WorldWideScience

Sample records for hydroxylase genes lysine

  1. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  2. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  3. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  4. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Marwa Kamel

    2017-01-01

    Full Text Available The role of the extracellular matrix (ECM in uterine fibroids (UF has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP and lysylpyridinoline (LP cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH and lysyl oxidases (LOX], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b and LOX. Also, increased resistance to matrix metalloproteinases (MMP proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA, growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1, and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.

  5. Novel Mutations in the Tyrosine Hydroxylase Gene in the First Czech Patient with Tyrosine Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    K. Szentiványi

    2012-01-01

    Full Text Available Tyrosine hydroxylase deficiency manifests mainly in early childhood and includes two clinical phenotypes: an infantile progressive hypokinetic-rigid syndrome with dystonia (type A and a neonatal complex encephalopathy (type B. The biochemical diagnostics is exclusively based on the quantitative determination of the neurotransmitters or their metabolites in cerebrospinal fluid (CSF. The implementation of neurotransmitter analysis in clinical praxis is necessary for early diagnosis and adequate treatment. Neurotransmitter metabolites in CSF were analyzed in 82 children (at the age 1 month to 17 years with clinical suspicion for neurometabolic disorders using high performance liquid chromatography (HPLC with electrochemical detection. The CSF level of homovanillic acid (HVA was markedly decreased in three children (64, 79 and 94 nmol/l in comparison to age related controls (lower limit 218–450 nmol/l. Neurological findings including severe psychomotor retardation, quadruspasticity and microcephaly accompanied with marked dystonia, excessive sweating in the first patient was compatible with the diagnosis of tyrosine hydroxylase (TH deficiency (type B and subsequent molecular analysis revealed two novel heterozygous mutations c.636A>C and c.1124G>C in the TH gene. The treatment with L-DOPA/carbidopa resulted in the improvement of dystonia. Magnetic resonance imaging studies in two other patients with microcephaly revealed postischaemic brain damage, therefore secondary HVA deficit was considered in these children. Diagnostic work-up in patients with neurometabolic disorders should include analysis of neurotransmitter metabolites in CSF.

  6. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  7. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  8. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  9. Phenylalanine hydroxylase deficiency caused by a single base substitution in an exon of the human phenylalanine hydroxylase gene

    International Nuclear Information System (INIS)

    Lichter-Konecki, U.; Konecki, D.S.; DiLella, A.G.; Brayton, K.; Marvit, J.; Hahn, T.M.; Trefz, E.K.; Woo, S.L.C.

    1988-01-01

    A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAD cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM - phenotype. Together with the other mutations recently reported in the PAH gene,the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level

  10. Phenylalanine hydroxylase deficiency caused by a single base substitution in an exon of the human phenylalanine hydroxylase gene

    Energy Technology Data Exchange (ETDEWEB)

    Lichter-Konecki, U.; Konecki, D.S.; DiLella, A.G.; Brayton, K.; Marvit, J.; Hahn, T.M.; Trefz, E.K.; Woo, S.L.C.

    1988-04-19

    A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAD cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM/sup -/ phenotype. Together with the other mutations recently reported in the PAH gene,the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level.

  11. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    The purpose of this research was to clone and characterize the expression pattern of a kenaf (Hibiscus cannabinus L.) F5H gene that encodes ferulate 5-hydroxylase in the phenylpropanoid pathway. Kenaf is well known as a fast growing dicotyledonous plant, which makes it a valuable biomass plant. The ...

  12. Antisense-induced suppression of taxoid 14β- hydroxylase gene ...

    African Journals Online (AJOL)

    Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the 14OH mRNA level in transgenic cells dropped dramatically, suggesting that the expression of endogenous14OH gene was significantly suppressed by the exogenous as14OH gene. Correspondingly, the total yield of three major C-14 ...

  13. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  14. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    OpenAIRE

    Zheng, Ping; Li, Erzhen; Wang, Jianhua; Cui, Xiaodai; Wang, Liwen

    2013-01-01

    Abstract Background Tryptophan hydroxylase-2 (TPH2) is a potential candidate gene for screening tic disorder (TD). Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs) of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those wit...

  15. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  16. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  17. [Expression of the genes for lysine biosynthesis of Bacillus subtilis in Escherichia coli cells].

    Science.gov (United States)

    Shevchenko, T N; Okunev, O V; Aleksieva, Z M; Maliuta, S S

    1984-01-01

    Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.

  18. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  19. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum.

    Science.gov (United States)

    Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu

    2012-05-01

    The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.

  20. Sequence variation at the phenylalanine hydroxylase gene in the British Isles

    Energy Technology Data Exchange (ETDEWEB)

    Tyfield, L.A. [Southmead Hospital, Bristol (United Kingdom)]|[Univ. of Bristol (United Kingdom); Stephenson, A. [Southmead Hospital, Bristol (United Kingdom); Cockburn, F. [Royal Hospital for Sick Children, Glasgow (United Kingdom)] [and others

    1997-02-01

    Using mutation and haplotype analysis, we have examined the phenylalanine hydroxylase gene in the phenylketonuria populations of four geographical areas of the British Isles: the west of Scotland, southern Wales, and southwestern and southeastern England. The enormous genetic diversity of this locus within the British Isles is demonstrated in the large number of different mutations characterized and in the variety of genetic backgrounds on which individual mutations are found. Allele frequencies of the more common mutations exhibited significant nonrandom distribution in a north/south differentiation. Differences between the west of Scotland and southwestern England may be related to different events in the recent and past histories of their respective populations. Similarities between southern Wales and southeastern England are likely to reflect the heterogeneity that is seen in and around two large capital cities. Finally, comparison with more recently colonized areas of the world corroborates the genealogical origin by range expansion of several mutations. 38 refs., 2 tabs.

  1. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  2. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  3. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-09-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3..-->..qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of /sup 125/I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22..-->..12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12.

  4. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome

    International Nuclear Information System (INIS)

    Lidsky, A.S.; Law, M.L.; Morse, H.G.; Kao, F.T.; Rabin, M.; Ruddle, F.H.; Woo, S.L.C.

    1985-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3→qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of 125 I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22→12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12

  5. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  6. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population.

    Science.gov (United States)

    Zheng, Ping; Li, Erzhen; Wang, Jianhua; Cui, Xiaodai; Wang, Liwen

    2013-01-29

    Tryptophan hydroxylase-2 (TPH2) is a potential candidate gene for screening tic disorder (TD). A case-control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs) of the TPH2 gene in 149 TD children and in 125 normal controls. For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR) =3.077, 95% confidence interval (CI): 1.273-7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153-9.040; P = 0.020). The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS) than those in controls among the male children (OR = 1.684, 95%: 1.097-2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139-9.513; P = 0.022). We also found that genotype distributions of both SNPs were different between the Asian and European populations. Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD),these findings need to be confirmed by studies in much larger samples.

  7. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    Science.gov (United States)

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Gypsy Phenylketonuria: A point mutation of the phenylalanine hydroxylase gene in Gypsy families from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Kalanin, J. [Institute for Clinical and Experical Medicine, Praha (Czechoslovakia); Takarada, Y. [Toyobo Research Center, Shiga (Japan); Kagawa, S.; Yamashita, K.; Ohtsuka, N.; Matsuoka, A. [Hyogo College of Medicine, Nishinomiya (Japan)

    1994-01-15

    A direct mutational analysis of the phenylalanine hydroxylase gene (PAH) in Gypsy families with phenylketonuria (PKU) has not yet been presented. However, they obviously represent a group at high risk for this inherited disease. The authors analyzed the PAH loci of 65 Gypsies originating from Eastern Slovakia by a combination of PCR amplification, direct sequencing and ASO hybridization. These studies uncovered 10 {open_quotes}classical PKU{close_quotes} patients to be homozygous for a R252W (CGG-TGG) transition, and 29 heterozygous carriers of this mutation. Fifteen control Caucasoid PKU patients from the Czech and Slovak Republics were selected. In this group they detected R252W mutation in two subjects (6.67% of all mutant alleles). Both were compound heterozygous for two different mutations. Previous haplotype studies of Welsh Gypsies with PKU were uninformative in the determination of heterozygosity. ASO hybridization served effectively for the consequent analyses in Gypsy PKU-related families and to identify the carriers among the unrelated subjects. 19 refs., 2 figs.

  9. Molecular Characterization of Ferulate 5-Hydroxylase Gene from Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Jonggeun Kim

    2013-01-01

    Full Text Available The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.. Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84, is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ortholog was cloned and characterized. The full-length F5H ortholog consists of a 1,557-bp open reading frame (ORF encoding 518 amino acids (GenBank Accession number JX524278. The deduced amino acid sequence showed that kenaf F5H had the highest similarity (78% with that of Populus trichocarpa. Transcriptional analysis of F5H ortholog was conducted using quantitative real-time PCR during the developmental stages of various tissues and in response to various abiotic stresses. The highest transcript level of the F5H ortholog was observed in immature flower tissues and in early stage (6 week-old of stem tissues, with a certain level of expression in all tissues tested. The highest transcript level of F5H ortholog was observed at the late time points after treatments with NaCl (48 h, wounding (24 h, cold (24 h, abscisic acid (24 h, and methyl jasmonate (24 h.

  10. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Yong-An Zhou

    2012-01-01

    Full Text Available The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH gene was investigated in 59 children with phenylketonuria (PKU and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%, followed by Ivs7 +2T>A (5.1% and T278I (2.5%. G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.

  11. Phenylalanine hydroxylase gene mutations in the United States: Report from the maternal PKU collaborative study

    Energy Technology Data Exchange (ETDEWEB)

    Guldberg, P.; Henriksen, K.F.; Guettler, F. [John F. Kennedy Inst., Glostrup (Denmark)] [and others

    1996-07-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g{r_arrow}a, and Y414C, accounting for 18.7%, 7.8% and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies {le}1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. 47 refs., 1 fig., 5 tabs.

  12. Associations between mutations and a VNTR in the human phenylalanine hydroxylase gene

    Energy Technology Data Exchange (ETDEWEB)

    Goltsov, A.A.; Eisensmith, R.C.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (United States)); Konecki, D.S.; Lichter-Konecki, U.

    1992-09-01

    The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiples of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between theses alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations. 32 refs., 3 figs., 3 tabs.

  13. Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Jabbar Abdul

    2011-02-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia (CAH is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2. We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH. Methods A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay. Results Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6% chromosomes. The most frequent mutation was I2 splice (27% followed by Ile173Asn (26%, Arg 357 Trp (19%, Gln319stop, 16% and Leu308InsT (12%, whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state. Conclusion Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.

  14. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Science.gov (United States)

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of tryptophan hydroxylase gene polymorphism on aggression in major depressive disorder and undifferentiated somatoform disorder.

    Science.gov (United States)

    Koh, Kyung Bong; Kim, Chan Hyung; Choi, Eun Hee; Lee, Young-joon; Seo, Won Youl

    2012-05-01

    Aggression and anger have been linked with depression, and anger suppression has been linked with somatic symptoms of somatoform disorders. However, the relationship between aggression or anger and genes in patients with depression and somatoform disorders has not been clearly elucidated. The objective of this study was to examine the effect of serotonin-related gene polymorphism on aggression in depressive disorders and somatoform disorders. A serotonin-related polymorphic marker was assessed by using single nucleotide polymorphism (SNP) genotyping. 106 outpatients with major depressive disorder (MDD), 102 outpatients with undifferentiated somatoform disorder, and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Korean version of the Structured Clinical Interview Schedule for DSM-IV. The allele and genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C were compared between groups. The Hamilton Depression Rating Scale and the Aggression Questionnaire were used for psychological assessment. Each of the 2 disorder groups scored significantly higher on all the Aggression Questionnaire subscales and on the total Aggression Questionnaire score than the healthy subjects (P sex and age. However, no significant differences were found in TPH1 C allele and CC homozygote frequencies between the undifferentiated somatoform disorder patients and the healthy subjects. TPH1 CC homozygote in the MDD group scored significantly higher in terms of verbal aggression (P = .03) and total Aggression Questionnaire score (P = .04) than A-carrier genotypes, regardless of sex and age. However, no significant differences were found in the scores of all the Aggression Questionnaire subscales and the total Aggression Questionnaire score between TPH1 CC homozygote and A-carrier genotypes in the undifferentiated somatoform disorder group and the control group, respectively. Aggression in MDD patients is more susceptible to an

  16. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2013-01-01

    Full Text Available Abstract Background Tryptophan hydroxylase-2 (TPH2 is a potential candidate gene for screening tic disorder (TD. Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR =3.077, 95% confidence interval (CI: 1.273–7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153–9.040; P = 0.020. The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS than those in controls among the male children (OR = 1.684, 95%: 1.097–2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139–9.513; P = 0.022. We also found that genotype distributions of both SNPs were different between the Asian and European populations. Conclusions Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD,these findings need to be confirmed by studies in much larger samples.

  17. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... known as vitamin D 1α-hydroxylase deficiency or pseu- dovitamin D ... amplicons of the 378 bp were digested with restriction enzyme PvuI and ... have no enzymatic activity; a missense mutation c.473T>C. (p.L158P) in the ...

  18. Childhood asthma and spirometric indices are associated with polymorphic markers of two vitamin D 25-hydroxylase genes.

    Science.gov (United States)

    Leung, Ting Fan; Wang, Susan Shuxin; Tang, Man Fung; Kong, Alice Pik-Shan; Sy, Hing Yee; Hon, Kam Lun; Chan, Juliana Chung-ngor; Wong, Gary Wing-kin

    2015-06-01

    Polymorphic markers of vitamin D pathway genes have been associated with asthma traits in different White populations. This study investigated the relationship between asthma phenotypes and single nucleotide polymorphisms (SNPs) of vitamin D receptor (VDR), vitamin D binding protein (GC), two 25-hydroxylases (CYP2R1 and CYP27A1), and 1α-hydroxylase (CYP27B1) in Hong Kong Chinese children. 23 SNPs of the five vitamin D pathway genes were successfully genotyped in 914 asthmatic children and 1231 non-allergic controls. Genotypic and haplotypic associations with asthma phenotypes (diagnosis, spirometric indices, total IgE, and eosinophil percentage) were analyzed by multivariate regression. Generalized multifactor dimensionality reduction was used to detect epistatic interactions between SNPs for asthma phenotypes. Several SNPs of CYP27A1, CYP27B1, GC, and CYP2R1 were associated with asthma or spirometric indices, although only the association between FEV1 and CYP2R1 rs7935792 passed Bonferroni correction (p = 2.73 × 10(-4) ). Patients with CC genotype of rs7935792 had higher FEV1 than those with the other two genotypes. Asthma was also associated with TT haplotype of CYP27A1 and AGGATA haplotype of CYP2R1 (p = 0.021 and 0.024, respectively). Besides, strong association was found between FEV1 and GATAG of CYP2R1 (β = 13.37, p = 4.83 × 10(-4) ). GMDR failed to identify any 2-locus to 4-locus interaction that modulated asthma or spirometric indices. Several SNPs and haplotypes of CYP2R1 are associated with asthma diagnosis and FEV1 in children. Asthma is also modestly associated with a CYP27A1 haplotype. These two 25-hydroxylase genes may be genetic determinants for asthma phenotypes in children. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  20. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    Science.gov (United States)

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  1. A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an ehlers-danlos VIA patient

    NARCIS (Netherlands)

    Walker, L.C.; Overstreet, M.A.; Siddiqui, A.; Paepe, A. de; Ceylaner, G.; Malfait, F.; Symoens, S.; Atsawasuwan, P.; Yamauchi, M.; Ceylaner, S.; Bank, R.A.; Yeowell, H.N.

    2005-01-01

    The clinical diagnosis of a patient with the phenotype of Ehlers-Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360 → G in exon 13 of the

  2. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  3. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene.

    Science.gov (United States)

    Moreno-Pérez, Antonio J; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2011-05-15

    Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Aldehyded Dextran and ε-Poly(L-lysine Hydrogel as Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Yumiko Togo

    2013-01-01

    Full Text Available Background. The expression term of the gene transfected in cells needs to belong enough inorder to make a gene therapy clinically effective. The controlled release of the transfected gene can be utilized. The new biodegradable hydrogel material created by 20 w/w% aldehyded dextran and 10 w/w% ε-poly(L-lysine (ald-dex/PLL was developed. We examined whether it could be as a nonviral carrier of the gene transfer. Methods. A plasmid (Lac-Z was mixed with ald-dex/PLL. An in vitro study was performed to assess the expression of Lac-Z with X-gal stain after gene transfer into the cultured 293 cells and bone marrow cells. As a control group, PLL was used as a cationic polymer. Results. We confirmed that the transfection efficiency of the ald-dex/PLL had a higher transfection efficiency than PLL in 293 cells (plasmid of 2 μg: ald-dex/PLL 1.1%, PLL 0.23%, plasmid of 16 μg: ald-dex/PLL 1.23%, PLL 0.48%. In bone marrow cells, we confirmed the expression of Lac-Z by changing the quantity of aldehyded dextran. In the groups using ald-dextran of the quantity of 1/4 and 1/12 of PLL, their transfection efficiency was 0.43% and 0.41%, respectively. Conclusions. This study suggested a potential of using ald-dex/PLL as a non-carrier for gene transfer.

  5. Screening non-classical 21-hydroxylase gene deficiency from patients diagnosed as polycystic ovary syndrome by gene assay

    Directory of Open Access Journals (Sweden)

    Jie HU

    2016-04-01

    Full Text Available Objective  To screen non-classical 21-hydroxylase deficiency (NC-21OHD from patients diagnosed as polycystic ovary syndrome (PCOS by gene assay. Methods  Ninety-eight patients with PCOS were enrolled according to 2003 Rotterdam criteria from Department of Endocrinology, Tangdu Hospital of Fourth Military Medical University, and they were divided into three groups according to the modified Ferriman-Gallway (mF-G score as follows: group A with score 0-2; group B with score 3-5, and group C with score ≥6. Meanwhile, 30 healthy subjects from the Medical Center of the Hospital were recruited as control group. Peripheral blood of all subjects were collected for extracting DNA, the CYP21A2 gene were amplified by 5 pairs of specific primers, and then the PCR products were sequenced by Shanghai Sangon Co. The subjects would accept test for serum cortisol and adrenocorticotropic hormone (ACTH at 8:00am if their CYP21A2 was proved to be abnormal. Results  Thirty subjects of control group had no any defects in CYP21A2, but 5 of 98 patients with PCOS were proved to be deficient in CYP21A2, and the genotypes were V281L/920-921insT (P1, V281L/I230M (P2, V281L/Normal (P3, P4, P5, respectively, and all of them were heterozygous mutations. The incidences of NC-21OHD in group C and B were 28.6% and 3.3%, respectively. Genotype P1 had been identified to belong to NC-21OHD, which was consistent with its clinical phenotype. All genotypes P3, P4 and P5 belonged to carriers. But for P2, since I230M hadn't been reported in literature, the patient with V281L/I230M couldn't be classified now. Serum biochemical results showed that only in P1 the cortisol was close to the normal lower level, and ACTH was close to the normal upper limit of the reported level in the literature, and the remainders were all normal. Conclusions  Although PCOS and NC-21OHD are very similar in clinical manifestations, they are different completely in the pathogenesis and treatment. So it

  6. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  7. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Chon, H.; Gkika, D.; Bluyssen, H.A.; Holstege, F.C.; St. Arnaud, R.; Braam, B.; Bindels, R.J.M.

    2004-01-01

    BACKGROUND: Pseudovitamin D deficiency rickets (PDDR) is an autosomal disease, characterized by undetectable levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), rickets and secondary hyperparathyroidism. Mice in which the 25-hydroxyvitamin D3-1 alpha-hydroxylase (1 alpha-OHase) gene was inactivated,

  8. Serotonin and Early Cognitive Development: Variation in the Tryptophan Hydroxylase 2 Gene Is Associated with Visual Attention in 7-Month-Old Infants

    Science.gov (United States)

    Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho

    2011-01-01

    Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…

  9. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    Science.gov (United States)

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  10. Localized hydroxylamine mutagenesis, and cotransduction of threonine and lysine genes, in Streptomyces venezuelae.

    Science.gov (United States)

    Stuttard, C

    1983-01-01

    A lysate of the generalized transducing phage SV1, grown on the prototrophic type strain 10712 of Streptomyces venezuelae, was mutagenized with hydroxylamine and used to transduce a lysineless auxotroph to lysine independence on supplemented minimal agar. A complex threonine mutant, strain VS95, was isolated from among the transductants and was shown to be carrying at least two different thr mutations. These were about 50% cotransducible with alleles of four independently isolated lysA mutations, as were two other independently isolated threonine mutations, thr-1 and hom-5. The location of thr genes close to lysA occurs in at least three other streptomycetes, but apparently not in Streptomyces coelicolor A3(2), in which the lysA and thr loci are at diametrically opposite locations on the linkage map. This first observation of cotransduction between loci governing the biosynthesis of different amino acids in the genus Streptomyces demonstrates the feasibility of fine-structure genetic analysis by transduction in these antibiotic-producing bacteria. PMID:6411685

  11. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis.

    Science.gov (United States)

    Olivera, Nelda L; Nievas, Marina L; Lozada, Mariana; Del Prado, Guillermo; Dionisi, Hebe M; Siñeriz, Faustino

    2009-01-01

    Biosurfactant-producing bacteria belonging to the genera Alcanivorax, Cobetia and Halomonas were isolated from marine sediments with a history of hydrocarbon exposure (Aristizábal and Gravina Peninsulas, Argentina). Two Alcanivorax isolates were found to form naturally occurring consortia with strains closely related to Pseudomonas putida and Microbacterium esteraromaticum. Alkane hydroxylase gene analysis in these two Alcanivorax strains resulted in the identification of two novel alkB genes, showing 86% and 60% deduced amino acid sequence identity with those of Alcanivorax sp. A-11-3 and Alcanivorax dieselolei P40, respectively. In addition, a gene homologous to alkB2 from Alcanivorax borkumensis was present in one of the strains. The consortium formed by this strain, Alcanivorax sp. PA2 (98.9% 16S rRNA gene sequence identity with A. borkumensis SK2(T)) and P. putida PA1 was characterized in detail. These strains form cell aggregates when growing as mixed culture, though only PA2 was responsible for biosurfactant activity. During exponential growth phase of PA2, cells showed high hydrophobicity and adherence to hydrocarbon droplets. Biosurfactant production was only detectable at late growth and stationary phases, suggesting that it is not involved in initiating oil degradation and that direct interfacial adhesion is the main hydrocarbon accession mode of PA2. This strain could be useful for biotechnological applications due to its biosurfactant production, catabolic and aggregation properties.

  12. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  13. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    Science.gov (United States)

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  14. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Matteson, K.J.; Phillips, J.A. III; Miller, W.L.; Chung, B.C.; Orlando, P.J.; Frisch, H.; Ferrandez, A.; Burr, I.M.

    1987-01-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 [steroid 21-monooxygenase (steroid 21-hydroxylase)], which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. The authors have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, they conclude that the P450XXIA2 gene deletions widely reported in CAH patients probably represent gene conversions, unequal crossovers,or polymorphisms rather than simple gene deletions

  15. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  16. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  17. Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario

    2007-06-21

    Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.

