionalized lipids have been investigated in 2D models as monolayers at the air-liquid interface. Standard surface pressure - area isotherms have been measured to prove the layer stability. Total reflection X-ray fluorescence (TRXF) has been used as a surface sensitive analytical method to estimate the amount of counterions at the head groups. Using a standard sample as a reference, the protonation degree of these cationic lipids can be quantified on buffers with different pH values. It is found that the protonation degree depends linearly on the packing density of the lipid monolayer.

  19. A star-shaped porphyrin-arginine functionalized poly(L-lysine) copolymer for photo-enhanced drug and gene co-delivery.

    Science.gov (United States)

    Ma, Dong; Lin, Qian-Ming; Zhang, Li-Ming; Liang, Yuan-Yuan; Xue, Wei

    2014-05-01

    The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(L-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Functional Identification of Putrescine C- and N-Hydroxylases.

    Science.gov (United States)

    Li, Bin; Lowe-Power, Tiffany; Kurihara, Shin; Gonzales, Stephen; Naidoo, Jacinth; MacMillan, John B; Allen, Caitilyn; Michael, Anthony J

    2016-10-21

    The small polyamine putrescine (1,4-diaminobutane) is ubiquitously and abundantly found in all three domains of life. It is a precursor, through N-aminopropylation or N-aminobutylation, for biosynthesis of the longer polyamines spermidine, sym-homospermidine, spermine, and thermospermine and longer and branched chain polyamines. Putrescine is also biochemically modified for purposes of metabolic regulation and catabolism, e.g. N-acetylation and N-glutamylation, and for incorporation into specialized metabolites, e.g. N-methylation, N-citrylation, N-palmitoylation, N-hydroxylation, and N-hydroxycinnamoylation. Only one example is known where putrescine is modified on a methylene carbon: the formation of 2-hydroxyputrescine by an unknown C-hydroxylase. Here, we report the functional identification of a previously undescribed putrescine 2-hydroxylase, a Rieske-type nonheme iron sulfur protein from the β-proteobacteria Bordetella bronchiseptica and Ralstonia solanacearum. Identification of the putrescine 2-hydroxylase will facilitate investigation of the physiological functions of 2-hydroxyputrescine. One known role of 2-hydroxyputrescine has direct biomedical relevance: its role in the biosynthesis of the cyclic hydroxamate siderophore alcaligin, a potential virulence factor of the causative agent of whooping cough, Bordetella pertussis. We also report the functional identification of a putrescine N-hydroxylase from the γ-proteobacterium Shewanella oneidensis, which is homologous to FAD- and NADPH-dependent ornithine and lysine N-monooxygenases involved in siderophore biosynthesis. Heterologous expression of the putrescine N-hydroxylase in E. coli produced free N-hydroxyputrescine, never detected previously in a biological system. Furthermore, the putrescine C- and N-hydroxylases identified here could contribute new functionality to polyamine structural scaffolds, including C-H bond functionalization in synthetic biology strategies.

  1. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes.

    Science.gov (United States)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung; Walfridsson, Julian; Willer, Anton; Olsson, Linda; Skotte, Julie; Wutz, Anton; Porse, Bo; Jensen, Ole Nørregaard; Helin, Kristian

    2010-08-01

    Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine 27 (K27), and it is believed that this activity mediates transcriptional repression. Despite the recent progress in understanding PcG function, the molecular mechanisms by which the PcG proteins repress transcription, as well as the mechanisms that lead to the activation of PcG target genes are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation. The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and CBP. Based on these data, we propose that the PcG proteins in part repress transcription by preventing the binding of acetyltransferases to PcG target genes.

  2. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine

    Science.gov (United States)

    Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...

  3. Expression and purification of active, stabilized trimethyllysine hydroxylase.

    Science.gov (United States)

    Kazaks, Andris; Makrecka-Kuka, Marina; Kuka, Janis; Voronkova, Tatyana; Akopjana, Inara; Grinberga, Solveiga; Pugovics, Osvalds; Tars, Kaspars

    2014-12-01

    Trimethyllysine hydroxylase (TMLH) catalyses the first step in carnitine biosynthesis - the conversion of N6,N6,N6-trimethyl-l-lysine to 3-hydroxy-N6,N6,N6-trimethyl-l-lysine. By changing carnitine availability it is possible to optimise cardiac energy metabolism, that is beneficial under certain ischemic conditions. Previous efforts have been devoted towards the inhibition of gamma-butyrobetaine dioxygenase, which catalyses the last step in carnitine biosynthesis. However, the effects of TMLH activity regulation are currently unexplored. To facilitate the development of specific ligands of TMLH, large quantities of recombinant protein are necessary for downstream binding and structural studies. Here, we describe an efficient system for expressing and purifying active and stable TMLH as a maltose-binding protein fusion in Escherichiacoli. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight.

    Science.gov (United States)

    Hutabarat, Olly Sanny; Flachowsky, Henryk; Regos, Ionela; Miosic, Silvija; Kaufmann, Christine; Faramarzi, Shadab; Alam, Mohammed Zobayer; Gosch, Christian; Peil, Andreas; Richter, Klaus; Hanke, Magda-Viola; Treutter, Dieter; Stich, Karl; Halbwirth, Heidi

    2016-05-01

    Overexpression of chalcone-3-hydroxylase provokes increased accumulation of 3-hydroxyphloridzin in Malus . Decreased flavonoid concentrations but unchanged flavonoid class composition were observed. The increased 3-hydroxyphlorizin contents correlate well with reduced susceptibility to fire blight and scab. The involvement of dihydrochalcones in the apple defence mechanism against pathogens is discussed but unknown biosynthetic steps in their formation hamper studies on their physiological relevance. The formation of 3-hydroxyphloretin is one of the gaps in the pathway. Polyphenol oxidases and cytochrome P450 dependent enzymes could be involved. Hydroxylation of phloretin in position 3 has high similarity to the B-ring hydroxylation of flavonoids catalysed by the well-known flavonoid 3'-hydroxylase (F3'H). Using recombinant F3'H and chalcone 3-hydroxylase (CH3H) from Cosmos sulphureus we show that F3'H and CH3H accept phloretin to some extent but higher conversion rates are obtained with CH3H. To test whether CH3H catalyzes the hydroxylation of dihydrochalcones in planta and if this could be of physiological relevance, we created transgenic apple trees harbouring CH3H from C. sulphureus. The three transgenic lines obtained showed lower polyphenol concentrations but no shift between the main polyphenol classes dihydrochalcones, flavonols, hydroxycinnamic acids and flavan 3-ols. Increase of 3-hydroxyphloridzin within the dihydrochalcones and of epicatechin/catechin within soluble flavan 3-ols were observed. Decreased activity of dihydroflavonol 4-reductase and chalcone synthase/chalcone isomerase could partially explain the lower polyphenol concentrations. In comparison to the parent line, the transgenic CH3H-lines showed a lower disease susceptibility to fire blight and apple scab that correlated with the increased 3-hydroxyphlorizin contents.

  5. Analysis of beta-carotene hydroxylase gene cDNA isolated from the American oil-palm (Elaeis oleifera) mesocarp tissue cDNA library

    Science.gov (United States)

    Bhore, Subhash J; Kassim, Amelia; Loh, Chye Ying; Shah, Farida H

    2010-01-01

    It is well known that the nutritional quality of the American oil-palm (Elaeis oleifera) mesocarp oil is superior to that of African oil-palm (Elaeis guineensis Jacq. Tenera) mesocarp oil. Therefore, it is of important to identify the genetic features for its superior value. This could be achieved through the genome sequencing of the oil-palm. However, the genome sequence is not available in the public domain due to commercial secrecy. Hence, we constructed a cDNA library and generated expressed sequence tags (3,205) from the mesocarp tissue of the American oil-palm. We continued to annotate each of these cDNAs after submitting to GenBank/DDBJ/EMBL. A rough analysis turned our attention to the beta-carotene hydroxylase (Chyb) enzyme encoding cDNA. Then, we completed the full sequencing of cDNA clone for its both strands using M13 forward and reverse primers. The full nucleotide and protein sequence was further analyzed and annotated using various Bioinformatics tools. The analysis results showed the presence of fatty acid hydroxylase superfamily domain in the protein sequence. The multiple sequence alignment of selected Chyb amino acid sequences from other plant species and algal members with E. oleifera Chyb using ClustalW and its phylogenetic analysis suggest that Chyb from monocotyledonous plant species, Lilium hubrid, Crocus sativus and Zea mays are the most evolutionary related with E. oleifera Chyb. This study reports the annotation of E. oleifera Chyb. Abbreviations ESTs - expressed sequence tags, EoChyb - Elaeis oleifera beta-carotene hydroxylase, MC - main cluster PMID:21364789

  6. Mammalian target of rapamycin complex 2 (mTORC2) controls glycolytic gene expression by regulating Histone H3 Lysine 56 acetylation.

    Science.gov (United States)

    Vadla, Raghavendra; Haldar, Devyani

    2017-11-16

    Metabolic reprogramming is a hallmark of cancer cells, but the mechanisms are not well understood. The mammalian target of rapamycin complex 2 (mTORC2) controls cell growth and proliferation and plays a critical role in metabolic reprogramming in glioma. mTORC2 regulates cellular processes such as cell survival, metabolism, and proliferation by phosphorylation of AGC kinases. Components of mTORC2 are shown to localize to the nucleus, but whether mTORC2 modulates epigenetic modifications to regulate gene expression is not known. Here, we identified histone H3 lysine 56 acetylation (H3K56Ac) is regulated by mTORC2 and show that global H3K56Ac levels were downregulated on mTORC2 knockdown but not on mTORC1 knockdown. mTORC2 promotes H3K56Ac in a tuberous sclerosis complex 1/2 (TSC1/2) mediated signaling pathway. We show that knockdown of sirtuin6 (SIRT6) prevented H3K56 deacetylation in mTORC2 depleted cells. Using glioma model consisting of U87EGFRvIII cells, we established that mTORC2 promotes H3K56Ac in glioma. Finally, we show that mTORC2 regulates the expression of glycolytic genes by regulating H3K56Ac levels at the promoters of these genes in glioma cells and depletion of mTOR leads to increased recruitment of SIRT6 to these promoters. Collectively, these results identify mTORC2 signaling pathway positively promotes H3K56Ac through which it may mediate metabolic reprogramming in glioma.

  7. Lysine 92 amino acid residue of USP46, a gene associated with 'behavioral despair' in mice, influences the deubiquitinating enzyme activity.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Deubiquitinating enzymes (DUBs regulate diverse cellular functions by their activity of cleaving ubiquitin from specific protein substrates. Ubiquitin-Specific Protease 46 (USP46 has recently been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with a lysine codon (Lys 92 deletion in USP46 exhibited loss of 'behavioral despair' under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. However, whether this deletion affects enzyme activity is unknown. Here we show that USP46 has deubiquitinating enzyme activity detected by USP cleavage assay using GST-Ub52 as a model substrate. Interestingly, compared to wild type, the Lys 92 deletion mutant resulted in a decreased deubiquitinating enzyme activity of 27.04%. We also determined the relative expression levels of Usp46 in rat tissues using real-time RT-PCR. Usp46 mRNA was expressed in various tissues examined including brain, with the highest expression in spleen. In addition, like rat USP46, both human and mouse USP46 are active toward to the model substrate, indicating the USP cleavage assay is a simple method for testing the deubiquitinating enzyme activity of USP46. These results suggest that the Lys 92 deletion of USP46 could influence enzyme activity and thereby provide a molecular clue how the enzyme regulating the pathogenesis of mental illnesses.

  8. Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both σ54 and σK factors.

    Science.gov (United States)

    Zhang, Zhe; Yang, Min; Peng, Qi; Wang, Guannan; Zheng, Qingyun; Zhang, Jie; Song, Fuping

    2014-08-15

    Lysine 2,3-aminomutase (KAM; EC 5.4.3.2) catalyzes the interconversion of l-lysine and l-β-lysine. The transcription and regulation of the kam locus, including lysine-2,3-aminomutase-encoding genes, in Bacillus thuringiensis were analyzed in this study. Reverse transcription-PCR (RT-PCR) analysis revealed that this locus forms two operons: yodT (yodT-yodS-yodR-yodQ-yodP-kamR) and kamA (kamA-yokU-yozE). The transcriptional start sites (TSSs) of the kamA gene were determined using 5' rapid amplification of cDNA ends (RACE). A typical -12/-24 σ(54) binding site was identified in the promoter PkamA, which is located upstream of the kamA gene TSS. A β-galactosidase assay showed that PkamA, which directs the transcription of the kamA operon, is controlled by the σ(54) factor and is activated through the σ(54)-dependent transcriptional regulator KamR. The kamA operon is also controlled by σ(K) and regulated by the GerE protein in the late stage of sporulation. kamR and kamA mutants were prepared by homologous recombination to examine the role of the kam locus. The results showed that the sporulation rate in B. thuringiensis HD(ΔkamR) was slightly decreased compared to that in HD73, whereas that in HD(ΔkamA) was similar to that in HD73. This means that other genes regulated by KamR are important for sporulation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CSL), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPCR), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPCR (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CSL (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CSL mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD660) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  10. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure.

    Science.gov (United States)

    Yan, Yan; Kluz, Thomas; Zhang, Ping; Chen, Hao-bin; Costa, Max

    2003-08-01

    We have previously reported that the gpt transgene in G12 Chinese hamster cells could be silenced by water-insoluble nickel compounds nickel sulfide (NiS) or nickel subsulfide (Ni(3)S(2)) and showed that the transgene was silenced by de novo DNA methylation and chromatin condensation. To further understand the nature of this silencing, we used the chromatin immunoprecipitation assay to elucidate the chromatin structure in nickel-induced silenced G12 clones. We also analyzed the effects of the DNA methyltransferase inhibitor 5-azacytidine (5-AzaC) and a histone deacetylase inhibitor trichostatin A (TSA) on histone H3 and H4 acetylation and gpt gene expression in selected nickel-silenced clones. We observed that both histone H3 and H4 were hypoacetylated and a methyl DNA-binding protein MeCP2 was targeted to the gpt gene locus, resulting in a localized inactive chromatin configuration in nickel-silenced cell clones. The histone H3K9 was also found methylated in three of four nickel- silenced cell clones, whereas the histone H3K9 was deacetylated in all four cell clones, indicating that the H3K9 methylation was involved in nickel-induced gene silencing. The acetylation of the gpt gene could be increased by a combination of 5-AzaC and TSA treatment, but not by either 5-AzaC or TSA alone. The gpt transcript was studied by either Northern blot or by semiquantitative RT-PCR following treatment of the silenced clones with TSA or 5-AzaC. An increase in gpt mRNA could be detected by RT-PCR in the clones that regained acetylation of H3 and H4. These data show that gene silencing induced by nickel in the gpt transgenic cell line involved a loss of histone acetylation and an activation of histone methylation. Both H4 and H3 histone acetylation were lost in the silenced clones and these clones exhibited an increase in the methylation of the lysine 9 in histone H3.

  11. 21-Hydroxylase deficiency in Brazil

    Directory of Open Access Journals (Sweden)

    T.A.S.S. Bachega

    2000-10-01

    Full Text Available We determined the frequency of large rearrangements and point mutations in 130 Brazilian patients with 21-hydroxylase deficiency and correlated genotype with phenotype. The frequency of CYP21 deletions was lower (4.4% than in most of the previous series described, whereas the frequency of large gene conversions was similar to the frequency reported in the literature (6.6%. The most frequent point mutations were I2 splice (41.8% in salt wasting - SW, I172N (32.6% in simple virilizing - SV and V281L (40.2% in the late onset form - LO. The frequency of the nine most common point mutations was similar to that reported for other countries. The 93 fully genotyped patients were classified into 3 mutation groups based on the degree of enzymatic activity (A@ 2%, C>20%. In group A, 62% of cases presented the SW form; in group B, 96% the SV form, and in group C, 88% the LO form. We diagnosed 80% of the affected alleles after screening for large rearrangements and 15 point mutations. To diagnose these remaining alleles we sequenced the CYP21 gene of one patient with the SV form and identified a heterozygous G->A transition in codon 424. This mutation leads to a substitution of glycine by serine in a conserved region and was also found in a compound heterozygous state in 4 other patients. The mutation G424S presented a linkage disequilibrium with CYP21P and C4A gene deletions and HLA DR17, suggesting a probable founder effect. Search for the G424S mutation in other populations will reveal if it is restricted to the Brazilian patients or if it has a wider ethnic distribution.

  12. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  13. Alcohol consumption during gestation causes histone3 lysine9 hyperacetylation and an alternation of expression of heart development-related genes in mice.

    Science.gov (United States)

    Pan, Bo; Zhu, Jing; Lv, Tiewei; Sun, Huichao; Huang, Xupei; Tian, Jie

    2014-09-01

    Alcohol abuse during gestation may cause congenital heart diseases (CHDs). The underlying mechanisms of alcohol-induced cardiac deformities are still not clear. Recent studies suggest that histone modification may play a crucial role in this pathological process. Moreover, our previous studies reported that ethanol could induce histone3 lysine9 (H3K9) hyperacetylation and overexpression of heart development-related genes in vitro. The aim of this study was to investigate the effect of alcohol consumption during gestation on the imbalance of H3K9 acetylation and the alternation of the expression of heart development-related genes during cardiogenesis. Pregnant mice were exposed to a single dose of alcohol (10 μl/g/d, 56% alcohol) by gavage every day in the morning from embryo day 7.5 (E7.5) to E15.5. Hematoxylin and eosin (H&E) staining was applied for observing the structure of the embryonic hearts. Western blotting and quantitative real-time polymerase chain reaction were used for detecting the level of H3K9 acetylation and gene expression. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities were detected by colorimetric assay and fluorometric assay. H&E staining of cardiac tissue showed abnormalities of embryonic hearts at E17.5. The level of H3K9 acetylation reached peak at E17.5 and decreased sharply to a low level at birth and maintained at low level afterward. Alcohol exposure increased H3K9 acetylation at E11.5, E14.5, E17.5, and E18.5, respectively (p hearts at E14.5 and E17.5, Mef2c at E14.5, and Nkx2.5 at E14.5 and E17.5, (p 0.05). On embryonic day 17.5, HAT activities of embryonic hearts increased significantly, however alcohol exposure did not alter HDAC activities. These data indicate a time course of H3K9 acetylation change during heart development and demonstrate that alcohol exposure in utero may induce an increase of HAT activities, which results in H3K9 hyperacetylation and an increase of the expression of heart development

  14. Gene expression, serum amino acid levels, and growth performance of pigs fed dietary leucine and lysine at different ratios.

    Science.gov (United States)

    García, H; Morales, A; Araiza, A; Htoo, J K; Cervantes, M

    2015-03-06

    We examined 96 pigs (28.1 ± 0.83 kg) to analyze the effect of Leu:Lys ratios on expression of the cationic amino acid transporters b(0,+) and CAT-1 in the jejunum and liver as well as myosin expression in 2 muscles to estimate the optimum standardized ileal digestible (SID) Leu:Lys ratio for growth rate and efficiency. A wheat-and wheat bran-based diets were formulated to meet the requirements of SID amino acids other than Leu (0.70%) and Lys (0.80%). L-Leu was added to the basal diet in 5 SID Leu:Lys ratios (88, 100, 120, 140, and 160% in diets 1-5). Tissue samples were collected from 8 pigs with ratios of 88, 120, and 160%. Relative expression of b(0,+), CAT-1, and myosin was analyzed. b(0,+) expression in the jejunum was higher but lower in the liver of pigs with the 120% ratio compared to those with the 88 or 160% ratio; myosin expression in longissimus dorsi was also higher in pigs with the 120% ratio (P dietary Leu (P dietary Leu:Lys ratio affects the expression of genes coding for amino acid transporters and myosin, the availability of Lys, and the growth rate and efficiency in pigs.

  15. The activities of lysyl hydroxylase 3 (LH3 regulate the amount and oligomerization status of adiponectin.

    Directory of Open Access Journals (Sweden)

    Heli Ruotsalainen

    Full Text Available Lysyl hydroxylase 3 (LH3 has lysyl hydroxylase, galactosyltransferase, and glucosyltransferase activities, which are sequentially required for the formation of glucosylgalactosyl hydroxylysines in collagens. Here we demonstrate for the first time that LH3 also modifies the lysine residues in the collagenous domain of adiponectin, which has important roles in glucose and lipid metabolism and inflammation. Hydroxylation and, especially, glycosylation of the lysine residues of adiponectin have been shown to be essential for the formation of the more active high molecular weight adiponectin oligomers and thus for its function. In cells that totally lack LH3 enzyme, the galactosylhydroxylysine residues of adiponectin were not glucosylated to glucosylgalactosylhydroxylysine residues and the formation of high and middle molecular weight adiponectin oligomers was impaired. Circulating adiponectin levels in mutant mice lacking the lysyl hydroxylase activity of LH3 were significantly reduced, which indicates that LH3 is required for complete modification of lysine residues in adiponectin and the loss of some of the glycosylated hydroxylysine residues severely affects the secretion of adiponectin. LH mutant mice with reduced adiponectin level showed a high fat diet-induced increase in glucose, triglyceride, and LDL-cholesterol levels, hallmarks of the metabolic syndrome in humans. Our results reveal the first indication that LH3 is an important regulator of adiponectin biosynthesis, secretion and activity and thus might be a potential candidate for therapeutic applications in diseases associated with obesity and insulin resistance.

  16. Sex differences in the expression of vasotocin/isotocin, gonadotropin-releasing hormone, and tyrosine and tryptophan hydroxylase family genes in the medaka brain.