  18. Altered gene expression in pulmonary tissue of tryptophan hydroxylase-1 knockout mice: implications for pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Richard B Rothman

    Full Text Available The use of fenfluramines can increase the risk of developing pulmonary arterial hypertension (PAH in humans, but the mechanisms responsible are unresolved. A recent study reported that female mice lacking the gene for tryptophan hydroxylase-1 (Tph1(-/- mice were protected from PAH caused by chronic dexfenfluramine, suggesting a pivotal role for peripheral serotonin (5-HT in the disease process. Here we tested two alternative hypotheses which might explain the lack of dexfenfluramine-induced PAH in Tph1(-/- mice. We postulated that: 1 Tph1(-/- mice express lower levels of pulmonary 5-HT transporter (SERT when compared to wild-type controls, and 2 Tph1(-/- mice display adaptive changes in the expression of non-serotonergic pulmonary genes which are implicated in PAH. SERT was measured using radioligand binding methods, whereas gene expression was measured using microarrays followed by quantitative real time PCR (qRT-PCR. Contrary to our first hypothesis, the number of pulmonary SERT sites was modestly up-regulated in female Tph1(-/- mice. The expression of 51 distinct genes was significantly altered in the lungs of female Tph1(-/- mice. Consistent with our second hypothesis, qRT-PCR confirmed that at least three genes implicated in the pathogenesis of PAH were markedly up-regulated: Has2, Hapln3 and Retlna. The finding that female Tph1(-/- mice are protected from dexfenfluramine-induced PAH could be related to compensatory changes in pulmonary gene expression, in addition to reductions in peripheral 5-HT. These observations emphasize the intrinsic limitation of interpreting data from studies conducted in transgenic mice that are not fully characterized.

  19. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    Science.gov (United States)

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.

  20. Polymorphism in the tyrosine hydroxylase (TH gene is associated with activity-impulsivity in German Shepherd Dogs.

    Directory of Open Access Journals (Sweden)

    Eniko Kubinyi

    Full Text Available We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1 the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS filled in by the dog owners and (2 the newly developed Activity-impulsivity Behavioural Scale (AIBS containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS. Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023. The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds.

  1. Polymorphism screening and haplotype analysis of the tryptophan hydroxylase gene (TPH1 and association with bipolar affective disorder in Taiwan

    Directory of Open Access Journals (Sweden)

    Lin Yi-Mei J

    2005-03-01

    Full Text Available Abstract Background Disturbances in serotonin neurotransmission are implicated in the etiology of many psychiatric disorders, including bipolar affective disorder (BPD. The tryptophan hydroxylase gene (TPH, which codes for the enzyme catalyzing the rate-limiting step in serotonin biosynthetic pathway, is one of the leading candidate genes for psychiatric and behavioral disorders. In a preliminary study, we found that TPH1 intron7 A218C polymorphism was associated with BPD. This study was designed to investigate sequence variants of the TPH1 gene in Taiwanese and to test whether the TPH1 gene is a susceptibility factor for the BPD. Methods Using a systematic approach, we have searched the exons and promoter region of the TPH1 gene for sequence variants in Taiwanese Han and have identified five variants, A-1067G, G-347T, T3804A, C27224T, and A27237G. These five variants plus another five taken from the literature and a public database were examined for an association in 108 BPD patients and 103 controls; no association was detected for any of the 10 variants. Results Haplotype constructions using these 10 SNPs showed that the 3 most common haplotypes in both patients and controls were identical. One of the fourth common haplotype in the patient group (i.e. GGGAGACCCA was unique and showed a trend of significance with the disease (P = 0.028. However, the significance was abolished after Bonferroni correction thus suggesting the association is weak. In addition, three haplotype-tagged SNPs (htSNPs were selected to represent all haplotypes with frequencies larger than 2% in the Taiwanese Han population. The defined TPH1 htSNPs significantly reduce the marker number for haplotype analysis thus provides useful information for future association studies in our population. Conclusion Results of this study did not support the role of TPH1 gene in BPD etiology. As the current studies found the TPH1 gene under investigation belongs to the peripheral

  2. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  3. [Characterisation of three polymorphisms of the tryptophan hydroxylase 2 gene in a sample of Colombian population with major depressive disorder].

    Science.gov (United States)

    Martínez-Idárraga, Adriana; Riveros-Barrera, Irene; Sánchez, Ricardo; Jaramillo, Luis Eduardo; Calvo-Gómez, José Manuel; Yunis-Londoño, Juan José

    Identify whether rs11179000, rs136494 and rs4570625 polymorphisms of the tryptophan hydroxylase 2 gene, are associated with a major depressive disorder in a sample of the Colombian population. Case-control study was conducted in which a comparison was made between subjects diagnosed with major depressive disorder at some point in adulthood or active symptoms at the time of evaluation, and subjects with no psychiatric disease. Subjects were studied in the Department of Psychiatry, Faculty of Medicine and the Institute of Genetics at the National University of Colombia. Polymorphisms were genotyped using Taqman probes in real time PCR. As well as studying the association between major depressive disorder and these (single nucleotide polymorphisms (SNPs), the association with other factors previously associated with depression were also analysed. No statistically significant association between genotypic and allelic frequencies of each polymorphism and major depressive disorder was found. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. There was no association between any polymorphism and major depressive disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. [Characteristics of phenylalanine hydroxylase gene mutations among patients with phenylketonuria from Linyi region of Shandong Province].

    Science.gov (United States)

    Li, Huafeng; Li, Yongli; Zhang, Li

    2017-06-10

    To explore the characteristics of (PAH) gene mutations among patients with phenylketonuria (PKU) from Linyi area of Shandong Province. For 51 children affected with PKU and their parents, the 13 exons and their flanking intronic sequences of the PAH gene were directly sequenced with Sanger method. PAH gene mutations were detected in all of the 102 alleles of the patients, which included 31 types of mutations. Common mutations included R243Q (17/102, 16.67%), IVS4-1G to A (9/102, 8.82%), R241C (8/102, 7.84%), R111X (8/102, 7.84%), and V399V (8/102, 7.84%). In addition, two novel mutations, D101N, 345-347del, have been detected. The 31 types of mutations included missense, nonsense, deletion, and splicing mutations, which were mainly located in exons 7 (29, 28.43%), 11 (18, 17.65%), 3 (16, 15.69%) and 12 (13, 12.75%). Mutations of the PAH gene in Linyi region mainly distributed in exons 7, 11, and 3, and the most common mutation were R243Q. Two novel mutations, D101N and 345-347del, have been detected.

  5. Effects of methyl jasmonate, on stevioside and rebaudioside A content and expression of the ent-Kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bert. in vitro

    Directory of Open Access Journals (Sweden)

    Mehrdad Behmanesh

    2014-08-01

    Full Text Available Glycosides are a form of secondary metabolites that consist variety compounds and in some cases can play a role in primary metabolism. Steviol is lipophilic skeleton of Stevioside and Rebaudioside A, two main glycosides of Stevia rebuadiana. Steviol glycosides which are synthesized in S.rebaudiana have important medical and nutritional values as high intensity natural sweeteners. Steviol is synthesized from Kaurenoic acid in chloroplastic Terpenoid pathway that mediated by Kaurenoic acid 13-hydroxylase. In this study, HPLC method and RT-PCR were performed for quantification of glycosides and gene expression (ent-Kaurenoic acid 13-hydroxylase respectively. Methyl jasmonate treatment (at 20 micromolar in vitro induced glycoside biosynthesis significantly (P≤0.05 whereas higher concentration of Methyl jasmonate (100 µM caused a decrease in glycoside production and growth. The most glycoside content of the plant was three days after treatment. Also Methyl jasmonate treatment caused an increase in ent-Kaurenoic 13-hydroxylase gene expression from 6 hours to 48 hours (after treatment Results showed that biosynthesis of Stevia glycosides was probably a defense mechanism against pathogens and herbivore insects. Also we found that different concentrations of Methyl jasmonate, alter the ratio between glycosides rather than the increase in glycoside contents.

  6. Cloning and sequencing of V genes from anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Location of lysine residues and implications for radiolabeling

    International Nuclear Information System (INIS)

    Olafsen, Tove; Bruland, Oeyvind S.; Zalutsky, Michael R.; Sandlie, Inger

    1995-01-01

    Monoclonal antibodies TP-1 and TP-3 are of potential utility for the radioimmunodiagnosis of osteosarcoma in both human and canine patients. The V genes of these antibodies were cloned and sequenced and to facilitate radiolabeling of these proteins, the location of the lysine residues within these sequences have been determined. The V-domains of TP-1 contain a total of 12 lysines, 10 in the framework region and 2 in the CDR region, while the V-domains of TP-3 contain a total of 14 lysines, 11 in the framework region and 3 in the CDR regions. Using space-filling models, the availability of each lysine residue for radiolabeling, and potential interference with antigen binding was predicted

  7. Cloning and sequencing of V genes from anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Location of lysine residues and implications for radiolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Olafsen, Tove; Bruland, Oeyvind S.; Zalutsky, Michael R.; Sandlie, Inger

    1995-08-01

    Monoclonal antibodies TP-1 and TP-3 are of potential utility for the radioimmunodiagnosis of osteosarcoma in both human and canine patients. The V genes of these antibodies were cloned and sequenced and to facilitate radiolabeling of these proteins, the location of the lysine residues within these sequences have been determined. The V-domains of TP-1 contain a total of 12 lysines, 10 in the framework region and 2 in the CDR region, while the V-domains of TP-3 contain a total of 14 lysines, 11 in the framework region and 3 in the CDR regions. Using space-filling models, the availability of each lysine residue for radiolabeling, and potential interference with antigen binding was predicted.

  8. Mutation analysis of the phenylalanine hydroxylase gene in Azerbaijani population, a report from West Azerbaijan province of Iran

    Directory of Open Access Journals (Sweden)

    Morteza Bagheri

    2015-07-01

    Full Text Available Objective(s:Phenylketonuria (PKU is a genetic inborn error of phenylalanine (Phe metabolism resulting from insufficiency in the hepatic enzyme, phenylalanine hydroxylase (PAH, which leads to elevated levels of Phe in the blood. The present study was carried out for mutation analysis of the PAH gene in West Azerbaijan province of Iran. Materials and Methods:A total of 218 alleles from 40 PKU families were studied using restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR method. Results:The frequencies of IVS10-11, S67P, R261Q, R252W, IVS11nt-1 g>c, R408Q, and Q232Q mutations were 28(35, 17(21.25, 15(18.75, 3(3.75, 3(3.75, 2(2.5, and 1(1.25, in cases group, and 51(23.4, 31(14.2, 27(12.4, 6(2.75, 6(2.75, 4(1.83, and 2(0.92 in total group, respectively. The mutations of R243Q, 364delG, L333F, 261X, I65T, and R408W were not detected in our samples. Conclusion: It can be concluded that the IVS10-11 mutation has the highest frequency in the tested population. To our knowledge, this report is the first in its own kind and provides better understanding of the genetic heterogeneity, the origin and distributions of PAH mutations in West Azerbaijan province of Iran.

  9. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    Science.gov (United States)

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  10. Genotyping of the 19-bp insertion/deletion polymorphism in the 5' flank of beta-hydroxylase gene by dissociation analysis of allele-specific PCR products

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2005-01-01

    The 19-bp insertion/deletion polymorphism in the 5' flank of the dopamine beta-hydroxylase (DBH) gene has been associated with psychiatric disorders. We have developed a simple, reliable and inexpensive closed-tube assay for genotyping of this polymorphism based upon T(m) determination of amplified...... and a conventional approach based upon agarose gel electrophoresis of amplified fragments revealed complete concordance between the two procedures. The insights obtained in this study may be utilized to develop assays based upon dissociation analysis of PCR products for genotyping of other insertion...

  11. A novel homozygous mutation IVS6+5G>T in CYP11B1 gene in a Vietnamese patient with 11β-hydroxylase deficiency.

    Science.gov (United States)

    Nguyen, Thi Phuong Mai; Nguyen, Thu Hien; Ngo, Diem Ngoc; Vu, Chi Dung; Nguyen, Thi Kim Lien; Nong, Van Hai; Nguyen, Huy Hoang

    2015-07-10

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11β-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11β-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    Science.gov (United States)

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  13. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.

    Science.gov (United States)

    Liu, L; Shaw, P D

    1997-01-01

    The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis. PMID:8990304

  14. Effects of transgenic expression of dopamine beta hydroxylase (Dbh) gene on blood pressure in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Mir, S.A.; Vaingankar, S. M.; Wang, J.; Kurtz, T. W.

    2016-01-01

    Roč. 65, č. 6 (2016), s. 1039-1044 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696; GA TA ČR(CZ) TA02010013 Institutional support: RVO:67985823 Keywords : spontaneously hypertensive rat * transgenic * dopamine beta hydroxylase * catecholamines * blood pressure * left ventricular mass Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.461, year: 2016

  15. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Dardenne, O.; Abel, M. van; Kemp, J.W.C.M. van der; Os, C.H. van; Arnaud, R. St.; Bindels, R.J.M.

    2002-01-01

    Pseudovitamin D-deficiency rickets (PDDR) is an autosomal disease characterized by hyperparathyroidism, rickets, and undetectable levels of 1,25-dihydroxyvitaminD3 (1,25(OH)2D3). Mice in which the 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene was inactivated presented the same clinical

  16. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    Science.gov (United States)

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  17. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: a multi-centre case-control study and meta-analysis

    DEFF Research Database (Denmark)

    Saetre, Peter; Lundmark, Per; Wang, August

    2010-01-01

    Serotonin (5-hydroxytryptamin; 5-HT) alternations has since long been suspected in the pathophysiology of schizophrenia. Tryptophan hydroxylase (tryptophan 5-monooxygenase; TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT, and sequence variation in intron 6 of the TPH1 gene has been...... affected individuals having attempted suicide at least once and patients with no history of suicide attempts (P = 0.84). A systematic literature review and meta-analysis support the A218C polymorphism as a susceptibility locus for schizophrenia (odds ratio 1.17, 95% confidence interval 1.......07-1.29). Association studies on suicide attempts are however conflicting (heterogeneity index I(2) = 0.54) and do not support the A218C/A779C polymorphisms being a susceptibility locus for suicidal behavior among individuals diagnosed with a psychiatric disorder (OR = 0.96 [0.80-1.16]). We conclude that the TPH1 A218...

  18. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: a multi-centre case-control study and meta-analysis

    DEFF Research Database (Denmark)

    Saetre, Peter; Lundmark, Per; Wang, August

    2010-01-01

    Serotonin (5-hydroxytryptamin; 5-HT) alternations has since long been suspected in the pathophysiology of schizophrenia. Tryptophan hydroxylase (tryptophan 5-monooxygenase; TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT, and sequence variation in intron 6 of the TPH1 gene has been...... associated with schizophrenia. The minor allele (A) of this polymorphism (A218C) is also more frequent in patients who have attempted suicide and individuals who died by suicide, than in healthy control individuals. In an attempt to replicate previous findings, five single nucleotide polymorphisms (SNPs......) were genotyped in 837 Scandinavian schizophrenia patients and 1,473 controls. Three SNPs spanning intron 6 and 7, including the A218C and A779C polymorphisms, were associated with schizophrenia susceptibility (P = 0.019). However there were no differences in allele frequencies of these loci between...

  19. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  20. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  1. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    Science.gov (United States)

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. No effect of C1473G polymorphism in the tryptophan hydroxylase 2 gene on the response of the brain serotonin system to chronic fluoxetine treatment in mice.

    Science.gov (United States)

    Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V

    2017-07-13

    Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles

    Directory of Open Access Journals (Sweden)

    Reza Alibakhshi

    2018-05-01

    Full Text Available Phenylketonuria (PKU is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase (PAH gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%. Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9 were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan. Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  4. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles.

    Science.gov (United States)

    Alibakhshi, Reza; Moradi, Keivan; Biglari, Mostafa; Shafieenia, Samaneh

    2018-05-01

    Phenylketonuria (PKU) is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase ( PAH ) gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces) during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR) located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%). Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9) were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan). Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  5. [Congenital adrenal hyperplasia due to lack of 17α-hydroxylase: a report of a new mutation in the gene CYP17A1].

    Science.gov (United States)

    Perales Martínez, J I; Pina Marqués, B; de Arriba Muñoz, A; Mayayo Dehesa, E; Labarta Aizpún, J I; Loidi Fernández, L

    2015-01-01

    P450c17 enzyme catalyses two different reactions: the 17α-hydroxylation of progesterone and pregnenolone, and segmenting the carbon 17-20 binding from the 17,20lyase producing adrenal androgens. This enzyme is coded by the CYP17A1 gene. The case is presented of a 14 year old patient with delayed pubertal development and a high blood pressure for height and age. 46,XX karyotype. Hormonal studies highlighted hypergonadotropic hypogonadism, adrenal insufficiency and mineralocorticoid excess. Subsequent genetic studies showed a homozygous mutation in the CYP17A1 gene (c.753+G>A), not previously described, which is responsible for the pathophysiology of 17α-hydroxylase deficiency. This entity is a rare form of congenital adrenal hyperplasia. The disease often goes unnoticed until adolescence or early adult life, and should be suspected in 46,XY individuals with ambiguous genitalia or 46,XX with delayed puberty associated with hypertension and/or hypokalaemia. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  6. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    Science.gov (United States)

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  7. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ingmer, Hanne; Thomsen, Line E.

    2016-01-01

    The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained...

  8. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  9. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  10. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    Directory of Open Access Journals (Sweden)

    Kawinthra Khwanraj

    2015-01-01

    Full Text Available The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson’s disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH in undifferentiated and retinoic acid- (RA- induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

  11. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  12. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  13. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-01-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview ((R. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  14. Associations between polymorphic variants of the tryptophan hydroxylase 2 gene and obsessive-compulsive disorder Associação entre polimorfismos do gene da triptofano hidroxilase 2 e o transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Felipe Filardi da Rocha

    2011-06-01

    Full Text Available OBJECTIVE: A substantial body of evidence suggests that obsessive-compulsive disorder has a genetic component, and substantial candidate genes for the disorder have been investigated through association analyses. A particular emphasis has been placed on genes related to the serotonergic system, which is likely to play an important role in the pathogenesis of obsessive-compulsive disorder. The gene for tryptophan hydroxylase 2, which is a rate limiting enzyme in serotonin synthesis, is considered an important candidate gene associated with psychiatric disorders. METHOD: Our sample consisted of 321 subjects (107 diagnosed with obsessive-compulsive disorder and 214 healthy controls, which were genotyped for eight tagSNPs (rs4448731, rs4565946, rs11179000, rs7955501, rs10506645, rs4760820, rs1487275 and rs10879357 covering the entire human tryptophan hydroxylase 2 gene. Statistical analyses were performed using UNPHASED, version 3.0.12, and Haploview®. RESULTS: Single markers, genotype analysis did not show a significant genetic association with obsessive-compulsive disorder. A significant association between the T-C-T (rs4448731, rs4565946, rs10506645 and C-A-T (rs4565946, rs7955501, rs10506645 haplotypes and obsessive-compulsive disorder was observed, as well as a strong linkage disequilibrium between SNPs rs4448731 and rs4565946, and SNPs rs10506645 and 4760820. DISCUSSION: Our research has not demonstrated the existence of associations between the eight SNPs of TPH2 and obsessive-compulsive disorder. However, two LD and two haplotypes areas were demonstrated, thus suggesting that more studies in TPH2 are needed to investigate the role of tryptophan hydroxylase 2 variants in obsessive-compulsive disorder.OBJETIVO: Diversos estudos demonstram que o transtorno obsessivo-compulsivo apresenta considerável contribuição genética, com diversos genes candidatos tendo sido estudados por meio de estudos de associação. Como alterações do sistema

  15. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Purpose Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Results Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization

  16. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization of lys-NDs was confirmed

  17. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  18. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    Science.gov (United States)

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-25

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.

  19. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes

    DEFF Research Database (Denmark)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung

    2010-01-01

    Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine...... are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation....... The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and CBP. Based...

  20. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine

    Science.gov (United States)

    Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...

  1. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    OpenAIRE

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decre...

  2. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Directory of Open Access Journals (Sweden)

    Alwani S

    2016-02-01

    Full Text Available Saniya Alwani,1 Randeep Kaur,1 Deborah Michel,1 Jackson M Chitanda,2 Ronald E Verrall,3 Chithra Karunakaran,4 Ildiko Badea1 1Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, 2Department of Chemical & Biological Engineering, 3Department of Chemistry, University of Saskatchewan, 4Canadian Light Source, Saskatoon, SK, Canada Purpose: Nanodiamonds (NDs are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods: lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA was also analyzed using flow cytometry. Results: Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed

  3. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.

    Science.gov (United States)

    Brasacchio, Daniella; Okabe, Jun; Tikellis, Christos; Balcerczyk, Aneta; George, Prince; Baker, Emma K; Calkin, Anna C; Brownlee, Michael; Cooper, Mark E; El-Osta, Assam

    2009-05-01

    Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as "hyperglycemic memory." We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. Models of transient hyperglycemia were used to link NFkappaB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFkappaB-p65 chromatin. The sustained upregulation of the NFkappaB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. These studies indicate that the active transcriptional state of the NFkappaB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes.

  4. Role of the pathotype-specific ACRTS1 gene encoding a hydroxylase involved in the biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata.

    Science.gov (United States)

    Izumi, Yuriko; Kamei, Eri; Miyamoto, Yoko; Ohtani, Kouhei; Masunaka, Akira; Fukumoto, Takeshi; Gomi, Kenji; Tada, Yasuomi; Ichimura, Kazuya; Peever, Tobin L; Akimitsu, Kazuya

    2012-08-01

    The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of the rootstock species rough lemon (Citrus jambhiri) and Rangpur lime (C. limonia). Genes controlling toxin production were localized to a 1.5-Mb chromosome carrying the ACR-toxin biosynthesis gene cluster (ACRT) in the genome of the rough lemon pathotype. A genomic BAC clone containing a portion of the ACRT cluster was sequenced which allowed identification of three open reading frames present only in the genomes of ACR-toxin producing isolates. We studied the functional role of one of these open reading frames, ACRTS1 encoding a putative hydroxylase, in ACR-toxin production by homologous recombination-mediated gene disruption. There are at least three copies of ACRTS1 gene in the genome and disruption of two copies of this gene significantly reduced ACR-toxin production as well as pathogenicity; however, transcription of ACRTS1 and production of ACR-toxin were not completely eliminated due to remaining functional copies of the gene. RNA-silencing was used to knock down the remaining ACRTS1 transcripts to levels undetectable by reverse transcription-polymerase chain reaction. The silenced transformants did not produce detectable ACR-toxin and were not pathogenic. These results indicate that ACRTS1 is an essential gene in ACR-toxin biosynthesis in the rough lemon pathotype of A. alternata and is required for full virulence of this fungus.

  5. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  6. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-08-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2'-beta-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2'-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.

  7. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-01-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation. PMID:16085816

  8. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  9. Ascidian Sperm Lysin System

    OpenAIRE

    Hitoshi, Sawada; Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University

    2002-01-01

    Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degra...

  10. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  11. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... adrenal hyperplasias that impair hormone production and disrupt sexual development. 21-hydroxylase deficiency is responsible for about 95 ... excess production of androgens leads to abnormalities of sexual development in people with 21-hydroxylase deficiency . A lack ...

  12. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  13. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants.

    Science.gov (United States)

    Kang, Le; Ji, Chang Yoon; Kim, Sun Ha; Ke, Qingbo; Park, Sung-Chul; Kim, Ho Soo; Lee, Hyeong-Un; Lee, Joon Seol; Park, Woo Sung; Ahn, Mi-Jeong; Lee, Haeng-Soon; Deng, Xiping; Kwak, Sang-Soo

    2017-08-01

    β-carotene, a carotenoid that plays a key photo-protective role in plants is converted into zeaxanthin by β-carotene hydroxylase (CHY-β). Previous work showed that down-regulation of IbCHY-β by RNA interference (RNAi) results in higher levels of β-carotene and total carotenoids, as well as salt stress tolerance, in cultured transgenic sweetpotato cells. In this study, we introduced the RNAi-IbCHY-β construct into a white-fleshed sweetpotato cultivar (cv. Yulmi) by Agrobacterium-mediated transformation. Among the 13 resultant transgenic sweetpotato plants (referred to as RC plants), three lines were selected for further characterization on the basis of IbCHY-β transcript levels. The RC plants had orange flesh, total carotenoid and β-carotene contents in storage roots were 2-fold and 16-fold higher, respectively, than those of non-transgenic (NT) plants. Unlike storage roots, total carotenoid and β-carotene levels in the leaves of RC plants were slightly increased compared to NT plants. The leaves of RC plants also exhibited tolerance to methyl viologen (MV)-mediated oxidative stress, which was associated with higher 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-scavenging activity. In addition, RC plants maintained higher levels of chlorophyll and higher photosystem II efficiency than NT plants after 250 mM NaCl stress. Yield of storage roots did not differ significantly between RC and NT plants. These observations suggest that RC plants might be useful as a nutritious and environmental stress-tolerant crop on marginal lands around the world. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Three novel variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) of the phenylalanine hydroxylase (PAH) gene impair protein expression and function in vitro.

    Science.gov (United States)

    Zong, Yanan; Liu, Ning; Ma, Shanshan; Bai, Ying; Guan, Fangxia; Kong, Xiangdong

    2018-08-20

    Phenylketonuria (PKU) is the most common inherited metabolic disease, an autosomal recessive disorder affecting >10,000 newborns each year globally. It can be caused by over 1000 different naturally occurring mutations in the phenylalanine hydroxylase (PAH) gene. We analyzed three novel naturally occurring PAH gene variants: p.Glu178Lys (c.532G>A), p.Val245Met (c.733G>A) and p.Ser250Phe (c.749C>T). The mutant effect on the PAH enzyme structure and function was predicted by bioinformatics software. Vectors expressing the corresponding PAH variants were generated for expression in E. coli and in HEK293T cells. The RNA expression of the three PAH variants was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The mutant PAH protein levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA). All three variants were predicted to be pathogenic by bioinformatics analysis. The transcription of the three PAH variants was similar to the wild type PAH gene in HEK293T cells. In contrast, the levels of mutant PAH proteins decreased significantly compared to the wild type control, in both E. coli and HEK293T cells. Our results indicate that the three novel PAH gene variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) impair PAH protein expression and function in prokaryotic and eukaryotic cells. Copyright © 2018. Published by Elsevier B.V.

  15. Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice1[C][W][OA

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-01-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice. PMID:20852032

  16. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi......Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical...

  17. Lysine analoga; bereiding en enzymatische hydrolyse van peptide derivaten van lysine en lysine analoga

    NARCIS (Netherlands)

    Tesser, Godefridus Ignatius

    1961-01-01

    De synthese van enkele structuuranaloga van lysine wordt beschreven. Aangetoond wordt dat zij lysine in substraten voor trypsine, cathepsine B en papaine kan vervangen. Daar de structuur van de analoga O-(Beta-aminoaethyl)serine en S-(Beta-aminoaethyl) cysteine die van lysine dicht nadert, wordt

  18. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.

    Science.gov (United States)

    Alvarez, Vanessa; Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Gudiña, Eduardo J; Godio, Ramiro P; Martín, Juan F; Barredo, José Luis

    2006-04-01

    The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to

  19. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.

    Science.gov (United States)

    Cheng, Jie; Chen, Peng; Song, Andong; Wang, Dan; Wang, Qinhong

    2018-04-13

    L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.

  20. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  1. The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by Tryptophan Hydroxylase, Serotonin Transporter, and Monoamine Oxidase-A-Genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.; Thibodeau, Eric

    2013-01-01

    Gene-environment interaction effects in predicting antisocial behavior in late childhood were investigated among maltreated and nonmaltreated low-income children (N = 627, M age = 11.27). Variants in three genes, TPH1, 5-HTTLPR, and MAOA uVNTR, were examined. In addition to child maltreatment status, we also considered the impact of maltreatment subtypes, developmental timing of maltreatment, and chronicity. Indicators of antisocial behavior were obtained from self-, peer-, and adult counselor-reports. In a series of ANCOVAs, child maltreatment and its parameters demonstrated strong main effects on early antisocial behavior as assessed by all forms of report. Genetic effects operated primarily in the context of gene-environment interactions, moderating the impact of child maltreatment on outcomes. Across the three genes, among nonmaltreated children no differences in antisocial behavior were found based on genetic variation. In contrast, among maltreated children specific polymorphisms of TPH1, 5-HTTLPR, and MAOA were each related to heightened self-report of antisocial behavior; the interaction of 5-HTTLPR and developmental timing of maltreatment also indicated more severe antisocial outcomes for children with early onset and recurrent maltreatment based on genotype. TPH1 and 5-HTTLPR interacted with maltreatment subtype to predict peer-report of antisocial behavior; genetic variation contributed to larger differences in antisocial behavior among abused children. TPH1 and 5-HTTLPR polymorphisms also moderated the effects of maltreatment subtype on adult report of antisocial behavior; again genetic effects were strongest for children who were abused. Additionally, TPH1 moderated the effect of developmental timing of maltreatment and chronicity on adult report of antisocial behavior. The findings elucidate how genetic variation contributes to identifying which maltreated children are most vulnerable to antisocial development. PMID:22781862

  2. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  3. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Directory of Open Access Journals (Sweden)

    Muhammad Arslan

    Full Text Available Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  4. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    Science.gov (United States)

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D 3 -treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D 3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D 3 reduced in 60% renal 25-hydroxyvitamin D 3 -dependent Cyp24a1 upregulation (Pintake decreases renal and tumoral 25-hydroxyvitamin D 3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  6. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  8. Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios.

    Science.gov (United States)

    Nguyen, Minh Van; Jordal, Ann-Elise Olderbakk; Espe, Marit; Buttle, Louise; Lai, Hung Van; Rønnestad, Ivar

    2013-07-01

    Cobia (Rachycentron canadum, Actinopterygii, Perciformes;10.5±0.1g) were fed to satiation with three plant-based protein test diets with different lysine (L) to arginine (A) ratios (LL/A, 0.8; BL/A, 1.1; and HL/A, 1.8), using a commercial diet as control for six weeks. The test diets contained 730 g kg(-1) plant ingredients with 505-529 g protein, 90.2-93.9 g lipid kg(-1) dry matter; control diet contained 550 g protein and 95 g lipid kg(-1) dry matter. Periprandial expression of brain NPY and CCK (npy and cck) was measured twice (weeks 1 and 6). At week one, npy levels were higher in pre-feeding than postfeeding cobia for all diets, except LL/A. At week six, npy levels in pre-feeding were higher than in postfeeding cobia for all diets. cck in pre-feeding cobia did not differ from that in postfeeding for all diets, at either time point. Cobia fed LL/A had lower feed intake (FI) than cobia fed BL/A and control diet, but no clear correlations between dietary L/A ratio and FI, growth and expression of npy and cck were detected. The data suggest that NPY serves as an orexigenic factor, but further studies are necessary to describe links between dietary L/A and regulation of appetite and FI in cobia. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  10. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system

    DEFF Research Database (Denmark)

    Panina, Svetlana; Stephan, Alexander; la Cour, Jonas Marstrand

    2012-01-01

    Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model...... system to study the effect ofCaMgene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated.Weshow that CaM is essential for survival...

  11. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  12. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.

    Science.gov (United States)

    Khan, Mohammed A; Wu, Victoria M; Ghosh, Shreya; Uskoković, Vuk

    2016-06-01

    Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with

  13. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1 , a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  14. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  15. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  16. Lysine: Participation in life, production and biosynthesis

    International Nuclear Information System (INIS)

    Shah, A.H.; Hameed, A.

    2002-01-01

    Lysine plays a vital role in life. Its demands increase worldwide. It is in the interest of students to advertise the supreme importance of its productions. In this report, the mechanism and the biosynthetic pathway of lysine in corynebacterium glutamicum is illustrated, in a simple and ready understandable way. These will pave the way of lysine production. (author)

  17. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    Science.gov (United States)

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  19. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  20. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu

    2018-01-01

    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  1. Regulation and Functional Expression of Cinnamate 4-Hydroxylase from Parsley

    Science.gov (United States)

    Koopmann, Edda; Logemann, Elke; Hahlbrock, Klaus

    1999-01-01

    A previously isolated parsley (Petroselinum crispum) cDNA with high sequence similarity to cinnamate 4-hydroxylase (C4H) cDNAs from several plant sources was expressed in yeast (Saccharomyces cerevisiae) containing a plant NADPH:cytochrome P450 oxidoreductase and verified as encoding a functional C4H (CYP73A10). Low genomic complexity and the occurrence of a single type of cDNA suggest the existence of only one C4H gene in parsley. The encoded mRNA and protein, in contrast to those of a functionally related NADPH:cytochrome P450 oxidoreductase, were strictly coregulated with phenylalanine ammonia-lyase mRNA and protein, respectively, as demonstrated by coinduction under various conditions and colocalization in situ in cross-sections from several different parsley tissues. These results support the hypothesis that the genes encoding the core reactions of phenylpropanoid metabolism form a tight regulatory unit. PMID:9880345

  2. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  3. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  4. (R)-β-lysine-modified elongation factor P functions in translation elongation

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Zou, S Betty; Rajkovic, Andrei

    2013-01-01

    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has......-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate...

  5. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.

    Science.gov (United States)

    Aprelikova, Olga; Chandramouli, Gadisetti V R; Wood, Matthew; Vasselli, James R; Riss, Joseph; Maranchie, Jodi K; Linehan, W Marston; Barrett, J Carl

    2004-06-01

    Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation. Copyright 2004 Wiley-Liss, Inc.

  6. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  7. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  8. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  10. Recent advances in biochemical and molecular analysis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Jin-Ho Choi

    2016-03-01

    Full Text Available The term congenital adrenal hyperplasia (CAH covers a group of autosomal recessive disorders caused by defects in one of the steroidogenic enzymes involved in the synthesis of cortisol or aldosterone from cholesterol in the adrenal glands. Approximately 95% of all CAH cases are caused by 21-hydroxylase deficiency encoded by the CYP21A2 gene. The disorder is categorized into classical forms, including the salt-wasting and the simple virilizing types, and nonclassical forms based on the severity of the disease. The severity of the clinical features varies according to the level of residual 21-hydroxylase activity. Newborn screening for CAH is performed in many countries to prevent salt-wasting crises in the neonatal period, to prevent male sex assignment in affected females, and to reduce long-term morbidities, such as short stature, gender confusion, and psychosexual disturbances. 17α-hydroxyprogesterone is a marker for 21-hydroxylase deficiency and is measured using a radioimmunoassay, an enzyme-linked immunosorbent assay, or a fluoroimmunoassay. Recently, liquid chromatography linked with tandem mass spectrometry was developed for rapid, highly specific, and sensitive analysis of multiple analytes. Urinary steroid analysis by gas chromatography mass spectrometry also provides qualitative and quantitative data on the excretion of steroid hormone metabolites. Molecular analysis of CYP21A2 is useful for genetic counseling, confirming diagnosis, and predicting prognoses. In conclusion, early detection using neonatal screening tests and treatment can prevent the worst outcomes of 21-hydroxylase deficiency.

  11. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    International Nuclear Information System (INIS)

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17α-hydroxylase (steroid 17α-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, λ hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17

  13. Δ{sup 9}-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuso [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112 (Japan); Ikeda, Eriko [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Su, Shengzhong [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Harada, Mari [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Okazaki, Hiroyuki [Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Watanabe, Kazuhito [Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181 (Japan); Omiecinski, Curtis J. [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Aramaki, Hironori [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan)

    2014-12-04

    We recently reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ{sup 9}-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ{sup 9}-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ{sup 9}-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ{sup 9}-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ{sup 9}-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ{sup 9}-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ{sup 9}-THC up-regulation of FA2H in MDA-MB-231 cells.

  14. Δ9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ 9 -THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ 9 -THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ 9 -THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ 9 -THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ 9 -THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ 9 -THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ 9 -THC up-regulation of FA2H in MDA-MB-231 cells

  15. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    Science.gov (United States)

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  16. The impact of lysine and arginine ratios in plant-based protein diets on appetite, growth performance and gene expression of brain neuropeptide Y (NPY) and cholecystokinin (CCK) in juvenile cobia (Rachycentron canadum)

    OpenAIRE

    Nguyen, Minh Van

    2013-01-01

    Aquaculture of cobia, Rachycentron canadum is hampered by lack of good feeding protocols and nutritionally optimized diets. Studies on the role of appetite and feeding behavior regulating neuropeptides in cobia have not been pursued to date. The current study initially assessed the impact of plant-based protein diets with different lysine (L) to arginine (A) ratios on appetite and feed intake, feed efficiencies, growth performance, and the deposition of protein and lipid in juv...

  17. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  18. PENILAIAN PENGARUH PENAMBAHAN LYSINE PADA NASI

    Directory of Open Access Journals (Sweden)

    Ignatius Tarwotjo

    2012-11-01

    Full Text Available Pengaruh penambahan lysine pada mutu protein nasi dilakukan pada tikus putih dengan mengukur Protein Efficiency Ratio. Nasi dan Nasi dengan sayur beserta laukpauk, seperti dikonsumsi oleh kebanyakan keluarga di Indonesia, yang berasnya lebih dulu ditambahi butiran premix berisi lysine, thiamine dan riboflavin ternaya menghasilkan Protein Efficiency Ratio lebih tinggi dari pada yang tidak ditambahi.

  19. Genetic Analysis of Diaminopimelic Acid- and Lysine-Requiring Mutants of Escherichia coli1

    Science.gov (United States)

    Bukhari, Ahmad I.; Taylor, Austin L.

    1971-01-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA. PMID:4926684

  20. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli.

    Science.gov (United States)

    Bukhari, A I; Taylor, A L

    1971-03-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA.

  1. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  2. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    ,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH......Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1...... the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through...

  3. Flux through the tetrahydrodipicolinate succinylase pathway is dispensable for L-lysine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Shaw-Reid, C A; McCormick, M M; Sinskey, A J; Stephanopoulos, G

    1999-03-01

    The N-succinyl-LL-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the L-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE- strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE- strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions.

  4. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    Directory of Open Access Journals (Sweden)

    Yang M

    2014-08-01

    Full Text Available Ming Yang,1 Huizhong Su,1 Tomoyoshi Soga,2 Kamil R Kranc,3 Patrick J Pollard1 1Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 2Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan; 3MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Abstract: The hypoxia-inducible factor (HIF prolyl hydroxylase domain enzymes (PHDs regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2 availability enables its association with the von Hippel-Lindau (VHL tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. Keywords: prolyl hydroxylase domain (PHD

  5. Characterization of mutations at the mouse phenylalanine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Charlton, C.K. [Wichita State Univ., KS (United States)

    1997-02-01

    Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. In PAH{sup ENU1}, the phenotype is mild. The Pah{sup enu1} mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. In PAH{sup ENU2} the phenotype is severe. The Pah{sup enu2} mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. In PAH{sup ENU2}, the sequence information was used to devise a direct genotyping system based on the creation of a new Alw26I restriction endonuclease site. 26 refs., 2 figs., 1 tab.

  6. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency

    International Nuclear Information System (INIS)

    Sinnott, P.; Collier, S.; Dyer, P.A.; Harris, R.; Strachan, T.; Costigan, C.

    1990-01-01

    The HLA-linked human steroid 21-hydroxylase gene CYP21B and its closely homologous pseudogene CYP21A are each normally located centromeric to a fourth component of complement (C4) gene, C4B and C4A, respectively, in an organization suggesting tandem duplication of a ca. 30-kilobase DNA unit containing a CYP21 gene and a C4 gene. Such an organization has been considered to facilitate gene deletion and addition events by unequal crossover between the tandem repeats. The authors have identified a steroid 21-hydroxylase deficiency patient who has a maternally inherited disease haplotype that carries a de novo deletion of a ca. 30-kilobase repeat unit including the CYP21B gene and associated C4B gene. This disease haplotype appears to have been generated as a result of meiotic unequal crossover between maternal homologous chromosomes. One of the maternal haplotypes is the frequently occurring HLA-DR3,B8,A1 haplotype that normally carries a deletion of a ca. 30-kilobase unit including the CYP21A gene and C4A gene. Haplotypes of this type may possible act as premutations, increasing the susceptibility of developing a 21-hydroxylase deficiency mutation by facilitating unequal chromosome pairing

  7. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  8. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  9. CPLA 1.0: an integrated database of protein lysine acetylation.

    Science.gov (United States)

    Liu, Zexian; Cao, Jun; Gao, Xinjiao; Zhou, Yanhong; Wen, Longping; Yang, Xiangjiao; Yao, Xuebiao; Ren, Jian; Xue, Yu

    2011-01-01

    As a reversible post-translational modification (PTM) discovered decades ago, protein lysine acetylation was known for its regulation of transcription through the modification of histones. Recent studies discovered that lysine acetylation targets broad substrates and especially plays an essential role in cellular metabolic regulation. Although acetylation is comparable with other major PTMs such as phosphorylation, an integrated resource still remains to be developed. In this work, we presented the compendium of protein lysine acetylation (CPLA) database for lysine acetylated substrates with their sites. From the scientific literature, we manually collected 7151 experimentally identified acetylation sites in 3311 targets. We statistically studied the regulatory roles of lysine acetylation by analyzing the Gene Ontology (GO) and InterPro annotations. Combined with protein-protein interaction information, we systematically discovered a potential human lysine acetylation network (HLAN) among histone acetyltransferases (HATs), substrates and histone deacetylases (HDACs). In particular, there are 1862 triplet relationships of HAT-substrate-HDAC retrieved from the HLAN, at least 13 of which were previously experimentally verified. The online services of CPLA database was implemented in PHP + MySQL + JavaScript, while the local packages were developed in JAVA 1.5 (J2SE 5.0). The CPLA database is freely available for all users at: http://cpla.biocuckoo.org.

  10. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  11. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    OpenAIRE

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of t...

  12. Lysine-Rich Proteins in High-Lysine Hordeum Vulgare Grain

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    The salt-soluble proteins in barley grain selected for high-lysine content (Hiproly, CI 7115 and the mutants 29 and 86) and of a control (Carlsberg II) with normal lysine content, contain identical major proteins as determined by MW and electrophoretic mobility. The concentration of a protein gro...

  13. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  14. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    Science.gov (United States)

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  15. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    Science.gov (United States)

    ... common features include an unusually large range of joint movement (hypermobility) and muscle weakness. Related Information What ... Dopamine beta-hydroxylase deficiency Washington Univeristy, St. Louis: Neuromuscular Disease Center Patient Support and Advocacy Resources (1 ...

  16. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    Directory of Open Access Journals (Sweden)

    Daniel Powell

    2017-01-01

    Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  17. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Andersson, Jan Legaard; Bacos, Karl

    2018-01-01

    ) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting......Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs...

  18. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  19. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  20. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  1. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata.

    Directory of Open Access Journals (Sweden)

    Sheida Azizi

    Full Text Available Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs. This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs, MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates

  2. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  3. Lysine aminopeptidase of Aspergillus niger

    OpenAIRE

    Basten, D.E.J.W.; Visser, J.; Schaap, P.J.

    2001-01-01

    Conserved regions within the M1 family of metallo-aminopeptidases have been used to clone a zinc aminopeptidase from the industrially used fungus Aspergillus niger. The derived amino acid sequence of ApsA is highly similar to two yeast zinc aminopeptidases, LAPI and AAPI (53.3 and 50.9␘verall similarity, respectively), two members of the M1 family of metallo-aminopeptidases. The encoding gene was successfully overexpressed in A. niger and the overexpressed product was purified and characteriz...

  4. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  5. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  6. Lignification in transgenics deficient in 4-coumarate 3-hydroxylase (C3H)or the associated hydroxycinnamoyl transferase (HCT)

    Science.gov (United States)

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Sally A. Ralph; Clint Chapple; Ramesh B. Nair; Armin Wagner; Fang Chen; M.S. Srinivasa Reddy; Richard A Dixon; Heather D. Coleman; Shawn D. Mansfield

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in angiosperms massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to the normally dominant syringyl (S) and guaiacyl (G) units. Alfalfa stem levels of up to ~65% P (from wild-type (WT) levels of ~1%) resulting from down-regulation of C3H were measured by...

  7. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  8. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  9. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    -hyperactive disorder (ADHD) among others. Since all these diseases are the cause of huge economical and personal costs it is very important to gain more knowledge of TPH and DβH since these two enzymes could be possible targets for medicine against the diseases mentioned above. TPH a three-domain, iron......-containing enzyme which belongs to the aromatic amino acid hydroxylase (AAAH) family. It exist in two isoforms, TPH1 and TPH2, which are expressed in different tissues and have different properties. TPH is known as a very diffcult protein to work with especially due to instability and only truncated forms of TPH1...... have been purified and crystallized. This project concern the human neuronal TPH or TPH2. In an attempt to overcome the problems with recombinant TPH two stability and solubility optimized variants of TPH2 are designed. Escherichia coli (E. coli) expression strains for these variants and full length...

  10. [Cloning and bioinformatics analysis of abscisic acid 8'-hydroxylase from Pseudostellariae Radix].

    Science.gov (United States)

    Li, Jun; Long, Deng-Kai; Zhou, Tao; Ding, Ling; Zheng, Wei; Jiang, Wei-Ke

    2016-07-01

    Abscisic acid 8'-hydroxylase was one of key enzymes genes in the metabolism of abscisic acid (ABA). Seven menbers of abscisic acid 8'-hydroxylase were identified from Pseudostellaria heterophylla transcriptome sequencing results by using sequence homology. The expression profiles of these genes were analyzed by transcriptome data. The coding sequence of ABA8ox1 was cloned and analyzed by informational technology. The full-length cDNA of ABA8ox1 was 1 401 bp,with 480 encoded amino acids. The predicated isoelectric point (pI) and relative molecular mass (MW) were 8.55 and 53 kDa,respectively. Transmembrane structure analysis showed that there were 21 amino acids in-side and 445 amino acids out-side. High level of transcripts can detect in bark of root and fibrous root. Multi-alignment and phylogenetic analysis both show that ABA8ox1 had a high similarity with the CYP707As from other plants,especially with AtCYP707A1 and AtCYP707A3 in Arabidopsis thaliana. These results lay a foundation for molecular mechanism of tuberous root expanding and response to adversity stress. Copyright© by the Chinese Pharmaceutical Association.

  11. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  12. The effect of streptozotocin-induced diabetes on phenylalanine hydroxylase expression in rat liver.

    OpenAIRE

    Taylor, D S; Dahl, H H; Mercer, J F; Green, A K; Fisher, M J

    1989-01-01

    The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabe...

  13. Expression of M6 and M7 lysin in Mytilus edulis is not restricted to sperm, but occurs also in oocytes and somatic tissue of males and females.

    Science.gov (United States)

    Heß, Anne-Katrin; Bartel, Manuela; Roth, Karina; Messerschmidt, Katrin; Heilmann, Katja; Kenchington, Ellen; Micheel, Burkhard; Stuckas, Heiko

    2012-08-01

    Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26-AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male-specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females. Copyright © 2012 Wiley Periodicals, Inc.

  14. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  15. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. To Cheat or Not To Cheat: Tryptophan Hydroxylase 2 SNP Variants Contribute to Dishonest Behavior.

    Science.gov (United States)

    Shen, Qiang; Teo, Meijun; Winter, Eyal; Hart, Einav; Chew, Soo H; Ebstein, Richard P

    2016-01-01

    Although, lying (bear false witness) is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology, and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Toward addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2) gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  17. To cheat or not to cheat: Tryptophan hydroxylase 2 SNP variants contribute to dishonest behavior

    Directory of Open Access Journals (Sweden)

    Qiang eShen

    2016-05-01

    Full Text Available Although lying (bear false witness is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Towards addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2 gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  18. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    , the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...... the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2...