    Science.gov (United States)

    Kawabata, Y; Hiraki, T; Takeuchi, A; Okubo, K

    2012-08-30

    In teleost fish, sex differences in several behavioral and physiological traits have been assumed to reflect underlying sex differences in the central expression of neurotransmitter/neuromodulator-related molecules, including vasotocin (VT)/isotocin (IT), gonadotropin-releasing hormone (GnRH), and tyrosine and tryptophan hydroxylases (TH and TPH). However, the sex-dependent expression patterns of these molecules have not been fully characterized in the teleost brain. In the present study, we therefore systematically evaluated sex differences in their expression in the medaka (Oryzias latipes) brain. The most prominent sex difference was observed in vt expression in the nucleus posterior tuberis (NPT) and the posterior part of the nucleus ventral tuberis (NVT) in the hypothalamus, where the expression was completely male-specific. Male-biased expression of gnrh1, tph1, and tph2 was also evident in the supracommissural and posterior nuclei of the ventral telencephalic area (Vs/Vp), medial nucleus of the dorsal telencephalic area (Dm), and thalamic dorsal posterior nucleus (DP), respectively. In contrast, the overall expression levels of it and gnrh3 were higher in the female brain than in the male brain. Equally importantly, no conspicuous sex differences were observed in the expression of gnrh2, th1, and th2, despite several previous reports of their sex-biased expression in the brains of other teleost species. Taken together, these data have uncovered previously unidentified sex differences in the expression of VT/IT, GnRH, and TPH in the teleost brain, which may possibly be relevant to sexual dimorphism in some behavioral and/or physiological traits, and have simultaneously highlighted potential species differences in the roles of these molecules. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites.

    Science.gov (United States)

    Burlat, Vincent; Oudin, Audrey; Courtois, Martine; Rideau, Marc; St-Pierre, Benoit

    2004-04-01

    In higher plants, isopentenyl diphosphate (IPP) is synthesised both from the plastidic 2-C-methyl-d-erythritol 4-phosphate (MEP) and from the cytosolic mevalonate (MVA) pathways. Primary metabolites, such as phytol group of chlorophylls, carotenoids and the plant hormones abscisic acid (ABA) and gibberellins (GAs) are derived directly from the MEP pathway. Many secondary metabolites, such as monoterpene indole alkaloids (MIAs) in Catharanthus roseus, are also synthesised from this source of IPP. Using Northern blot and in situ hybridisation experiments, we show that three MEP pathway genes (1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MECS)) and the gene encoding geraniol 10-hydroxylase (G10H), a cytochrome P450 monooxygenase involved in the first committed step in the formation of iridoid monoterpenoids display identical cell-specific expression patterns. The co-localisation of these four transcripts to internal phloem parenchyma of young aerial organs of C. roseus adds a new level of complexity to the multicellular nature of MIA biosynthesis. We predict the translocation of pathway intermediates from the internal phloem parenchyma to the epidermis and, ultimately, to laticifers and idioblasts during MIA biosynthesis. Similarly, the translocation of intermediates from the phloem parenchyma is probably also required during the biosynthesis of hormones and photosynthetic primary metabolites derived from the MEP pathway.

  18. El estado heterocigótico para mutaciones del gen fenilalanina hidroxilasa como factor de riesgo fetal THE HETEROCYGOTIC STATE FOR MUTATIONS OF THE PHENYLALANINE HYDROXYLASE GENE AS A FETAL RISK FACTOR

    Directory of Open Access Journals (Sweden)

    Enna Gutiérrez García

    2005-03-01

    Full Text Available Las hiperfenilalaninemias son errores congénitos del metabolismo muy heterogéneos, tanto genética como clínicamente. Actualmente se conocen más de 450 mutaciones en el gen de la fenilalanina hidroxilasa y se definen como la elevación de los niveles de fenilalanina por encima de 120 µmol / L (2 mg / dL. La descendencia de las mujeres con hiperfenilalaninemias puede afectarse debido a la elevación de fenilalanina dentro del útero por el gradiente transplacentario a favor del feto. En nuestra investigación se realizó un estudio por prueba de tolerancia a la fenilalanina en 37 madres de niños con retraso mental inespecífico, y se encontró que 5 eran heterocigóticas y 2 homocigóticas para la mutación del gen de la fenilalanina hidroxilasa, lo que indica una frecuencia mayor que en la población general. En nuestra muestra se encontró relación entre el estado de heterocigosis de las hiperfenilalaninemias y el daño fetal.Hyperphenylalaninemias are very heterogenous congenital errors of metabolism, both genetical and clinically. At present, more than 450 mutations are known in the phenylalanine hydroxylase gene and they are defined as the elevation of the phenylalanine levels above 120 µmol/L (2 mg/dL. The offspring of women with hyperphenylalaninemias may be affected due to the elevation of phenylalanine within the uterus by the transplacental gradient in favor of the feto. As part of our research, a study was conducted by the test of tolerance to phenylalanine in 37 mothers of children with unspecific mental retardation. It was found that 5 were heterocygotic and 2 homocygotic for the mutation of phenylalanine hydroxylase gene, which indicates a frequency higher than that of the general population. In our sample, it was observed a relation between the heterocygosis state of hyperphenylalaninemias and fetal damage.

  19. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  20. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    Science.gov (United States)

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients.

  1. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.

    Science.gov (United States)

    Takeno, Seiki; Hori, Kazumasa; Ohtani, Sachiko; Mimura, Akinori; Mitsuhashi, Satoshi; Ikeda, Masato

    2016-09-01

    We have recently developed a Corynebacterium glutamicum strain that generates NADPH via the glycolytic pathway by replacing endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GapA) with a nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans. Strain RE2, a suppressor mutant spontaneously isolated for its improved growth on glucose from the engineered strain, was proven to be a high-potential host for l-lysine production (Takeno et al., 2010). In this study, the suppressor mutation was identified to be a point mutation in rho encoding the transcription termination factor Rho. Strain RE2 still showed retarded growth despite the mutation rho696. Our strategy for reconciling improved growth with a high level of l-lysine production was to use GapA together with GapN only in the early growth phase, and subsequently shift this combination-type glycolysis to one that depends only on GapN in the rest of the growth phase. To achieve this, we expressed gapA under the myo-inositol-inducible promoter of iolT1 encoding a myo-inositol transporter in strain RE2. The resulting strain RE2A(iol) was engineered into an l-lysine producer by introduction of a plasmid carrying the desensitized lysC, followed by examination for culture conditions with myo-inositol supplementation. We found that as a higher concentration of myo-inositol was added to the seed culture, the following fermentation period became shorter while maintaining a high level of l-lysine production. This finally reached a fermentation period comparable to that of the control GapA strain, and yielded a 1.5-fold higher production rate compared with strain RE2. The transcript level of gapA, as well as the GapA activity, in the early growth phase increased in proportion to the myo-inositol concentration and then fell to low levels in the subsequent growth phase, indicating that improved growth was a result of increased GapA activity, especially in the

  2. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  3. Localization of the gene encoding steroid hydroxylase cytochrome P-450 from Rhizopus nigricans inside a HindIII fragment of genomic DNA.

    Science.gov (United States)

    Breskvar, K; Cresnar, B; Plaper, A; Hudnik-Plevnik, T

    1991-08-15

    The gene encoding steroid inducible cytochrome P450 of Rhizopus nigricans ATCC 6227b has been found inside a HindIII fragment of the genomic DNA by hybridization with a partial length cDNA probe. The latter was isolated by immunoscreening a cDNA library prepared in the lambda gt11 expression system and identified on the basis of inducibility and sequence analysis. The nucleotide sequence of the cDNA probe revealed a coding sequence for the heme binding segment characteristic of the P450 gene family.

  4. Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase

    Science.gov (United States)

    Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.

    2006-01-01

    One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included increases in both striatal tyrosine hydroxylase enzyme activity and in extracellular dopamine concentrations. Persistence of human tyrosine hydroxylase was revealed by expression of RNA and immunoreactivity. PMID:7669103

  5. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Directory of Open Access Journals (Sweden)

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  6. The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene-forming enzyme.

    Science.gov (United States)

    Weiss, D; van der Luit, A H; Kroon, J T; Mol, J N; Kooter, J M

    1993-08-01

    The synthesis of anthocyanins in higher plants involves many enzymatic steps. Here we describe the isolation and characterization of a cDNA, ant17, which encodes a protein that has 73% amino acid sequence identity with the candi gene product of Antirrhinum majus and 48% with that of the maize a2 gene. This protein may therefore be involved in the synthesis of anthocyanins in the steps after the action of dihydroflavonol 4-reductase. This is consistent with the absence of ant17 expression in the regulatory anthocyanin mutants of petunia an1, an2 and an11. Furthermore, ant17 is predominantly expressed in corollas and anthers and is induced by gibberellic acid.

  7. The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by Tryptophan Hydroxylase, Serotonin Transporter, and Monoamine Oxidase-A-Genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.; Thibodeau, Eric

    2013-01-01

    Gene-environment interaction effects in predicting antisocial behavior in late childhood were investigated among maltreated and nonmaltreated low-income children (N = 627, M age = 11.27). Variants in three genes, TPH1, 5-HTTLPR, and MAOA uVNTR, were examined. In addition to child maltreatment status, we also considered the impact of maltreatment subtypes, developmental timing of maltreatment, and chronicity. Indicators of antisocial behavior were obtained from self-, peer-, and adult counselor-reports. In a series of ANCOVAs, child maltreatment and its parameters demonstrated strong main effects on early antisocial behavior as assessed by all forms of report. Genetic effects operated primarily in the context of gene-environment interactions, moderating the impact of child maltreatment on outcomes. Across the three genes, among nonmaltreated children no differences in antisocial behavior were found based on genetic variation. In contrast, among maltreated children specific polymorphisms of TPH1, 5-HTTLPR, and MAOA were each related to heightened self-report of antisocial behavior; the interaction of 5-HTTLPR and developmental timing of maltreatment also indicated more severe antisocial outcomes for children with early onset and recurrent maltreatment based on genotype. TPH1 and 5-HTTLPR interacted with maltreatment subtype to predict peer-report of antisocial behavior; genetic variation contributed to larger differences in antisocial behavior among abused children. TPH1 and 5-HTTLPR polymorphisms also moderated the effects of maltreatment subtype on adult report of antisocial behavior; again genetic effects were strongest for children who were abused. Additionally, TPH1 moderated the effect of developmental timing of maltreatment and chronicity on adult report of antisocial behavior. The findings elucidate how genetic variation contributes to identifying which maltreated children are most vulnerable to antisocial development. PMID:22781862

  8. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  9. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    Science.gov (United States)

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D 3 -treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D 3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D 3 reduced in 60% renal 25-hydroxyvitamin D 3 -dependent Cyp24a1 upregulation (Pbody weight was higher in 25-hydroxyvitamin D 3 treated groups (Palcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular cloning, characterization and expression of two tryptophan hydroxylase (TPH-1 and TPH-2) genes in the hypothalamus of Atlantic croaker: down-regulation after chronic exposure to hypoxia.

    Science.gov (United States)

    Rahman, M S; Thomas, P

    2009-01-23

    Recently we discovered that hypoxia causes marked impairment of reproductive neuroendocrine function in Atlantic croaker, a marine teleost, which is due to a decline in hypothalamic serotonergic activity. As a first step in understanding the molecular responses of the hypothalamic serotonergic system to hypoxia, we cloned and characterized the genes for the enzymes regulating the rate-limiting step in serotonin biosynthesis, tryptophan hydroxylase (TPH-1 and TPH-2) in the croaker brain. The full-length croaker TPH-1 and TPH-2 cDNAs contain open reading frames encoding proteins with 479 and 487 amino acids, respectively, which are highly homologous to the TPH-1 (76-93%) and TPH-2 (64-92%) proteins of other vertebrates. Croaker TPH-1 and TPH-2 mRNA expression was detected throughout the brain but was greatest in the hypothalamic region. Both Northern blot analysis and real-time PCR showed that TPH-1 (transcript size approximately 2.1 kb) and TPH-2 ( approximately 1.9 kb) mRNA levels were significantly decreased in the hypothalami of croaker exposed for 2 weeks to hypoxic conditions compared with those in fish exposed to normoxic conditions. Immunohistochemistry of hypothalamic neurons with TPH antibodies showed reduced expression of TPHs in hypoxia-exposed fish compared with normoxic fish. Western blot analysis confirmed that hypoxia caused a marked decline in hypothalamic TPH protein levels, which was associated with decreases in hypothalamic TPH enzyme activity and 5-hydroxytryptophan levels. These results suggest that TPH is a major site of hypoxia-induced down-regulation of serotonergic function in croaker brains. Moreover, they provide the first evidence that hypoxia decreases the expression of TPH transcripts in vertebrate brains.

  11. Differential gene expression of collagen-binding small leucine-rich proteoglycans and lysyl hydroxylases, during mineralization by MC3T3-E1 cells cultured on titanium implant material.

    Science.gov (United States)

    Takashi, Matsuura; Tsubaki, Satoshi; Tsuzuki, Takashi; Duarte, Wagner R; Yamauchi, Mitsuo; Sato, Hironobu

    2005-06-01

    Titanium implants create a unique ultrastructure (composed of a collagenous zone with relatively disorganized fibril morphology) at the bone-implant interface. The objective of this study was to investigate the temporal mRNA expression patterns, using real-time polymerase chain reaction, of type I collagen (COLI) and regulators for collagen fibrillogenesis, collagen-binding small leucine-rich proteoglycans (SLRPs) and lysyl hydroxylases (LHs), during mineralization, by MC3T3-E1 cells cultured on titanium (Ti). Lysates of the cultures on Ti and on plastic wells (Pl) for 10-50 d were used for the quantification of calcium and mRNA. Although the onset of calcium accumulation in the cultures on Ti (30-40 d) was slower than that of cultures on Pl (20-30 d), the gene expression patterns during mineralization were similar in cells cultured on either material. COLI and fibromodulin were up-regulated just before the onset of mineralization and then down-regulated. Lumican and LH1 were up-regulated just before the onset of mineralization and then returned to the baseline level. Decorin and LH2 were up-regulated at the late mineralization stage. Biglycan was down-regulated once at the early mineralization stage and then returned to the original level. LH3 was maintained at a steady level throughout. This study suggests actual but distinct roles of SLRPs and LHs in the formation of a unique ultrastructure at the bone-implant interface. (c) Eur J Oral Sci, 2005

  12. A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1.

    Directory of Open Access Journals (Sweden)

    Bo Han

    Full Text Available The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1α, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate

  13. Biodegradable Tri-Block Copolymer Poly(lactic acid-poly(ethylene glycol-poly(L-lysine(PLA-PEG-PLL as a Non-Viral Vector to Enhance Gene Transfection

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2011-02-01

    Full Text Available Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid-poly(ethylene glycol-poly(L-lysine (PLA-PEG-PLL copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ε-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells than PEI/DNA complexes (14.01% and 24.22%. These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.

  14. Pollination-, Development-, and Auxin-Specific Regulation of Gibberellin 3β-Hydroxylase Gene Expression in Pea Fruit and Seeds1

    Science.gov (United States)

    Ozga, Jocelyn A.; Yu, Jody; Reinecke, Dennis M.

    2003-01-01

    To understand further how pollination, seeds, auxin (4-chloroindole-3-acetic acid [4-Cl-IAA]), and gibberellins (GAs) regulate GA biosynthesis in pea (Pisum sativum) fruit, we studied expression of the gene PsGA3ox1 that codes for the enzyme that converts GA20 to biologically active GA1 using real-time reverse transcription-polymerase chain reaction analysis. PsGA3ox1 mRNA levels were minimally detectable in prepollinated pericarps and ovules (−2 d after anthesis [DAA]), increased dramatically after pollination (0 DAA), then decreased by 1 DAA. Seed PsGA3ox1 mRNA levels increased at 4 DAA and again 8 to 12 DAA, when seed development was rapid. Pericarp PsGA3ox1 mRNA levels peaked coincidentally with rapid pod diameter expansion (6–10 DAA) to accommodate the growing seeds. The effects of seeds and hormones on the expression of pericarp PsGA3ox1 were investigated over a 24-h treatment period. Pericarp PsGA3ox1 mRNA levels gradually increased from 2 to 3 DAA when seeds were present; however, when the seeds were removed, the pericarp transcript levels dramatically declined. When 2-DAA deseeded pericarps were treated with 4-Cl-IAA, PsGA3ox1 mRNA levels peaked 4 h after hormone treatment (270-fold increase), then decreased. PsGA3ox1 mRNA levels in deseeded pericarps treated with indole-3-acetic acid or GA3 were the same or lower than deseeded controls. These data show that PsGA3ox1 is expressed and developmentally regulated in pea pericarps and seeds. These data also show that pericarp PsGA3ox1 expression is hormonally regulated and suggest that the conversion of GA20 to GA1 occurs in the pericarp and is regulated by the presence of seeds and 4-Cl-IAA for fruit growth. PMID:12644664

  15. Impact of glucocorticoid receptor gene polymorphisms on the metabolic profile of adult patients with the classical form of 21-hydroxylase deficiency.

    Directory of Open Access Journals (Sweden)

    Ricardo P P Moreira

    Full Text Available BACKGROUND: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1 polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. METHODOLOGY: Sixty-eight adult patients (34SV/34SW with a mean age of 28.4±9 years received dexamethasone (mean 0.27±0.11 mg/day to obtain normal androgen levels. SW patients also received fludrocortisone (50 µg/day. Metabolic syndrome (MetS was defined by the NCEP ATPIII criteria and obesity by BMI ≥30 kg/m². NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. RESULTS: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP, triglycerides (TG, LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m²±5.3 vs. 26 kg/m²±5.3, respectively and waist circumference (89 cm±12.7 vs. 81 cm±13, respectively compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. CONCLUSION: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a

  16. Impact of Glucocorticoid Receptor Gene Polymorphisms on the Metabolic Profile of Adult Patients with the Classical Form of 21-Hydroxylase Deficiency

    Science.gov (United States)

    Moreira, Ricardo P. P.; Gomes, Larissa G.; Mendonca, Berenice B.; Bachega, Tânia A. S. S.

    2012-01-01

    Background CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4±9 years received dexamethasone (mean 0.27±0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 µg/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI ≥30 kg/m2. NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m2±5.3 vs. 26 kg/m2±5.3, respectively) and waist circumference (89 cm±12.7 vs. 81 cm±13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk

  17. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.

    Science.gov (United States)

    Revelles, Olga; Espinosa-Urgel, Manuel; Fuhrer, Tobias; Sauer, Uwe; Ramos, Juan L

    2005-11-01

    L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.

  18. Discriminating between lysine sumoylation and lysine acetylation using mRMR feature selection and analysis.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available Post-translational modifications (PTMs are crucial steps in protein synthesis and are important factors contributing to protein diversity. PTMs play important roles in the regulation of gene expression, protein stability and metabolism. Lysine residues in protein sequences have been found to be targeted for both types of PTMs: sumoylations and acetylations; however, each PTM has a different cellular role. As experimental approaches are often laborious and time consuming, it is challenging to distinguish the two types of PTMs on lysine residues using computational methods. In this study, we developed a method to discriminate between sumoylated lysine residues and acetylated residues. The method incorporated several features: PSSM conservation scores, amino acid factors, secondary structures, solvent accessibilities and disorder scores. By using the mRMR (Maximum Relevance Minimum Redundancy method and the IFS (Incremental Feature Selection method, an optimal feature set was selected from all of the incorporated features, with which the classifier achieved 92.14% accuracy with an MCC value of 0.7322. Analysis of the optimal feature set revealed some differences between acetylation and sumoylation. The results from our study also supported the previous finding that there exist different consensus motifs for the two types of PTMs. The results could suggest possible dominant factors governing the acetylation and sumoylation of lysine residues, shedding some light on the modification dynamics and molecular mechanisms of the two types of PTMs, and provide guidelines for experimental validations.

  19. A family of microbial lysine transporter polypeptides

    DEFF Research Database (Denmark)

    2017-01-01

    modifications that confer reduced lysine metabolism and/or enhanced lysine synthesis as compared to the parent cell from which said genetically modified cell was derived. The invention further provides a method for producing lysine using the genetically modified microbial cell. The invention further provides...... a novel family of lysine transporter polypeptides; and the use of said polypeptide to enhance production of extracellular lysine in a microbial cell....

  20. Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria.

    Directory of Open Access Journals (Sweden)

    Sumit Mukherjee

    Full Text Available Riboswitches are cis-regulatory elements that regulate the expression of genes involved in biosynthesis or transport of a ligand that binds to them. Among the nearly 40 classes of riboswitches discovered so far, three are known to regulate the concentration of biologically encoded amino acids glycine, lysine, and glutamine. While some comparative genomics studies of riboswitches focusing on their gross distribution across different bacterial taxa have been carried out recently, systematic functional annotation and analysis of lysine riboswitches and the genes they regulate are still lacking. We analyzed 2785 complete bacterial genome sequences to systematically identify 468 lysine riboswitches (not counting hits from multiple strains of the same species and obtain a detailed phylogenomic map of gene-specific lysine riboswitch distribution across diverse prokaryotic phyla. We find that lysine riboswitches are most abundant in Firmicutes and Gammaproteobacteria where they are found upstream to both biosynthesis and/or transporter genes. They are relatively rare in all other prokaryotic phyla where if present they are primarily found upstream to operons containing many lysine biosynthesis genes. The genome-wide study of the genetic organisation of the lysine riboswitches show considerable variation both within and across different Firmicute orders. Correlating the location of a riboswitch with its genomic context and its phylogenetic relationship with other evolutionarily related riboswitch carrying species, enables identification and annotation of many lysine biosynthesis, transporter and catabolic genes. It also reveals previously unknown patterns of lysine riboswitch distribution and gene/operon regulation and allows us to draw inferences about the possible point of origin of lysine riboswitches. Additionally, evidence of horizontal transfer of riboswitches was found between Firmicutes and Actinobacteria. Our analysis provides a useful resource

  1. P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA.

    Science.gov (United States)

    Hudson, David M; Weis, MaryAnn; Rai, Jyoti; Joeng, Kyu Sang; Dimori, Milena; Lee, Brendan H; Morello, Roy; Eyre, David R

    2017-03-03

    Tandem mass spectrometry was applied to tissues from targeted mutant mouse models to explore the collagen substrate specificities of individual members of the prolyl 3-hydroxylase (P3H) gene family. Previous studies revealed that P3h1 preferentially 3-hydroxylates proline at a single site in collagen type I chains, whereas P3h2 is responsible for 3-hydroxylating multiple proline sites in collagen types I, II, IV, and V. In screening for collagen substrate sites for the remaining members of the vertebrate P3H family, P3h3 and Sc65 knock-out mice revealed a common lysine under-hydroxylation effect at helical domain cross-linking sites in skin, bone, tendon, aorta, and cornea. No effect on prolyl 3-hydroxylation was evident on screening the spectrum of known 3-hydroxyproline sites from all major tissue collagen types. However, collagen type I extracted from both Sc65(-/-) and P3h3(-/-) skin revealed the same abnormal chain pattern on SDS-PAGE with an overabundance of a γ112 cross-linked trimer. The latter proved to be from native molecules that had intramolecular aldol cross-links at each end. The lysine under-hydroxylation was shown to alter the divalent aldimine cross-link chemistry of mutant skin collagen. Furthermore, the ratio of mature HP/LP cross-links in bone of both P3h3(-/-) and Sc65(-/-) mice was reversed compared with wild type, consistent with the level of lysine under-hydroxylation seen in individual chains at cross-linking sites. The effect on cross-linking lysines was quantitatively very similar to that previously observed in EDS VIA human and Plod1(-/-) mouse tissues, suggesting that P3H3 and/or SC65 mutations may cause as yet undefined EDS variants. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Understanding the relationship between DNA methylation and histone lysine methylation☆

    Science.gov (United States)

    Rose, Nathan R.; Klose, Robert J.