  19. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    Energy Technology Data Exchange (ETDEWEB)

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  20. Association of tryptophan hydroxylase-2 gene and family environment with antisocial personality disorder%色氨酸羟化酶2基因和家庭环境因素与反社会人格障碍的关联分析

    Institute of Scientific and Technical Information of China (English)

    吴岩峰; 潘风华; 谭钊安; 柯晓燕; 李云涛; 郑大同; 张建平; 茆正洪; 张建秋

    2011-01-01

    目的 探讨色氨酸羟化酶2(TPH2)基因、家庭环境因素及其交互作用与反社会人格障碍(ASPD)的关系.方法 选取TPH2基因rs4290270和rs7305115 2个多态性位点,采用聚合酶链反应-限制性片段长度多态性基因分型技术,测定117例反社会人格障碍患者(ASPD组)和142名健康人(对照组)的TPH2基因多态性分布,并运用家庭环境量表-中文版(Family Environment ScaleChinese Version,FES-CV)评估家庭环境.结果 ASPD组TPH2基因rs4290270、rs7305115 2个多态性位点的基因型和等位基因频率分布与对照组比较,差异均无统计学意义(P>0.05).ASPD组TA单体型频率显著高于对照组,差异有统计学意义(x2=6.177,P<0.05),相对危险度的估计值(OR)为1.865,95%可信区间(CI)为1.135~3.065;其他单体型在2组间的差异无统计学意义.家庭环境中的情感表达和道德宗教观2个因子与TA单体型存在交互作用(P<0.05),OR值分别为1.122和1.080,95%CI分别为1.043~1.206和1.010~1.155.结论 TPH2单体型TA可能与ASPD的发生有关,负性的家庭环境可能进一步加重携带危险单体型对个体的不利影响,个体发生反社会人格障碍的易感性更高.%objective To study the association of tryptophan hydroxylase 2(TPH2)gene polymorphism and family environment with antisocial personality disorder(ASPD)in Chinese Han population.Methods The single nucleotide polymorphism(SNPs)of TPH2,rs4290270 and rs7305115 were analyzed by PCR-RFLP genotyping assay in 117 ASPD patients and 142 healthy controls.The family Environment Scale-Chinese Version(FES-CV)was used to evaluate the family environment of all subjects.Results There were no significant differences between ASPD and controls in genotype and allele frequencies of rs4290270 and rs7305115.The distributions of TA haplotype was significantly more frequent in patients than in controls[odds ratio(OR)1.865,95%confidence interval(CI)1.135-3.065,P<0.05].Interactions between genetic and

  1. [Effect of the lysine guanidination on proteomic analysis].

    Science.gov (United States)

    Zheng, Hao; Mao, Jiawei; Pan, Yanbo; Liu, Zhongshan; Liu, Zheyi; Ye, Mingliang; Zou, Hanfa

    2014-04-01

    The guanidination of lysine side chain was paid great attention in recent years. It plays an important role in qualitative and quantitative proteomics. In this study, based on the results of separated peptides extracted from HeLa cells before and after the guanidination by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the effect of the guanidination of three different kinds of peptides was systematically analyzed. It was found that the selectivity of the guanidination of the lysine side chain was as high as 96.8%. The ratio of identified peptides with lysine at C-term to all peptides increased from 51.7% to 57.3% and more new peptides were identified, while the ratio of peptides with lysine in the middle or without lysine changed little. Further study on the ratio of b and y ions indicated that there were more y ions of peptides with lysine at C-term after the guanidination. The results proved that the selective conversion of lysine to homoarginine by the guanidination could increase the sensitivity and selectivity of mass spectrum. The increased basicity and ability to sequester proton of lysine produced more y ions fragmentation information, which contributed to more identified peptides. It concluded that the lysine guanidination can improve the coverage of proteomic analysis.

  2. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.

    Science.gov (United States)

    Wijenayake, Sanoji; Hawkins, Liam J; Storey, Kenneth B

    2018-04-05

    The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje

    2010-01-01

    Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) pat...

  4. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    Science.gov (United States)

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  5. Association analysis of tryptophan hydroxylase-2 gene polymorphism with antisocial personality disorder and impulsivity%色氨酸羟化酶2基因多态性与反社会人格障碍及其冲动行为的关联研究

    Institute of Scientific and Technical Information of China (English)

    吴岩峰; 郑大同; 谭钊安; 柯晓燕; 张建平; 茆正洪; 曾彦英

    2010-01-01

    Objective To study the association of tryptophan hydroxylase-2 (TPH2) gene polymorphism and antisocial personality disorder (ASPD) and its impulsivity in Chinese Han population. Methods The single nucleotide polymorphism (SNPs) of TPH2 in transcriptional control region,-703G/T,was analyzed by PCR-RFLP genotyping assay in 117 ASPD patients and 142 healthy controls. Barratt Impulsiveness Scale-11 (BIS-11) was used to evaluate the impulsivity of subjects. Results There were significant differences between ASPD and controis on genotype and allele frequencies of TPH2-703G/T (x2 = 7.73, P < 0.05; x2 = 5.12, P < 0.05). The GG genotype and G allele were positively associated with ASPD(OR = 1.458,95% CI = 1.080 ~ 1.968 ;OR = 1.479,95% CI = 1.045 ~ 2.094). The scores of BIS-11 and its factors in GG genotype group((71.28 ± 7.50), (19.60 ±3.41), (25.73 ± 4.92), (25.95 ± 4.77) ) were higher than GT genotype group (( 66.23 ± 8.06), (17.79 ±3.02) ,(23.06 ±3.84) ,(25.38 ±4.97)) and TT genotype group((66.55 ±8.49),(18.50 ±3.35),(23.45 ±4.08), (24.97 ± 4.90)), but only the difference of BIS-11 total scores, the attention and motor factor scores among three groups were statistically significant (P<0.05). The scores of BIS-11 and its factors in G allele group ((69.38 ±8.04), (18.92 ± 3.36), (24.73 ±4. 69), (25.73 ±4.82)) were higher than T genotype group ((66.41 ±8.22),(17.98 ±3.26),(23.27 ±3.94), (25.15 ±4.89)),however,only the difference of BIS-11 total scores, the attention and motor factor scores between two groups were statistically significant.Conclusion TPH2-703G/T polymorphism may be association with ASPD in Chinese Han population. The GG genotype and G allele may be the risk factors of ASPD and impulsivity.%目的 探讨色氨酸羟化酶2(Tryptophan Hydroxylase-2,TPH2)基因多态性与反社会人格障碍(Antisocial Personality Disorder,ASPD)及其冲动行为的关系.方法 选取TPH2基因启动子上游多态-703G/T(rs4570625),采

  6. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer

    International Nuclear Information System (INIS)

    Rawluszko, Agnieszka A; Bujnicka, Katarzyna E; Horbacka, Karolina; Krokowicz, Piotr; Jagodziński, Paweł P

    2013-01-01

    Colorectal cancer (CRC) is one of the most common and comprehensively studied malignancies. Hypoxic conditions during formation of CRC may support the development of more aggressive cancers. Hypoxia inducible factor (HIF), a major player in cancerous tissue adaptation to hypoxia, is negatively regulated by the family of prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) and asparaginyl hydroxylase, called factor inhibiting HIF (FIH). PHD1, PHD2, PHD3 and FIH gene expression was evaluated using quantitative RT-PCR and western blotting in primary colonic adenocarcinoma and adjacent histopathologically unchanged colonic mucosa from patients who underwent radical surgical resection of the colon (n = 90), and the same methods were used for assessment of PHD3 gene expression in HCT116 and DLD-1 CRC cell lines. DNA methylation levels of the CpG island in the promoter regulatory region of PHD1, PHD2, PHD3 and FIH were assessed using bisulfite DNA sequencing and high resolution melting analysis (HRM) for patients and HRM analysis for CRC cell lines. We found significantly lower levels of PHD1, PHD2 and PHD3 transcripts (p = 0.00026; p < 0.00001; p < 0.00001) and proteins (p = 0.004164; p = 0.0071; p < 0.00001) in primary cancerous than in histopathologically unchanged tissues. Despite this, we did not observe statistically significant differences in FIH transcript levels between cancerous and histopathologically unchanged colorectal tissue, but we found a significantly increased level of FIH protein in CRC (p = 0.0169). The reduced PHD3 expression was correlated with significantly increased DNA methylation in the CpG island of the PHD3 promoter regulatory region (p < 0.0001). We did not observe DNA methylation in the CpG island of the PHD1, PHD2 or FIH promoter in cancerous and histopathologically unchanged colorectal tissue. We also showed that 5-Aza-2’-deoxycytidine induced DNA demethylation leading to increased PHD3 transcript and protein level in HCT116 cells. We

  7. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  8. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  9. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  10. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  11. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  12. Threonine and lysine requirements for maintenance in chickens ...

    African Journals Online (AJOL)

    The maintenance requirement for threonine and lysine were estimated in two different experiments by measuring the nitrogen balance of adult male cockerels. Measured amounts of a diet first-limiting in threonine or lysine were fed by intubation each day for 4 d to give a range of intakes (unbalanced series) of from 0 to 239 ...

  13. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76 and B. megaterium ...

  14. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  15. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  16. The emerging role of histone lysine demethylases in prostate cancer

    Directory of Open Access Journals (Sweden)

    Crea Francesco

    2012-08-01

    Full Text Available Abstract Early prostate cancer (PCa is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC. Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3. Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a

  17. Lysine residue 185 of Rad1 is a topological but not a functional counterpart of lysine residue 164 of PCNA.

    Directory of Open Access Journals (Sweden)

    Niek Wit

    Full Text Available Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164 is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185 was identified as the only topological equivalent of PCNA(K164. To investigate a potential role of posttranslational modifications of Rad1(K185 in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R allele. The Rad1(K185 residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185 is not a functional counterpart of PCNA(K164.

  18. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  19. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  20. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  1. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    OpenAIRE

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene fo...

  2. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  3. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    Science.gov (United States)

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  4. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear.

    Science.gov (United States)

    Gumucio, J P; Flood, M D; Bedi, A; Kramer, H F; Russell, A J; Mendias, C L

    2017-01-01

    Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred.Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J

  5. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  6. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  7. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    Science.gov (United States)

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  8. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  9. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Pathak, Ravi; Philizaire, Marc; Mujtaba, Shiraz

    2015-01-01

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets

  11. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  12. Further RFLPs at the human tyrosine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J; Uhlhaas, S; Propping, P; Gal, A [Institut fuer Humangenetik der Universitaet, Bonn (West Germany); Mallet, J [CNRS, Gif-sur-Yvette (France)

    1988-09-26

    The human cDNA clone (Ty7) of tyrosine hydroxylase was used. A two-allele (C1 and C2) Bg1II RFLP has been described recently with bands either at 6.9 or 8.4 kb (2). In addition, a faint invariant band appears at 9.0 kb. A third Bg1II allele (C3) with a band at 8.0 kb was detected. The allele frequency was studied in 35 and 39 unrelated Caucasians. Co-dominant inheritance for both RFLPs described here was demonstrated in 6 nuclear kindreds. RFLPs were observed under normal hybridization and wash stringencies.

  13. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    Dr. Ajit

    2012-07-17

    Jul 17, 2012 ... 3Division of Livestock Product Technology, Indian Veterinary Research Institute, Izatnagar – 243 ... Key words: Carcass trait, low protein, lysine, meat quality, pigs. ... functional activities, reproduction and disease resistance.

  14. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    Science.gov (United States)

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  15. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    guided by the PoxA structure. A233S LysRS behaved as wild type with a-lysine, while the G469A and A233S/G469A variants decreased stable a-lysyl-adenylate formation. A233S LysRS recognized ß-lysine better than wildtype, suggesting a role for this residue in discriminating a- and ß-amino acids. Both...

  16. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Ye, Zhicang; Cheng, Zhongyi; Peng, Xiaojun; Wen, Liangyou; Zhao, Fukun

    2014-07-03

    Lysine acetylation of proteins is a major post-translational modification that plays an important regulatory role in almost every aspect of cells, both eukaryotes and prokaryotes. Vibrio parahemolyticus, a model marine bacterium, is a worldwide cause of bacterial seafood-borne illness. Here, we conducted the first lysine acetylome in this bacterium through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. Overall, we identified 1413 lysine acetylation sites in 656 proteins, which account for 13.6% of the total proteins in the cells; this is the highest ratio of acetyl proteins that has so far been identified in bacteria. The bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. More specifically, proteins related to protein biosynthesis and carbon metabolism are the preferential targets of lysine acetylation. Moreover, two types of acetylation motifs, a lysine or arginine at the +4/+5 positions and a tyrosine, histidine, or phenylalanine at the +1/+2 positions, were revealed from the analysis of the acetylome. Additionally, protein interaction network analysis demonstrates that a wide range of interactions are modulated by protein acetylation. This study provides a significant beginning for the in-depth exploration of the physiological role of lysine acetylation in V. parahemolyticus.

  17. Maintenance requirement and deposition efficiency of lysine in pigs

    Directory of Open Access Journals (Sweden)

    Marcos Speroni Ceron

    2013-09-01

    Full Text Available The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.

  18. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′)-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2′)-hydroxylated carotenoids). PMID:21673887

  19. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Directory of Open Access Journals (Sweden)

    Norihiko Misawa

    2011-05-01

    Full Text Available Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′-ketolase (4(4′-oxygenase; CrtW and hydroxylated by carotenoid β-ring 3(3′-hydroxylase (CrtZ. In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′-hydroxylase (CrtG. This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s-2(2′-hydroxylated carotenoids.

  20. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls.

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C₄₀-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4')-ketolase (4(4')-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3')-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

  1. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.

    Science.gov (United States)

    Theodosiou, Eleni; Breisch, Marina; Julsing, Mattijs K; Falcioni, Francesco; Bühler, Bruno; Schmid, Andreas

    2017-07-01

    Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na + /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.

  2. Rat-liver cholesterol 7α-hydroxylase. Pt. 1

    International Nuclear Information System (INIS)

    Cantfort, J. van; Renson, J.; Gielen, J.

    1975-01-01

    A new assay is described to measure the activity of cholesterol 7α-hydroxylase and compared to the conventional 14 C method used by other investigators. This method is based on the mechanism of the enzymic hydroxylation, i.e. a direct and stereospecific substitution of the 7α-hydrogen by a hydroxyl group. [7α- 3 H]cholesterol is incubated at 37 0 C and in the presence of molecular O 2 , in a medium buffered by potassium phosphate at pH 7.4 and containing liver microsomes (or 9,000 x g supernatant), NADPH, MgCl 2 and cysteamine. Tween-80 (1.5 mg/ml) is used to introduce enough substrate (300 μM) in the incubation mixture to saturate the ezyme (K(m) = 100 μM). Under these conditions the tritiated water released into the incubation medium reflects accurately the enzymic activity. The results obtained with this method are similar to the one obtained with a [4- 14 C]cholesterol technique (r = 0.96; P 3 H]cholesterol method is a complete independence from further metabolism of the first enzymic product, the 7α-hydroxycholesterol, the tritiated water representing the entire cholesterol 7α-hydroxylase activity. (orig.) [de

  3. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1991-01-01

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [ 3 H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  4. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Chen, Ran; Li, Chuchu; Li, Weiyan; Ye, Zhicang

    2015-10-02

    Protein lysine acylation, including acetylation and succinylation, has been found to be a major post-translational modification (PTM) and is associated with the regulation of cellular processes that are widespread in bacteria. Vibrio parahemolyticus is a model marine bacterium that causes seafood-borne illness in humans worldwide. The lysine acetylation of V. parahemolyticus has been extensively characterized in our previous work, and here, we report the first global analysis of lysine succinylation and the overlap between the two types of acylation in this bacterium. Using high-accuracy nano liquid chromatography-tandem mass spectrometry combined with affinity purification, we identified 1931 lysine succinylated peptides matched on 642 proteins, with the quantity of the succinyl-proteins accounting for 13.3% of the total proteins in cells. Bioinformatics analysis results showed that these succinylated proteins are involved in almost every cellular process, particularly in protein biosynthesis and metabolism, and are distributed in diverse subcellular compartments. Moreover, several sequence motifs were identified, including succinyl-lysine flanked by a lysine or arginine residue at the -8, -7, or +7 position and without these residues at the -1 or +2 position, and these motifs differ from those found in other bacteria and eukaryotic cells. Furthermore, a total of 517 succinyl-lysine sites (26.7%) on 288 proteins (44.9%) were also found to be acetylated, suggesting extensive overlap between succinylation and acetylation in this bacterium. This systematic analysis provides a promising starting point for further investigations of the physiologic and pathogenic roles of lysine succinylation and acetylation in V. parahemolyticus.

  5. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  6. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  7. Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Directory of Open Access Journals (Sweden)

    Zhang Yuqi

    2010-08-01

    Full Text Available Abstract Background Suicide and major depressive disorders (MDD are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2 gene rs7305115 SNP may predispose to suicide attempts in MDD. Methods We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis. Results There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, p p p Conclusions The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.

  8. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  9. High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl 3-Hydroxylase 2

    Science.gov (United States)

    Mordechai, Shikma; Gradstein, Libe; Pasanen, Annika; Ofir, Rivka; El Amour, Khalil; Levy, Jaime; Belfair, Nadav; Lifshitz, Tova; Joshua, Sara; Narkis, Ginat; Elbedour, Khalil; Myllyharju, Johanna; Birk, Ohad S.

    2011-01-01

    Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2. PMID:21885030

  10. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression.

    Science.gov (United States)

    Li, Linda Xiaoyan; Zhou, Julie Xia; Calvet, James P; Godwin, Andrew K; Jensen, Roy A; Li, Xiaogang

    2018-02-27

    We identified SMYD2, a SMYD (SET and MYND domain) family protein with lysine methyltransferase activity, as a novel breast cancer oncogene. SMYD2 was expressed at significantly higher levels in breast cancer cell lines and in breast tumor tissues. Silencing of SMYD2 by RNAi in triple-negative breast cancer (TNBC) cell lines or inhibition of SMYD2 with its specific inhibitor, AZ505, significantly reduced tumor growth in vivo. SMYD2 executes this activity via methylation and activation of its novel non-histone substrates, including STAT3 and the p65 subunit of NF-κB, leading to increased TNBC cell proliferation and survival. There are cross-talk and synergistic effects among SMYD2, STAT3, and NF-κB in TNBC cells, in that STAT3 can contribute to the modification of NF-κB p65 subunit post-translationally by recruitment of SMYD2, whereas the p65 subunit of NF-κB can also contribute to the modification of STAT3 post-translationally by recruitment of SMYD2, leading to methylation and activation of STAT3 and p65 in these cells. The expression of SMYD2 can be upregulated by IL-6-STAT3 and TNFα-NF-κB signaling, which integrates epigenetic regulation to inflammation in TNBC development. In addition, we have identified a novel SMYD2 transcriptional target gene, PTPN13, which links SMYD2 to other known breast cancer associated signaling pathways, including ERK, mTOR, and Akt signaling via PTPN13 mediated phosphorylation.

  11. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    Science.gov (United States)

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase-Dependent Stimulation of Renal Klotho Expression by Spironolactone

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-11-01

    Full Text Available Background: Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney, is required for the suppression of 1,25(OH2D3-generating 25-hydroxyvitamin D3 1-alpha-hydroxylase (Cyp27b1 by FGF23. Conversely, 1,25(OH2D3 stimulates, by activating the vitamin D3 receptor (Vdr, the expression of klotho, thus establishing a negative feedback loop. Klotho protects against renal and vascular injury. Klotho deficiency accelerates aging and early death, effects at least partially due to excessive formation of 1,25(OH2D3 and subsequent hyperphosphatemia. Klotho expression is inhibited by aldosterone. The present study explored the interaction of aldosterone and DOCA as well as the moderately selective mineralocorticoid receptor antagonist spironolactone on klotho expression. Methods: mRNA levels were determined utilizing quantitative RT-PCR in human embryonic kidney cells (HEK293 or in renal tissues from mice without or with prior mineralocorticoid (aldosterone or DOCA and/or spironolactone treatment. In HEK293 cells, protein levels were determined by western blotting. The experiments in HEK293 cells were performed without or with silencing of CYP27B1, of vitamin D3 receptor (VDR or of mineralocorticoid receptor (NR3C2. Results: In HEK293 cells aldosterone and in mice DOCA significantly decreased KLOTHO gene expression, effects opposed by spironolactone treatment. Spironolactone treatment alone significantly increased KLOTHO and CYP27B1 transcript levels in HEK293 cells (24 hours and mice (8 hours or 5 days. Moreover, spironolactone significantly increased klotho and CYP27B1 protein levels in HEK293 cells (48 hours. Reduced NR3C2 expression following silencing did not significantly affect KLOTHO and CYP27B1 transcript levels in presence or absence of spironolactone. Silencing of CYP27B1 and VDR significantly blunted the stimulating effect of spironolactone on KLOTHO mRNA levels in HEK293 cells. Conclusion: Besides blocking the effects of

  13. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    Science.gov (United States)

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  14. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    Tanaka, Hidehiko; Soda, Kenji.

    1976-01-01

    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  15. Small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    Science.gov (United States)

    Brand, Michael; Measures, Angelina R; Measures, Angelina M; Wilson, Brian G; Cortopassi, Wilian A; Alexander, Rikki; Höss, Matthias; Hewings, David S; Rooney, Timothy P C; Paton, Robert S; Conway, Stuart J

    2015-01-16

    Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.

  16. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  17. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  18. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  19. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Shrividhya Srinivasan

    2008-10-01

    Full Text Available Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II. Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.

  20. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    Science.gov (United States)

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    Science.gov (United States)

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  2. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea.

    Directory of Open Access Journals (Sweden)

    Bramwell G Lambrus

    Full Text Available Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP, or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems.

  3. Regulation of cholesterol 25-hydroxylase expression by vitamin D3 metabolites in human prostate stromal cells

    International Nuclear Information System (INIS)

    Wang, J.-H.; Tuohimaa, Pentti

    2006-01-01

    Vitamin D 3 plays an important role in the control of cell proliferation and differentiation. Cholesterol 25-hydroxylase (CH25H) is an enzyme converting cholesterol into 25-hydroxycholesterol. Vitamin D 3 as well as 25-hydroxycholesterol has been shown to inhibit cell growth and induce cell apoptosis. Here we show that 10 nM 1α,25(OH) 2 D 3 and 500 nM 25OHD 3 upregulate CH25H mRNA expression in human primary prostate stromal cells (P29SN). Protein synthesis inhibitor cycloheximide does not block 1α,25(OH) 2 D 3 mediated upregulation of CH25H mRNA. Transcription inhibitor actinomycin D blocks basal level as well as 1α,25(OH) 2 D 3 induced CH25H mRNA expression. 1α,25(OH) 2 D 3 has no effect on CH25H mRNA stability. 25-Hydroxycholesterol significantly decreased the P29SN cell number. A CH25H enzyme inhibitor, desmosterol, increases basal cell number but has no significant effect on vitamin D 3 treated cells. Our data suggest that ch25h could be a vitamin D 3 target gene and may partly mediate anti-proliferative action of vitamin D 3 in human primary prostate stromal cells

  4. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    Science.gov (United States)

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  5. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  6. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  7. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    From the human nutrition view point, lysine is the ... latitude and 79.3°E longitude and at an altitude of ... transferred to boiling tubes. ... mixtures were heated until the color changes to ... water was added into the digestion tube carefully.

  8. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  9. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  10. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Two experiments were conducted to investigate the effect of supplementing low CP diets with methionine and lysine on broiler performance, carcass measure and their immune response against Infectious Bursa Disease (IBD) virus. In Experiment 1, ten diets were formulated. Diet 1 (control diet) contained 23.0% CP and ...

  11. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  12. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  13. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  14. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    Science.gov (United States)

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  15. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  16. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  17. Effect Of Sprouting On Available Lysine Content Of Cowpea ( Vigna ...

    African Journals Online (AJOL)

    This study was conducted to determine the effect of sprouting on available Lysine content of cowpea (Vigna unguiculata) flour and the performance of the flour used for producing “moi – moi” (steamed bean cake). Cowpea seed was subjected to sprouting for different periods of 1 day, 2 days and 3 days for samples B, C and ...