    2014-01-01

    DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

  3. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance.

    Science.gov (United States)

    Neshich, Izabella A P; Kiyota, Eduardo; Arruda, Paulo

    2013-12-01

    Lysine is catabolized via the saccharopine pathway in plants and mammals. In this pathway, lysine is converted to α-aminoadipic-δ-semialdehyde (AASA) by lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH); thereafter, AASA is converted to aminoadipic acid (AAA) by α-aminoadipic-δ-semialdehyde dehydrogenase (AASADH). Here, we investigate the occurrence, genomic organization and functional role of lysine catabolic pathways among prokaryotes. Surprisingly, only 27 species of the 1478 analyzed contain the lkr and sdh genes, whereas 323 species contain aasadh orthologs. A sdh-related gene, identified in 159 organisms, was frequently found contiguously to an aasadh gene. This gene, annotated as lysine dehydrogenase (lysdh), encodes LYSDH an enzyme that directly converts lysine to AASA. Pipecolate oxidase (PIPOX) and lysine-6-aminotransferase (LAT), that converts lysine to AASA, were also found associated with aasadh. Interestingly, many lysdh-aasadh-containing organisms live under hyperosmotic stress. To test the role of the lysine-to-AASA pathways in the bacterial stress response, we subjected Silicibacter pomeroyi to salt stress. All but lkr, sdh, lysdh and aasadh were upregulated under salt stress conditions. In addition, lysine-supplemented culture medium increased the growth rate of S. pomeroyi under high-salt conditions and induced high-level expression of the lysdh-aasadh operon. Finally, transformation of Escherichia coli with the S. pomeroyi lysdh-aasadh operon resulted in increased salt tolerance. The transformed E. coli accumulated high levels of the compatible solute pipecolate, which may account for the salt resistance. These findings suggest that the lysine-to-AASA pathways identified in this work may have a broad evolutionary importance in osmotic stress resistance.

  4. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2006-01-01

    Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation and transcript...

  5. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600 ly...

  6. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... Hyperplasia (PDF) Educational Resources (11 links) Boston Children's Hospital: Congenital Adrenal Hyperplasia (CAH) in Children Disease InfoSearch: 21-Hydroxylase Deficiency Genomics Education Programme (UK) Intersex Society of North America MalaCards: ...

  7. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system

    DEFF Research Database (Denmark)

    Panina, Svetlana; Stephan, Alexander; la Cour, Jonas Marstrand

    2012-01-01

    system to study the effect ofCaMgene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated.Weshow that CaM is essential for survival......Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model...

  8. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.

    Science.gov (United States)

    Khan, Mohammed A; Wu, Victoria M; Ghosh, Shreya; Uskoković, Vuk

    2016-06-01

    Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with

  9. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  10. Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1).

    Science.gov (United States)

    Xi, Ruxing; Pun, Ivan Ho Yuen; Menezes, Sharleen V; Fouani, Leyla; Kalinowski, Danuta S; Huang, Michael L H; Zhang, Xiaozhi; Richardson, Des R; Kovacevic, Zaklina

    2017-05-01

    Tumor necrosis factor α (TNFα) plays a vital role in cancer progression as it is associated with inflammation and promotion of cancer angiogenesis and metastasis. The effects of TNFα are mediated by its downstream target, the oncogene lysine-rich CEACAM1 coisolated protein (LYRIC, also known as metadherin or astrocyte elevated gene-1). LYRIC plays an important role in activating the nuclear factor-ĸB (NF-κB) signaling pathway, which controls multiple cellular processes, including proliferation, apoptosis, migration, etc. In contrast, the metastasis suppressor N-myc downstream regulated gene 1 (NDRG1) has the opposite effect on the NF-κB pathway, being able to inhibit NF-κB activation and reduce angiogenesis, proliferation, migration, and cancer cell invasion. These potent anticancer properties make NDRG1 an ideal therapeutic target. Indeed, a novel class of thiosemicarbazone anticancer agents that target this molecule has been developed; the lead agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, has recently entered clinical trials for advanced and resistant cancers. To further elucidate the interaction between NDRG1 and oncogenic signaling, this study for the first time assessed the effects of NDRG1 on the tumorigenic properties of TNFα and its downstream target, LYRIC. We have demonstrated that NDRG1 inhibits the TNFα-mediated epithelial-to-mesenchymal transition. Further, NDRG1 also potently inhibited LYRIC expression, with a negative feedback loop existing between these two molecules. Examining the mechanism involved, we demonstrated that NDRG1 inhibited phosphatidylinositol 3-kinase/AKT signaling, leading to reduced levels of the LYRIC transcriptional activator, c-Myc. Finally, we demonstrated that novel thiosemicarbazones that upregulate NDRG1 also inhibit LYRIC expression, further highlighting their marked potential for cancer treatment. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially ...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  12. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes

    DEFF Research Database (Denmark)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung

    2010-01-01

    are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation...... on these data, we propose that the PcG proteins in part repress transcription by preventing the binding of acetyltransferases to PcG target genes....

  13. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue.

    Science.gov (United States)

    Huber, L; de Lange, C F M; Ernst, C W; Krogh, U; Trottier, N L

    2016-11-01

    Lactating multiparous Yorkshire sows ( = 64) were used in 2 experiments to test the hypothesis that reducing dietary CP intake and improving AA balance through crystalline AA (CAA) supplementation improves apparent dietary AA utilization efficiency for milk production and increases transcript abundance of genes encoding Lys transporter proteins in mammary tissue. In Exp. 1, 40 sows were assigned to 1 of 4 diets: 1) high CP (HCP; 16.0% CP, as-fed basis; analyzed concentration), 2) medium-high CP (MHCP; 15.7% CP), 3) medium-low CP (MLCP; 14.3% CP), and 4) low CP (LCP; 13.2% CP). The HCP diet was formulated using soybean meal and corn as the only Lys sources. The reduced-CP diets contained CAA to meet estimated requirements for essential AA that became progressively limiting with reduction in CP concentration, that is, Lys, Ile, Met + Cys, Thr, Trp, and Val. Dietary standardized ileal digestible (SID) Lys concentration was 80% of the estimated requirement. In Exp. 2, 24 sows were assigned to the HCP or LCP diets. In Exp. 1, blood samples were postprandially collected 15 h on d 3, 7, 14, and 18 of lactation and utilization efficiency of dietary AA for milk production was calculated during early (d 3 to 7) and peak (d 14 to 18) lactation. Efficiency values were estimated from daily SID AA intakes and milk AA yield, with corrections for maternal AA requirement for maintenance and AA contribution from body protein losses. In Exp. 2, mammary tissue was biopsied on d 4 and 14 of lactation to determine the mRNA abundance of genes encoding Lys transporter proteins. In peak lactation, Lys, Thr, Trp, and Val utilization efficiency increased with decreasing dietary CP (linear for Trp and Val, < 0.05; in sows fed the MHCP diet vs. sows fed the HCP diet for Lys and Thr, < 0.05). Total essential and nonessential 15-h postprandial serum AA concentrations increased with decreasing dietary CP (linear, = 0.09 and < 0.05, respectively), suggesting increased maternal body protein

  14. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi...

  15. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflammation.

    Science.gov (United States)

    Lohinai, Zsolt; Keremi, Beata; Szoko, Eva; Tabi, Tamas; Szabo, Csaba; Tulassay, Zsolt; Levine, Martin

    2012-08-01

    Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study are to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR) and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for 1 week. Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm, and saliva before OHR and in dental biofilm after OHR. Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After 1 week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine after OHR, unless biofilm lysine exceeded the minimal blood plasma content, in which case PI was further increased but GCF exudation was reduced. After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis.

  16. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea.

    Science.gov (United States)

    Zhou, Qi-Jia; Wang, Jun; Liu, Min; Qiao, Ying; Hong, Wan-Shu; Su, Yong-Quan; Han, Kun-Huang; Ke, Qiao-Zhen; Zheng, Wei-Qiang

    2016-08-01

    As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination

    National Research Council Canada - National Science Library

    Ezponda, Teresa; Licht, Jonathan D

    2014-01-01

    Methylation of lysine 27 on histone H3 (H3K27me), a modification associated with gene repression, plays a critical role in regulating the expression of genes that determine the balance between cell differentiation and proliferation...

  18. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    Tryptophan hydroxylase (TPH) and dopamine β-hydroxylase (DβH) are two metal-containing monooxygenases that both function e.g. in the brain where they are involved in the biosynthesis of neurotransmitters. TPH catalyse the ratelimiting step in the biosynthesis of serotonin, namely the conversion...... to abnormal levels of the neurotransmitters serotonin, dopamine and norepinephrine and the regulation of tryptophan hydroxylase and dopamine β-hydroxylase. These include depression, anxiety disorders, obsessive compulsive disorder (OCD), schizophrenia, Parkinson's disease and attention deficit...... to the family of ascorbate dependent type II Cu monooxygenases. Very little knowledge exist on DβH and most of it comes from investigations of related proteins. Attempts to express human DβH in bacterial systems have been done in the Metalloprotein Chemistry and Engineering Group, but at present no system...

  19. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  20. morphological features of tyrosine hydroxylase immunoreactive cells ...

    African Journals Online (AJOL)

    Mgina

    2Department of Cell Biology and Functional Morphology, Iwate Medical University, School of. Medicine,. Uchimaru 19-1, Morioka 020-8505, Japan. ABSTRACT. The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas.

  1. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu

    2018-01-01

    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  2. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  3. Glucocorticoid-Induced Osteoporosis in Children with 21-Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Annamaria Ventura

    2013-01-01

    Full Text Available 21-Hydroxylase deficiency (21-OHD is the most common cause of congenital adrenal hyperplasia (CAH, resulting from deletions or mutations of the P450 21-hydroxylase gene (CYP21A2. Children with 21-OHD need chronic glucocorticoid (cGC therapy, both to replace congenital deficit in cortisol synthesis and to reduce androgen secretion by adrenal cortex. GC-induced osteoporosis (GIO is the most common form of secondary osteoporosis that results in an early, transient increase in bone resorption accompanied by a decrease in bone formation, maintained for the duration of GC therapy. Despite the conflicting results in the literature about the bone status on GC-treated patients with 21-OHD, many reports consider these subjects to be at risk for osteoporosis and fractures. In bone cells, at the molecular level, GCs regulate various functions including osteoblastogenesis, osteoclastogenesis, and the apoptosis of osteoblasts and osteocytes. In this paper, we focus on the physiology and biosynthesis of endogenous steroid hormones as well as on the effects of GCs on bone cells, highlighting the pathogenetic mechanism of GIO in children with 21-OHD.

  4. Adding a Lysine Mimic in the Design of Potent Inhibitors of Histone Lysine Methyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yanqi; Ganesh, Thota; Horton, John R.; Spannhoff, Astrid; Liu, Jin; Sun, Aiming; Zhang, Xing; Bedford, Mark T.; Shinkai, Yoichi; Snyder, James P.; Cheng, Xiaodong (Emory); (Kyoto); (Texas)

    2010-07-19

    Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.

  5. Microbial production of l-lysine

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A.K.; Dasgupta, J.; Vora, V.C.

    The production of lysine by fermentation was studied, using a homoserine-deficient and aminoethylcysteine-resistant strain of Corynebacterium glutamicum, in 1-dm/sup 3/ shake frasks and a 14-dm/sup 3/ laboratory fermentor. Molasses was used as substrate. Superphosphate-treated black strap molasses gave better lysine production. Lysine production, residual sugar and dry cell mass were measured as a function of fermentation time. It was observed that 1 g of cell mass produced 3.36 g of lysine.

  6. Photo-lysine captures proteins that bind lysine post-translational modifications.

    Science.gov (United States)

    Yang, Tangpo; Li, Xiao-Meng; Bao, Xiucong; Fung, Yi Man Eva; Li, Xiang David

    2016-02-01

    Post-translational modifications (PTMs) have key roles in regulating protein-protein interactions in living cells. However, it remains a challenge to identify these PTM-mediated interactions. Here we develop a new lysine-based photo-reactive amino acid, termed photo-lysine. We demonstrate that photo-lysine, which is readily incorporated into proteins by native mammalian translation machinery, can be used to capture and identify proteins that recognize lysine PTMs, including 'readers' and 'erasers' of histone modifications.

  7. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  8. Obesity in 21-hydroxylase deficient patients

    OpenAIRE

    Cornean, R.; Hindmarsh, P; Brook, C.

    1998-01-01

    OBJECTIVES—To evaluate the natural history and timing of adiposity rebound (nadir of body mass index (BMI)) in children with congenital adrenal hyperplasia 21-hydroxylase deficiency (CYP21). 
STUDY DESIGN—A retrospective mixed longitudinal study.
METHODS—Height and changes in body composition (BMI; weight (kg)/height2 (m)), triceps and subscapular skinfolds) were analysed in 22(14 girls, eight boys) prepubertal patients with CYP21 for whom continuous anthropometric data were ...

  9. Two adults with adrenal myelolipoma and 21-hydroxylase deficiency.

    Science.gov (United States)

    Nermoen, Ingrid; Følling, Ivar; Vegge, Kjetil; Larmo, Arne; Nedrebø, Bjørn Gunnar; Husebye, Eystein Sverre; Løvås, Kristian

    2009-01-01

    We present incidentally discovered adrenal myelolipomas in two adult males with untreated congenital adrenal hyperplasia (CAH). The patients had simple virilizing form of CAH due to mutations in the CYP21 gene coding for 21-hydroxylase; one was heterozygous for the I172N mutation and the other compound heterozygous for the I172N and I2splice mutations. The masses were not removed since myelolipomas are considered benign tumors, and the tumor size did not increase during four- and nine-year observation periods. An adrenal myelolipoma is an important exception to the rule that large tumours should be removed. Untreated CAH with prolonged excessive ACTH stimulation might contribute to the growth of adrenal masses. CAH should be considered as a differential diagnosis of patients with adrenal masses or adrenal myelolipomas.

  10. Two Adults with Adrenal Myelolipoma and 21-Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Ingrid Nermoen

    2009-01-01

    Full Text Available We present incidentally discovered adrenal myelolipomas in two adult males with untreated congenital adrenal hyperplasia (CAH. The patients had simple virilizing form of CAH due to mutations in the CYP21 gene coding for 21-hydroxylase; one was heterozygous for the I172N mutation and the other compound heterozygous for the I172N and I2splice mutations. The masses were not removed since myelolipomas are considered benign tumors, and the tumor size did not increase during four- and nine-year observation periods. An adrenal myelolipoma is an important exception to the rule that large tumours should be removed. Untreated CAH with prolonged excessive ACTH stimulation might contribute to the growth of adrenal masses. CAH should be considered as a differential diagnosis of patients with adrenal masses or adrenal myelolipomas.

  11. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Science.gov (United States)

    Kim, Gu-Hwan; Yoo, Han-Wook

    2016-01-01

    The term congenital adrenal hyperplasia (CAH) covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency. PMID:27104172

  12. Expansion of the Lysine Acylation Landscape

    DEFF Research Database (Denmark)

    Olsen, Christian A.

    2012-01-01

    Leaving marks: The number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational...... modifications in histone and in non-histone proteins....

  13. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  14. Induced High Lysine Mutants in Barley

    DEFF Research Database (Denmark)

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    Screening of mutagenically treated materials by combined Kjeldahl nitrogen and dye-binding capacity determinations disclosed fourteen barley mutants, which have from a few to about 40 per cent more lysine in the protein and one mutant with 10 per cent less lysine in the protein than the parent...

  15. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    Science.gov (United States)

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-02

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

  16. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  18. Effects of coumarate 3-hydroxylase down-regulation on lignin structure

    Science.gov (United States)

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Paul F. Schatz; Jane M. Marita; Sally A. Ralph; M.S. Srinivasa Reddy; Fang Chen; Richard A. Dixon

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in alfalfa massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to thenormally dominant guaiacyl (G) and syringyl (S) units Stem levels of up to ~65% P (from wild-type levels of ~1%) resulting from down-regulation of C3H were measured by traditional degradative...

  19. Starch and Free Sugars during Kernel Development of Bomi Barley and its High-Lysine Mutant 1508

    DEFF Research Database (Denmark)

    Kreis, Michael

    1978-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...... on the additive effect of the individual high-lysine genes in the double mutants, it is concluded that the influences of these genes on prolamin and starch synthesis are independent....

  20. Improvement in the Production of L-Lysine by Overexpression of ...

    African Journals Online (AJOL)

    Purpose: To clone Corynebacterium glutamicum ATCC21799 aspartokinase gene (EC 2.7.2.4) using shuttle expression vector pEKEx2 in order to increase lysine production. Methods: C. glutamicum DNA was extracted and used for amplification of aspartokinase gene (ask) by cloning into an E. coli/C. glutamicum shuttle ...

  1. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    Directory of Open Access Journals (Sweden)

    Yang M

    2014-08-01

    Full Text Available Ming Yang,1 Huizhong Su,1 Tomoyoshi Soga,2 Kamil R Kranc,3 Patrick J Pollard1 1Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 2Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan; 3MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Abstract: The hypoxia-inducible factor (HIF prolyl hydroxylase domain enzymes (PHDs regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2 availability enables its association with the von Hippel-Lindau (VHL tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. Keywords: prolyl hydroxylase domain (PHD

  2. CYP17A1 intron mutation causing cryptic splicing in 17α-hydroxylase deficiency.

    Directory of Open Access Journals (Sweden)

    Daw-Yang Hwang

    Full Text Available 17α-Hydroxylase/17, 20-lyase deficiency (17OHD is an autosomal recessive disease causing congenital adrenal hyperplasia and a rare cause of hypertension with hypokalemia. The CYP17A1 gene mutation leads to 17OHD and its clinical features. We described an 18 y/o female with clinical features of 17α-hydroxylase/17, 20-lyase deficiency and characterized the functional consequences of an intronic CYP17A1 mutation. The coding regions and flanking intronic bases of the CYP17A1 gene were amplified by PCR and sequenced. The patient is a compound heterozygote for the previously described p.R358X and IVS1 +2T>C mutations. A first intron splice donor site mutation was re-created in minigene and full-length expression vectors. Pre-mRNA splicing of the variant CYP17A1 intron was studied in transfected cells and in a transformed lymphoblastoid cell line. When the full-length CYP17A1 gene and minigene containing the intronic mutation was expressed in transfected cells, the majority (>90% of mRNA transcripts were incorrectly spliced. Only the p.R358X transcript was detected in the EBV-transformed lymphoblastoid cell line. The IVS1 +2T>C mutation abolished most 17α-hydroxylase/17, 20-lyase enzyme activity by aberrant mRNA splicing to an intronic pseudo-exon, causing a frame shift and early termination.

  3. Phenol hydroxylase from Bacillus thermoglucosidasius A7: a two-protein component monooxygenase with a dual role for FAD

    NARCIS (Netherlands)

    Kirchner, U.; Muller, R.; Westphal, A.H.; Berkel, van W.J.H.

    2003-01-01

    A novel phenol hydroxylase (PheA) that catalyzes the first step in the degradation of phenol in Bacillus thermoglucosidasius A7 is described. The two-protein system, encoded by the pheA1 and pheA2 genes, consists of an oxygenase (PheA1) and a flavin reductase (PheA2) and is optimally active at 55

  4. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  5. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  6. Lysine-Rich Proteins in High-Lysine Hordeum Vulgare Grain

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    The salt-soluble proteins in barley grain selected for high-lysine content (Hiproly, CI 7115 and the mutants 29 and 86) and of a control (Carlsberg II) with normal lysine content, contain identical major proteins as determined by MW and electrophoretic mobility. The concentration of a protein group...... with a high lysine content varies significantly among the barleys examined. One protein, present in large amounts in Hiproly, is assumed to be partially responsible for the high-lysine character of Hiproly, CI 7115 and the mutants 29 and 86....

  7. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  8. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2

    DEFF Research Database (Denmark)

    Cooper, Sarah; Grijzenhout, Anne; Underwood, Elizabeth

    2016-01-01

    The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosst...