  18. Lysine-vasopressin analogues with glycoconjugates in position 8

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2006-01-01

    Roč. 80, č. 5 (2006), s. 759-766 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506 Keywords : glycoconjugates * glycopeptides * lysine-vasopressin analogues Subject RIV: CC - Organic Chemistry Impact factor: 0.491, year: 2006

  19. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  20. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  1. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells.

    Science.gov (United States)

    Walsh, David P; Murphy, Robert D; Panarella, Angela; Raftery, Rosanne M; Cavanagh, Brenton; Simpson, Jeremy C; O'Brien, Fergal J; Heise, Andreas; Cryan, Sally-Ann

    2018-05-07

    The field of tissue engineering is increasingly recognizing that gene therapy can be employed for modulating in vivo cellular response thereby guiding tissue regeneration. However, the field lacks a versatile and biocompatible gene delivery platform capable of efficiently delivering transgenes to mesenchymal stem cells (MSCs), a cell type often refractory to transfection. Herein, we describe the extensive and systematic exploration of three architectural variations of star-shaped poly(l-lysine) polypeptide (star-PLL) with varying number and length of poly(l-lysine) arms as potential nonviral gene delivery vectors for MSCs. We demonstrate that star-PLL vectors are capable of self-assembling with pDNA to form stable, cationic nanomedicines. Utilizing high content screening, live cell imaging, and mechanistic uptake studies we confirm the intracellular delivery of pDNA by star-PLLs to MSCs is a rapid process, which likely proceeds via a clathrin-independent mechanism. We identify a star-PLL composition with 64 poly(l-lysine) arms and five l-lysine subunits per arm as a particularly efficient vector that is capable of delivering both reporter genes and the therapeutic transgenes bone morphogenetic protein-2 and vascular endothelial growth factor to MSCs. This composition facilitated a 1000-fold increase in transgene expression in MSCs compared to its linear analogue, linear poly(l-lysine). Furthermore, it demonstrated comparable transgene expression to the widely used vector polyethylenimine using a lower pDNA dose with significantly less cytotoxicity. Overall, this study illustrates the ability of the star-PLL vectors to facilitate efficient, nontoxic nucleic acid delivery to MSCs thereby functioning as an innovative nanomedicine platform for tissue engineering applications.

  2. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  3. [Recommendations for the diagnosis and treatment of classic forms of 21-hydroxylase-deficient congenital adrenal hyperplasia].

    Science.gov (United States)

    Rodríguez, Amparo; Ezquieta, Begoña; Labarta, José Igancio; Clemente, María; Espino, Rafael; Rodriguez, Amaia; Escribano, Aranzazu

    2017-08-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is an autosomal recessive disorder caused by mutations in the CYP21A2 gene. Cortisol and aldosterone synthesis are impaired in the classic forms (adrenal insufficiency and salt-wasting crisis). Females affected are virilised at birth, and are at risk for genital ambiguity. In this article we give recommendations for an early as possible diagnosis and an appropriate and individualised treatment. A patient and family genetic study is essential for the diagnosis of the patient, and allows genetic counselling, as well as a prenatal diagnosis and treatment for future pregnancy. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Lack of Association between Dopamine Beta-Hydroxylase (DBH 19-bp Insertion/Deletion Polymorphism and Risk of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Mansour shakiba

    2016-12-01

    Full Text Available Objective: Interaction between genetic and environmental factors is considered as major factors in Schizophrenia (SCZ. It has been shown that dopaminergic and noradrenergic neurotransmission dysfunction play an essential role in the SCZ pathogenesis.This study aimed to find the impact of functional 19-bp insertion/deletion (ins/del polymorphism in dopamine beta-hydroxylase (DBH gene on SCZ risk in a sample of Iranian population.Method: This case-control study was conducted on 109 SCZ patients and 116 matched healthy subjects. Genomic DNA samples were extracted from peripheral blood cells using salting out method. Genotyping of 19-bp ins/del DBH polymorphism was done using Polymerase Chain Reaction (PCR method.Results: Neither the overall chi-square comparison of cases and controls (

  5. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  6. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  7. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yanqi; Zhang, Xing; Horton, John R.; Upadhyay, Anup K.; Spannhoff, Astrid; Liu, Jin; Synder, James P.; Bedford, Mark T.; Cheng, Xiaodong; (Emory-MED); (Emory); (Texas)

    2009-03-26

    Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.

  8. Assessment of deoxyhypusine hydroxylase as a putative, novel drug target.

    Science.gov (United States)

    Kerscher, B; Nzukou, E; Kaiser, A

    2010-02-01

    Antimalarial drug resistance has nowadays reached each drug class on the market for longer than 10 years. The focus on validated, classical targets has severe drawbacks. If resistance is arising or already present in the field, a target-based High-Throughput-Screening (HTS) with the respective target involves the risk of identifying compounds to which field populations are also resistant. Thus, it appears that a rewarding albeit demanding challenge for target-based drug discovery is to identify novel drug targets. In the search for new targets for antimalarials, we have investigated the biosynthesis of hypusine, present in eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine hydroxylase (DOHH), which has recently been cloned and expressed from P. falciparum, completes the modification of eIF5A through hydroxylation. Here, we assess the present druggable data on Plasmodium DOHH and its human counterpart. Plasmodium DOHH arose from a cyanobacterial phycobilin lyase by loss of function. It has a low FASTA score of 27 to its human counterpart. The HEAT-like repeats present in the parasite DOHH differ in number and amino acid identity from its human ortholog and might be of considerable interest for inhibitor design.

  9. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  10. Silencing of flavanone-3-hydroxylase in apple (Malus × domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility.

    Science.gov (United States)

    Flachowsky, Henryk; Halbwirth, Heidi; Treutter, Dieter; Richter, Klaus; Hanke, Magda-Viola; Szankowski, Iris; Gosch, Christian; Stich, Karl; Fischer, Thilo C

    2012-02-01

    Transgenic antisense flavanone-3-hydroxylase apple plants were produced to mimic the effect of the agrochemical prohexadione-Ca on apple leaves. This enzyme inhibitor for 2-oxoglutarate dependent dioxygenases is used as a growth retardant and for control of secondary fire blight of leaves. Like using the agent, silencing of flavanone-3-hydroxylase leads to an accumulation of flavanones in leaves, but in contrast not to the formation of 3-deoxyflavonoids. In prohexadione-Ca treated leaves the 3-deoxyflavonoid luteoforol is formed from accumulating flavanones, acting as an antimicrobial compound against the fire blight pathogen Erwinia amylovora. Seemingly, the silencing of just one of the 2-oxoglutarate dependent dioxygenases (in apple also flavonol synthase and anthocyanidin synthase take part downstream in the pathway) does not provide a sufficiently high ratio of flavanones to dihydroflavonols. This seems to be needed to let the dihydroflavonol-4-reductase/flavanone-4-reductase enzyme reduce flavanones to luteoforol, and to let this be reduced by the leucoanthocyanidin-4-reductase/3-deoxyleucoanthocyanidin-4-reductase, each acting with their respective weak secondary activities. Accordingly, also the intended inducible resistance to fire blight by prohexadione-Ca is not observed with the antisense flavanone-3-hydroxylase apple plants. On the other hand, for most transgenic lines with strong flavanone-4-reductase down-regulation, up-regulation of gene expression for the other flavonoid genes was found. This provides further evidence for the feedback regulation of flavonoid gene expression having been previously reported for the prohexadione-Ca inhibited apple plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    Science.gov (United States)

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  13. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  14. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  15. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  16. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.

  17. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Thierry-Palmer, M.; Cullins, S.; Rashada, S.; Gray, T.K.; Free, A.

    1986-01-01

    The authors have determined the ontogeny of vitamin D 3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3 H-vitamin D 3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl 2 . Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D 3 (250HD 3 ) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD 3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D 3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D 3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D 3 25-hydroxylase

  18. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Lai JY

    2014-11-01

    Full Text Available Jui-Yang Lai,1–3 Pei-Ran Wang,1 Li-Jyuan Luo,1 Si-Tan Chen1 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, Republic of ChinaAbstract: To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine -pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM L-lysine can

  19. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    Science.gov (United States)

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-05

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Directory of Open Access Journals (Sweden)

    Kwanyuen Prachuab

    2009-11-01

    Full Text Available Abstract Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl-L-cysteine (AEC and the acetolactate synthase (ALS inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate (Roundup®, AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean

  1. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  2. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    International Nuclear Information System (INIS)

    Fan Liqun; Brown-Borg, Holly; Brown, Sherri; Westin, Stefan; Mode, Agneta; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  3. DOPAMINE BETA HYDROXYLASE: ITS RELEVANCE IN THE ETIOLOGY OF ATTENTION DEFICIT HYPERACTIVITY DISORDER

    Directory of Open Access Journals (Sweden)

    Nipa Bhaduri

    2012-12-01

    Full Text Available Attention Deficit Hyperactivity Disorder (ADHD is a common neurodevelopmental condition characterized by impairing symptoms of inattention, hyperactivity, and impulsivity. Though symptoms of hyperactivity diminish with age, inattention and impulsivity persists through adulthood and often leads to behavioral as well as cognitive deficits. Majority of the patients respond to psychostimulants which forms the first line of therapy for ADHD. Some cases however fail to do so and treatment targeting the norepinephrine (NE system has been found to be an alternative for them. Dopamine (DA is metabolized to NE by the enzyme dopamine β-hydroxylase (DβH and availability of these neurotransmitters in the prefrontal cortex is regulated by DβH. The enzyme is encoded by the DBH gene and polymorphisms in DBH have been found to exert independent influence on the enzymatic activity. We have explored association between DBH and two functional genetic polymorphisms, rs1611115 and rs1108580, in families with ADHD probands and compared with ethnically matched control individuals. Genomic DNA was subjected to PCR amplification followed by restriction fragment length polymorphism analysis. Plasma DβH activity was measured using a photometric assay. Age-wise DβH activity and its correlation with genetic polymorphisms were analyzed in ADHD subjects. Data obtained were subjected to statistical evaluations. Though the genotypes failed to show any statistically significant association individually, strong correlation was observed between DβH activity and the studied SNPs. Statistically significant correlation between the rs1108580 “A” allele and hyperactive/oppositional traits were also noticed. The present investigation thus supports a role of DBH in the etiology of ADHD.

  4. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    Science.gov (United States)

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  5. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager

    2008-01-01

    Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmi......Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...

  6. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y; Sanada, H; Suzue, R; Kawada, S [National Inst. of Nutrition, Tokyo (Japan)

    1976-10-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, ..cap alpha.., ..cap alpha..'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO/sub 4/ to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe/sup 2 +/. These results suggested that ascorbic acid affected the induction of this enzyme via Fe/sup 2 +/.

  7. Role of ascorbic acid on tyrosine hydroxylase activity in the adrenal gland of guinea pig

    International Nuclear Information System (INIS)

    Nakashima, Yoko; Sanada, Hiroo; Suzue, Ryokuero; Kawada, Shoji

    1976-01-01

    The decrease of tyrosine hydroxylase activity in adrenal homogenate in scurvy was recovered after the administration of ascorbic acid. The causes of the increase in the enzyme activity after the administration of ascorbic acid have been studied. 1. No significant elevation in the enzyme activity was observed after the administration of reserpine to the scorbutic guinea pig. 2. A dose of metal chelating agent, α, α'-dipyridyl, prevented the ascorbic acid-induced or reserpine-induced increase in enzyme activity in the scorbutic and the nonscorbutic guinea pigs, respectively. 3. Tyrosine hydroxylase activity was partially recovered by the administration of FeSO 4 to the scorbutic guinea pig. From these results, it became clear that the induction of tyrosine hydroxylase which was not observed in scurvy was due to the deficiency of Fe 2+ . These results suggested that ascorbic acid affected the induction of this enzyme via Fe 2+ . (auth.)

  8. Prenatal induction of benzo(a)pyrene hydroxylases in mice

    International Nuclear Information System (INIS)

    Neubert, D.; Tapken, S.

    1988-01-01

    1. Benzo(a)pyrene hydroxylase (BPH) activity was measured in homogenates of fetal liver (day 18) or of whole-embryos of mice on day 9, 10 or 12 of gestation after maternal pretreatment with B(a)P on 3 consecutive days. A 3 H-liberation assay with 3 H-B(a)P labelled either generally or at the 6-position was used. The values obtained with the embryonic/fetal tissues were compared with those found in maternal liver. 2. Three oral doses of 17.5 mg B(a)P/kg body wt were found to just significantly induce BPH in maternal liver. An induction was observed after pretreatment with 24 mg B(a)P/kg body wt in 9, 10 or 12-day-old whole-embryos, but the V max reached was only 10-20% (1% on day 9) of that of adult non-induced liver. The K m (6-hydroxylation) for all tissues tested were in the same range (600-900 nM). The induction was demonstrable in embryos at tissue levels about one order of magnitude lower than those required for induction in maternal liver. 3. Treatment with 25 mg B(a)P/kg body wt on 3 consecutive days was required to induce BPH in fetal liver on day 18 of gestation. The required B(a)P tissue concentrations were about one half of those necessary for induction in maternal liver. 4. Among a variety of other polycyclic hydrocarbons only chrysene showed an inducing potency similar to that of B(a)P in adult and fetal liver. For all compounds tested there was no correlation found in the inducing potency between adult and fetal liver (e.g. coronene). 5. The doses required to induce BPH in the maternal or fetal liver or in whole embryos of rodents are significantly higher (mg range) than those of usual average human exposure or those taken up by smokers (ng range). (orig.)

  9. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  10. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2013-02-15

    Sanguinarine is a benzo[c]phenenthridine alkaloid with potent antimicrobial properties found commonly in plants of the Papaveraceae, including the roots of opium poppy (Papaver somniferum). Sanguinarine is formed from the central 1-benzylisoquinoline intermediate (S)-reticuline via the protoberberine alkaloid (S)-scoulerine, which undergoes five enzymatic oxidations and an N-methylation. The first four oxidations from (S)-scoulerine are catalyzed by cytochromes P450, whereas the final conversion involves a flavoprotein oxidase. All but one gene in the biosynthetic pathway from (S)-reticuline to sanguinarine has been identified. In this communication, we report the isolation and characterization of (S)-cis-N-methylstylopine 14-hydroxylase (MSH) from opium poppy based on the transcriptional induction in elicitor-treated cell suspension cultures and root-specific expression of the corresponding gene. Along with protopine 6-hydroxylase, which catalyzes the subsequent and penultimate step in sanguinarine biosynthesis, MSH is a member of the CYP82N subfamily of cytochromes P450. The full-length MSH cDNA was expressed in Saccharomyces cerevisiae and the recombinant microsomal protein was tested for enzymatic activity using 25 benzylisoquinoline alkaloids representing a wide range of structural subgroups. The only enzymatic substrates were the N-methylated protoberberine alkaloids N-methylstylopine and N-methylcanadine, which were converted to protopine and allocryptopine, respectively. Copyright © 2013. Published by Elsevier Inc.

  11. Methodical investigations on the determination of metabolic lysine requirements in broiler chickens. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Nguyen Thi Nhan; Wilke, A.

    1987-01-01

    For the estimation of lysine requirement 128 male broiler chickens were used at an age of 7 to 21 days posthatching. They received a lysine-deficient diet composed of wheat and wheat gluten. To this basal diet L-lysine-HCL was supplemented successively resulting in 8 lysine levels ranging from 5.8 to 23.3 g lysine per kg dry matter (DM) (2.2 to 8.7 g lysine per 16 g N). At the end of the two-week feeding period of the experimental diets 14 C-lysine was injected intravenously 1.5 and 5.5 hours after feed withdrawal. During the following 4 hours the exretion of CO 2 and 14 CO 2 was measured. The highest daily gain of 21.5 g was observed in animals fed 13.3 g lysine-kg DM. Lysine concentrations exceeding 18.3 g/kg DM depressed body weight gain. The CO 2 excretion was not influenced by lysine intake. 14 CO 2 excretion was low with diets low in lysine content and increased 3 to 4 times with diets meeting the lysine requirement. Based on measurements 1.5 to 5.5 hours after feed withdrawal the saturation value for lysine was reached at 13.3 g/kg DM. This value was lowered (10.8 g/kg DM), however, if the estimation was carried out 5.5 to 9.5 hours after feed withdrawal. These results suggest a higher metabolic lysine requirement during the earlier period after feed intake. Both, reduced weight gain and non linearity in 14 CO 2 excretion in diets exceeding a lysine content of 18.3 g/kg DM indicate a limited capacity of the organism to degrade excessive lysine. According to the results a lysine requirement betwen 10.8 and 13.3 g/kg DM (27% CP and 660 EFU/sub hen//kg DM) was estimated for broiler chickens 3 weeks posthatching. (author)

  12. High frequency of cytolytic 21-Hydroxylase specific CD8+ T cells in autoimmune Addison’s disease patients1

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2016-01-01

    The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864

  13. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Wit, E.C.M. de; Princen, H.M.G.

    1995-01-01

    In previous work we have demonstrated suppression of cholesterol 7α-hydroxylase by bile acids at the level of mRNA and transcription, resulting in a similar decline in bile acid synthesis in cultured rat hepatocytes. In view of the substantial contribution of the 'alternative' or '27-hydroxylase'

  14. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nadeem A. Ansari

    2011-01-01

    Full Text Available Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs. This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases.

  15. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  16. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  17. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  18. Novel α-Oxoamide Advanced-Glycation Endproducts within the N6-Carboxymethyl Lysine and N6-Carboxyethyl Lysine Reaction Cascades.

    Science.gov (United States)

    Baldensperger, Tim; Jost, Tobias; Zipprich, Alexander; Glomb, Marcus A

    2018-02-28

    The highly reactive α-dicarbonyl compounds glyoxal and methylglyoxal are major precursors of posttranslational protein modifications in vivo. Model incubations of N 2 -t-Boc-lysine and either glyoxal or methylglyoxal were used to further elucidate the underlying mechanisms of the N 6 -carboxymethyl lysine and N 6 -carboxyethyl lysine reaction cascades. After independent synthesis of the authentic reference standards, we were able to detect N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine for the first time by HPLC-MS 2 analyses. These two novel amide advanced-glycation endproducts were exclusively formed under aerated conditions, suggesting that they were potent markers for oxidative stress. Analogous to the well-known Strecker degradation pathway, leading from amino acids to Strecker acids, the oxidation of an enaminol intermediate is suggested to be the key mechanistic step. A highly sensitive workup for the determination of AGEs in tissues was developed. In support of our hypothesis, the levels of N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine in rat livers indeed correlated with liver cirrhosis and aging.

  19. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  20. Solution Thermodynamics of Lysine Clonixinate in Some Ethanol + Water Mixtures

    OpenAIRE

    Delgado, Daniel R.; Martínez, Fleming; Gutiérrez, Rahumir A.

    2012-01-01

    The solubility of lysine clonixinate (LysClon) in several ethanol + water mixtures was determined at 293.15 to 313.15 K. The thermodynamic functions, Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. In general this drug exhibit good solubility and the greatest value was obtained in the mixture 0.60 in mass fraction of ethanol. A non-linear enthalpy–entropy relationship was observed from ...

  1. High-throughput screening to identify inhibitors of lysine demethylases.

    Science.gov (United States)

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  2. Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of L-Lysine.

    Science.gov (United States)

    Pathania, Amit; Sardesai, Abhijit A

    2015-06-15

    In Escherichia coli, argO encodes an exporter for L-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and L-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CAN(ss)). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CAN(ss) phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CAN(ss) phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and lysine

  3. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    International Nuclear Information System (INIS)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  4. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  5. The crystal structure of human dopamine  β-hydroxylase at 2.9 Å resolution

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen; Harris, Pernille; Zhao, Y.

    2016-01-01

    , Alzheimer’s disease, attention deficit hyperactivity disorder, and cocaine dependence. We report the crystal structure of human dopamine β-hydroxylase, which is the enzyme converting dopamine to norepinephrine. The structure of the DOMON (dopamine β-monooxygenase N-terminal) domain, also found in >1600...

  6. Phytanoyl-CoA hydroxylase activity is induced by phytanic acid

    NARCIS (Netherlands)

    Zomer, A. W.; Jansen, G. A.; van der Burg, B.; Verhoeven, N. M.; Jakobs, C.; van der Saag, P. T.; Wanders, R. J.; Poll-The, B. T.

    2000-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid present in various dietary products such as milk, cheese and fish. In patients with Refsum disease, accumulation of phytanic acid occurs due to a deficiency of phytanoyl-CoA hydroxylase, a peroxisomal enzyme

  7. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  8. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  9. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  10. SUBSTRATE-SPECIFICITY OF THE ALKANE HYDROXYLASE SYSTEM OF PSEUDOMONAS-OLEOVORANS GPO1

    NARCIS (Netherlands)

    van Beilen, J.B.; Kingma, Jacob; Witholt, Bernard

    1994-01-01

    We have studied the hydroxylation of a wide range of linear, branched and cyclic alkanes and alkylbenzenes by the alkane hydroxylase system of Pseudomonas oleovorans GPo1 in vivo and in vitro. In vivo hydroxylation was determined with whole cells of the recombinant PpS8141; P. putida PpS81 carrying

  11. Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine beta-hydroxylase

    DEFF Research Database (Denmark)

    Bjerrum, Ole Jannik; Helle, K B; Bock, Elisabeth Marianne

    1979-01-01

    . The dopamine beta-hydroxylases of the buffer and membrane fractions were antigenically identical, but differed in their amphiphilicity, as demonstrated by the change in precipitation patterns on removal of Triton X-100 from the gel, on charge-shift crossed immunoelectrophoresis and on crossed hydrophobic...

  12. Adrenal scan in 17-alpha-hydroxylase deficiency: false indication of adrenal adenoma

    International Nuclear Information System (INIS)

    Shore, R.M.; Lieberman, L.M.; Newman, T.J.; Friedman, A.; Bargman, G.J.

    1981-01-01

    A patient who was thought to have testicular feminization syndrome and primary aldosteronism had an adrenal scan that suggested an adrenal adenoma. After later diagnosis of 17-alpha-hydroxylase deficiency, she was treated with glucocorticoids rather than surgery. Her clinical course and a repeat adrenal scan confirmed she did not have a tumor

  13. Lysine-Less Variants of Spinal Muscular Atrophy SMN and SMNΔ7 Proteins Are Degraded by the Proteasome Pathway

    Directory of Open Access Journals (Sweden)

    Raúl Sánchez-Lanzas

    2017-12-01

    Full Text Available Spinal muscular atrophy is due to mutations affecting the SMN1 gene coding for the full-length protein (survival motor neuron; SMN and the SMN2 gene that preferentially generates an exon 7-deleted protein (SMNΔ7 by alternative splicing. To study SMN and SMNΔ7 degradation in the cell, we have used tagged versions at the N- (Flag or C-terminus (V5 of both proteins. Transfection of those constructs into HeLa cells and treatment with cycloheximide showed that those protein constructs were degraded. Proteasomal degradation usually requires prior lysine ubiquitylation. Surprisingly, lysine-less variants of both proteins tagged either at N- (Flag or C-terminus (V5 were also degraded. The degradation of the endogenous SMN protein, and the protein constructs mentioned above, was mediated by the proteasome, as it was blocked by lactacystin, a specific and irreversible proteasomal inhibitor. The results obtained allowed us to conclude that SMN and SMNΔ7 proteasomal degradation did not absolutely require internal ubiquitylation nor N-terminal ubiquitylation (prevented by N-terminal tagging. While the above conclusions are firmly supported by the experimental data presented, we discuss and justify the need of deep proteomic techniques for the study of SMN complex components (orphan and bound turn-over to understand the physiological relevant mechanisms of degradation of SMN and SMNΔ7 in the cell.

  14. Cyclic peptide inhibitors of lysine-specific demethylase 1 with improved potency identified by alanine scanning mutagenesis.

    Science.gov (United States)

    Kumarasinghe, Isuru R; Woster, Patrick M

    2018-03-25

    Lysine-specific demethylase 1 (LSD1) is a chromatin-remodeling enzyme that plays an important role in cancer. Over-expression of LSD1 decreases methylation at histone 3 lysine 4, and aberrantly silences tumor suppressor genes. Inhibitors of LSD1 have been designed as chemical probes and potential antitumor agents. We recently reported the cyclic peptide 9, which potently and reversibly inhibits LSD1 (IC 50 2.1 μM; K i 385 nM). Systematic alanine mutagenesis of 9 revealed residues that are critical for LSD1 inhibition, and these mutated peptides were evaluated as LSD1 inhibitors. Alanine substitution at positions 2, 3, 4, 6 and 11-17 preserved inhibition, while substitution of alanine at positions 8 and 9 resulted in complete loss of activity. Cyclic mutant peptides 11 and 16 produced the greatest LSD1 inhibition, and 11, 16, 27 and 28 increased global H3K4me2 in K562 cells. In addition, 16, 27 and 28 promoted significant increases in H3K4me2 levels at the promoter sites of the genes IGFBP2 and FEZ1. Data from these LSD1 inhibitors will aid in the design of peptidomimetics with improved stability and pharmacokinetics. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Germline mutations in lysine specific demethylase 1 (LSD1/KDM1A) confer susceptibility to multiple myeloma.

    Science.gov (United States)

    Wei, Xiaomu; Calvo-Vidal, M Nieves; Chen, Siwei; Wu, Gang; Revuelta, Maria V; Sun, Jian; Zhang, Jinghui; Walsh, Michael F; Nichols, Kim E; Joseph, Vijai; Snyder, Carrie; Vachon, Celine M; McKay, James D; Wang, Shu-Ping; Jayabalan, David S; Jacobs, Lauren M; Becirovic, Dina; Waller, Rosalie G; Artomov, Mykyta; Viale, Agnes; Patel, Jayeshkumar; Phillip, Jude M; Chen-Kiang, Selina; Curtin, Karen; Salama, Mohamed; Atanackovic, Djordje; Niesvizky, Ruben; Landgren, Ola; Slager, Susan L; Godley, Lucy A; Churpek, Jane; Garber, Judy E; Anderson, Kenneth C; Daly, Mark J; Roeder, Robert G; Dumontet, Charles; Lynch, Henry T; Mullighan, Charles G; Camp, Nicola J; Offit, Kenneth; Klein, Robert J; Yu, Haiyuan; Cerchietti, Leandro; Lipkin, Steven M

    2018-03-20

    Given the frequent and largely incurable occurrence of multiple myeloma (MM), identification of germline genetic mutations that predispose cells to MM may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell. Here we identified familial and early-onset MM kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. Additionally, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in MM patients unselected for family history compared to controls. Both monoclonal gammopathy of unknown significance (MGUS) and MM cells have significantly lower KDM1A transcript levels compared with normal plasma cells. Transcriptome analysis of MM cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacological inhibition of KDM1A promoted plasma cell expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show KDM1A is the first autosomal dominant MM germline predisposition gene, providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B cell differentiation. Copyright ©2018, American Association for Cancer Research.

  16. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  17. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Silje V Veiseth

    2011-03-01

    Full Text Available Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3 is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.

  18. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria.

    Science.gov (United States)

    Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W

    2015-03-01

    In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. 1α-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F.; Liu, Nancy Q.; Lisse, Thomas S.; Adams, John S.; Hewison, Martin

    2010-01-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase). In cells such as macrophages, expression of 1α-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and β-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1α-hydroxylase. Alternative activators of 1α-hydroxylase such as transforming growth factor β were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. PMID:20152900

  20. 1alpha-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines.

    Science.gov (United States)

    Lagishetty, Venu; Chun, Rene F; Liu, Nancy Q; Lisse, Thomas S; Adams, John S; Hewison, Martin

    2010-07-01

    Vitamin D-insufficiency is a prevalent condition in populations throughout the world, with low serum levels of 25-hydroxyvitamin D (25OHD) linked to a variety of human health concerns including cancer, autoimmune disease and infection. Current data suggest that 25OHD action involves localized extra-renal conversion to 1,25-dihydroxyvitamin D (1,25(OH)2D) via tissue-specific expression of the enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). In cells such as macrophages, expression of 1alpha-hydroxylase is intimately associated with toll-like receptor (TLR) recognition of pathogens. However, this mechanism may not be exclusive to extra-renal generation of 1,25(OH)2D. To investigate the relationship between TLR-mediated pathogen recognition and vitamin D-induced antibacterial activity, intracrine responses to 25OHD metabolism were explored in vitro using the established colonic cell lines Caco-2 and Caco-2 clone BBe. Analysis of antibacterial factors such as cathelicidin (LL37) and beta-defensin-4 (DEFB4) was carried out following co-treatment with TLR ligands. Data indicate that, unlike macrophages, Caco-2 and BBe colonic cell lines are unresponsive to TLR-induced 1alpha-hydroxylase. Alternative activators of 1alpha-hydroxylase such as transforming growth factor beta were also ineffective at priming intracrine responses to 25OHD. Thus, in common with other barrier sites such as the skin or placenta, colonic epithelial cells may require specific factors to initiate intracrine responses to vitamin D. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Clinical phenotype and genetic mutation of fatty acid hydroxylase - associated neurodegeneration: analysis of four cases

    Directory of Open Access Journals (Sweden)

    Xiao-jun HUANG

    2017-07-01

    Full Text Available Objective To report 4 cases of fatty acid hydroxylase - associated neurodegeneration (FAHN and to summarize the clinical and genetic characteristics of FAHN by literatures review.  Methods Four cases of FAHN patients' clinical and family data were collected in detail. The gDNA of patients and their parents were extracted from peripheral blood. FA2H gene was conducted and followed by Sanger sequencing.  Results Among the 4 cases, 3 cases (Case 2, Case 3, Case 4 presented typical manifestations of FAHN while the other (Case 1 was atypical. Genetic sequencing showed FA2H gene mutation in all affected patients. Compound heterozygous mutation c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys were seen in Case 1. In Case 2, only one documented heterozygous mutation c.703C > T (p.Arg235Cys was found, and dificit mutation was not found in single nucleotide polymorphism (SNP chip test of the patient and her mother. Compound heterozygous mutation c.688G > A (p.Glu230Lys and insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 were presented in Case 3. In Case 4, compound heterozygous mutation c.688G > A (p.Glu230Lys, c.968C > A (p.Pro323Gln and c.976G > A (p. Gly326Asp were seen, while his father was the carrier of c.688G > A (p.Glu230Lys mutation and his mother was the carrier of c.968C > A (p.Pro323Gln and c.976G > A (p.Gly326Asp mutation. According to the standard of American College of Medical Genetics and Genomics (ACMG, c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys in Case 1, and c.703C > T (p.Arg235Cys in Case 2 were considered as "likely pathogenic", while FA2H gene compound heterozygous mutation c.688G > A (p.Glu230Lys, insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 in Case 3 was as "pathogenic", and in Case 4, the FA2H gene mutation c.688G > A (p.Glu230Lys and c.968C > A (p.Pro323Gln were "pathogenic" and c.976G > A (p.Gly326Asp was "likely pathogenic".  Conclusions FAHN has highly clinical and genetic

  2. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison's disease patients.

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2014-09-01

    The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    International Nuclear Information System (INIS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-01-01

    This study investigated the effects of irradiation on N ε -carboxymethyl-lysine (CML) and N ε -carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810–0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage. - Highlights: • The effect of irradiation on CML and CEL formation in meat products is investigated. • CML and CEL contents in irradiated meat products exhibit a higher growth rate than non-irradiated samples. • PUFAs oxidation induced by irradiation promotes CML and CEL formation. • Lipid oxidation pathways are an important pathway for CML and CEL accumulation in irradiated samples during storage.

  4. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation.

    Science.gov (United States)

    Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie

    2017-10-01

    The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.

  5. Fortification of lysine for improving protein quality in multiple-fortified quick cooking rice : Review

    NARCIS (Netherlands)

    Wongmetinee, T.; Boonstra, A.; Zimmermann, M.B.; Chavasit, V.

    2009-01-01

    Previous studies in Thailand indicated that rice-based complementary foods of breast-fed infants normally provided inadequate iron and calcium. Quick-cooking rice fortified with different nutrients was therefore developed. The idea of lysine fortification was based on the fact that lysine is a

  6. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages.

    Science.gov (United States)

    Kaur, Inderjeet; Zeeshan, Mohammad; Saini, Ekta; Kaushik, Abhinav; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2016-10-20

    Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways.

  7. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-01-01

    Full Text Available Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

  8. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  9. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Oosterhout, J.F.X.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  10. An Update on Lysine Deacylases Targeting the Expanding “Acylome”

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2013-01-01

    Lysine e-amino acetylation has long been recognized as an epigenetically relevant post-translational modification of multiple residues in histone proteins. However, it has become clear that lysine acetylation is not restricted to histones, and therefore, it may be involved in the regulation of a ...

  11. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  12. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    DEFF Research Database (Denmark)

    Hundahl, C A; Fahrenkrug, J; Luuk, H

    2012-01-01

    level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin...... and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study...

  13. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  14. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    Science.gov (United States)

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  16. Epigenetic Control of Prolyl and Asparaginyl Hydroxylases in Prostate Cancer

    Science.gov (United States)

    2011-07-01

    melanoma, renal carcinoma and breast cancer cell lines. Furthermore, we show that neither HIF-1a protein levels nor hypoxic response through an HRE ...constitutively expressed gene to control for equivalent DNase digestion between the cell lines examined. HRE -Luciferase assay Cell lines ,85% confluent in 60...mm dishes were transfected with an HRE -luciferase reporter vector [19] (2.5 mg) and Renilla luciferase (1.5 mg) according to Lipofectamine 2000

  17. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    Science.gov (United States)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  18. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  19. Nutritional plans of digestible lysine for growing-finishing gilts

    Directory of Open Access Journals (Sweden)

    Gabriel Cipriano Rocha

    2014-09-01

    Full Text Available This experiment was conducted to evaluate nutritional plans of digestible lysine (DLys for growing-finishing gilts. Eighty gilts with 63 days of age and an initial weight of 24.2±1.52 kg were distributed in a completely randomized block design, with five nutritional plans of DLys (9-8-7, 10-9-8, 11-10-9, 12-11-10, and 13-12-11 g/kg, from 63 to 103, 104 to 133, and 134 to 153 days of age, respectively and eight replicates. Pigs were housed in pairs and fed their respective diets ad libitum throughout the experimental period (90 days. To monitor the animal development along the experiment at 103 and 133 days, gilts were weighed and subjected to analysis of ultrasound for evaluation of loin depth (longissimus dorsi and backfat thickness. At the end of the experiment (153 days of age the animals were weighed, and after slaughter carcasses were evaluated individually using a typifying pistol to evaluate the percentage and the content of carcass meat, loin depth and backfat thickness. From 63 to 133 days, there was no effect of the nutritional plans on daily feed intake, performance, or backfat thickness; however the loin depth was greater in the gilts that received plans with high levels of DLys (12-11; 13-12 g/kg compared with the plan with the lowest level (8-7 g/kg. For the entire period (63 to 153 days, no influence of the nutritional plans was observed on the daily feed intake, performance variables, or carcass characteristics. A nutritional plan containing 9-8-7 g/kg of digestible lysine fed from 63 to 103, 104 to 133 and 134 to 153 days, respectively, meets the requirements for performance and carcass characteristics of growing-finishing gilts.

  20. Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts

    Science.gov (United States)

    This study evaluated the effect of diets differing in standard ileal digestible (SID) lysine on lysine intake, growth rate, body composition and age at puberty on maternal line gilts. Crossbred Large White×Landrace gilts (n =641) were fed corn-soybean diets differing in SID lysine concentration (%, ...

  1. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis.

    Science.gov (United States)

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Ferrando, Sara; Gallus, Lorenzo; Giovine, Marco

    2015-08-01

    Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.

  2. Transient knockdown of tyrosine hydroxylase during development has persistent effects on behaviour in adult zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Isabel Formella

    Full Text Available Abnormal dopamine (DA signaling is often suggested as causative in schizophrenia. The other prominent hypothesis for this disorder, largely driven by epidemiological data, is that certain adverse events during the early stages of brain development increase an individual's risk of developing schizophrenia later in life. However, the clinical and preclinical literature consistently implicates behavioural, cognitive, and pharmacological abnormalities, implying that DA signaling is abnormal in the adult brain. How can we reconcile these two major hypotheses underlying much of the clinical and basic research into schizophrenia? In this study we have transiently knocked down tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis gene expression in the early stages of brain development in zebrafish using morpholinos. We show that by adulthood, TH and DA levels have returned to normal and basic DA-mediated behaviours, such as locomotion, are also normal. However, when they were exposed to a novel environment the levels of freezing and immediate positioning in deeper zones were significantly reduced in these adult fish. The neurochemistry underlying these behaviours is complex, and the exact mechanisms for these abnormal behaviours remains unknown. This study demonstrates that early transient alterations in DA ontogeny can produce persistent alterations in adult brain function and suggests that the zebrafish may be a promising model animal for future studies directed at clarifying the basic neurodevelopmental mechanisms behind complex psychiatric disease.

  3. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.

    Science.gov (United States)

    Marks, Ellen; Goggins, Bridie J; Cardona, Jocelle; Cole, Siobhan; Minahan, Kyra; Mateer, Sean; Walker, Marjorie M; Shalwitz, Robert; Keely, Simon

    2015-02-01

    Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.

  4. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  5. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients.

    Directory of Open Access Journals (Sweden)

    Carolina Minutolo

    2011-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90-95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients.

  6. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

    Science.gov (United States)

    Arsenault, Patrick R; Song, Daisheng; Chung, Yu Jin; Khurana, Tejvir S; Lee, Frank S

    2016-09-15

    Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. The Arabidopsis nox mutant lacking carotene hydroxylase activity reveals a critical role for xanthophylls in photosystem I biogenesis.

    Science.gov (United States)

    Dall'Osto, Luca; Piques, Maria; Ronzani, Michela; Molesini, Barbara; Alboresi, Alessandro; Cazzaniga, Stefano; Bassi, Roberto

    2013-02-01

    Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth.

  8. Quantitative radioautographic determination of brain tyrosine hydroxylase after direct transfer into nitro-cellulose and immunochemical detection

    International Nuclear Information System (INIS)

    Weissmann, D.; Labatut, R.; Gillon, J.Y.

    1988-01-01

    An improved quantitative immuno chemical determination of tyrosine hydroxylase brain concentrations was designed by using direct transfer into nitro-cellulose from 20 μm thick brain sections followed by immuno-detection and quantitative radioautography [fr

  9. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  10. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration

    Science.gov (United States)

    Pierson, Tyler Mark; Simeonov, Dimitre R; Sincan, Murat; Adams, David A; Markello, Thomas; Golas, Gretchen; Fuentes-Fajardo, Karin; Hansen, Nancy F; Cherukuri, Praveen F; Cruz, Pedro; Blackstone, Craig; Tifft, Cynthia; Boerkoel, Cornelius F; Gahl, William A

    2012-01-01

    Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ∼28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype. PMID:22146942

  11. Effects of biogenic aldehydes and aldehyde dehydrogenase inhibitors on rat brain tryptophan hydroxylase activity in vitro.

    Science.gov (United States)

    Nilsson, G E; Tottmar, O

    1987-04-21

    The effect of indole-3-acetaldehyde, 5-hydroxyindole-3-acetaldehyde, disulfiram, diethyldithiocarbamate, coprine, and 1-amino-cyclopropanol on tryptophan hydroxylase activity was studied in vitro using high performance liquid chromatography with electro-chemical detection. With the analytical method developed, 5-hydroxytryptophan, serotonin, and 5-hydroxyindole-3-acetic acid could be measured simultaneously. Indole-3-acetaldehyde (12-1200 microM) was found to cause a 6-33% inhibition of the enzyme. Dependent upon the nature of the sulfhydryl- or reducing-agent (dithiotreitol, glutathione, or ascorbate) present in the incubates, the degree of inhibition by disulfiram varied, probably due to the formation of various mixed disulfides. Also the presence of diethyldithiocarbamate (160-1600 microM) was found to inhibit tryptophan hydroxylase (28-91%), while 5-hydroxyindole-3-acetaldehyde, coprine, or 1-aminocyclopropanol appeared to have no effect on the enzyme activity.

  12. A sandwich immunoassay for human prolyl 4-hydroxylase using monoclonal antibody

    International Nuclear Information System (INIS)

    Yoshida, Shinichi

    1986-01-01

    Monoclonal antibody was used in a sandwich enzyme immunoassay and in a radioimmunoassay for human serum immunoreactive prolyl 4-hydroxylase. The enzyme immunoassay utilized a monoclonal antibody as a solid phase and horseradish peroxidase-labeled rabbit antibody to human prolyl 4-hydroxylase as a conjugate. Sensitivity was 0.1 ng of enzyme per tube. With a conjugate purified by an enzyme-bound affinity column, sensitivity was increased to 0.01 ng per tube, and linearity was obtained between 0.01 to 30 ng per tube. The radioimmunoassay used a 125 I-labeled rabbit antibody (IgG) as the conjugate. Sensitivity of this technique was 0.4 ng of enzyme per tube. (Auth.)

  13. Microsomal aryl hydrocarbon hydroxylase comparison of the direct, indirect and radiometric assays

    International Nuclear Information System (INIS)

    Denison, M.S.; Murray, M.; Wilkinson, C.F.

    1983-01-01

    The direct fluorometric assay of aryl hydrocarbon hydroxlyase has been compared to the more commonly used indirect fluorometric and radiometric assays. Although rat hepatic microsomal activities measured by the direct assay were consistently higher than those obtained by the other assays, the relative changes in activity following enzyme induction and/or inhibition were similar. The direct assay provides an accurate and rapid measure of aryl hydrocarbon hydroxylase activity and avoids several problems inherent in the indirect and radiometric assays. 2 tables

  14. Effect of halogenated benzenes on acetanilide esterase, acetanilide hydroxylase and procaine esterase in rats.

    Science.gov (United States)

    Carlson, G P; Dziezak, J D; Johnson, K M

    1979-07-01

    1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.

  15. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    Science.gov (United States)

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.

  16. Aflatoxin B1-lysine adduct in dried blood spot samples of animals and humans.

    Science.gov (United States)

    Xue, Kathy S; Cai, Wenjie; Tang, Lili; Wang, Jia-Sheng

    2016-12-01

    Dried blood spots (DBS) were proposed as potentially viable method for exposure assessment of environmental toxicants in infant and young children. For this study, we validated an experimental protocol to quantify AFB 1 -lysine adduct in DBS samples of AFB 1 -treated F344 rats, as well as samples from human field study. Significant dose-response relationships in AFB 1 -lysine adduct formation were found in DBS samples of rats treated with single- and repeated-dose AFB 1 . AFB 1 -lysine levels in DBS samples were highly correlated with corresponding serum sample levels. The Person coefficients were 0.997 for the single-dose exposure, and 0.996 for the repeated-dose exposure. Levels of AFB 1 -lysine adduct had also good agreement between DBS and serum samples as shown by Bland-Altman plot analysis. For human field study samples (n = 36), a Pearson correlation coefficient of 0.784 was found between AFB 1 -lysine adduct levels of DBS and corresponding serum samples. Bland-Altman plots showed the distribution of the log differences between DBS and serum AFB 1 -lysine levels are within 95% confidence intervals. These results showed AFB 1 -lysine adduct levels in DBS cards and serum samples from animals and human samples are comparable, and the DBS technique and analytical protocol is a good means to assess AFB 1 exposure in infant and children populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    Science.gov (United States)

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Li, Linda Xiaoyan; Fan, Lucy X; Zhou, Julie Xia; Grantham, Jared J; Calvet, James P; Sage, Julien; Li, Xiaogang

    2017-06-30

    Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in PKD1 and PKD2 genes. Recent work suggests that epigenetic modulation of gene expression and protein function may play a role in ADPKD pathogenesis. In this study, we identified SMYD2, a SET and MYND domain protein with lysine methyltransferase activity, as a regulator of renal cyst growth. SMYD2 was upregulated in renal epithelial cells and tissues from Pkd1-knockout mice as well as in ADPKD patients. SMYD2 deficiency delayed renal cyst growth in postnatal kidneys from Pkd1 mutant mice. Pkd1 and Smyd2 double-knockout mice lived longer than Pkd1-knockout mice. Targeting SMYD2 with its specific inhibitor, AZ505, delayed cyst growth in both early- and later-stage Pkd1 conditional knockout mouse models. SMYD2 carried out its function via methylation and activation of STAT3 and the p65 subunit of NF-κB, leading to increased cystic renal epithelial cell proliferation and survival. We further identified two positive feedback loops that integrate epigenetic regulation and renal inflammation in cyst development: SMYD2/IL-6/STAT3/SMYD2 and SMYD2/TNF-α/NF-κB/SMYD2. These pathways provide mechanisms by which SMYD2 might be induced by cyst fluid IL-6 and TNF-α in ADPKD kidneys. The SMYD2 transcriptional target gene Ptpn13 also linked SMYD2 to other PKD-associated signaling pathways, including ERK, mTOR, and Akt signaling, via PTPN13-mediated phosphorylation.

  19. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  20. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Directory of Open Access Journals (Sweden)

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  1. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    Science.gov (United States)

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  2. Kinetic mechanism and isotope effects of Pseudomonas cepacia 3-hydroxybenzoate-t-hydroxylase

    International Nuclear Information System (INIS)

    Wang, L.H.; Yu, Y.; Hamzah, R.Y.; Tu, S.C.

    1986-01-01

    The kinetic mechanism of Pseudomonas cepacia 3-hydroxybenzoate-6-hydroxylase has been delineated. Double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a constant level of oxygen and several fixed concentrations of NADH yielded a set of converging lines. Similar reciprocal plots of velocity versus NADH concentration at a constant oxygen level and several fixed m-hydroxybenzoate concentrations also showed converging lines. In contrast, double reciprocal plots of initial rate versus NADH concentration at a fixed m-hydroxybenzoate level and several oxygen concentrations showed a series of parallel lines. Parallel lines were also obtained from double reciprocal plots of initial rate versus m-hydroxybenzoate concentration at a fixed NADH level and varying oxygen concentrations. These results suggest a sequential binding of m-hydroxybenzoate and NADH by the hydroxylase. The enzyme-bound FAD is reduced and NAD is released. The reduced enzyme subsequently reacts with oxygen leading to the formation of other products. This hydroxylase exhibited a primary isotope effect of /sup D/V = 3.5 for (4R)-[4- 2 H] NADH but no isotope effect was observed with (4S)-[4- 2 H]NADH. An isotope effect of /sup T/V/K = 5.0 was also observed using (4R)-[4- 3 H]NADH. This tritium isotope effect was apparently independent of m-hydroxybenzoate concentration

  3. Differential expression of two flavonoid 3'-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum.

    Science.gov (United States)

    Shih, Chun-Hat; Chu, Ivan K; Yip, Wing Kin; Lo, Clive

    2006-10-01

    Three unique sorghum flavonoid 3'-hydroxylase (F3'H) cDNAs (SbF3'H1, SbF3'H2 and SbF3'H3) were discovered through bioinformatics analysis. Their encoded proteins showed >60% identity to the Arabidopsis TT7 (F3'H) protein. Overexpression of SbF3'H1 or SbF3'H2 restored the ability of tt7 mutants to produce 3'-hydroxylated flavonoids, establishing their roles as functional F3'H enzymes. In sorghum mesocotyls, SbF3'H1 expression was involved in light-specific anthocyanin accumulation while SbF3'H2 expression was involved in pathogen-specific 3-deoxyanthocyanidin synthesis. No SbF3'H3 expression was detected in all tissues examined. The sorghum mesocotyls represent a good system for investigation of differential regulation of F3'H genes/alleles responding to different external stimuli.