  9. Mutational characterization of congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Malaysia.

    Science.gov (United States)

    Balraj, P; Lim, P G; Sidek, H; Wu, L L; Khoo, A S B

    2013-06-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is a common autosomal recessive disorder. Our objective was to identify the 21-hydroxylase active gene, CYP21A2 mutations in Malaysian 21-OHD patients using different techniques. Blood samples were obtained from 97 Malaysian 21-OHD patients, which included 40 siblings from 19 families. We used various techniques which include restriction enzyme digestion, Southern blot, multiple ligation-dependent probe amplification (MLPA) and sequencing to elucidate CYP21A2 mutations. Homozygous and compound heterozygous mutations were identified in 95 of the 97 patients (98%). Deletions of CYP21A2 were found in 43 patients (44.3%). Deletions identified in CYP21A2 gene were the usual 30-kb deletion comprising 3'UTR CYP21A1P, C4B and 5'CYP21A2, complete deletion of CYP21A2 gene, deletion in exons 1-3, exons 1-6 and exons 1-8 of CYP21A2. The common mutations identified in CYP21A2 gene were deletion/conversion (22.6%), p.R356W (22%), IVS2-13A/C>G (21.3%), p.I172N (5.3%), p.Q318X (5.3%), and p.P30L (1.03%). This is the first report of the mutation frequency in CYP21A2 gene among the Malay ethnic group. Two novel mutations, c.Y97insT and p.L345P were identified in our patients. Our results show good phenotype-genotype correlation in most of the cases, although clinical variations were identified in some patients. The study has found various mutations including deletions in CYP21A2 gene in Malaysian patients with 21-hydroxylase deficiency using the MLPA technique that is being widely used in present laboratory settings.

  10. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize.

    Science.gov (United States)

    Tang, Maozhi; He, Xiaoyun; Luo, Yunbo; Ma, Liyan; Tang, Xiaoge; Huang, Kunlun

    2013-03-30

    The gene sb401 encoding a lysine-rich protein has been successfully integrated into the genome of maize (Zea mays), its expression showing as increased levels of lysine and total protein in maize seeds. As part of a nutritional assessment of transgenic maize, nutritional composition, especially unintended changes in key nutrients such as proximates, amino acids, minerals and vitamins as well as in antinutrient (phytate phosphorus), and protein nutritional quality were compared between transgenic maize (inbred line 642 and hybrid line Y642) and conventional quality protein maize (QPM) Nongda 108. The contents of total protein, lysine, some other amino acids, several minerals and vitamin B₂ in transgenic inbred line 642 and hybrid line Y642 were significantly higher than those in conventional QPM. Water-soluble protein and G2-glutelin were significantly promoted in transgenic maize Y642. Insertion of the lysine-rich sb401 gene increased the total protein and lysine content of transgenic maize varieties, leading to an improved amino acid score and therefore an improvement in the nutritive value of maize. © 2013 Society of Chemical Industry.

  11. Production of high-lysine-content biscuit and examination of the absorption of lysine in humans

    Directory of Open Access Journals (Sweden)

    Prokisch J.

    2017-10-01

    Full Text Available In the Medical and Health Centre of the University of Debrecen, we examined the changes in the free amino acid content of the blood serum of control and experimental individuals after consumption of 2,000 mg of lysine-laden biscuits. We baked the biscuits at 130 °C, during which the greater part (70–75% of the lysine was not converted into Maillard reaction products. After 30–60 minutes of consumption of the biscuits, the free lysine content of the blood serum increased significantly in the experimental and control group with 41–46%, and even after three hours of consumption the level was 20% higher than in the initial concentration. The free arginine content of the blood serum did not change after the consumption of control and lysine biscuits neither in the control nor in the experimental group. Therefore, the free lysine/free arginine ratio of the individuals consuming lysine increased significantly compared to the initial and the control group’s value. The antioxidant level of the blood serum in the control group remained unchanged after the consumption of the control biscuit, while in the case of the experimental individuals who consumed lysine-fortified biscuits it increased by 40–45% compared to the initial level. Summing up: After consumption of the biscuits with 2,000 mg of free lysine, the concentration of free lysine in the blood serum, its free lysine/free arginine ratio and antioxidant level increased significantly. Our researches have clearly demonstrated that the active substances of the biscuit got into the blood serum, so the investigation of the active substance and the evaluation of the physiological effects are definitely recommended in the long run.

  12. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    Science.gov (United States)

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  13. Engineered bacteriophage lysins as novel anti-infectives

    Directory of Open Access Journals (Sweden)

    hang eyang

    2014-10-01

    Full Text Available Bacteriophage lysins, the highly evolved special peptidoglycan hydrolases, have long been demonstrated to be an effective enzybiotics in various infectious models. The modular structure of lysins makes it possible to design bioengineered lysins that have desired properties, such as higher activity, broader killing spectrum. Moreover, lysins can even be engineered to kill gram-negative bacterial pathogens from without, a property that is unavailable for natural lysins. In this era of ever increased multidrug resistant pathogens, engineered lysins represent a new class of enzybiotics that are powerful and readily available to fight the antimicrobial resistance.

  14. Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia.

    Science.gov (United States)

    Abeykoon, Amila H; Chao, Chien-Chung; Wang, Guanghui; Gucek, Marjan; Yang, David C H; Ching, Wei-Mei

    2012-12-01

    Rickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB. However, no rickettsial lysine methyltransferase has been characterized. Bioinformatic analysis of genomic DNA sequences of Rickettsia identified putative lysine methyltransferases. The genes of the potential methyltransferases were synthesized, cloned, and expressed in Escherichia coli, and expressed proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The methyltransferase activities of the purified proteins were analyzed by methyl incorporation of radioactively labeled S-adenosylmethionine into recombinant fragments of OmpB. Two putative recombinant methyltransferases (rRP789 and rRP027-028) methylated recombinant OmpB fragments. The specific activity of rRP789 is 10- to 30-fold higher than that of rRP027-028. Western blot analysis using specific antibodies against trimethyl lysine showed that both rRP789 and rRP027-028 catalyzed trimethylation of recombinant OmpB fragments. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis showed that rRP789 catalyzed mono-, di-, and trimethylation of lysine, while rRP027-028 catalyzed exclusively trimethylation. To our knowledge, rRP789 and rRP027-028 are the first biochemically characterized lysine methyltransferases of outer membrane proteins from Gram-negative bacteria. The production and characterization of rickettsial lysine methyltransferases provide new tools to investigate the mechanism of methylation of OmpB, effects of methylation on the structure and function of OmpB, and development of methylated OmpB-based diagnostic assays and vaccine candidates.

  15. The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid

    DEFF Research Database (Denmark)

    Revelles, O.; Espinosa-Urgel, M.; Molin, Søren

    2004-01-01

    Pseudomonas putida KT2440 is a soil microorganism that attaches to seeds and efficiently colonizes the plant's rhizosphere. Lysine is one of the major compounds in root exudates, and P. putida KT2440 uses this amino acid as a source of carbon, nitrogen, and energy. Lysine is channeled to delta......-aminovaleric acid and then further degraded to glutaric acid via the action of the davDT gene products. We show that the davDT genes form an operon transcribed from a single sigma(70)-dependent promoter. The relatively high level of basal expression from the davD promoter increased about fourfold in response...... to the addition of exogenous lysine to the culture medium. However, the true inducer of this operon seems to be delta-aminovaleric acid because in a mutant unable to metabolize lysine to delta-aminovaleric acid, this compound, but not lysine, acted as an effector. Effective induction of the P. putida P...

  16. L-lysin export in Corynebacterium glutamicum: Physiological and molecular-biological characterisation of the carrier-mediated export of a primary metabolite; L-Lysinexport bei Corynebacterium glutamicum: Physiologische und molekularbiologische Charakterisierung des Carrier-vermittelten Exportes eines Primaermetaboliten

    Energy Technology Data Exchange (ETDEWEB)

    Vrljic, M.M.

    1997-02-01

    The aim of the present study was to isolate the gene encoding the lysin export carrier of Corynebacterium glutamicum by way of identifying the molecular make-up of the lysin exporter. Neither mutants for heterologous complementation nor sequence information for hybridisation experiments were available for this purpose. The first step therefore was to isolate a mutant of C. glutamicum specifically deficient in lysin export. In contrast to strains deficient in amino acid uptake, which can be selected via their resistance to toxic amino acid analogues, mutants deficient in amino acid export can only be isolated by testing strains singly for loss of the export function in question. Furthermore, as the wildtype of C. glutamicum shows no lysin excretion at all unless manipulated to increase its cellular lysin concentration, it was first necessary to establish a system for induction of lysin excretion in the wildtype. This would then permit isolation of lysin export deficient mutants of C. glutamicum for subsequent homologous complementation experiments.

  17. Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives?

    Science.gov (United States)

    Kulikov, Alexander V; Popova, Nina K

    2015-01-01

    Seasonal affective disorder (SAD) is characterized by recurrent depression occurring generally in fall/winter. Numerous pieces of evidence indicate the association of SAD with decreased brain neurotransmitter serotonin (5-HT) system functioning. Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme in 5-HT synthesis in the brain. This paper concentrates on the relationship between TPH2 activity and mood disturbances, the association between human TPH2 gene expression and the risk of affective disorder, application of tryptophan to SAD treatment and the animal models of SAD. The main conclusions of this review are as follows: (i) the brain 5-HT deficiency contributes to the mechanism underlying SAD, (ii) TPH2 is involved in the regulation of some kinds of genetically defined affective disorders and (iii) the activation of 5-HT synthesis with exogenous l-tryptophan alone or in combination with light therapy could be effective in SAD treatment. The synergic effect of these combined treatments will have several advantages compared to light or tryptophan therapy alone. First, it is effective in the treatment of patients resistant to light therapy. Secondly, l-tryptophan treatment prolongs the antidepressant effect of light therapy.

  18. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    Directory of Open Access Journals (Sweden)

    Daniel Powell

    2017-01-01

    Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  19. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root.

    Science.gov (United States)

    Powell, Daniel; Inoue, Taiga; Bahtiyar, Gül; Fenteany, Gabriel; Sacerdote, Alan

    2017-01-01

    An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  20. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    OpenAIRE

    Daniel Powell; Taiga Inoue; Gül Bahtiyar; Gabriel Fenteany; Alan Sacerdote

    2017-01-01

    An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  1. Digestible reactive lysine in selected milk-based products.

    Science.gov (United States)

    Rutherfurd, S M; Moughan, P J

    2005-01-01

    Reactive lysine contents, true ileal reactive lysine digestibility, and true ileal digestible reactive lysine contents were determined in a wide range of processed milk products. A previously validated assay based on determining reactive lysine in both food and ileal digesta, after reaction of these materials with O-methylisourea, was applied. Semisynthetic diets containing milk products as the sole sources of protein and including chromic oxide as an indigestible marker were fed to growing rats. Digesta from the terminal ileum were collected posteuthanasia and, with samples of the diets, analyzed for reactive lysine (homoarginine) contents. True reactive lysine digestibility was determined after correcting for endogenous lysine loss at the terminal ileum of rats fed an enzyme hydrolyzed casein-based diet, followed by ultrafiltration (5000 Da) of the digesta. Digestible total lysine (determined using conventional methods) was also determined. The true ileal reactive lysine digestibility was high (>91%) in all the milk products tested, but was highest in the UHT milk (100%) and lowest in the infant formulas (91 to 93%). Total lysine digestibility (conventional measurement) significantly underestimated reactive lysine digestibility for all the products tested. The mean underestimation ranged from 1.3 to 7.1% units. The mean digestible total lysine content was significantly different from the available lysine content for most of the products examined. In some cases this difference was small (milk, whole milk protein, lactose hydrolyzed milk powder, and a sports formula) the difference was greater (6.5 to 14%). This would suggest firstly that total lysine and total lysine digestibility determined using conventional methods were inaccurate when applied to some milk-based foods, and secondly that some of the milk products have undergone lysine modification. In general, milk proteins are a highly digestible source of amino acids and lysine.

  2. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  3. Microtubule-Associated Protein SBgLR Facilitates Storage Protein Deposition and Its Expression Leads to Lysine Content Increase in Transgenic Maize Endosperm.

    Science.gov (United States)

    Liu, Chen; Li, Shixue; Yue, Jing; Xiao, Wenhan; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2015-12-12

    Maize (Zea mays) seed is deficient in protein and lysine content. Many studies have been made to improve the nutritional quality of maize seeds. Previously, we reported the role of a natural lysine-rich protein gene SBgLR in increasing protein and lysine content. However, how the SBgLR improves lysine and protein content remains unclear. Here, the reasons and possible mechanism for SBgLR in protein and lysine improvement have been analyzed and discussed. Through seed-specific expression of SBgLR, we obtained transgenic maize with the simultaneously increased lysine and protein contents. High-protein and high-lysine characters were stably inherited across generations. The expression of SBgLR in maize kernels increased the accumulation of both zeins and non-zein proteins. Transmission electron microscopy showed that the number of protein bodies (PBs) was increased obviously in SBgLR transgenic immature endosperms with the morphology and structure of PBs unchanged. The proteinaceous matrix was more abundant in transgenic mature endosperms under scanning electron microscopy. The stabilities of zein and lysine-rich non-zein genes were also increased in transgenic endosperms. Finally, the potential application of SBgLR in maize nutrient improvement was evaluated. This study shows that a cytoskeleton-associated protein has potential applicable value in crop nutrient improving, and provided a feasible strategy for improvement of maize grain quality.

  4. Microtubule-Associated Protein SBgLR Facilitates Storage Protein Deposition and Its Expression Leads to Lysine Content Increase in Transgenic Maize Endosperm

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2015-12-01

    Full Text Available Maize (Zea mays seed is deficient in protein and lysine content. Many studies have been made to improve the nutritional quality of maize seeds. Previously, we reported the role of a natural lysine-rich protein gene SBgLR in increasing protein and lysine content. However, how the SBgLR improves lysine and protein content remains unclear. Here, the reasons and possible mechanism for SBgLR in protein and lysine improvement have been analyzed and discussed. Through seed-specific expression of SBgLR, we obtained transgenic maize with the simultaneously increased lysine and protein contents. High-protein and high-lysine characters were stably inherited across generations. The expression of SBgLR in maize kernels increased the accumulation of both zeins and non-zein proteins. Transmission electron microscopy showed that the number of protein bodies (PBs was increased obviously in SBgLR transgenic immature endosperms with the morphology and structure of PBs unchanged. The proteinaceous matrix was more abundant in transgenic mature endosperms under scanning electron microscopy. The stabilities of zein and lysine-rich non-zein genes were also increased in transgenic endosperms. Finally, the potential application of SBgLR in maize nutrient improvement was evaluated. This study shows that a cytoskeleton-associated protein has potential applicable value in crop nutrient improving, and provided a feasible strategy for improvement of maize grain quality.

  5. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata)

    Science.gov (United States)

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  6. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata.

    Directory of Open Access Journals (Sweden)

    Sheida Azizi

    Full Text Available Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs. This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs, MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates

  7. Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Anne Bouchut

    Full Text Available Lysine acetylation is a reversible post-translational modification (PTM that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT and deacetylase (KDAC genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.

  8. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  9. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  10. 21 CFR 582.5411 - Lysine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  11. Obesity in 21-hydroxylase deficient patients

    Science.gov (United States)

    Cornean, R.; Hindmarsh, P.; Brook, C.

    1998-01-01

    OBJECTIVES—To evaluate the natural history and timing of adiposity rebound (nadir of body mass index (BMI)) in children with congenital adrenal hyperplasia 21-hydroxylase deficiency (CYP21). 
STUDY DESIGN—A retrospective mixed longitudinal study.
METHODS—Height and changes in body composition (BMI; weight (kg)/height2 (m)), triceps and subscapular skinfolds) were analysed in 22(14 girls, eight boys) prepubertal patients with CYP21 for whom continuous anthropometric data were available for at least seven years. BMI and height SD scores were compared at 1, 5, and 10years of age. Skinfold SD scores were compared at 2.5 and 5.5years. Thirteen children (nine girls, four boys) had records available from birth which allowed the estimation of the age at adiposity "peak" and "rebound".
RESULTS—A significant increase in BMI SD score was found at 5 and 10 years compared with those at 1 year. No significant change in height SD score was observed at these ages. Triceps and skinfold SD score were increased significantly at 5.5 compared with 2.5years. The "rebound" in BMI SD score took place at 1.74 years (range 0.71-4.57 ) compared with 5.5 years (range 3.5-7.0) in the normal UK population.
CONCLUSIONS—Normally growing patients with CYP21 increased their BMI throughout childhood. Adiposity rebound took place on average three years earlier than in the general population. These findings suggest that even when well controlled in terms of their disease process, patients with CYP21 are at risk of obesity, which may have important implications for the evolution of reproductive function (polycystic ovaries), diabetes, hypertension, and cardiovascular disease in these subjects.

 PMID:9613359

  12. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  13. Evolution of a novel lysine decarboxylase in siderophore biosynthesis.

    Science.gov (United States)

    Burrell, Matthew; Hanfrey, Colin C; Kinch, Lisa N; Elliott, Katherine A; Michael, Anthony J

    2012-10-01

    Structural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l-2,4-aminobutyrate aminotransferase (DABA AT), to synthesize 1,3-diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3-diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis. © 2012 Blackwell Publishing Ltd.

  14. Autoacetylation of the MYST lysine acetyltransferase MOF protein.

    Science.gov (United States)

    Yang, Chao; Wu, Jiang; Sinha, Sarmistha H; Neveu, John M; Zheng, Yujun George

    2012-10-12

    The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation.

  15. Autoacetylation of the MYST Lysine Acetyltransferase MOF Protein*

    Science.gov (United States)

    Yang, Chao; Wu, Jiang; Sinha, Sarmistha H.; Neveu, John M.; Zheng, Yujun George

    2012-01-01

    The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation. PMID:22918831

  16. Lignification in transgenics deficient in 4-coumarate 3-hydroxylase (C3H)or the associated hydroxycinnamoyl transferase (HCT)

    Science.gov (United States)

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Sally A. Ralph; Clint Chapple; Ramesh B. Nair; Armin Wagner; Fang Chen; M.S. Srinivasa Reddy; Richard A Dixon; Heather D. Coleman; Shawn D. Mansfield

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in angiosperms massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to the normally dominant syringyl (S) and guaiacyl (G) units. Alfalfa stem levels of up to ~65% P (from wild-type (WT) levels of ~1%) resulting from down-regulation of C3H were measured by...

  17. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Science.gov (United States)

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  18. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase.

    Science.gov (United States)

    Millar, Anthony A; Jacobsen, John V; Ross, John J; Helliwell, Chris A; Poole, Andrew T; Scofield, Graham; Reid, James B; Gubler, Frank

    2006-03-01

    We have investigated the relationship between seed dormancy and abscisic acid (ABA) metabolism in the monocot barley and the dicot Arabidopsis. Whether dormant (D) or non-dormant (ND), dry seed of Arabidopsis and embryos of dry barley grains all had similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene expression profiles were determined in Arabidopsis for key ABA biosynthetic [the 9-cis epoxycarotenoid dioxygenasegene family] and ABA catabolic [the ABA 8'-hydroxylase gene family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being expressed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was expressed to a much higher level in embryos from ND grains than from D grains. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in embryos from ND grains. Surprisingly, the signal was confined in the coleorhiza, suggesting that this tissue plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis resulted in decreased ABA content in mature dry seeds and a much shorter after-ripening period to overcome dormancy. Conversely, mutating the CYP707A2 gene resulted in seeds that required longer after-ripening to break dormancy. Our results point to a pivotal role for the ABA 8'-hydroxylase gene in controlling dormancy and that the action of this enzyme may be confined to a particular organ as in the coleorhiza of cereals.

  19. Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bostelman, Lindsey J; Keller, Andrew M; Albrecht, Ashley M; Arat, Arzu; Thompson, Jeffrey S

    2007-03-01

    Various proteins have been found to play roles in both the repair of UV damaged DNA and heterochromatin-mediated silencing in the yeast Saccharomyces cerevisiae. In particular, factors that are involved in the methylation of lysine-79 of histone H3 by Dot1p have been implicated in both processes, suggesting a bipartite function for this modification. We find that a dot1 null mutation and a histone H3 point mutation at lysine-79 cause increased sensitivity to UV radiation, suggesting that lysine-79 methylation is important for efficient repair of UV damage. Epistasis analysis between dot1 and various UV repair genes indicates that lysine-79 methylation plays overlapping roles within the nucleotide excision, post-replication and recombination repair pathways, as well as RAD9-mediated checkpoint function. In contrast, epistasis analysis with the H3 lysine-79 point mutation indicates that the lysine-to-glutamic acid substitution exerts specific effects within the nucleotide excision repair and post-replication repair pathways, suggesting that this allele only disrupts a subset of the functions of lysine-79 methylation. The overall results indicate the existence of distinct and separable roles of histone H3 lysine-79 methylation in the response to UV damage, potentially serving to coordinate the various repair processes.

  20. D-vitamin-1 alpha-hydroxylase-mangel som årsag til svaer rakitis hos en etårig dreng

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe Sparre; Hertel, Niels Thomas; Brock-Jacobsen, Bendt

    2006-01-01

    ,25-dihydroxyvitamin D was undetectable in laboratory tests. Vitamin D1alpha-hydroxylase deficiency was suspected and confirmed by DNA analysis, which revealed a 7 bp duplication in exon 8 of the CYP27B1 gene. The treatment was changed to an activated formula of vitamin D, alphacalcidol, whereupon the clinical...

  1. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation.