  4. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain.

    Directory of Open Access Journals (Sweden)

    Mun Chiang Chan

    Full Text Available As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs. Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs. Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4 induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke.

  5. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    DEFF Research Database (Denmark)

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases....

  6. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates...... of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...... by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases....

  7. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  8. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; N(ε)-Carboxymethyl-lysine-Forming Potential during Drying and Roasting.

    Science.gov (United States)

    Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J

    2015-12-02

    During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).

  9. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle.

    Science.gov (United States)

    Pesavento, James J; Yang, Hongbo; Kelleher, Neil L; Mizzen, Craig A

    2008-01-01

    Methylation of histone H4 at lysine 20 (K20) has been implicated in transcriptional activation, gene silencing, heterochromatin formation, mitosis, and DNA repair. However, little is known about how this modification is regulated or how it contributes to these diverse processes. Metabolic labeling and top-down mass spectrometry reveal that newly synthesized H4 is progressively methylated at K20 during the G(2), M, and G(1) phases of the cell cycle in a process that is largely inescapable and irreversible. Approximately 98% of new H4 becomes dimethylated within two to three cell cycles, and K20 methylation turnover in vivo is undetectable. New H4 is methylated regardless of prior acetylation, and acetylation occurs predominantly on K20-dimethylated H4, refuting the hypothesis that K20 methylation antagonizes H4 acetylation and represses transcription epigenetically. Despite suggestions that it is required for normal mitosis and cell cycle progression, K20 methylation proceeds normally during colchicine treatment. Moreover, delays in PR-Set7 synthesis and K20 methylation which accompany altered cell cycle progression during sodium butyrate treatment appear to be secondary to histone hyperacetylation or other effects of butyrate since depletion of PR-Set7 did not affect cell cycle progression. Together, our data provide an unbiased perspective of the regulation and function of K20 methylation.

  10. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    DEFF Research Database (Denmark)

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz Jakub

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine...... acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination...... in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes....

  11. A Case of Bilateral Testicular Tumors Subsequently Diagnosed as Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Yan-Kun Sha

    2016-12-01

    Full Text Available 21-hydroxylase deficiency (21-OHD caused congenital adrenal hyperplasia (CAH is a group of autosomal recessive genetic disorders resulting from mutations in genes involved with cortisol (CO synthesis in the adrenal glands. Testicular adrenal rest tumors (TARTs are rarely the presenting symptoms of CAH. Here, we describe a case of simple virilizing CAH with TARTs, in a 15-year-old boy. The patient showed physical signs of precocious puberty. The levels of blood adrenocorticotropic hormone (ACTH, urinary 17-ketone steroids (17-KS, dehydroepiandrosterone sulfate (DHEA-S, and serum progesterone (PRGE were elevated, whereas those of follicle-stimulating hormone (FSH, luteinizing hormone (LH, and CO were reduced. Computed tomography (CT of the adrenal glands and magnetic resonance imaging (MRI of the testes showed a soft tissue density (more pronounced on the right side and an irregularly swollen mass (more pronounced on the left side, respectively. Pathological examination of a specimen of the mass indicated polygonal/circular eosinophilic cytoplasm, cord-like arrangement of interstitial cells, and lipid pigment in the cytoplasm. Immunohistochemistry results precluded a diagnosis of Leydig cell tumors. DNA sequencing revealed a hackneyed homozygous mutation, I2g, on intron 2 of the CYP21A2 gene. The patient’s symptoms improved after a three-month of dexamethasone therapy. Recent radiographic data showed reduced hyperplastic adrenal nodules and testicular tumors. A diagnosis of TART should be considered and prioritized in CAH patients with testicular tumors. Replacement therapy using a sufficient amount of dexamethasone in this case helps combat TART.

  12. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers

    Directory of Open Access Journals (Sweden)

    Pizzichini Daniele

    2007-03-01

    Full Text Available Abstract Background Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch and violaxanthin (in the beta-beta branch. None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. Results In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. Conclusion Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.

  13. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase gene transcription

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Lehmann, E.M.; Meijer, P.; Mager, W.H.; Princen, H.M.G.

    1995-01-01

    Evidence from in vivo studies indicates that the bile acid pool and bile acid excretion are increased in humans with diabetes mellitus and in experimental diabetic animals, and that both parameters return to normal levels after administration of insulin. To investigate the biochemical background of

  14. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide-b- Poly(L-Lysine Hydrochloride and Poly(N-Isopropylacrylamide- co-Acrylamide-b-Poly(L-Lysine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Milica Spasojević

    2014-07-01

    Full Text Available The synthesis of poly(N-isopropylacrylamide-b-poly(L-lysine and poly(N- isopropylacrylamide-co-acrylamide-b-poly(L-lysine copolymers was accomplished by combining atom transfer radical polymerization (ATRP and ring opening polymerization (ROP. For this purpose, a di-functional initiator with protected amino group was successfully synthetized. The ATRP of N-isopropylacrylamide yielded narrowly dispersed polymers with consistent high yields (~80%. Lower yields (~50% were observed when narrowly dispersed random copolymers of N-isopropylacrylamide and acrylamide where synthesized. Amino-terminated poly(N-isopropylacrylamide and poly(N-isopropylacrylamide- co-acrylamide were successfully used as macroinitiators for ROP of N6-carbobenzoxy-L- lysine N-carboxyanhydride. The thermal behavior of the homopolymers and copolymers in aqueous solutions was studied by turbidimetry, dynamic light scattering (DLS and proton nuclear magnetic resonance spectroscopy (1H-NMR.

  15. Disentangling mechanisms involved in collagen pyridinoline cross-linking : The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2

    NARCIS (Netherlands)

    Gjaltema, Rutger A. F.; van der Stoel, Miesje M.; Boersema, Miriam; Bank, Ruud A.

    2016-01-01

    Collagens are subjected to extensive posttranslational modifications, such as lysine hydroxylation. Bruck syndrome (BS) is a connective tissue disorder characterized at the molecular level by a loss of telopeptide lysine hydroxylation, resulting in reduced collagen pyridinoline cross-linking. BS

  16. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    OpenAIRE

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  17. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    components (including uterus wall, placenta and membrane fluids) and maintenance were estimated. It was estimated that maintenance, additional heat loss, colostrum production, fetal growth, mammary growth and uterine components accounted for 66.8%, 19.3%, 7.2%, 5.0%, 1.3% and 0.5% of total ME requirements......, respectively, in the last 12 days of gestation. Oxidation/transamination, fetal growth, mammary growth, colostrum production, maintenance and uterine components were estimated to account for 29.5%, 22.7%, 16.8%, 16.1%, 10.4% and 4.5% of total SID lysine requirements, respectively, in the last 12 days...... of gestation. After parturition, ME and SID lysine requirements increased daily until peak lactation (day 17). At peak lactation, 95% and 72% of total required SID lysine and ME, respectively, were associated with milk production (including oxidation). Relative to day 104 of gestation, ME and SID lysine...

  18. Global profiling of lysine reactivity and ligandability in the human proteome

    Science.gov (United States)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  19. Global profiling of lysine reactivity and ligandability in the human proteome.

    Science.gov (United States)

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  20. Pharmacokinetics of lysine clonixinate in children in postoperative care.

    Science.gov (United States)

    González-Martin, G; Cattan, C; Zuñiga, S

    1996-09-01

    The pharmacokinetics of 2 doses of intravenous lysine clonixinate (4 and 6 mg x kg-1) were studied in 10 children (age 4-10 years) under postoperative care. A single dose of the drug was injected in a forearm vein. Blood samples were collected at regular intervals for 3 hours. Serum clonixin concentrations (expressed as clonixin) were analyzed using a high pressure liquid chromatography method. Pharmacokinetic values were estimated by a nonlinear computer program. The distribution volume was similar in both groups of children (1.288 +/- 0.829 1 and 1. 139 +/- 0.667 1, respectively). There were no differences between the values of total plasma clearance and the administered doses (0.026 +/- 0.017 ml x min-1 and 0.017 +/- 0.008 ml x min-1, t = 1.07, p = 0.76). The elimination half-life was longer in children who received 6 mg x kg-1 (44.26 +/- 6.34 min vs 38.63 +/- 10.93 min) but this difference was not statistically significant (t = 0.99, p < 0.34). The pharmacokinetic parameters calculated in these children were different from those found by other authors in adults and experimental animals.

  1. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain.

    Science.gov (United States)

    Iioka, Takashi; Furukawa, Keizo; Yamaguchi, Akira; Shindo, Hiroyuki; Yamashita, Shunichi; Tsukazaki, Tomoo

    2003-08-01

    The paired-like homeoprotein, Cart1, is involved in skeletal development. We describe here that the general coactivator p300/CBP controls the transcription activity of Cart1 through acetylation of a lysine residue that is highly conserved in other homeoproteins. Acetylation of this residue increases the interaction between p300/CBP and Cart1 and enhances its transcriptional activation. Cart1 encodes a paired-like homeoprotein expressed selectively in chondrocyte lineage during embryonic development. Although its target gene remains unknown, gene disruption studies have revealed that Cart1 plays an important role for craniofacial bone formation as well as limb development by cooperating with another homeoprotein, Alx4. In this report, we study the functional involvement of p300/CBP, coactivators with intrinsic histone acetyltransferase (HAT) activity, in the transcriptional control of Cart1. To study the transcription activity of Cart1, a reporter construct containing a putative Cart1 binding site was transiently transfected with the expression vectors of each protein. The interaction between p300/CBP and Cart1 was investigated by glutathione S-transferase (GST) pull-down, yeast two-hybrid, and immunoprecipitation assays. In vitro acetylation assay was performed with the recombinant p300-HAT domain and Cart1 in the presence of acetyl-CoA. p300 and CBP stimulate Cart1-dependent transcription activity, and this transactivation is inhibited by E1A and Tax, oncoproteins that suppress the activity of p300/CBP. Cart1 binds to p300 in vivo and in vitro, and this requires the homeodomain of Cart 1 and N-terminal 139 amino acids of p300. Confocal microscopy analysis shows that Cart1 recruits overexpressed and endogenous p300 to a Cart1-specific subnuclear compartment. Cart1 is acetylated in vivo and sodium butyrate and trichostatin A, histone deacetylase inhibitors, markedly enhance the transcription activity of Cart1. Deletion and mutagenesis analysis identifies the 131st

  2. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruosong; Xu, Hengyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China); Wan, Cuixiang [Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang (China); Peng, Shanshan; Wang, Lijun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China); Xu, Hong, E-mail: hengyixu@ncu.edu.cn [Ocean NanoTech LLC, 2143 Worth Lane, Springdale, AR 72764 (United States); Aguilar, Zoraida P. [Ocean NanoTech LLC, 2143 Worth Lane, Springdale, AR 72764 (United States); Xiong, Yonghua [Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang (China); Zeng, Zheling, E-mail: zlzengjx@163.com [Department of Environment and Chemical Engineering, Nanchang University, Nanchang (China); Wei, Hua, E-mail: weihua114@live.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China)

    2013-09-13

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of

  3. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    International Nuclear Information System (INIS)

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang; Peng, Shanshan; Wang, Lijun; Xu, Hong; Aguilar, Zoraida P.; Xiong, Yonghua; Zeng, Zheling; Wei, Hua

    2013-01-01

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of

  4. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    OpenAIRE

    Ansari, Nadeem A.; Moinuddin,; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related dise...

  5. DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity▿ †

    OpenAIRE

    Sun, Yingli; Xu, Ye; Roy, Kanaklata; Price, Brendan D.

    2007-01-01

    The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-ly...

  6. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    Science.gov (United States)

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity. Copyright © 2015. Published by Elsevier B.V.

  7. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    Science.gov (United States)

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate.

  8. Modulation of benzodiazepine by lysine and pipecolic acid on pentylenetetrazol-induced seizures

    International Nuclear Information System (INIS)

    Chang, Y.F.; Hargest, V.; Chen, J.S.

    1988-01-01

    L-lysine and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine of L-Pa i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-Pa enhanced the anticonvulsant effect of diazepam (DZ). L-Pa i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration. L-Lysine showed an enhancement of specific 3 H-flunitrazepam(FZ) binding to mouse brain membranes both in vitro an din vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3 H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor

  9. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  10. Use of acetimidation in the NMR identification of neurophysin lysine protons

    International Nuclear Information System (INIS)

    Sardana, V.; Breslow, E.

    1986-01-01

    Acetimidation of the two lysine residues of neurophysin (NP) results in localized changes in the proton magnetic resonance spectrum, allowing identification of lysine side-chain resonances. Neither peptide-binding nor protein self-association appeared to be significantly altered by acetimidation. Additionally, no significant effect of either peptide-binding or self-association on lysine epsilon-CH 2 protons was seen. However, dimerization-induced NMR changes in the 1.6-1.8 ppm region, associated with lysine β,γ,σ protons, were altered in the acetimidated protein. In particular, while the spectrum of the acetimidated NP monomer was almost identical to that of the native protein, a shoulder at 1.72 ppm in the native protein dimer was shifted upfield in the modified dimer. Additionally the direction of NMR shifts in the 1.6-1.8 ppm region normally associated with peptide binding to the NP dimer appeared to be reversed in the acetimidated protein. Binding-induced and dimerization-induced changes in all other regions of the spectrum were identical in the native and modified proteins. These results suggest that one or both NP lysine residues may be near the dimer subunit interface and indicate an effect of peptide-binding on lysine side-chain environment

  11. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    Science.gov (United States)

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  13. Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli

    Science.gov (United States)

    Katoch, Meenu; Mazmouz, Rabia; Chau, Rocky; Pearson, Leanne A.; Pickford, Russell

    2016-01-01

    ABSTRACT Mycosporine-like amino acids (MAAs) are an important class of secondary metabolites known for their protection against UV radiation and other stress factors. Cyanobacteria produce a variety of MAAs, including shinorine, the active ingredient in many sunscreen creams. Bioinformatic analysis of the genome of the soil-dwelling cyanobacterium Cylindrospermum stagnale PCC 7417 revealed a new gene cluster with homology to MAA synthase from Nostoc punctiforme. This newly identified gene cluster is unusual because it has five biosynthesis genes (mylA to mylE), compared to the four found in other MAA gene clusters. Heterologous expression of mylA to mylE in Escherichia coli resulted in the production of mycosporine-lysine and the novel compound mycosporine-ornithine. To our knowledge, this is the first time these compounds have been heterologously produced in E. coli and structurally characterized via direct spectral guidance. This study offers insight into the diversity, biosynthesis, and structure of cyanobacterial MAAs and highlights their amenability to heterologous production methods. IMPORTANCE Mycosporine-like amino acids (MAAs) are significant from an environmental microbiological perspective as they offer microbes protection against a variety of stress factors, including UV radiation. The heterologous expression of MAAs in E. coli is also significant from a biotechnological perspective as MAAs are the active ingredient in next-generation sunscreens. PMID:27520810

  14. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Effects of fortified lysine on the amino acid profile and sensory qualities of deep-fried and dried noodles.

    Science.gov (United States)

    Polpuech, C; Chavasit, V; Srichakwal, P; Paniangvait, P

    2011-08-01

    Lysine fortification of wheat flour has been used toward reducing protein energy malnutrition in developing countries. The feasibility of fortifying instant noodles with lysine was evaluated based on sensory qualities and the residual lysine content. Fifty grams of deep-fried and dried instant noodles were fortified with 0.23 and 0.21 g lysine, respectively. The production temperatures used for deep-frying were 165-175 degrees C and for drying, 80-105 degrees C; these are the temperatures used in the industrial production of both kinds of noodles. Lysine fortification was then performed at the local factories using the commercial production lines and packaging for both types of instant noodles. Both fortified and unfortified deep-fried and dried instant noodles were stored at 50 degrees C under fluorescent light for 2 and 4 months, respectively. The fortified products were tested for residual lysine content and sensory qualities as compared with unfortified noodles. The results show fortified products from the tested processing temperatures were all accepted. After storage, significant losses of lysine were not found in both types of noodles analysed. The lysine-fortified noodles had amino acid scores of 102% and 122%, respectively. After 2 months, the sensory quality of fortified deep-fried noodles was still acceptable; however, the dried noodles turned to an unacceptable dark colour. This study shows that it is feasible to fortify deep-fried instant noodles with lysine, though lysine fortification exhibited an undesirable colour in the dried instant noodles after storage.

  16. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Science.gov (United States)

    2012-01-01

    Background The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3’h1 gene

  17. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize.

    Science.gov (United States)

    Sharma, Mandeep; Chai, Chenglin; Morohashi, Kengo; Grotewold, Erich; Snook, Maurice E; Chopra, Surinder

    2012-11-01

    The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3'-hydroxylase (ZmF3'H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3'h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3'h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3'-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3'H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3'h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3'h1 gene is a direct target of P1. Highlighting the significance of the Zmf3'h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Our results show that the Zmf3'h1 gene participates in the biosynthesis of phlobaphenes and

  18. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Directory of Open Access Journals (Sweden)

    Sharma Mandeep

    2012-11-01

    Full Text Available Abstract Background The maize (Zea mays red aleurone1 (pr1 encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1 required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1 and R1 (Red1 transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1 and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1 accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1 accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3

  19. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    Science.gov (United States)

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  20. Lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats: a systematic review.

    Science.gov (United States)

    Bol, Sebastiaan; Bunnik, Evelien M

    2015-11-16

    Feline herpesvirus 1 is a highly contagious virus that affects many cats. Virus infection presents with flu-like signs and irritation of ocular and nasal regions. While cats can recover from active infections without medical treatment, examination by a veterinarian is recommended. Lysine supplementation appears to be a popular intervention (recommended by > 90 % of veterinarians in cat hospitals). We investigated the scientific merit of lysine supplementation by systematically reviewing all relevant literature. NCBI's PubMed database was used to search for published work on lysine and feline herpesvirus 1, as well as lysine and human herpesvirus 1. Seven studies on lysine and feline herpesvirus 1 (two in vitro studies and 5 studies with cats), and 10 publications on lysine and human herpesvirus 1 (three in vitro studies and 7 clinical trials) were included for qualitative analysis. There is evidence at multiple levels that lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats. Lysine does not have any antiviral properties, but is believed to act by lowering arginine levels. However, lysine does not antagonize arginine in cats, and evidence that low intracellular arginine concentrations would inhibit viral replication is lacking. Furthermore, lowering arginine levels is highly undesirable since cats cannot synthesize this amino acid themselves. Arginine deficiency will result in hyperammonemia, which may be fatal. In vitro studies with feline herpesvirus 1 showed that lysine has no effect on the replication kinetics of the virus. Finally, and most importantly, several clinical studies with cats have shown that lysine is not effective for the prevention or the treatment of feline herpesvirus 1 infection, and some even reported increased infection frequency and disease severity in cats receiving lysine supplementation. We recommend an immediate stop of lysine supplementation because of the complete lack of

  1. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  2. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    Science.gov (United States)

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  3. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334 ameliorates murine colitis

    Directory of Open Access Journals (Sweden)

    Gupta R

    2014-01-01

    Full Text Available Ram Gupta,1 Anita R Chaudhary,2 Binita N Shah,1 Avinash V Jadhav,3 Shitalkumar P Zambad,1 Ramesh Chandra Gupta,4 Shailesh Deshpande,4 Vijay Chauthaiwale,4 Chaitanya Dutt4 1Department of Pharmacology, 2Cellular and Molecular Biology, 3Preclinical Safety Evaluation, 4Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India Background and aim: Mucosal healing in inflammatory bowel disease (IBD can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods: The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn's disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results: TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion: Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor

  4. Lysine clonixinate in the treatment of primary dysmenorrhea.

    Science.gov (United States)

    Di Girolamo, G; Zmijanovich, R; de los Santos, A R; Martí, M L; Terragno, A

    1996-01-01

    The efficacy and tolerance of Lysine Clonixinate (LC), a NSAID with prostaglandin synthesis inhibiting mechanism was studied in 24 patients with primary dysmenorrhea according to a double-blind randomized crossover Placebo (P) controlled design with patients serving as their own controls. Treatment consisted in administering 1 tablet of LC or P q6h as from onset of menstrual pain during 5 days and 6 menstrual cycles. Patients were controlled monthly as from the 5th day of the cycle, rating changes in pain intensity according to a 4-point scale, presence of pain during pre-, post- and menstrual periods; possible intracycle changes, amount of bleeding, tolerance and related total and general signs and symptoms. Intensity of baseline menstrual pain amounted to 2.9. Menstrual, intramenstrual and postmenstrual pains were observed in 19 out of 24, 24/24 and only 2 out of the 24 patients, respectively. Concomitant symptoms consisted in headache (12), mastalgia (14) and discomfort (12). Results were obtained by averaging the data from the treatment periods with each drug. Menstrual pain was reduced from 2.9 +/- 0.7 to 1.9 +/- 0.7 with P administration and to 0.66 +/- 0.4 with the administration of LC, a highly significant difference between treatments (p < 0.0001). Premenstrual pain was reduced nonsignificantly from 0.79% to 0.58% with P administration and significantly to 0.29% with administration of LC (p < 0.001). Intramenstrual pain affecting all patients at baseline was reduced significantly by 9% with P and also significantly by 50% with LC (p < 0.001). No differences were encountered in concomitant symptoms during P treatment periods while the incidence was significantly reduced with LC (p < 0.0001). No changes in cycle duration or amount of bleeding were observed between treatments. No adverse events were reported.

  5. Lysine clonixinate vs. paracetamol/codeine in postepisiotomy pain.

    Science.gov (United States)

    De los Santos, A R; Martí, M I; Espinosa, D; Di Girolamo, G; Vinacur, J C; Casadei, A

    1998-01-01

    This study was conducted to compare the analgesic action of Lysine Clonixinate (LC) vs Paracetamol/Codeine association (PC) in the treatment of postepisiotomy pain in primiparae women: 131 primiparous patients with moderate-to-severe postepisiotomy pain were enrolled in a double blind dummy design study and randomly allocated to either treatment with fixed doses of LC 125 mg or Paracetamol 500 mg+Codeine 30 mg 6 qh during 24 hours. Intensity of spontaneous pain and pain on walking was assessed according to a visual analog scale (VAS) and patient's assessment before receiving treatment and after 1, 2, 6 and 24 hours. Intensity of spontaneous pain was reduced in 24 hours from 4.28 +/- 2.11 to 1.73 +/- 1.46 (P < 0.0001) in the LC group and from 4.78 +/- 2.08 to 1.90 +/- 1.72 in the PC-treated group (p < 0.0001); with no significant differences between treatments. 54% of the patients treated with LC and 55% of those receiving PC showed onset of analgesic action 30 minutes following dose administration. Patient's final global assessment revealed that 95% of LC-treated patients and 96% of the PC group showed total or partial pain relief during the first treatment day. No sleep disturbances were seen during the night in 75% of patients. Only one patient receiving LC showed nausea not requiring treatment discontinuation. It is concluded that both treatments are equally effective to relieve moderate-to-severe postepisiotomy pain.

  6. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent.

    Science.gov (United States)

    Schuch, Raymond; Khan, Babar K; Raz, Assaf; Rotolo, Jimmy A; Wittekind, Michael

    2017-07-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes , and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component. Copyright © 2017 American Society for Microbiology.

  7. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  8. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond; Khan, Babar Khalid; Raz, Assaf; Rotolo, Jimmy A.; Wittekind, Michael

    2017-01-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  9. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    Science.gov (United States)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2018-03-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  10. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  11. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  12. 17-α-Hydroxylase deficiency: An unusual case with primary amenorrhea and hypertension

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2011-01-01

    Full Text Available A 14-year-old girl presented with acute onset quadriparesis and newly detected hypertension. Parental consanguinity, delayed puberty with normal stature form the additional information. Hypokalemia with metabolic alkalosis, low cortisol, high ACTH and FSH pointed to the possibility of CAH with 17α hydroxylase deficiency. 46XX karyotype and high progesterone supported this. Normalization of hypokalemia and hypertension with glucocorticoid treatment confirmed the diagnosis. In summary, the possibility of 17 OHD should be suspected in patients with hypokalemic myopathy, Hypertension and hypogonadism so that appropriate therapy can be implemented.