    Science.gov (United States)

    Gates, Leah A; Shi, Jiejun; Rohira, Aarti D; Feng, Qin; Zhu, Bokai; Bedford, Mark T; Sagum, Cari A; Jung, Sung Yun; Qin, Jun; Tsai, Ming-Jer; Tsai, Sophia Y; Li, Wei; Foulds, Charles E; O'Malley, Bert W

    2017-09-01

    The transition from transcription initiation to elongation is a key regulatory step in gene expression, which requires RNA polymerase II (pol II) to escape promoter proximal pausing on chromatin. Although elongation factors promote pause release leading to transcription elongation, the role of epigenetic modifications during this critical transition step is poorly understood. Two histone marks on histone H3, lysine 4 trimethylation (H3K4me3) and lysine 9 acetylation (H3K9ac), co-localize on active gene promoters and are associated with active transcription. H3K4me3 can promote transcription initiation, yet the functional role of H3K9ac is much less understood. We hypothesized that H3K9ac may function downstream of transcription initiation by recruiting proteins important for the next step of transcription. Here, we describe a functional role for H3K9ac in promoting pol II pause release by directly recruiting the super elongation complex (SEC) to chromatin. H3K9ac serves as a substrate for direct binding of the SEC, as does acetylation of histone H4 lysine 5 to a lesser extent. Furthermore, lysine 9 on histone H3 is necessary for maximal pol II pause release through SEC action, and loss of H3K9ac increases the pol II pausing index on a subset of genes in HeLa cells. At select gene promoters, H3K9ac loss or SEC depletion reduces gene expression and increases paused pol II occupancy. We therefore propose that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Use of nonradioactive labeling to detect large gene rearrangements in 21-hydroxylase deficiency Uso de marcação não radiativa para identificação de grandes rearranjos gênicos na deficiência da 21-hidroxilase

    Directory of Open Access Journals (Sweden)

    Priscilla Cukier

    2004-01-01

    Full Text Available PURPOSE: To establish the Southern blotting technique using hybridization with a nonradioactive probe to detect large rearrangements of CYP21A2 in a Brazilian cohort with congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CAH-21OH. METHOD: We studied 42 patients, 2 of them related, comprising 80 non-related alleles. DNA samples were obtained from peripheral blood, digested by restriction enzyme Taq I, submitted to Southern blotting and hybridized with biotin-labeled probes. RESULTS: This method was shown to be reliable with results similar to the radioactive-labeling method. We found CYP21A2 deletion (2.5%, large gene conversion (8.8%, CYP21AP deletion (3.8%, and CYP21A1P duplication (6.3%. These frequencies were similar to those found in our previous study in which a large number of cases were studied. Good hybridization patterns were achieved with a smaller amount of DNA (5 mug, and fragment signs were observed after 5 minutes to 1 hour of exposure. CONCLUSIONS: We established a non-radioactive (biotin Southern blot/hybridization methodology for CYP21A2 large rearrangements with good results. Despite being more arduous, this technique is faster, requires a smaller amount of DNA, and most importantly, avoids problems with the use of radioactivity.OBJETIVO: Padronizar a técnica de Southern blotting usando hibridização com material não radioativo para detectar grandes rearranjos no gene CYP21A2 em uma amostra da população brasileira com hiperplasia adrenal congênita. MÉTODO: Foram estudados 42 pacientes, 2 dos quais aparentados, totalizando 80 alelos não relacionados. As amostras de DNA foram obtidas de sangue periférico, digeridas com enzima de restrição Taq I, realizado Southern blotting e hibridizadas com sonda marcada com biotina. RESULTADOS: O método se mostrou eficaz, com resultados similares aos encontrados ao utilizar a metodologia com material radioativo. Foram encontradas 2,5% de deleção do CYP21A2, 8,8% de

  3. Histone H3 lysine 4 methyltransferase KMT2D.

    Science.gov (United States)

    Froimchuk, Eugene; Jang, Younghoon; Ge, Kai

    2017-09-05

    Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and MLL2 in humans and Mll4 in mice, belongs to a family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein over 5500 amino acids in size and is partially functionally redundant with KMT2C. KMT2D is widely expressed in adult tissues and is essential for early embryonic development. The C-terminal SET domain is responsible for its H3K4 methyltransferase activity and is necessary for maintaining KMT2D protein stability in cells. KMT2D associates with WRAD (WDR5, RbBP5, ASH2L, and DPY30), NCOA6, PTIP, PA1, and H3K27 demethylase UTX in one protein complex. It acts as a scaffold protein within the complex and is responsible for maintaining the stability of UTX. KMT2D is a major mammalian H3K4 mono-methyltransferase and co-localizes with lineage determining transcription factors on transcriptional enhancers. It is required for the binding of histone H3K27 acetyltransferases CBP and p300 on enhancers, enhancer activation and cell-type specific gene expression during differentiation. KMT2D plays critical roles in regulating development, differentiation, metabolism, and tumor suppression. It is frequently mutated in developmental diseases, such as Kabuki syndrome and congenital heart disease, and various forms of cancer. Further understanding of the mechanism through which KMT2D regulates gene expression will reveal why KMT2D mutations are so harmful and may help generate novel therapeutic approaches. Published by Elsevier B.V.

  4. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.

    Science.gov (United States)

    Brautaset, Trygve; Jakobsen, Øyvind M; Degnes, Kristin F; Netzer, Roman; Naerdal, Ingemar; Krog, Anne; Dillingham, Rick; Flickinger, Michael C; Ellingsen, Trond E

    2010-07-01

    We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.

  5. miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga.

    Science.gov (United States)

    De Lella Ezcurra, Ana Laura; Bertolin, Agustina Paola; Kim, Kevin; Katz, Maximiliano Javier; Gándara, Lautaro; Misra, Tvisha; Luschnig, Stefan; Perrimon, Norbert; Melani, Mariana; Wappner, Pablo

    2016-05-01

    Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.

  6. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  7. Discovery of substrates for a SET domain lysine methyltransferase predicted by multistate computational protein design.

    Science.gov (United States)

    Lanouette, Sylvain; Davey, James A; Elisma, Fred; Ning, Zhibin; Figeys, Daniel; Chica, Roberto A; Couture, Jean-François

    2015-01-06

    Characterization of lysine methylation has proven challenging despite its importance in biological processes such as gene transcription, protein turnover, and cytoskeletal organization. In contrast to other key posttranslational modifications, current proteomics techniques have thus far shown limited success at characterizing methyl-lysine residues across the cellular landscape. To complement current biochemical characterization methods, we developed a multistate computational protein design procedure to probe the substrate specificity of the protein lysine methyltransferase SMYD2. Modeling of substrate-bound SMYD2 identified residues important for substrate recognition and predicted amino acids necessary for methylation. Peptide- and protein- based substrate libraries confirmed that SMYD2 activity is dictated by the motif [LFM]-1-K(∗)-[AFYMSHRK]+1-[LYK]+2 around the target lysine K(∗). Comprehensive motif-based searches and mutational analysis further established four additional substrates of SMYD2. Our methodology paves the way to systematically predict and validate posttranslational modification sites while simultaneously pairing them with their associated enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Xi-Song Ke

    Full Text Available BACKGROUND: Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3 and lysine 27 (H3K27me3 was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis.

  9. Modelling the active site properties of dopamine b-hydroxylase

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 3. Modelling the active site properties of dopamine ∙ -hydroxylase. A M Thomas G C Mandal S K Tiwary A R Chakravarty. Volume 112 Issue 3 June 2000 pp 398-398. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency in ...

    African Journals Online (AJOL)

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency in South Africa. Y Ganie, C Aldous, Y Balakrishna, R Wiersma. Abstract. Background. Congenital adrenal hyperplasia (CAH) caused by deficiency of the 21-hydoxylase (21-OH) enzyme is the most common form of CAH worldwide. Objective. To evaluate the ...

  11. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase

    Science.gov (United States)

    Krochko; Abrams; Loewen; Abrams; Cutler

    1998-11-01

    Abscisic acid (ABA) 8'-hydroxylase catalyzes the first step in the oxidative degradation of (+)-ABA. The development of a robust in vitro assay has now permitted detailed examination and characterization of this enzyme. Although several factors (buffer, cofactor, and source tissue) were critical in developing the assay, the most important of these was the identification of a tissue displaying high amounts of in vivo enzyme activity (A.J. Cutler, T.M. Squires, M.K. Loewen, J.J. Balsevich [1997] J Exp Bot 48: 1787-1795). (+)-ABA 8'-hydroxylase is an integral membrane protein that is localized to the microsomal fraction in suspension-cultured maize (Zea mays) cells. (+)-ABA metabolism requires both NADPH and molecular oxygen. NADH was not an effective cofactor, although there was substantial stimulation of activity (synergism) when it was included at rate-limiting NADPH concentrations. The metabolism of (+)-ABA was progressively inhibited at O2 concentrations less than 10% (v/v) and was very low (less than 5% of control) under N2. (+)-ABA 8'-hydroxylase activity was inhibited by tetcyclacis (50% inhibition at 10(-6) M), cytochrome c (oxidized form), and CO. The CO inhibition was reversible by light from several regions of the visible spectrum, but most efficiently by blue and amber light. These data strongly support the contention that (+)-ABA 8'-hydroxylase is a cytochrome P450 monooxygenase.

  12. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates.

    Science.gov (United States)

    Wang, L; Cui, S; Ma, L; Kong, L; Geng, X

    2015-12-01

    Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases. © 2015 The Royal Entomological Society.

  13. To cheat or not to cheat: Tryptophan hydroxylase 2 SNP variants contribute to dishonest behavior

    Directory of Open Access Journals (Sweden)

    Qiang eShen

    2016-05-01

    Full Text Available Although lying (bear false witness is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Towards addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2 gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  14. Oligodeoxynucleotide decoy therapy blocks type 1 procollagen transcription and the prolyl hydroxylase beta subunit translation.

    Science.gov (United States)

    Lok, Chun-Nam; Ehrlich, H Paul; White, Sheryl L; Buttolph, Thomas R; Cutroneo, Kenneth R; Chiu, Jen-Fu

    2008-03-01

    Persistent transforming growth factor-beta1 (TGF-beta1) exposure to lungs increases type 1 collagen synthesis and deposition resulting in excess fibrosis which leads to morbidity and possibly death. We now report using human embryonic lung fibroblasts in the presence of TGF-beta1, a novel double-stranded (ds) DNA decoy with phosphorothioate (PT) linkages, containing the TGF-beta cis-element found in the distal promoter region of the COL1A1 gene which silences COL1A1 gene expression. In a cell-free protein translation system, we have previously reported that collagen synthesis was inhibited by disulfide isomerase, the prolyl-4-hydroxylase (P-4-H) beta subunit. By comparative proteomics dsdecoy therapy increased the levels of disulfide isomerase, the P-4-H beta subunit. These findings taken together support the notion that the dsdecoy inhibits type 1 collagen synthesis at both the transcriptional and translational levels.

  15. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure

    OpenAIRE

    Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-ichiro; Nakao, Mitsuyoshi

    2012-01-01

    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA o...

  16. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    Science.gov (United States)

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  17. Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics.

    Science.gov (United States)

    Vavilala, Divya Teja; Reddy, Sujatha; Sachchidanand; Prakash, Swami; Ponnaluri, V K Chaithanya; Kumar, Arvind; Mukherji, Mridul

    2014-01-01

    Epigenetic modifications, particularly DNA methylation and posttranslational histone modifications regulate heritable changes in transcription without changes in the DNA sequence. Despite a number of studies showing clear links between environmental factors and DNA methylation, little is known about the effect of environmental factors on the recently identified histone lysine methylation. Since their identification numerous studies have establish critical role played by these enzymes in mammalian development. Identification of the Jumonji (Jmj) domain containing histone lysine demethylase have added a new dimension to epigenetic control of gene expression by dynamic regulation of histone methylation marks. The objective of our study was to evaluate the effect of prohexadione and trinexapac, widely used plant growth regulators of the acylcyclohexanediones class, on the enzymatic activity of histone lysine demethylases and histone modifications during the neural stem/progenitor cell differentiation. Here we show that prohexadione, but not trinexapac, directly inhibits non-heme iron (II), 2-oxoglutarate-dependent histone lysine demethylase such as Jmjd2a. We used molecular modeling to show binding of prohexadione to Jmjd2a. We also performed in vitro demethylation assays to show the inhibitory effect of prohexadione on Jmjd2a. Further we tested this molecule in cell culture model of mouse hippocampal neural stem/progenitor cells to demonstrate its effect toward neuronal proliferation and differentiation. Molecular modeling studies suggest that prohexadione binds to the 2-oxoglutarate binding site of Jmjd2a demethylase. Treatment of primary neural stem/progenitor cells with prohexadione showed a concentration dependent reduction in their proliferation. Further, the prohexadione treated neurospheres were induced toward neurogenic lineage upon differentiation. Our results describe an important chemico-biological interaction of prohexadione, in light of critical roles

  18. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    Corynebacterium glutamicum, a Gram-positive bacterium used for the production of various biochemicals, is naturally a biotin auxotroph. We introduced the biotin genes from Bacillus subtilis on a plasmid, pBIO, into a lysine-producing derivative (termed AHP-3) that has been described previously...

  19. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    Science.gov (United States)

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  20. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?

    Directory of Open Access Journals (Sweden)

    Gudiña Eduardo

    2008-02-01

    Full Text Available Abstract Astaxanthin is a xanthophyll of great interest in animal nutrition and human health. The market prospect in the nutraceutics industries for this health-protective molecule is very promising. Astaxanthin is synthesized by several bacteria, algae and plants from β-carotene by the sequential action of two enzymes: a β-carotene, 3,3'-hydroxylase that introduces an hydroxyl group at the 3 (and 3' positions of each of the two β-ionone rings of β-carotene, and a β-carotene ketolase that introduces keto groups at carbons 4 and 4' of the β-ionone rings. Astaxanthin is also produced by the yeast-like basidiomycete Xanthophyllomyces dendrorhous. A gene crtS involved in the conversion of β-carotene to astaxanthin has been cloned simultaneously by two research groups. Complementation studies of X. dendrorhous mutants and expression analysis in Mucor circinelloides reveals that the CrtS enzyme is a β-carotene hydroxylase of the P-450 monooxygenase family that converts β-carotene to the hydroxylated derivatives β-cryptoxanthin and zeaxanthin, but it does not form astaxanthin or the ketolated intermediates in this fungus. A bifunctional β-carotene hydroxylase-ketolase activity has been proposed for the CrtS protein. The evidence for and against this hypothesis is analyzed in detail in this review.

  1. Identification and Expression Analysis of Tryptophan Hydroxylase in the Brain and Ventral Nerve Cord of Ragworm Neanthes japonica (Polychaeta, Annelida).

    Science.gov (United States)

    Wang, Shun; Dong, Zhe; Li, Shen; Yin, Haotian; Zhao, Zhifu; Gao, Dongmei; Ren, Guimin; Bao, Xuexiang

    2017-02-01

    Tryptophan hydroxylase (TPH) was stained in the central nervous system of the Neanthes japonica (Polychaeta, Annelida), using sheep anti-tryptophan hydroxylase antibody by the Streptavidin-Peroxidase immunohistochemical method and Colophony-Paraffin embedded section technique. The immunohistochemistry results revealed that the TPH is distributed in the brain and ventral nerve cord, which is consistent with that of serotonin (5-hydroxytryptamine, 5-HT) that labeled by anti-serotonin antibody. Using the rapid amplification of cDNA ends (RACE) technique, TPH cDNA cloned from Neanthes japonica's central nervous system was 1778bp, which encodes predicted protein of 463 amino acid residues. The co-localization of TPH and 5-HT indicated that the specific TPH was responsible for the central serotonin synthesis in the central nervous system of annelida, TPH and 5-HT not only could be as the novel mutual corroboration marker to detect serotonergic neurons, but also provides the evidences for the evolution of aromatic amino acid hydroxylase genes. Anat Rec, 300:415-424, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    NARCIS (Netherlands)

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria Eleni; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as

  3. File list: Oth.Prs.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.20.Crotonyl_lysine.AllCell.bed ...

  4. File list: Oth.Unc.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.50.Crotonyl_lysine.AllCell.bed ...

  5. File list: Oth.Unc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.20.Crotonyl_lysine.AllCell.bed ...

  6. File list: Oth.Unc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.10.Crotonyl_lysine.AllCell.bed ...

  7. File list: Oth.Pan.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.Crotonyl_lysine.AllCell.bed ...

  8. File list: Oth.Plc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.20.Crotonyl_lysine.AllCell.bed ...

  9. File list: Oth.Pan.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.Crotonyl_lysine.AllCell.bed ...

  10. File list: Oth.Pan.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.Crotonyl_lysine.AllCell.bed ...

  11. File list: Oth.Prs.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.50.Crotonyl_lysine.AllCell.bed ...

  12. File list: Oth.Prs.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.10.Crotonyl_lysine.AllCell.bed ...

  13. File list: Oth.Unc.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.05.Crotonyl_lysine.AllCell.bed ...

  14. File list: Oth.Prs.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.05.Crotonyl_lysine.AllCell.bed ...

  15. File list: Oth.Plc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.10.Crotonyl_lysine.AllCell.bed ...

  16. Pharmacogenetics of glucocorticoid replacement could optimize the treatment of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Ricardo P. P. Moreira

    2011-01-01

    Full Text Available INTRODUCTION: 21-hydroxylase deficiency is an autosomal recessive disorder that causes glucocorticoid deficiency and increased androgen production. Treatment is based on glucocorticoid replacement; however, interindividual variability in the glucocorticoid dose required to achieve adequate hormonal control has been observed. OBJECTIVE: The present study aimed to evaluate the association between polymorphic variants involved inglucocorticoid action and/or metabolism and the mean daily glucocorticoid dose in 21-hydroxylase deficiency patients. METHODS: We evaluated 53 patients with classical forms of 21-hydroxylase deficiency who were receiving cortisone acetate. All patients were between four and six years of age and had normal androgen levels. RESULTS: The P450 oxidoreductase A503V, HSD11B1 rs12086634, and CYP3A7*1C variants were found in 19%, 11.3% and 3.8% of the patients, respectively. The mean ± SD glucocorticoid dose in patients with the CYP3A7*1C and wild-type alleles was 13.9 ± 0.8 and 19.5 ± 3.2 mg/m²/d, respectively. We did not identify an association between the P450 oxidoreductase or HSD11B1 allelic variants and the mean glucocorticoid dose. CONCLUSION: Patients carrying the CYP3A7*1C variant required a significantly lower mean glucocorticoid dose. Indeed, the CYP3A7*1C allele accounted for 20% of the variability in the cortisone acetate dose. The analysis of genes involved in glucocorticoid metabolism may be useful in the optimization of treatment of 21-hydroxylase deficiency.

  17. 6-hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33.

    Science.gov (United States)

    Li, Huili; Xie, Kebo; Huang, Haiyan; Wang, Shuning

    2014-01-01

    Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8 ± 1.85 µmol min-1 mg protein-1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53 ± 0.03 mM 2,5-DHP was produced from 0.76 ± 0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP.

  18. Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells.

    Science.gov (United States)

    Zhang, Nan; Han, Zhentai; Sun, Guiling; Hoffman, Angela; Wilson, Iain W; Yang, Yanfang; Gao, Qian; Wu, Jianqiang; Xie, Dan; Dai, Jungui; Qiu, Deyou

    2014-01-17

    Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC-MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine

    Science.gov (United States)

    Meiswinkel, Tobias M; Gopinath, Vipin; Lindner, Steffen N; Nampoothiri, K Madhavan; Wendisch, Volker F

    2013-01-01

    Summary Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased. Funding Information No funding information provided. PMID:23164409

  20. Effects of BPA on global DNA methylation and global histone 3 lysine modifications in SH-SY5Y cells: An epigenetic mechanism linking the regulation of chromatin modifiying genes.

    Science.gov (United States)

    Senyildiz, Mine; Karaman, Ecem Fatma; Bas, Serap Sancar; Pirincci, Pelin Arda; Ozden, Sibel

    2017-10-01

    Bisphenol A (BPA), an estrogenic endocrine disruptor, is widely used in the production of polycarbonate plastic and epoxy resins, resulting in high risk on human health. In present study we aimed to investigate the effects of BPA on global and gene specific DNA methylation, global histone modifications and regulation of chromatin modifiying enzymes in human neuroblastoma cells (SH-SY5Y). Cells were treated with BPA at 0.1, 1 and 10μM concentrations for 48 and 96h. IC50 value of BPA was determined as 183 and 129μM in SH-SY5Y cells after 24h by MTT and NRU tests, respectively. We observed significant alterations on the 5-mC% levels (1.3 fold) and 5-hmC% levels (1.67 fold) after 10μM of BPA for 96h. Significant decrease was identified in H3K9me3 and H3K9ac after 10μM of BPA for 96h while decrease was observed in H3K4me3 at 10μM of BPA for 48h. Alterations were observed in chromatin modifiying genes including G9a, EZH2, SETD8, SETD1A, HAT1, SIRT1, DNMT1, RIZ1 and Suv39h1 after 96h of BPA exposure. Taken together, this study suggests that BPA might modulate the epigenetic regulators which would be key molecular events in the toxicity of endocrine disrupting chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    , the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines...... the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2...... sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled...

  2. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  3. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  4. Lysine carboxylation: unveiling a spontaneous post-translational modification

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Morales, David; Adamian, Larisa [University of Illinois at Chicago, 851 South Morgan Street, Room 218, Chicago, IL 60607 (United States); Shi, Dashuang [Center for Genetic Medicine Research, 111 Michigan Avenue NW, Washington, DC 20010-2970 (United States); Liang, Jie, E-mail: jliang@uic.edu [University of Illinois at Chicago, 851 South Morgan Street, Room 218, Chicago, IL 60607 (United States)

    2014-01-01

    A computational method for the prediction of lysine carboxylation (KCX) in protein structures is described. The method accurately identifies misreported KCXs and predicts previously unknown KCX sites. The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.

  5. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  6. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76 and B. megaterium ...

  7. STUDY OF LYSINE AND ALANINE DELIVERANCE THROUGH POLYPYRROLE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Adhitasari Suratman

    2010-06-01

    Full Text Available Electropolymerization processes of pyrrole and the usage of polypyrrole membrane as lysine and alanine deliverance have been studied by cyclic voltammetry technique. Polypyrrole membrane was prepared by electropolymerization processes of pyrrole in water based solvent containing sodium perchlorate as supporting electrolyte. Electropolymerization processes were carried out within potential range of 0-1100 mV vs Ag/AgCl reference electrode and at the scanning rate of 100 mV/s. In this study, lysine and alanine have been used as molecules which could easily be loaded on and released from polypyrrole membrane. The presence of lysine or alanine during electropolymerization process reduced the rate of electropolymerization of polypyrrole. In lysine or alanine transfer processes into polypyrrole membrane, the interaction between polypyrrole and lysine or alanine showed by the curve of E½ oxidation in respect of - log C. It proved that the E½ oxidation shifted to more positive potential showed by the increasing of concentration of lysine or alanine. Beside that, voltammetric responses of lysine and alanine transfered into polypyrrole membrane were found to be Nernstian. The results indicated that polypyrrole could be used as a sensor of lysine and alanine.   Keywords: Electropolymerization, polypyrrole membrane, voltammetry technique

  8. Studies on lysine production by Bacillus megaterium | Ekwealor ...

    African Journals Online (AJOL)

    . The bacterium identified as Bacillus megaterium SP 14 accumulated a lysine yield of 3.56 mg/ml in a broth culture in 96 h. ... Amino acids other than the aspartate family at 0.01% (w/v) stimulated growth and improved lysine yield. Addition of ...

  9. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...... the segmental location of expression, and clarify whether the reported loss of VDR in CCc is coincident with alterations of vitamin D metabolism....

  10. Biochemical Characterization of Lysine Auxotrophs of Staphylococcus aureus1

    Science.gov (United States)

    Barnes, Isabel J.; Bondi, Amedeo; Moat, Albert G.

    1969-01-01

    Lysine biosynthesis in Staphylococcus aureus has been studied by use of a series of lysine auxotrophs. The strains were isolated after chemical mutagenesis. The majority of these mutant strains were classified according to the enzymatic step found to be deficient. Specific enzyme assays as well as nutritional tests were used to group the organisms. The enzymes included were dihydrodipicolinate synthetase, dihydrodipicolinate reductase, diaminopimelate epimerase, and diaminopimelate decarboxylase. The accumulation of diaminopimelate in certain mutants and the demonstration of dihydrodipicolinate synthetase and reductase provide the first detailed evidence that S. aureus utilizes the diaminopimelate pathway for lysine biosynthesis. A cell-free system was used to study the regulation of these enzymes with the exception of diaminopimelate epimerase. Lysine repressed all of the enzymes tested. The repression appeared to be coordinate in nature. The data presented provide suggestive evidence that the lysine biosynthetic region in S. aureus constitutes an operon. PMID:5802602

  11. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2016-01-01

    Full Text Available Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq. 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  12. Covalent binding of acetaldehyde to proteins: participation of lysine residues.

    Science.gov (United States)

    Tuma, D J; Newman, M R; Donohue, T M; Sorrell, M F

    1987-12-01

    The results of this study demonstrate that lysine is the major amino acid participating in the binding of acetaldehyde to proteins. The formation of both stable and unstable acetaldehyde-albumin adducts was shown to occur via the reaction of acetaldehyde with lysine residues. This conclusion was based on the following experimental evidence: (a) the ratio of stable to unstable adducts of bovine serum albumin was similar to that observed for polylysine; (b) acetylation of albumin markedly reduced acetaldehyde binding; (c) the radio-activity profiles (obtained by high-performance liquid chromatographic analysis) of [14C]acetaldehyde modified amino acids hydrolyzed from total and stable adducts of albumin were nearly identical to those of polylysine or alpha-t-boc-lysine. Analysis of stable adducts of albumin indicated two major modified lysine residues; one residue was much more acidic and the other more basic than unmodified lysine. Unstable adducts were shown to be Schiff bases since NaBH4 treatment resulted in the formation of N-ethyllysine residues. The reducing agents, NaCNBH3 and ascorbic acid, both increased stable adduct formation via increased binding to lysine residues; however, a different elution profile of modified lysine residues was observed for these reducing agents. NaCNBH3 increased the formation of N-ethyllysine residues exclusively, whereas ascorbate increased the formation of the acidic adduct of lysine and also caused the formation of an additional modified lysine residue which was present only in the ascorbate-treated polypeptides. In addition to their detection by radioactivity measurements, the acetaldehyde-lysine adducts could also be detected by the fluorescence of their ophthalaldehyde derivatives.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC and hydroxyectoine (EctD synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata, pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum, or temperature (Sphingopyxis alaskensis, Paenibacillus lautus or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri. These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its

  14. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  15. Expression of tyrosine hydroxylase in newly differentiated neurons from a human cell line (hNT).

    Science.gov (United States)

    Iacovitti, L; Stull, N D

    1997-04-14

    Previous studies have demonstrated that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a number of co-activator molecules (dopamine, TPA, IBMX/forskolin) can induce the novel expression of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) in non-TH-expressing neurons. To date, TH gene induction has been achieved only in cultures of primary brain neurons. In the present study, we investigated whether TH expression could similarly be induced in a cell line derived from human teratocarcinoma cells. Treatment with aFGF and its co-activators resulted in the prolonged expression of TH in newly differentiating human neurons (hNT) but not in their undifferentiated precursors (NT2). These findings suggest that hNTs may serve as a continual source of TH-expressing neurons for cell transplantation and developmental studies.

  16. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  17. Lysine residue 185 of Rad1 is a topological but not a functional counterpart of lysine residue 164 of PCNA.

    Directory of Open Access Journals (Sweden)

    Niek Wit

    Full Text Available Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164 is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185 was identified as the only topological equivalent of PCNA(K164. To investigate a potential role of posttranslational modifications of Rad1(K185 in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R allele. The Rad1(K185 residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185 is not a functional counterpart of PCNA(K164.

  18. Identification of a Novel Allosteric Inhibitory Site on Tryptophan Hydroxylase 1 Enabling Unprecedented Selectivity Over all Related Hydroxylases

    Directory of Open Access Journals (Sweden)

    Mike Petrassi

    2017-05-01

    Full Text Available Pulmonary arterial hypertension (PAH has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor and complex lesions (SERT, 5-HT1B, 5-HT2B receptors of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor. Selective inhibitors of individual signaling elements – SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1, the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH.

  19. Determination of plasma and serum L-lysine using L-lysine epsilon-oxidase from Marinomonas mediterranea NBRC 103028(T).

    Science.gov (United States)

    Matsuda, Motoki; Asano, Yasuhisa

    2010-11-01

    This article describes a successful application of l-lysine epsilon-oxidase (EC 1.4.3.20) for l-lysine determination. l-Lysine epsilon-oxidase was isolated from culture supernatant of Marinomonas mediterranea NBRC 103028(T) and was used for l-lysine determination. Comparison of the characteristics of l-lysine epsilon-oxidase with l-lysine alpha-oxidase, a commercial enzyme used for l-lysine determination, suggests that the use of l-lysine epsilon-oxidase would be more valuable for the determination of l-lysine because of its selectivity and sensitivity, especially in samples with low l-lysine concentration. The enzyme acted only on l-lysine and l-ornithine, to which the relative activity was only 3.4% of that on l-lysine. The value obtained by the colorimetric assay using l-lysine epsilon-oxidase and horseradish peroxidase was not affected by l-ornithine. The enzyme also shows a higher affinity for l-lysine (K(m)=0.0018mM). l-Lysine determination using l-lysine epsilon-oxidase in human plasma and serum was examined. The measured values were close to values determined by instrumental analyses using the precolumn AccQ.Tag Ultra Derivatization Kit. These results suggest that l-lysine epsilon-oxidase can be used for diagnosis based on plasma l-lysine concentration. This is the first report on the application of l-lysine epsilon-oxidase. 2010 Elsevier Inc. All rights reserved.

  20. A 6-alkylsalicylate histone acetyltransferase inhibitor inhibits histone acetylation and pro-inflammatory gene expression in murine precision-cut lung slices

    NARCIS (Netherlands)

    Bosch, van den Thea; Leus, Niek G J; Wapenaar, Hannah; Boichenko, Alexander; Hermans, Jos; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    Lysine acetylations are post-translational modifications of cellular proteins, that are crucial in the regulation of many cellular processes. Lysine acetylations on histone proteins are part of the epigenetic code regulating gene transcription and are installed by histone acetyltransferases.

  1. CYP287A1 is a carotenoid 2-β-hydroxylase required for deinoxanthin biosynthesis in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zhou, Zhengfu; Zhang, Wei; Su, Shiyou; Chen, Ming; Lu, Wei; Lin, Min; Molnár, István; Xu, Yuquan

    2015-12-01

    The carotenoid deinoxanthin is a crucial resistance factor against various stresses in the radiation-resistant bacterium Deinococcus radiodurans. Disruption of the gene dr2473 encoding the cytochrome P450 CYP287A1 led to the accumulation of 2-deoxydeinoxanthin in D. radiodurans, demonstrating that CYP287A1 is a novel β-carotene 2-hydroxylase. The dr2473 knockout mutant was shown to be more sensitive to UV radiation and oxidative stress than the wild-type strain D. radiodurans R1, indicating that the C2 alcohol of deinoxanthin is important for antioxidant activity.

  2. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    Science.gov (United States)

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  3. From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy

    Directory of Open Access Journals (Sweden)

    de Vos Ric

    2010-03-01

    Full Text Available Abstract Background Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. Here we present the identification of novel candidate genes for different potato tuber quality traits by employing a pooling approach reducing the number of hybridizations needed. Extreme genotypes for a quantitative trait are collected and the RNA from contrasting bulks is then profiled with the aim of finding differentially expressed genes. Results We have successfully implemented the pooling strategy for potato quality traits and identified candidate genes associated with potato tuber flesh color and tuber cooking type. Elevated expression level of a dominant allele of the β-carotene hydroxylase (bch gene was associated with yellow flesh color through mapping of the gene under a major QTL for flesh color on chromosome 3. For a second trait, a candidate gene with homology to a tyrosine-lysine rich protein (TLRP was identified based on allele specificity of the probe on the microarray. TLRP was mapped on chromosome 9 in close proximity to a QTL for potato cooking type strengthening its significance as a candidate gene. Furthermore, we have performed a profiling experiment targeting a polygenic trait, by pooling individual genotypes based both on phenotypic and marker data, allowing the identification of candidate genes associated with the two different linkage groups. Conclusions A pooling approach for RNA-profiling with the aim of identifying novel candidate genes associated with tuber quality traits was successfully implemented. The identified candidate genes for tuber flesh color

  4. Basis for the equilibrium constant in the interconversion of l-lysine and l-beta-lysine by lysine 2,3-aminomutase.

    Science.gov (United States)

    Chen, Dawei; Tanem, Justinn; Frey, Perry A

    2007-02-01

    l-beta-lysine and beta-glutamate are produced by the actions of lysine 2,3-aminomutase and glutamate 2,3-aminomutase, respectively. The pK(a) values have been titrimetrically measured and are for l-beta-lysine: pK(1)=3.25 (carboxyl), pK(2)=9.30 (beta-aminium), and pK(3)=10.5 (epsilon-aminium). For beta-glutamate the values are pK(1)=3.13 (carboxyl), pK(2)=3.73 (carboxyl), and pK(3)=10.1 (beta-aminium). The equilibrium constants for reactions of 2,3-aminomutases favor the beta-isomers. The pH and temperature dependencies of K(eq) have been measured for the reaction of lysine 2,3-aminomutase to determine the basis for preferential formation of beta-lysine. The value of K(eq) (8.5 at 37 degrees C) is independent of pH between pH 6 and pH 11; ruling out differences in pK-values as the basis for the equilibrium constant. The K(eq)-value is temperature-dependent and ranges from 10.9 at 4 degrees C to 6.8 at 65 degrees C. The linear van't Hoff plot shows the reaction to be enthalpy-driven, with DeltaH degrees =-1.4 kcal mol(-1) and DeltaS degrees =-0.25 cal deg(-1) mol(-1). Exothermicity is attributed to the greater strength of the bond C(beta)-N(beta) in l-beta-lysine than C(alpha)-N(alpha) in l-lysine, and this should hold for other amino acids.

  5. Bone substitute materials supplemented with prolyl hydroxylase inhibitors decrease osteoclastogenesis in vitro.

    Science.gov (United States)

    Vinzenz, Philipp; Schröckmair, Stefan; Gruber, Reinhard; Agis, Hermann

    2015-08-01

    Inhibition of prolyl hydroxylases stimulates bone regeneration. Consequently, bone substitute materials were developed that release prolyl hydroxylase inhibitors. However, the impact of prolyl hydroxylase inhibitors released from these carriers on osteoclastogenesis is not clear. We therefore assessed the effect of bone substitute materials that release prolyl hydroxylase inhibitors on osteoclastogenesis. Dimethyloxalylglycine, desferrioxamine, and l-mimosine were lyophilized onto bovine bone mineral and hydroxyapatite, and supernatants were generated. Osteoclastogenesis was induced in murine bone marrow cultures in the presence of the supernatants from bone substitute materials. The formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity were determined. To test for possible effects on osteoclast progenitor cells, we measured the effect of the supernatants on proliferation and viability. In addition, experiments were performed where prolyl hydroxylase inhibitors were directly added to the bone marrow cultures. We found that prolyl hydroxylase inhibitors released within the first hours from bone substitute materials reduce the number and activity of TRAP-positive multinucleated cells. In line with this, addition of prolyl hydroxylase inhibitors directly to the bone marrow cultures dose-dependently reduced the number of TRAP-positive multinucleated cells and the overall resorption activity. Moreover, the released prolyl hydroxylase inhibitors decreased proliferation but not viability of osteoclast progenitor cells. Our results show that prolyl hydroxylase inhibitors released from bone substitute materials decrease osteoclastogenesis in murine bone marrow cultures. © 2014 Wiley Periodicals, Inc.

  6. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass...... spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  7. Adaptive evolution of M3 lysin--a candidate gamete recognition protein in the Mytilus edulis species complex.

    Science.gov (United States)

    Lima, Thiago G; McCartney, Michael A

    2013-12-01

    Marine invertebrate gamete recognition proteins (GRPs) are classic examples of rapid adaptive evolution of reproductive proteins, and hybridizing Mytilus blue mussels allow us to study the evolution of GRPs during speciation following secondary contact. Even with frequent hybridization, positive selection drives divergence of M7 lysin, one of the three Mytilus egg vitelline envelope (VE) lysins. Mytilus trossulus and M. edulis form a broad hybrid zone in the Canadian Maritimes and eastern Maine, isolated by strong (but partial) gamete incompatibility. M7 lysin, however, is an unlikely GRP controlling this gametic incompativility, as earlier studies showed either weak or no positive selection and extensive introgression between the two species. We used reverse transcriptase-polymerase chain reaction and cloned several alleles of M3 lysin, a potent VE lysin encoded by a nonhomologous gene whose evolution has not been studied. McDonald-Kreitman and HKA tests reveal strong positive selection, which PAML branch-site models detect in 19.7% of the codons. Protein structure predictions show that replacements map exclusively to one face of the carbohydrate recognition domain (CRD) of this C-type lectin, with codons under positive selection localizing to CRD regions known to control ligand specificity. Polymorphism/divergence analyses show that selective sweep has purged M. edulis but not M. trossulus of polymorphism, and unique to M3 is an absence of fixed substitutions and broad haplotype sharing between M. edulis and Mediterranean M. galloprovincialis. Taken together, these results suggest that different lysins serve as GRPs in different Mytilus hybrid zones, with M3 likely co-opted to play this role in the western Atlantic.

  8. The fate of lysine: Non-targeted stable isotope analysis reveals parallel ways for lysine catabolization in Phaeobacter inhibens.

    Directory of Open Access Journals (Sweden)

    Lorenz C Reimer

    Full Text Available For a detailed investigation of the degradation of lysine in Phaeobacter inhibens DSM 17395, stable isotope experiments with uniformly 13C labeled L-lysine were carried out with lysine adapted cells and the metabolites were analyzed using GC/MS and HPLC/MS. A non-targeted stable isotope analysis was used which compares labeled and not labeled samples to determine the Mass Isotopomer Distribution not only for known metabolites but for all labeled compounds in our GC/MS analysis. We show that P. inhibens uses at least two parallel pathways for the first degradation steps of lysine. Further investigations identified L-pipecolate as an L-lysine degradation intermediate in P. inhibens. The analysis of HPLC/MS data as well as the labeling data of tricarboxylic acid (TCA cycle intermediates show that L-lysine is not only catabolized directly to acetyl-CoA but also via the ethylmalonyl-CoA-pathway, leading to entry points into the TCA cycle via acetyl-CoA, succinyl-CoA, and malate. Altogether the presented data give a detailed insight into the catabolization of L-lysine following the fate of 13C labeled carbon via several ways into the TCA cycle.

  9. Structure activity relationship and modeling studies of inhibitors of lysine specific demethylase 1.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Post-translational modifications of histone play important roles in gene transcription. Aberrant methylation of histone lysine sidechains have been often found in cancer. Lysine specific demethylase 1 (LSD1, which can demethylate histone H3 lysine 4 (H3K4 and other proteins, has recently been found to be a drug target for acute myeloid leukemia. To understand structure activity/selectivity relationships of LSD1 inhibitors, several series of cyclopropylamine and related compounds were synthesized and tested for their activities against LSD1 and related monoamine oxidase (MAO A and B. Several cyclopropylamine containing compounds were found to be highly potent and selective inhibitors of LSD1. A novel series cyclopropylimine compounds also exhibited strong inhibitory activity against LSD1. Structure activity relationships (SAR of these compounds are discussed. Docking studies were performed to provide possible binding models of a representative compound in LSD1 and MAO-A. Moreover, these modeling studies can rationalize the observed SARs and selectivity.

  10. Utilization of potato starch processing wastes to produce animal feed with high lysine content.

    Science.gov (United States)

    Li, Ying; Liu, Bingnan; Song, Jinzhu; Jiang, Cheng; Yang, Qian

    2015-02-01

    This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40°C, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

  11. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  12. Identification of lysine K18 acetylation on histone H3 peptide using gold nanoparticles' aggregation behaviour.

    Science.gov (United States)

    Li, Ning; Sutarlie, Laura; Lew, Qiao Jing; Chao, Sheng-Hao; Su, Xiaodi

    2016-04-01

    Acetylation of histones, the major protein component of eukaryotic chromosomes, contributes to the epigenetic regulation of gene expression and is also involved in cancer development. A recent study revealed the correlation between tumour formation and acetylation level of lysine K18 on histone H3. In this study, we developed two colorimetric in vitro assays using gold nanoparticles (AuNPs) for identification of lysine K18 acetylation on histone H3 peptide. In assay I, citrate ion-capped AuNP without further modification was employed. Simply mixing the K18 peptide with AuNP solution leads to distinct particle aggregation, relative to that by non-acetylated or lysine K14 acetylated control peptides. In assay II, an AuNP-peptide-antibody composite was synthesized and used as both the sensing probe and the transducing element. By mixing the sample peptides with the composite solution followed by PBS screening, different aggregation behaviours were observed between the K18 acetylated target peptide and the control sequences. Both assays are capable of identifying the acetylated peptides, and also differentiating the distinctive acetylation positions that differ merely by a distance of three amino acids.

  13. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability.

    Directory of Open Access Journals (Sweden)

    Jae-Young Lee

    Full Text Available G9a is a lysine methyltransferase (KMTase for histone H3 lysine 9 that plays critical roles in a number of biological processes. Emerging evidence suggests that aberrant expression of G9a contributes to tumor metastasis and maintenance of a malignant phenotype in cancer by inducing epigenetic silencing of tumor suppressor genes. Here, we show that G9a regulates Sox2 protein stability in breast cancer cells. When G9a lysine methyltransferase activity was chemically inhibited in the ER(+ breast cancer cell line MCF7, Sox2 protein levels were decreased. In addition, ectopic overexpression of G9a induced accumulation of Sox2. Changes in cell migration, invasion, and mammosphere formation by MCF7 cells were correlated with the activity or expression level of G9a. Ectopic expression of G9a also increased Sox2 protein levels in another ER(+ breast cancer cell line, ZR-75-1, whereas it did not affect Sox2 expression in MDA-MB-231 cells, an ER(- breast cancer cell line, or in glioblastoma cell lines. Furthermore, treatment of mouse embryonic stem cells with a KMT inhibitor, BIX-01294, resulted in a rapid reduction in Sox2 protein expression despite increased Sox2 transcript levels. This finding suggests that G9a has a novel function in the regulation of Sox2 protein stability in a cell type-dependent manner.

  14. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity.

    Science.gov (United States)

    Sartor, Gregory C; Powell, Samuel K; Brothers, Shaun P; Wahlestedt, Claes

    2015-11-11

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. Proteins involved in the "readout" of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and BET inhibitors are currently

  15. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  16. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  17. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  18. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Peters, Günther H.J.; Harris, Pernille

    2017-01-01

    Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis...... of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism...

  19. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    such as depression and obsessive-compulsive disorder (OCD). Characterization of TPH and elucidation of the enzymes regulation and catalytic mechanism is therefore vital to our understanding of the serotonin balance. This study concerns variants of both human TPH isoform 1 (hTPH1) and human TPH isoform 2 (h PH2......Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). Serotonin is involved in many physiological functions, such as appetite and sleep rhythm, as well as a wide range of psychiatric disorders...

  20. Effects of infused methionine, lysine and rumen-protected ...

    African Journals Online (AJOL)

    parasites and injected with a vitamin ADE preparation. The .... nine was deficient and lysine was the second limiting amino acid. .... u'b Means within the same row with different superscripts differ signihcantly ... Doyle & Bird (1975) reported a.

  1. Effects of dietary chromium tripicolinate and lysine on growth ...

    African Journals Online (AJOL)

    These results show that CrPic has minimal effects on growth efficiency, while lysine affects significantly growth performance, carcass characteristics and most of plasma metabolites in growing-finishing pigs. Une expérience a été conduite afin d'évaluer l'effet du tripicolinate de chrome (CrPic) et de trois taux de lysine chez ...

  2. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    Elongation factor P is modified with (R)-ß-lysine by the lysyl-tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate a- and ß-lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site gui...

  3. Digestible lysine levels in diets for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Cleverson Luís Nascimento Ribeiro

    2013-07-01

    Full Text Available The objective of this study was to estimate the digestible lysine requirement of Japanese quails in the egg-laying phase. A total of 336 female Japanese quails (Coturnix coturnix japonica of average initial age of 207 days were distributed in a completely randomized experimental design, composed of 6 treatments (lysine levels with 7 replicates and 8 birds per experimental unit, with duration of 84 days. Experimental diets were formulated from a basal diet, with corn and soybean meal, with 2.800 kcal ME/kg and 203.70 g/kg crude protein, showing levels of 9.50; 10.00; 10.50; 11.00; 11.50; and 12.00 g/kg digestible lysine; diets remained isoprotein and isocaloric. The following variables were studied: feed intake (FI; lysine intake (LI; egg production per bird per day (EPBD; egg production per bird housed (EPBH; production of marketable eggs (PME; egg weight (EW; egg mass (EM; utilization efficiency of lysine for egg mass production (UELEM; feed conversion per mass (FCEM; feed conversion per dozen eggs (FCDZ; bird availability (BA; percentages of yolk (Y, albumen (A and shell (S; specific egg weight (SW; nitrogen ingested (NI; nitrogen excreted (NE; and nitrogen balance (NB. Significant effect was only observed for LI, EW, EM, UELEM, FCEM, Y, A and SW. The digestible lysine level estimated in diets for laying Japanese quails is 11.20 g digestible lysine/kg diet, corresponding to an average daily intake of 272.23 mg lysine.

  4. Biofortification of rice with lysine using endogenous histones.

    Science.gov (United States)

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  5. Water reuse in the l-lysine fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, T.Y.; Glatz, C.E. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical Engineering

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.

  6. Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine beta-hydroxylase

    DEFF Research Database (Denmark)

    Bjerrum, Ole Jannik; Helle, K B; Bock, Elisabeth Marianne

    1979-01-01

    By means of a monospecific antibody, dopamine beta-hydroxylase was monitored immunoelectrophoretically in various extracts of chromaffin granules. Approximately one-third of the dopamine beta-hydroxylase present was located in the membrane fraction and could only be liberated with detergent. The ...... with chymotrypsin and thermolysin the amphiphilic form could be convered into its hydrophilic counterpart....

  7. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond.

    Science.gov (United States)

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2016-12-01

    Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The major elimination pathway of brain cholesterol is its hydroxylation into 24 (S)-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1). Interestingly, there seems to be an association between CYP46A1 and high-order brain functions, in a sense that increased expression of this hydroxylase improves cognition, while a reduction leads to a poor cognitive performance. Moreover, increasing amount of epidemiological, biochemical and molecular evidence, suggests that CYP46A1 has a role in the pathogenesis or progression of neurodegenerative disorders, in which up-regulation of this enzyme is clearly beneficial. However, the mechanisms underlying these effects are poorly understood, which highlights the importance of studies that further explore the role of CYP46A1 in the central nervous system. In this review we summarize the major findings regarding CYP46A1, and highlight the several recently described pathways modulated by this enzyme from a physiological and pathological perspective, which might account for novel therapeutic strategies for neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.

    Science.gov (United States)

    Theodosiou, Eleni; Breisch, Marina; Julsing, Mattijs K; Falcioni, Francesco; Bühler, Bruno; Schmid, Andreas

    2017-07-01

    Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na+ /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.

  9. Synthesis and Characterisation of Poly(L-Lysine) for Directed Transfection of siRNA

    OpenAIRE

    McCarthy, Sarah

    2010-01-01

    This work focuses primarily on the synthesis of the cell penetrating peptide poly(L-lysine). This 30mer peptide (K³º) has been shown to be extremely useful in delivery of genetic material to the cell for gene therapy. So far it has shown transgene expression of up to twelve weeks, using DNA, which was delivered to the brain.[l] Lung cells have also been success full transfected by ths method.[2,3] In this research we aim to use a polymer conjugate of K³º for the delivery of small interferi...

  10. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...... of the present study was to examine the KDAC gene expression profile of the beta cell and to investigate whether KDAC expression is regulated by cytokines. In addition, the protective effect of the non-selective KDAC inhibitor ITF2357 and interdependent regulation of four selected KDACs were investigated....

  11. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.

    Science.gov (United States)

    Sunil, Meeta; Hariharan, Arun K; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R; Gupta, Ravi P; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-12-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  13. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH).

    Science.gov (United States)

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens.

  14. Purification, characterization, and directed evolution study of a vitamin D{sub 3} hydroxylase from Pseudonocardia autotrophica

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yoshikazu [Bioresource Laboratories, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078 (Japan); Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 (Japan); Kabumoto, Hiroki; Nishimura, Kenji; Fujii, Tadashi; Yanai, Satoshi [Bioresource Laboratories, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078 (Japan); Takeda, Koji [BioTechnical Development Center, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078 (Japan); Tamura, Noriko [Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517 (Japan); Arisawa, Akira, E-mail: arisawa-a@mercian.co.jp [Bioresource Laboratories, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078 (Japan); Tamura, Tomohiro, E-mail: t-tamura@aist.go.jp [Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517 (Japan); Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 (Japan)

    2009-07-24

    Vitamin D{sub 3} (VD{sub 3}) is a fat-soluble prohormone that plays a crucial role in bone metabolism, immunity, and control of cell proliferation and cell differentiation in mammals. The actinomycete Pseudonocardia autotrophica is capable of bioconversion of VD{sub 3} into its physiologically active forms, namely, 25(OH)VD{sub 3} or 1{alpha},25(OH){sub 2}VD{sub 3}. In this study, we isolated and characterized Vdh (vitamin D{sub 3} hydroxylase), which hydroxylates VD{sub 3} from P. autotrophica NBRC 12743. The vdh gene encodes a protein containing 403 amino acids with a molecular weight of 44,368 Da. This hydroxylase was found to be homologous with the P450 belonging to CYP107 family. Vdh had the same ratio of the V{sub max} values for VD{sub 3} 25-hydroxylation and 25(OH)VD{sub 3} 1{alpha}-hydroxylation, while other enzymes showed preferential regio-specific hydroxylation on VD{sub 3}. We characterized a collection of Vdh mutants obtained by random mutagenesis and obtained a Vdh-K1 mutant by the combination of four amino acid substitutions. Vdh-K1 showed one-order higher VD{sub 3} 25-hydroxylase activity than the wild-type enzyme. Biotransformation of VD{sub 3} into 25(OH)VD{sub 3} was successfully accomplished with a Vdh-expressed recombinant strain of actinobacterium Rhodococcus erythropolis. Vdh may be a useful enzyme for the production of physiologically active forms of VD{sub 3} by a single cytochrome P450.

  15. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae.

    Science.gov (United States)

    Yang, Li-En; Huang, Xing-Qi; Hang, Yu; Deng, Yin-Yin; Lu, Qin-Qin; Lu, Shan

    2014-09-01

    Carotene hydroxylases catalyze the hydroxylation of α- and β-carotene hydrocarbons into xanthophylls. In red algae, β-carotene is a ubiquitously distributed carotenoid, and hydroxylated carotenoids such as zeaxanthin and lutein are also found. However, no enzyme with carotene hydroxylase activity had been previously identified in red algae. Here, we report the isolation of a gene encoding a cytochrome P450-type carotene hydroxylase (PuCHY1) from Porphyra umbilicalis, a red alga with an ancient origin. Sequence comparisons found PuCHY1 belongs to the CYP97B subfamily, which has members from different photosynthetic organisms ranging from red algae to land plants. Functional complementation in Escherichia coli suggested that PuCHY1 catalyzed the conversion from β-carotene to zeaxanthin. When we overexpressed PuCHY1 in the Arabidopsis thaliana chy2 mutant, pigment analysis showed a significant accumulation of hydroxylated carotenoids, including neoxanthin, violaxanthin, and lutein in the leaves of transgenic plants. These results confirmed a β-hydroxylation activity of PuCHY1, and also suggested a possible ϵ-hydroxylation function. The pigment profile and gene expression analyses of the algal thallus under high-light stress suggested that P. umbilicalis is unlikely to operate a partial xanthophyll cycle for photoprotection. © 2014 Institute of Botany, Chinese Academy of Sciences.

  16. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  17. Diversity shift in bacterial phenol hydroxylases driven by alkyl-phenols in oil refinery wastewaters.

    Science.gov (United States)

    Harzallah, Besma; Bousseboua, Hacène; Jouanneau, Yves

    2017-06-01

    Phenol hydroxylases (PHs) play a primary role in the bacterial degradation of phenol and alkylphenols. They are divided into two main classes, single-component and multi-component PHs, having distinctive catalytic subunits designated as PheA1 and LmPH, respectively. The diversity of these enzymes is still largely unexplored. Here, both LmPH and pheA1 gene sequences were examined in activated sludge from oil refinery wastewaters. Phenol, p-cresol, or 3,4-dimethylphenol (3,4-DMP) supplied as extra carbon sources were rapidly mineralized by the microbial community. Analysis of LmPH genes revealed a wide range of sequences, most of which exhibited moderate similarity with homologs found in Proteobacteria. Moreover, the LmPH diversity profiles showed a dramatic shift upon sludge treatment with p-cresol or 3,4-DMP amendment. This resulted in an enrichment in sequences similar to LmPHs from Betaproteobacteria and Gammaproteobacteria. RT-PCR analysis of RNA extracted from wastewater sludge highlighted LmPH genes best expressed in situ. A PCR approach was implemented to analyze the pheA1 gene diversity in the same microbial community. Retrieved sequences fell into four clusters and appeared to be distantly related to pheA1 genes from Actinobacteria. Altogether, our results provide evidence that phenol degraders carrying LmPH are more diverse than PheA1 carrying bacteria and suggest that PHs with best adapted substrate specificity are recruited in response to (methyl)phenol availability.

  18. Association between tryptophan hydroxylase 2 polymorphism and anger-related personality traits among young Korean women.

    Science.gov (United States)

    Yang, Jaewon; Lee, Moon-Soo; Lee, So-Hee; Lee, Boung-Chul; Kim, Seung-Hyun; Joe, Sook-Haeng; Jung, In-Kwa; Choi, Ihn-Geun; Ham, Byung-Joo

    2010-08-01

    It has been suggested that the serotonergic systems are associated with anger and aggressive behaviors. We investigated the association between several single nucleotide polymorphisms in the serotonergic genes and anger-related personality traits. A total of 228 healthy female Korean women participated in this study. All subjects were assessed with the State-Trait Anger Expression Inventory (STAXI) and were genotyped for 3 polymorphisms: serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR), tryptophan hydroxylase 1 (TPH1) A218C, and TPH2 G-703T. The Anger Expression-Out (AX-Out) subscale scores of the STAXI differed significantly between the genotypes for the TPH2 G-703T polymorphism (F = 4.825, p = 0.009). G/G homozygous subjects scored significantly higher on the AX-Out subscale than those with the G/T genotype. However, no significant differences were observed in the relationships between the STAXI subscale scores of subjects with other polymorphisms. This study suggests that the TPH2 G-703T polymorphism might contribute to anger-related traits, especially to the expression of anger. (c) 2010 S. Karger AG, Basel.

  19. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    Science.gov (United States)

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Directory of Open Access Journals (Sweden)

    Zhang Yuqi

    2010-08-01

    Full Text Available Abstract Background Suicide and major depressive disorders (MDD are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2 gene rs7305115 SNP may predispose to suicide attempts in MDD. Methods We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis. Results There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, p p p Conclusions The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.

  1. Beyond histones - the expanding roles of protein lysine methylation.

    Science.gov (United States)

    Wu, Zhouran; Connolly, Justin; Biggar, Kyle K

    2017-09-01

    A robust signaling network is essential for cell survival. At the molecular level, this is often mediated by as many as 200 different types of post-translational modifications (PTMs) that are made to proteins. These include well-documented examples such as phosphorylation, ubiquitination, acetylation and methylation. Of these modifications, non-histone protein lysine methylation has only recently emerged as a prevalent modification occurring on numerous proteins, thus extending its role well beyond the histone code. To date, this modification has been found to regulate protein activity, protein-protein interactions and interplay with other PTMs. As a result, lysine methylation is now known to be a coordinator of protein function and is a key driver in several cellular signaling events. Recent advances in mass spectrometry have also allowed the characterization of a growing number of lysine methylation events on an increasing number of proteins. As a result, we are now beginning to recognize lysine methylation as a dynamic event that is involved in a number of biological processes, including DNA damage repair, cell growth, metabolism and signal transduction among others. In light of current research advances, the stage is now set to study the extent of lysine methylation that exists within the entire proteome, its dynamics, and its association with physiological and pathological processes. © 2017 Federation of European Biochemical Societies.

  2. Antioxidant activity of carbocysteine lysine salt monohydrate.

    Science.gov (United States)

    Pinamonti, S; Venturoli, L; Leis, M; Chicca, M; Barbieri, A; Sostero, S; Ravenna, F; Daffonchio, L; Novellini, R; Ciaccia, A

    2001-09-01

    Reactive oxygen radicals are involved in many respiratory diseases, including chronic obstructive pulmonary disease (COPD). Carbocysteine lysine salt monohydrate (CLS) is a mucoactive drug effective in the treatment of bronchopulmonary diseases characterized by mucus alterations, including COPD. In the present study, the antioxidant activity of CLS was studied in vitro in three different oxygen radical producing systems, i.e. bronchoalveolar lavages (BAL) from patients affected by COPD, ultrasound treated human serum and cultured human lung endothelial cells challenged with elastase. BAL, exposed or not to different concentrations of CLS (1.5-30 mM), was assayed for free radical content by fluorometric analysis of DNA unwinding (FADU) or by cytochrome c reduction kinetics. Human serum was treated with ultrasound in the presence or absence of CLS (1.5, 2.5 mM) or N-acetyl cysteine (NAC; 4, 5 mM) and assayed for free radical content by FADU. Human endothelial cells cultured in vitro from pulmonary artery were incubated with elastase (0.3 IU/mL), in the presence or absence of glutathione (GSH; 0.65 mM) or CLS (0.16 mM). The supernatant was tested for cytochrome c reduction kinetics whereas cell homogenates were assessed for xanthine oxidase (XO) content by SDS-PAGE. Results showed that CLS is more effective as an in vitro scavenger in comparison to GSH and NAC. CLS reduced the damage of DNA from healthy donors exposed to COPD-BAL and was able to quench clastogenic activity induced in human serum by exposure to ultrasound at concentrations as low as 2.5 mM. NAC protect DNA from radical damage, starting from 5 mM. In human lung endothelial cells cultured in presence of elastase, CLS (0.16 mM) decreased xanthine oxidase activity. These results suggest that CLS could act by interfering with the conversion of xanthine dehydrogenase into superoxide-producing xanthine oxidase. The antioxidant activity of CLS could contribute to its therapeutic activity by reducing radical

  3. 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase-Dependent Stimulation of Renal Klotho Expression by Spironolactone

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-11-01

    Full Text Available Background: Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney, is required for the suppression of 1,25(OH2D3-generating 25-hydroxyvitamin D3 1-alpha-hydroxylase (Cyp27b1 by FGF23. Conversely, 1,25(OH2D3 stimulates, by activating the vitamin D3 receptor (Vdr, the expression of klotho, thus establishing a negative feedback loop. Klotho protects against renal and vascular injury. Klotho deficiency accelerates aging and early death, effects at least partially due to excessive formation of 1,25(OH2D3 and subsequent hyperphosphatemia. Klotho expression is inhibited by aldosterone. The present study explored the interaction of aldosterone and DOCA as well as the moderately selective mineralocorticoid receptor antagonist spironolactone on klotho expression. Methods: mRNA levels were determined utilizing quantitative RT-PCR in human embryonic kidney cells (HEK293 or in renal tissues from mice without or with prior mineralocorticoid (aldosterone or DOCA and/or spironolactone treatment. In HEK293 cells, protein levels were determined by western blotting. The experiments in HEK293 cells were performed without or with silencing of CYP27B1, of vitamin D3 receptor (VDR or of mineralocorticoid receptor (NR3C2. Results: In HEK293 cells aldosterone and in mice DOCA significantly decreased KLOTHO gene expression, effects opposed by spironolactone treatment. Spironolactone treatment alone significantly increased KLOTHO and CYP27B1 transcript levels in HEK293 cells (24 hours and mice (8 hours or 5 days. Moreover, spironolactone significantly increased klotho and CYP27B1 protein levels in HEK293 cells (48 hours. Reduced NR3C2 expression following silencing did not significantly affect KLOTHO and CYP27B1 transcript levels in presence or absence of spironolactone. Silencing of CYP27B1 and VDR significantly blunted the stimulating effect of spironolactone on KLOTHO mRNA levels in HEK293 cells. Conclusion: Besides blocking the effects of

  4. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells.

    Science.gov (United States)

    Dias, João D; Rito, Tiago; Torlai Triglia, Elena; Kukalev, Alexander; Ferrai, Carmelo; Chotalia, Mita; Brookes, Emily; Kimura, Hiroshi; Pombo, Ana

    2015-12-19

    Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels.

  5. Monosialotetrahexosylganglioside protect cerebral ischemia/reperfusion injury through upregulating the expression of tyrosine hydroxylase by inhibiting lipid peroxidation.

    Science.gov (United States)

    Li-Mao; Liao, Yin-Juan; Hou, Guang-Han; Yang, Zhong-Bao; Zuo, Mei-Ling

    2016-12-01

    To explore the new mechanism of neuroprtection of monosialotetrahexosylganglioside and providing reliable theoretical foundation and experimental evidence for the emergency treatment and rehabilitation of cerebral ischemia/reperfusion injury. A rat model of cerebral ischemia/reperfusion injury was constructed and intervened with monosialotetrahexosylganglioside(5mg/kg) and lipid peroxidation inhibitor U-101033E(40mg/kg). TTC straining and neurobiological function score were used to evaluate brain injury. 4-HNE and MDA content were measured to evaluate lipid peroxidation. The expression of tyrosine hydroxilase at both mRNA and protein levels and enzyme activity were determined to evaluate the gene disfunction. Tyrosine content in brain and in serum and the DOPA content in plasma were measured to evaluate the metabolism of tyrosine. As the study shown, cerebral ischemia/reperfusion lead to brain infarction and neurobiological function losing accompany with upregulation of 4-HNE and MDA levels and downregulation of TH expression (mRNA and protein) and decreased enzyme activity. The results above mentioned can be reversed obviously by intervening with monosialotetrahexosylganglioside and lipid peroxidation inhibitor U-101033E. Toxic aldehyde accumulation leaded to disfunction of tyrosine hydroxylase and excessive tyrosine and decreased synthesis of catecholamine neurotransmitter such as dopamine and accelerated neuron cell injury. Both monosialotetrahexosylganglioside and U-101033E presented neuroprotecion by restoring the tyrosine/dopa pathway through reversing the function of tyrosine hydroxylase by inhibiting lipid peroxidation. Copyright © 2016. Published by Elsevier Masson SAS.

  6. Expression and bioconversion of recombinant m- and p-hydroxybenzoate hydroxylases from a novel moderate halophile, Chromohalobacter sp.

    Science.gov (United States)

    Kim, Wonduck; Park, Yu Ri; Im, Seonghun; Kim, Dockyu; Kim, Si Wouk

    2012-09-01

    p-Hydroxybenzoate hydroxylase (pobA) and m-hydroxybenzoate hydroxylase (mobA) genes, from the moderate halophile Chromohalobacter sp. HS-2, were expressed and characterized. Solubilities of overexpressed recombinant MobA and PobA were enhanced by the induction of the heat-shock proteins DnaJ and DnaK. Each MobA and PobA maintained stable activity under high NaCl concentrations. V (max) and K (m) values for MobA with m-hydroxybenzoate were 70 μmol min(-1) mg(-1) protein and 81 μM, respectively. Similarly, those of PobA with p-hydroxybenzoate as substrate were 5 μmol min(-1) mg(-1) protein and 129 μM, respectively. The Escherichia coli expression system, including induction of heat shock proteins, was used to convert hydroxybenzoates into protocatechuate (3,4-dihydroxybenzoate) and revealed that resting cells harboring mobA converted 15 mM m-hydroxybenzoate to 15 mM protocatechuate while those harboring pobA converted 50 mM p-hydroxybenzoate to 35 mM protocatechuate at 30 °C, respectively.

  7. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  8. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  9. The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains

    Directory of Open Access Journals (Sweden)

    Guinevere L. Grice

    2015-07-01

    Full Text Available Proteasome-mediated degradation occurs with proteins principally modified with lysine-48 polyubiquitin chains. Whether the proteasome also can bind atypical ubiquitin chains, including those linked by lysine-11, has not been well established. This is critically important, as lysine-11 polyubiquitination has been implicated in both proteasome-mediated degradation and non-degradative outcomes. Here we demonstrate that pure homotypic lysine-11-linked chains do not bind strongly to the mammalian proteasome. By contrast, heterotypic polyubiquitin chains, containing lysine-11 and lysine-48 linkages, not only bind to the proteasome but also stimulate the proteasomal degradation of the cell-cycle regulator cyclin B1. Thus, while heterotypic lysine-11-linked chains facilitate proteasomal degradation, homotypic lysine-11 linkages adopt conformations that prevent association with the proteasome. Our data demonstrate the capacity of the proteasome to bind ubiquitin chains of distinct topology, with implications for the recognition and diverse biological functions of mixed ubiquitin chains.

  10. [Cytostatic effect of L-lysine-alpha-oxidase from Trichoderma harzianum Rifai and Trichoderma viride].

    Science.gov (United States)

    Khaduev, S Kh; Zhukova, O S; Dobrynin, Ia V; Soda, K; Berezov, T T

    1987-04-01

    L-lysine-alpha-oxidase, a new fungal enzyme catalyzing oxidative L-lysine deamination, was shown to have an inhibitory effect on the in vitro synthesis of DNA, RNA and proteins in human carcinoma ovarian (CaOv) cells.

  11. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Shrividhya Srinivasan

    2008-10-01

    Full Text Available Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II. Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.

  12. Ensemble modeling for strain development of L-lysine-producing Escherichia coli.

    Science.gov (United States)

    Contador, Carolina A; Rizk, Matthew L; Asenjo, Juan A; Liao, James C

    2009-01-01

    One of the main strategies to improve the production of relevant metabolites has been the manipulation of single or multiple key genes in the metabolic pathways. This kind of strategy requires several rounds of experiments to identify enzymes that impact either yield or productivity. The use of mathematical tools to facilitate this process is desirable. In this work, we apply the Ensemble Modeling (EM) framework, which uses phenotypic data (effects of enzyme overexpression or genetic knockouts on the steady-state production rate) to screen for potential models capable of describe existing data and thus gaining insight to improve strains for l-lysine production. Described herein is a strategy to generate a set of kinetic models that describe a set of enzyme overexpression phenotypes previously determined in an Escherichia coli strain that produces increased levels of l-lysine in an industrial laboratory. This final ensemble of models captures the kinetic characteristics of the cell through screening of phenotypes after sequential overexpression of enzymes. Furthermore, these models demonstrate some predictive capability, as starting from the reference producing strain (overexpressing desensitized dihydrodipicolinate synthetase (dapA*)) this set of models is able to predict that the desensitization of aspartate kinase (lysC*) is the next rate-controlling step in the l-lysine pathway. Moreover, this set of models allows for the generation of further targets for testing, for example, phosphoenolpyruvate (Ppc), aspartate aminotransferase (AspC), and glutamate dehydrogenase (GdhA). This work demonstrates the usefulness, applicability, and scope that the Ensemble Modeling framework offers to build production strains.

  13. Autoantibodies against mono- and tri-methylated lysine display similar but also distinctive characteristics.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wang

    Full Text Available Autoantibodies can be either harmful or beneficial to the body. The beneficial autoantibodies play important roles in immunosurveillance, clearance of body waste and maintenance of immune homeostasis. Despite their importance, however, people's knowledge on the protective autoantibodies is still very limited. In the current study, we examined two autoantibodies that recognized epitopes with only one amino acid. One was against mono-methylated lysine (Kme and the other was against tri-methylated lysine (Kme3. We found that the antibodies were highly specific and not polyreactive. They did not cross-react each other. Although anti-Kme antibodies were IgM only, a large proportion of the anti-Kme3 antibodies were switched to the IgG isotype. Mass spectrometric analysis showed that both of the antibodies were mainly derived from IGHV 3-7 and/or IGHV3-74 germ line genes with conserved CDR2. De novo sequencing showed that there was a mutation at either of the SS positions on the CDR1 region, which changed one of the serine residues to a basic amino acid, i.e., arginine or lysine. We also found that neither of the antibodies was expressed at birth, and their earliest appearance was approximately 5 months after birth. All healthy human beings expressed the antibodies when they reached age two and maintained the expression thereafter throughout their life. Patients with systemic lupus erythematosus had lower levels of the IgM isotype antibodies. Serum levels of the two IgM antibodies were closely correlated, implying that they were produced by cells from the same B cell subset. We also found that both anti-Kme and anti-Kme3 antibodies could bind and might take part in the clearance of neutrophil extracellular traps released from activated cells. In conclusion, although anti-Kme and anti-Kme3 antibodies share many similarities in their origins, they are different antibodies and have different characteristics.

  14. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  15. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 Lysine 4 Demethylase KDM5C

    Directory of Open Access Journals (Sweden)

    Grafodatskaya Daria

    2013-01-01

    Full Text Available Abstract Background A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment. Results Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP. Conclusions We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.

  16. Phytoecdysteroid C2-hydroxylase is microsomal in spinach, Spinacia oleracea L.

    Science.gov (United States)

    Bakrim, Ahmed; Guittard, Emilie; Maria, Annick; De Virville, Jacques Davy; Lafont, René; Takvorian, Najat

    2009-12-01

    An enzyme involved in the biosynthesis of phytoecdysteroids, the C2-hydroxylase, has been investigated in spinach, Spinacia oleracea. This enzyme is microsomal and its K(m) has been determined using 2-deoxy-20-hydroxyecdysone as substrate (K(m)=3.72 microM). It is much more efficient with 2-deoxy-20-hydroxyecdysone than with 2-deoxyecdysone and, conversely, the C20-hydroxylase is more active on 2-deoxyecdysone than on ecdysone. These data support the conclusion that C20-hydroxylation precedes C2-hydroxylation. The C2-hydroxylase is inhibited by high concentrations of 20E. Substrate specificity and subcellular localization of C2-hydroxylase differ between plants and insects, and these data, as well as those previously reported on other biosynthetic steps, show the great difference between plant and insect ecdysteroid biosynthetic pathways and suggest an independent origin for the pathways in both kingdoms. (c) 2009 Wiley Periodicals, Inc.

  17. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs

    National Research Council Canada - National Science Library

    Kwon, Deug-Nam; Lee, Kiho; Kang, Man-Jong; Choi, Yun-Jung; Park, Chankyu; Whyte, Jeffrey J; Brown, Alana N; Kim, Jae-Hwan; Samuel, Melissa; Mao, Jiude; Park, Kwang-Wook; Murphy, Clifton N; Prather, Randall S; Kim, Jin-Hoi

    2013-01-01

    .... For deletion of non-Gal antigen, we successfully produced zinc finger nuclease (ZFN)-mediated monoallelic/biallelic male and female CMP-N-acetylneuraminic acid hydroxylase (CMAH) KO miniature pigs...

  18. Targeting Oxygen-Sensing Prolyl Hydroxylase for Metformin-Associated Lactic Acidosis Treatment.

    Science.gov (United States)

    Oyaizu-Toramaru, Tomoko; Suhara, Tomohiro; Hayakawa, Noriyo; Nakamura, Takashi; Kubo, Akiko; Minamishima, Shizuka; Yamaguchi, Kyoji; Hishiki, Takako; Morisaki, Hiroshi; Suematsu, Makoto; Minamishima, Yoji Andrew

    2017-08-15

    Metformin is one of the most widely used therapeutics for type 2 diabetes mellitus and also has anticancer and antiaging properties. However, it is known to induce metformin-associated lactic acidosis (MALA), a severe medical condition with poor prognosis, especially in individuals with renal dysfunction. Inhibition of prolyl hydroxylase (PHD) is known to activate the transcription factor hypoxia-inducible factor (HIF) that increases lactate efflux as a result of enhanced glycolysis, but it also enhances gluconeogenesis from lactate in the liver that contributes to reducing circulating lactate levels. Here, we investigated the outcome of pharmaceutical inhibition of PHD in mice with MALA induced through the administration of metformin per os and an intraperitoneal injection of lactic acid. We found that the PHD inhibitors significantly increased the expression levels of genes involved in gluconeogenesis in the liver and the kidney and significantly improved the survival of mice with MALA. Furthermore, the PHD inhibitor also improved the rate of survival of MALA induced in mice with chronic kidney disease (CKD). Thus, PHD represents a new therapeutic target for MALA, which is a critical complication of metformin therapy. Copyright © 2017 American Society for Microbiology.

  19. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs.

    Science.gov (United States)

    Kwon, Deug-Nam; Lee, Kiho; Kang, Man-Jong; Choi, Yun-Jung; Park, Chankyu; Whyte, Jeffrey J; Brown, Alana N; Kim, Jae-Hwan; Samuel, Melissa; Mao, Jiude; Park, Kwang-Wook; Murphy, Clifton N; Prather, Randall S; Kim, Jin-Hoi

    2013-01-01

    After the knock-out (KO) of α1,3 galactosyltransfease (Gal-T), the Hanganutziu-Deicher antigen became a major antigen of the "non-Gal antigen" that is implicated in subsequent xenograft rejection. For deletion of non-Gal antigen, we successfully produced zinc finger nuclease (ZFN)-mediated monoallelic/biallelic male and female CMP-N-acetylneuraminic acid hydroxylase (CMAH) KO miniature pigs: the efficiency of the gene targeting (41.7%) was higher when donor DNA was used with the ZFN than those of ZFN alone (9.1%). Monoallelic KO pigs had no integration of exogenous DNA into their genome, indicating that this technique would provide a new avenue to reduce the risk of antibiotics resistance when organs from genetically modified pigs are transplanted into patients. Until now, both monoallelic and biallelic CMAH KO pigs are healthy and show no sign of abnormality and off-target mutations. Therefore, these CMAH null pigs on the Gal-T KO background could serve as an important model for the xenotransplantation.

  20. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea.

    Directory of Open Access Journals (Sweden)

    Bramwell G Lambrus

    Full Text Available Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP, or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems.

  1. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea.

    Science.gov (United States)

    Lambrus, Bramwell G; Cochet-Escartin, Olivier; Gao, Jiarong; Newmark, Phillip A; Collins, Eva-Maria S; Collins, James J

    2015-01-01

    Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph) gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP), or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems.

  2. Examination and expansion of the substrate range of m-hydroxybenzoate hydroxylase.

    Science.gov (United States)

    Chang, Hung-Kuang; Zylstra, Gerben J

    2008-06-20

    The gene encoding m-hydroxybenzoate hydroxylase (mobA) was cloned from Comamonas testosteroni GZ39. MobA converts m-hydroxybenzoate and to a lesser extent p-hydroxybenzoate to protocatechuate. To explore the structural and functional relationships in phenolic acid monooxygenases, MobA was subjected to in vitro mutagenesis by error-prone PCR and the mutant MobAs were screened for their ability to oxidize phenol or 3-aminophenol. A mutant MobA with a single V257A substitution was able to transform phenol to catechol, providing the first example of monooxygenase acting on phenolic acids that can also hydroxylate phenol. The mutant MobA also has enhanced ability to transform resorcinol, hydroquinone, p-hydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3-chlorophenol, 4-chlorophenol, 4-chlororesorcinol, and 4-nitrophenol. Several MobA mutants were obtained for their ability to transform 3-aminophenol to a related substituted catechol. Mutant MobAs with single amino acid substitutions (H135P, A400G, or D416A) were derived from these mutants and verified for their ability to transform 3-aminophenol.

  3. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    Science.gov (United States)

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  4. Analysis of Grain Protein, Tryptophan and Lysine Contents of Quality ...

    African Journals Online (AJOL)

    In view of the growing importance of QPM in human nutrition, the objective of this study was to analyze the protein, tryptpphan and lysine contents of QPM lines so as to utilize these genotypes in developing hybrid varieties and bringing its nutritional benefits to fruition. METHODS: The seeds for this work were obtained from ...

  5. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Science.gov (United States)

    Villegas, María F.; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J.; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-01-01

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion. PMID:28952559

  6. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    North India. METHODS: The protein, tryptophan and lysine contents of improved genotypes of quality protein maize and two local checks were studied between June 2005 and January 2006 on seeds of Maize grown in three localities in North agro-ecological zones of India. Protein content was determined using micro-.

  7. Antioxidant activity of maillard reaction products from lysine-glucose ...

    African Journals Online (AJOL)

    Maillard reaction (MR) was carried out in L-lysine-D-glucose (Lys-Glu) model system heated at 120°C for 0 to 10 h without pH control. Optical property (UV-Vis absorbance and fluorescence) development of MR was monitored. Antioxidant activity of maillard reaction products (MRPs) was investigated by a series of in vitro ...

  8. effects of dietary chromium tripicolinate and lysine on growth

    African Journals Online (AJOL)

    AISA

    NRC, 1988) lys level ; B2 : 120 % NRC lys ... These results show that CrPic has minimal effects on growth efficiency, while lysine affects significantly growth ..... pig antiserum produced in our laboratory was used at 1 : 4 dilution as the precipitating ...

  9. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica.

    Science.gov (United States)

    Borbolla-Vázquez, Jessica; Orozco, Esther; Medina-Gómez, Christian; Martínez-Higuera, Aarón; Javier-Reyna, Rosario; Chávez, Bibiana; Betanzos, Abigail; Rodríguez, Mario A

    2016-07-01

    Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis. © 2016 John Wiley & Sons Ltd.

  10. Analysis of Grain Protein, Tryptophan and Lysine Contents of Quality ...

    African Journals Online (AJOL)

    Preferred Customer

    Indian as well as CIMMYT Quality Protein Maize (QPM) inbreds displayed higher levels of ... genetic enhancement of crop plants for nutritional value. .... Ethiop J Health Sci. Vol. 14, No. 1. January 2004. 34 are the average of two independent measurements. c) Lysine (EF-1α) content. Protein extraction was done following.

  11. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  12. [L-lysine-alpha-oxidase activity of some Trichoderma species].

    Science.gov (United States)

    Smirnova, I P; Khaduev, S Kh

    1984-01-01

    Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

  13. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  14. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  15. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  16. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets on Performance, Immune Response and Carcass Characteristics in Broilers. ... of thigh, breast, and drum stick in the control and 1.0% methionine diets were similar There was no effect of methionine, CP or their interaction on the antibody titre against IBD.

  17. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    Science.gov (United States)

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm-1 and bands at 1625 and 1415 cm-1 corresponding to -NH3+/COO- pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  18. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  19. Elongation factor methyltransferase 3--a novel eukaryotic lysine methyltransferase.

    Science.gov (United States)

    Zhang, Lelin; Hamey, Joshua J; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2014-08-22

    Here we describe the discovery of Saccharomycescerevisiae protein YJR129Cp as a new eukaryotic seven-beta-strand lysine methyltransferase. An immunoblotting screen of 21 putative methyltransferases showed a loss in the methylation of elongation factor 2 (EF2) on knockout of YJR129C. Mass spectrometric analysis of EF2 tryptic peptides localised this loss of methylation to lysine 509, in peptide LVEGLKR. In vitro methylation, using recombinant methyltransferases and purified EF2, validated YJR129Cp as responsible for methylation of lysine 509 and Efm2p as responsible for methylation at lysine 613. Contextualised on previously described protein structures, both sites of methylation were found at the interaction interface between EF2 and the 40S ribosomal subunit. In line with the recently discovered Efm1 and Efm2 we propose that YJR129C be named elongation factor methyltransferase 3 (Efm3). The human homolog of Efm3 is likely to be the putative methyltransferase FAM86A, according to sequence homology and multiple lines of literature evidence. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    Dr. Ajit

    2012-07-17

    Jul 17, 2012 ... and fattening stage of production. Key words: Carcass trait, low protein, lysine, meat quality, pigs. INTRODUCTION. Proteins and amino acids play a crucial role in the formulation of least cost ration, as they are essential for the normal .... pork chunks (from meat curry) were cut into 1.25 cm3 cubes. The.

  1. Efficacy of Lysine-Specific Demethylase 1 Inhibition in PCa

    Science.gov (United States)

    2016-08-01

    currently in the clinic for relapsed acute myeloid leukemia , and we proposed that LSD1 may have activity in PCa, and particularly in advanced...TERMS Prostate cancer, lysine specific demethylase 1, androgen recetpor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  2. Effects of infused methionine, lysine and rumen-protected ...

    African Journals Online (AJOL)

    goethe (1991) suggested that minimal or no response, as in the case of AL supplementation, may occur because the sec- ond limiting amino acid is also close to being limiting or because the amino acid provided is not the most limiting amino acid. This might also imply that the infusion of lysine alone may have caused an ...

  3. File list: Oth.NoD.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.20.Crotonyl_lysine.AllCell.bed ...

  4. Protein Footprinting by the Combined Use of Reversible and Irreversible Lysine Modifications

    Science.gov (United States)

    Hanai, Ryo; Wang, James C.

    1994-12-01

    A two-step lysine-modification procedure has been devised to chemically footprint protein surfaces involved in macromolecular interactions. A protein tagged at one particular end, in the free state or in a complex, is first treated lightly with a reversible lysine-modifying reagent. The protein is then unfolded and treated extensively with an irreversible lysine reagent to block those lysines that did not react previously; next, the first lysine modification is reversed, and a lysine-specific endoproteinase is used to cleave the tagged polypeptide at the deblocked lysines. Separation of the proteolytic products by size and identification of the tagged fragments map the positions of these lysines. In this procedure, the reversible lysine reagent serves as the chemical footprinting agent, as cleavage of the polypeptide ensues only at the sites of reaction with this reagent. Lysines involved in macromolecular contacts are identified from differences in proteolytic patterns of the tagged protein when the first lysine modification is done with the protein in the free form and in a complex. Application of the method to vaccinia virus topoisomerase identifies a number of lysines that are involved in its binding to DNA.

  5. File list: His.ALL.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.20.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Lng.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.50.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Kid.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.05.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.CDV.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ca...rdiovascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Kid.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ki...dney http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Kid.05.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Prs.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...rostate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.05.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Myo.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.05.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Prs.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pr...ostate http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.50.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Bld.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Brs.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Br...east http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: Oth.EmF.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Embryonic fib...roblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.Crotonyl_lysine.AllCell.bed ...

  16. File list: His.Bon.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...one http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.10.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: Oth.CDV.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Cardiovascula...r http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.05.Crotonyl_lysine.AllCell.bed ...

  18. File list: Oth.Adp.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.Crotonyl_lysine.AllCell.bed ...

  19. File list: His.Brs.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...reast http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: Oth.NoD.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.50.Crotonyl_lysine.AllCell.bed ...

  1. File list: His.Unc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.50.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Neu.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ne...ural http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.CDV.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ca...rdiovascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.20.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Kid.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation K...idney http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Kid.20.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Bld.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Plc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...lacenta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.50.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Epd.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation E...pidermis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.50.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Liv.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.20.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Gon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Go...nad SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: Oth.PSC.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Crotonyl_lysine.AllCell.bed ...

  11. File list: Oth.Gon.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Gonad SRX1060...566,SRX1060567,SRX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.Crotonyl_lysine.AllCell.bed ...

  12. File list: Oth.Dig.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Digestive tra...ct http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.05.Crotonyl_lysine.AllCell.bed ...

  13. File list: His.Epd.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.20.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Liv.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...iver http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Lng.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...ung SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.05.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Utr.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...terus http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Liv.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...iver http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Liv.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.05.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Myo.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Emb.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Adp.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Lng.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...ung SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.10.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Unc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.20.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Unc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.20.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Dig.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Di...gestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.20.Pan_lysine_crotonylation.AllCell.bed ...

  7. The use of crude protein content to predict concentrations of lysine ...

    African Journals Online (AJOL)

    Unknown

    methionine in grain harvested from selected cultivars of wheat, barley and triticale grown in the Western Cape ... lysine and methionine content of South African wheat, barley and triticale grain from CP content. Keywords: Lysine .... and lysine content and nutritional value of normal and Opaque-2 corn. J. Anim. Sci. 57, 1345.

  8. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, im...

  9. File list: His.Adp.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Oth.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ot...hers http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Brs.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...reast http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Liv.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Li...ver http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.50.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Pan.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...ancreas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.10.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Epd.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.50.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Oth.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ot...hers http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Utr.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.20.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Utr.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.05.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.PSC.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Dig.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Neu.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ne...ural http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: Oth.PSC.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Crotonyl_lysine.AllCell.bed ...

  2. File list: His.Dig.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.05.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: Oth.Adp.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.Crotonyl_lysine.AllCell.bed ...

  4. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099897,SRX099894 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Prs.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pr...ostate http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Prs.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...rostate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.50.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Epd.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ep...idermis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.10.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Oth.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ot...hers http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Bld.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Bld.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: Oth.Epd.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Epidermis htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Epd.10.Crotonyl_lysine.AllCell.bed ...

  12. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...ll cell types SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Unc.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Dig.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.20.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: Oth.PSC.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pluripotent s...tem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.Crotonyl_lysine.AllCell.bed ...

  17. File list: His.Myo.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Pan.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...ancreas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Unc.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Oth.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation O...thers http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.Dig.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Di...gestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.50.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: Oth.NoD.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.05.Crotonyl_lysine.AllCell.bed ...

  3. File list: His.Unc.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...nclassified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.10.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: His.Pan.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.Pan_lysine_crotonylation.AllCell.bed ...

  5. File list: His.Emb.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Em...bryo http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.05.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Lng.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.10.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Utr.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation U...terus http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Brs.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Br...east http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Utr.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ut...erus http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.10.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.Myo.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation M...uscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.20.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: Oth.NoD.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine No descriptio...n http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.NoD.10.Crotonyl_lysine.AllCell.bed ...

  12. File list: His.Dig.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation D...igestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.10.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Bon.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bo...ne http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.05.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Bon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...one http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.20.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: Oth.Adp.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.Crotonyl_lysine.AllCell.bed ...

  16. File list: His.Lng.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Lu...ng http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.20.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Adp.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.ALL.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...ll cell types SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.20.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Oth.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation O...thers http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Myo.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Mu...scle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.Pan_lysine_crotonylation.AllCell.bed ...

  1. File list: His.PSC.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.Pan_lysine_crotonylation.AllCell.bed ...

  2. File list: His.Liv.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation L...iver http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.50.Pan_lysine_crotonylation.AllCell.bed ...

  3. File list: His.PSC.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.Pan_lysine_crotonylation.AllCell.bed ...

  4. File list: Oth.Adp.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.Crotonyl_lysine.AllCell.bed ...

  5. File list: His.Pan.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.Pan_lysine_crotonylation.AllCell.bed ...

  6. File list: His.Bld.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bl...ood http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.Pan_lysine_crotonylation.AllCell.bed ...

  7. File list: His.Gon.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation G...onad http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Gon.20.Pan_lysine_crotonylation.AllCell.bed ...

  8. File list: His.Unc.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Un...classified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.05.Pan_lysine_crotonylation.AllCell.bed ...

  9. File list: His.Adp.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ad...ipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.PSC.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.Epd.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation E...pidermis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.10.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.Spl.05.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Spl.05.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Sp...leen http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Spl.05.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.Adp.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Ad...ipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.Dig.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Di...gestive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.10.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.Plc.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...acenta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.20.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: His.Pan.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pa...ncreas http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.Pan_lysine_crotonylation.AllCell.bed ...

  17. File list: His.Pan.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...ancreas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.20.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: His.Bld.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation B...lood http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.Pan_lysine_crotonylation.AllCell.bed ...

  19. File list: His.Bon.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Bo...ne http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.50.Pan_lysine_crotonylation.AllCell.bed ...

  20. File list: His.Spl.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Spl.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Sp...leen http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Spl.20.Pan_lysine_crotonylation.AllCell.bed ...