  13. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hoff, Tine; Frandsen, Gitte Inselmann; Rocher, Anne

    1998-01-01

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde...... oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis....

  14. Self-hydroxylation of the splicing factor lysyl hydroxylase, JMJD6

    DEFF Research Database (Denmark)

    Mantri, M.; Webby, C.J.; Loik, N.D.

    2012-01-01

    The lysyl 5S-hydroxylase, JMJD6 acts on proteins involved in RNA splicing. We find that in the absence of substrate JMJD6 catalyses turnover of 2OG to succinate. H-NMR analyses demonstrate that consumption of 2OG is coupled to succinate formation. MS analyses reveal that JMJD6 undergoes self......-hydroxylation in the presence of Fe(ii) and 2OG resulting in production of 5S-hydroxylysine residues. JMJD6 in human cells is also found to be hydroxylated. Self-hydroxylation of JMJD6 may play a regulatory role in modulating the hydroxylation status of proteins involved in RNA splicing. This journal is...

  15. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  16. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    Science.gov (United States)

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  17. Phenylalanine hydroxylase from Legionella pneumophila is a thermostable enzyme with a major functional role in pyomelanin synthesis.

    Directory of Open Access Journals (Sweden)

    Marte I Flydal

    Full Text Available Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH, the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions.Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min and low affinity for the substrate (K(m (L-Phe = 735 ± 50 µM.lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.

  18. Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex.

    Science.gov (United States)

    Chang, Weizhong; Barnes, Aileen M; Cabral, Wayne A; Bodurtha, Joann N; Marini, Joan C

    2010-01-15

    Null mutations in cartilage-associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1/LEPRE1) cause types VII and VIII OI, respectively, two novel recessive forms of osteogenesis imperfecta (OI) with severe to lethal bone dysplasia and overmodification of the type I collagen helical region. CRTAP and P3H1 form a complex with cyclophilin B (CyPB) in the endoplasmic reticulum (ER) which 3-hydroxylates the Pro986 residue of alpha1(I) and alpha1(II) collagen chains. We investigated the interaction of complex components in fibroblasts from types VII and VIII OI patients. Both CRTAP and P3H1 are absent or reduced on western blots and by immunofluorescence microscopy in cells containing null mutations in either gene. Levels of LEPRE1 or CRTAP transcripts, however, are normal in CRTAP- or LEPRE1-null cells, respectively. Stable transfection of a CRTAP or LEPRE1 expression construct into cells with null mutations for the transfected cDNA restored both CRTAP and P3H1 protein levels. Normalization of collagen helical modification in transfected CRTAP-null cells demonstrated that the restored proteins functioned effectively as a complex. These data indicate that CRTAP and P3H1 are mutually stabilized in the collagen prolyl 3-hydroxylation complex. CyPB levels were unaffected by mutations in either CRTAP or LEPRE1. Proteasomal inhibitors partially rescue P3H1 protein in CRTAP-null cells. In LEPRE1-null cells, secretion of CRTAP is increased compared with control cells and accounts for 15-20% of the decreased CRTAP detected in cells. Thus, mutual stabilization of P3H1 and CRTAP in the ER collagen modification complex is an underlying mechanism for the overlapping phenotype of types VII and VIII OI.

  19. Myelination in the absence of UDP-galactose:ceramide galactosyl-transferase and fatty acid 2 -hydroxylase

    Directory of Open Access Journals (Sweden)

    Gieselmann Volkmar

    2011-03-01

    Full Text Available Abstract Background The sphingolipids galactosylceramide (GalCer and sulfatide are major myelin components and are thought to play important roles in myelin function. The importance of GalCer and sulfatide has been validated using UDP-galactose:ceramide galactosyltransferase-deficient (Cgt-/- mice, which are impaired in myelin maintenance. These mice, however, are still able to form compact myelin. Loss of GalCer and sulfatide in these mice is accompanied by up-regulation of 2-hydroxylated fatty acid containing (HFA-glucosylceramide in myelin. This was interpreted as a partial compensation of the loss of HFA-GalCer, which may prevent a more severe myelin phenotype. In order to test this hypothesis, we have generated Cgt-/- mice with an additional deletion of the fatty acid 2-hydroxylase (Fa2h gene. Results Fa2h-/-/Cgt-/- double-deficient mice lack sulfatide, GalCer, and in addition HFA-GlcCer and sphingomyelin. Interestingly, compared to Cgt-/- mice the amount of GlcCer in CNS myelin was strongly reduced in Fa2h-/-/Cgt-/- mice by more than 80%. This was accompanied by a significant increase in sphingomyelin, which was the predominant sphingolipid in Fa2h-/-/Cgt-/- mice. Despite these significant changes in myelin sphingolipids, compact myelin was formed in Fa2h-/-/Cgt-/- mice, and g-ratios of myelinated axons in the spinal cord of 4-week-old Fa2h-/-/Cgt-/- mice did not differ significantly from that of Cgt-/- mice, and there was no obvious phenotypic difference between Fa2h-/-/Cgt-/- and Cgt-/- mice Conclusions These data show that compact myelin can be formed with non-hydroxylated sphingomyelin as the predominant sphingolipid and suggest that the presence of HFA-GlcCer and HFA-sphingomyelin in Cgt-/- mice does not functionally compensate the loss of HFA-GalCer.

  20. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2016-01-01

    Full Text Available Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine, amino acids (e.g. L-lysine and polyols (e.g. glycerol. They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM were randomly divided into two groups of 25 (test and control. All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  1. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    Science.gov (United States)

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  2. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

    Science.gov (United States)

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K; Skinner-Adams, Tina S; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D; McFadden, Geoffrey I; Sumanadasa, Subathdrage D M; Fairlie, David P; Avery, Vicky M; Kurz, Thomas; Andrews, Katherine T

    2014-07-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  4. The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.

    Science.gov (United States)

    Ozen, Tevfik; Korkmaz, Halil

    2009-01-01

    The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.

  5. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  6. Tyrosine hydroxylase positive nerves and mast cells in the porcine gallbladder

    Directory of Open Access Journals (Sweden)

    I. Stefanov

    2017-03-01

    Full Text Available The aim of this study was to detect the localisation of tyrosine hydroxylase (TH positive nerve fibres (THN and distribution of tyrosine hydroxylase positive mast cells (THMC in the wall of porcine gallbladder. THN were observed as single fibres, nerve fibres forming perivascular plexuses and nerve fibres grouped within the nerve fascicles. In the gallbladder`s fundus, body and neck, the TH+ fibres formed mucosal, muscular and serosal nonganglionated nerve plexuses. Toluidine blue (TB staining was used to confirm that the TH positive cells were mast cells. The number of THMC in the propria of gallbladder`s fundus, body and neck was significantly higher than in the muscular and serosal layers in both genders. The number of mast cells in the musculature was higher than in the serosa. The density and location of the THMC were similar to the TB positive (with gamma meta-chromasia mast cells in both males and females, and statistically significant difference was not established. In conclusion, original data concerning the existence and localisation of catecholaminergic nerves and THMC distribution in the porcine gallbladder’s wall are presented. The results could con-tribute to the body of knowledge of functional communication between autonomic nerves and mast cells in the gallbladder.

  7. Combination growth hormone and gonadotropin releasing hormone analog therapy in 11beta-hydroxylase deficiency.

    Science.gov (United States)

    Bajpai, Anurag; Kabra, Madhulika; Menon, P S N

    2006-06-01

    Diagnosis of 11beta-hydroxylase deficiency was made in a boy at the age of 2 1/2 years on the basis of peripheral precocious puberty, growth acceleration (height standard deviation score +4.4) with advanced skeletal maturation (bone age 8.4 years) and elevated deoxycortisol levels. Glucocorticoid supplementation led to normalization of blood pressure but was associated with progression to central precocious puberty and increase in bone age resulting in decrease in predicted adult height to 133.7 cm (target height 163 cm). The child was started on GnRH analog (triptorelin 3.75 mg every 28 days), which led to improvement in predicted adult height by 3.1 cm over 15 months. Addition of growth hormone (0.1 IU/kg/day) resulted in improvement in predicted adult height (151 cm) and height deficit (12 cm) over the next 3.6 years. Final height (151 cm) exceeded predicted height at the initiation of GnRH analog treatment by 17.3 cm. This report suggests that combination GH and GnRH analog treatment may be useful in improving height outcome in children with 11beta-hydroxylase deficiency and compromised final height.

  8. Effect of different levels of lysine in the diet of broilers on the metabolism of /sup 35/S-methionine

    Energy Technology Data Exchange (ETDEWEB)

    Stanchev, Kh; Venkov, T; Dzharova, M [Akademiya na Selskostopanskite Nauki, Sofia-Kostinbrod (Bulgaria). Inst. po Zhivotnovydstvo

    1974-01-01

    The lack of balance of the ration with respect to lysine leads to a decrease in the rate of incorporation of /sup 35/S-methionine in the liver, pancreas, kidney and femoral muscle. Most intensive protein synthesis in the liver of chickens is observed in the group receiving ration balanced with respect to lysine while in the case of a deficiency or excess of lysine the protein biosynthesis drops. The deficiency or excess of lysine leads to an increase in the excretion rate and decreases the assimilability of radioactive methionine in the chickens organisms. (INIS)

  9. Effect of varying dietary concentrations of lysine on growth performance of the Pearl Grey guinea fowl.

    Science.gov (United States)

    Bhogoju, S; Nahashon, S N; Donkor, J; Kimathi, B; Johnson, D; Khwatenge, C; Bowden-Taylor, T

    2017-05-01

    Lysine is the second limiting essential amino acid in poultry nutrition after methionine. Understanding the lysine requirement of poultry is necessary in guiding formulation of least cost diets that effectively meet the nutritional needs of individual birds. The lysine requirement of the Pearl Grey guinea fowl (PGGF) is not known. Therefore, the objective of this study was to assess the appropriate lysine levels required for optimal growth attributes of the PGGF. In a 12-week study, 512 one-day-old Pearl Grey guinea keets were weighed individually and randomly assigned to electrically heated battery brooders. Each battery contained 12 compartments housing 15 birds each. Eight diets fed to the experimental birds consisted of corn-soybean meal and contained 0.80 to 1.22 digestible lysine in 0.06% increments. Feed and water were provided at free choice and the diets were replicated twice. Experimental diets contained 3,100 Kcal metabolizable energy (ME)/kg diet and 23% crude protein (CP), 3,150 ME Kcal ME/kg diet and 21% CP, and 3,100 ME/kg and 17% CP, at zero to 4, 5 to 10, and 11 to 12 weeks of age (WOA), respectively. Birds were provided water ad libitum and a 23:1 and 8:16-hr (light:dark) regimen at zero to 8 and 9 to 12 WOA, respectively. Birds were weighed weekly, and body weight gain, feed consumption, and feed conversions were determined. Data were analyzed using the General Linear Model (GLM) procedures of SAS (2002) with dietary lysine as treatment effect. Females responded better to diets containing 1.04 and 0.8% lysine from hatch to 4 and 5 to 12 WOA, respectively. Males responded better to diets containing 1.10 and 0.8% lysine at hatch to 4 WOA and 5 to 12 WOA, respectively. Therefore, we recommend that PGGF females and males be fed diets containing 1.04 and 1.10%, respectively, at hatch to 4 WOA and 0.80% lysine at 5 to 12 WOA. The diets should be supplied in phases. © 2016 Poultry Science Association Inc.

  10. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  11. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B"c"a expression did not restore adipogenesis.

  12. Effect of exogenous CNT on kinetics of 3H-lysine in haerbin white rabbits

    International Nuclear Information System (INIS)

    Liu Dengke; Zan Linsen; Liu Yongfeng

    2007-01-01

    Haerbin White rabbits was used as testimonial and trace kinetics and radioimmunoassay and other techniques were used to study the distribution, transportation and metabolism of 3 H-Lysine in the animal. The metabolic kinetics of 3 H-Lysine could be described by the follows equation: (Y-circumflex) (t) =983.6281e -0.021935t + 1773.9999e -0.083932t - 983.6281e -0.432590t - 0773.9999e -0.050399t + 300.2820. Experimental results showed that 3 H-Lysine was accumulated mainly in kidney, heart, liver, spleen and muscle in check group; accumulated mainly in muscle, stomach, liver, heart and genitalia in cAMP treated group; accumulated in bladder, muscle, lung and intestine in cGMP treated group; and accumulated mainly in muscle, bladder, genitalia an fat in cAMP + cGMP treated group, respectively. The distribution of 3 H-Lysine was of evidently variations being treated with exogenous CNT. The results indicated that the distribution, transportation and metabolism of 3 H-Lysine were significantly affected by exogenous CNT in the Haerbin White rabbit. (authors)

  13. Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors

    International Nuclear Information System (INIS)

    Kakatkar, Aniket; Craighead, H G; Abhilash, T S; Alba, R De; Parpia, J M

    2015-01-01

    A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of chemical vapor deposition graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac voltage (the voltage at which the graphene’s resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The ‘Dirac voltage shift’ is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecules. (paper)

  14. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  15. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    Science.gov (United States)

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  17. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    Science.gov (United States)

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-06-15

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. In contrast to the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles and local structure conformations were incorporated. We used the k-nearest neighbors cleaning treatment for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred to as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Estimation of Digestible Lysine Requirements of Japanese Quail during the Starter Period

    Directory of Open Access Journals (Sweden)

    M Ashoori

    2013-11-01

    Full Text Available The aim of this study was the estimation of digestible lysine requirements of Japanese quail during the 7-21d period. Graduation level of L-lysine.HCL were added to the basal diet at the expense of corn starch to create different levels of digestible lysine ranged from 0.75 to 1.35% of diet. Growth performance and carcass composition were evaluated during the experiment. The results showed that incremental levels of digestible lysine significantly affected the body weight gain (BWG, feed conversion ratio (FCR, feed intake (FI, breast meat yield (BMY and thigh meat yield (TMY. Either linear broken- line or quadratic broken line model were used to get break points of digestible lysine as a requirement. Based on linear broken line analysis, the break points for FCR and BMY were 0.99 and 1.04 % of diet, respectively. Using the quadratic broken-line model, the estimated Lys requirements for BWG, FCR, and BMY were 1.11, 1.04, and 1.15% of diet, respectively. The results showed that the Lys needs for optimum BMY was higher than BWG and FCR.

  19. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  20. Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.

    Science.gov (United States)

    Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N

    1995-03-01

    Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.

  1. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    Science.gov (United States)

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  2. The course of protein synthesis during grain filling in normal and high lysine barley

    International Nuclear Information System (INIS)

    Giese, H.; Andersen, B.

    1984-01-01

    A study of the course of protein synthesis during grain filling in Bomi and the high lysine barleys Hily 82/3 and Risoe 56 showed that the four salt-soluble proteins, protein Z, β-amylase and the chymotrypsin inhibitors CI-1 and CI-2, are synthesized in greater amounts earlier in the high lysine lines than in Bomi. On the other hand, the hordeins are synthesized in greater amounts earlier during grain filling in Bomi than in Hily 82/3 and Risoe 56. There is no indication of a significant reduction of total protein synthesis in the high lysine lines compared with the standard lines Bomi and Pirrka. Hily 82/3 and Risoe 56 are very similar in protein composition in that they have a lower hordein content and higher levels, particularly of β-amylase and the chymotrypsin inhibitors, than Bomi. (author)

  3. Genetically determined low maternal serum dopamine beta-hydroxylase levels and the etiology of autism spectrum disorders.

    Science.gov (United States)

    Robinson, P D; Schutz, C K; Macciardi, F; White, B N; Holden, J J

    2001-04-15

    Autism, a neurodevelopmental disability characterized by repetitive stereopathies and deficits in reciprocal social interaction and communication, has a strong genetic basis. Since previous findings showed that some families with autistic children have a low level of serum dopamine beta-hydroxylase (DbetaH), which catalyzes the conversion of dopamine to norepinephrine, we examined the DBH gene as a candidate locus in families with two or more children with autism spectrum disorder using the affected sib-pair method. DBH alleles are defined by a polymorphic AC repeat and the presence/absence (DBH+/DBH-) of a 19-bp sequence 118 bp downstream in the 5' flanking region of the gene. There was no increased concordance for DBH alleles in affected siblings, but the mothers had a higher frequency of alleles containing the 19-bp deletion (DBH-), compared to an ethnically similar Canadian comparison group (chi(2) = 4.20, df = 1, P = 0.02 for all multiplex mothers; chi(2) = 4.71, df = 1, P autism. DBH genotypes also differed significantly among mothers and controls, with 37% of mothers with two affected sons having two DBH- alleles, compared to 19% of controls (chi(2) = 5.81, df = 2, P = 0.03). DbetaH enzyme activity was lower in mothers of autistic children than in controls (mean was 23.20 +/- 15.35 iU/liter for mothers vs. 33.14 +/- 21.39 iU/liter for controls; t = - 1.749, df = 46, P = 0.044). The DBH- allele was associated with lower mean serum DbetaH enzyme activity (nondeletion homozygotes: 41.02 +/- 24.34 iU/liter; heterozygotes: 32.07 +/- 18.10 iU/liter; and deletion homozygotes: 22.31 +/- 13.48 iU/liter; F = 5.217, df = 2, P = 0.007) in a pooled sample of mothers and controls. Taken together, these findings suggest that lowered maternal serum DbetaH activity results in a suboptimal uterine environment (decreased norepinephrine relative to dopamine), which, in conjunction with genotypic susceptibility of the fetus, results in autism spectrum disorder in some families

  4. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinhua; Dan, Nianhua [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Dan, Weihua, E-mail: danweihua_scu@126.com [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1 mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. - Highlights: • The effects of two different charged amino acids in collagen chains on the collagen fibrillogenesis were evaluated. • The positively charged lysine could improve the sizes or amounts of self-assembled collagen fibrils. • The width of D-banding of the collagen-lysine co-fibrils increased steadily after introducing lysine. • The optimal fibrillogenesis was achieved when the concentration of lysine reached to 1 mM. • The kinetic and thermodynamic collagen self-assembly were both analyzed.

  5. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    Science.gov (United States)

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  6. Effect of lysine clonixinate on the pharmacokinetics and anticoagulant activity of phenprocoumon.

    Science.gov (United States)

    Russmann, S; Dilger, K; Trenk, D; Nagyivanyi, P; Jähnchen, E

    2001-11-01

    The effect of the non-steroidal anti-inflammatory drug lysine clonixinate ([2-(3-chloro-o-toluidino)nicotinic acid]-L-lysinate, CAS 55837-30-4) on the pharmacokinetics and anticoagulant activity of phenprocoumon (4-hydroxy-3-(1-phenylpropyl)-coumarin, CAS 435-97-2) was investigated in an open, randomised, two-fold, cross-over study in 12 healthy male volunteers. These subjects received a single dose of 18 mg phenprocoumon without or with concomitant treatment with lysine clonixinate (125 mg five times a day for 3 days before and 13 days after ingestion of a single dose of phenprocoumon). Pharmacokinetic parameters of phenprocoumon following oral administration were: CL/f: 0.779 +/- 0.157 ml/min, half-life of elimination: 147.2 +/- 19.9 h; free fraction in serum: 0.51 +/- 0.20%. These parameters were not significantly altered by concomitant treatment with lysine clonixinate. Prothrombin time increased from 13.3 +/- 1.3 s (at time 0) to 17.7 +/- 2.7 s following phenprocoumon and from 13.3 +/- 1.2 s to 18.0 +/- 2.2 s following combined administration. Prothrombin time returned to the pretreatment values 240 h after administration of phenprocoumon. The integrated effect (AUEC0-288 h) was identical following both treatments (4.303 +/- 461 and 4.303 +/- 312 s x h for phenprocoumon alone and phenprocoumon with lysine clonixinate, respectively). Thus, lysine clonixinate administered in therapeutic doses does not affect the pharmacokinetics and anticoagulant activity of phenproxoumon.

  7. The effect of gamma irradiation on the lysine content of plants

    International Nuclear Information System (INIS)

    Benedekne-Lazar, M.

    1979-01-01

    It has been proved by studies on the physiological effect of ionizing irradiation that in plant metabolism important changes take place. From the endosperm of seven-day-old seedlings 14 C-L-Lysine is transported faster to organs, especially to shoots and its incorporation into protein is also more intensive. The animation of the growth of roots and shoots can be observed on 14-day-old plants grown in water culture. In sand culture a surplus in dry weight can be experienced after 56 days for maize, under the influence of 100 rad. Two soybean varieties (Merit, Clay) responded different to irradiation. The dry weight of the Merit variety was increased significantly by 500 and 1000 rad, whereas that of the Clay variety decreased or did not change significantly. The lysine content of plants changes in the function of growth. In the case of the two maize varieties (Szegedi sarga, KSC 360) treatments with 1000 and 5000 rad resulted in an essential surplus of the total lysine content (46.25 and 31.21%, respectively). The total lysine content of the Merit variety has been increased by about 23.9% and 20.92%, respectively. 5000 rad treatment resulted in a negative correlation (-0.77) in the shoots. The total lysine content of the Clay plants was lower than that of the control. Under the influence of 500 and 1000 rad treatments the total lysine content of the shoots of the Merit variety grown in fields increased to a lesser extent (16.82 and 3.19 respectively) than that of plants grown in a climate room. (author)

  8. Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.

    Science.gov (United States)

    Anaya-Reza, Omar; Lopez-Arenas, Teresa

    2017-07-01

    L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  9. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  10. Desensitization to inhaled aztreonam lysine in an allergic patient with cystic fibrosis using a novel approach.

    Science.gov (United States)

    Guglani, Lokesh; Abdulhamid, Ibrahim; Ditouras, Joanna; Montejo, Jenny

    2012-10-01

    To report the successful desensitization of a highly allergic patient with cystic fibrosis (CF) to inhaled aztreonam lysine using the novel approach of intravenous desensitization followed by full-dose inhaled therapy without any adverse reactions. A 19-year-old woman with CF had persistent Pseudomonas aeruginosa-positive cultures and a history of type I hypersensitivity reactions to multiple medications, including aztreonam and tobramycin (intravenous and inhaled). To start therapy with an inhaled antipseudomonal antibiotic on a chronic basis, she underwent rapid desensitization to intravenous aztreonam followed by initiation of inhaled aztreonam lysine. Following intravenous desensitization with aztreonam, there was no adverse reaction or decline in lung function noted with inhaled aztreonam lysine and the chronic therapy was continued at home, with a modified regimen to maintain desensitization. Aztreonam lysine has been used for treatment of patients with CF with chronic P. aeruginosa colonization. Previous allergic reaction to intravenous aztreonam is considered a contraindication for use of aztreonam lysine. Our patient had a history of hives and facial swelling following administration of intravenous aztreonam (type I hypersensitivity reaction) as well as hypersensitivity to tobramycin. Rapid desensitization can be done for drugs that mediate a type I hypersensitivity reaction, with mast cells and basophils being the cellular targets. There are a few case reports of desensitization to inhaled antibiotics such as tobramycin and colistin, but desensitization to aztreonam lysine has not previously been reported. Desensitization of a patient with CF who is allergic to intravenous aztreonam was successfully accomplished with the novel approach of rapid intravenous desensitization followed by inhaled therapy. As inhaled antibiotics are being increasingly used for patients with CF, this novel strategy can be used for desensitizing allergic patients with CF to

  11. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jenny J Sun

    Full Text Available CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD. Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.

  12. MicroRNA Dysregulation in Liver and Pancreas of CMP-Neu5Ac Hydroxylase Null Mice Disrupts Insulin/PI3K-AKT Signaling

    Directory of Open Access Journals (Sweden)

    Deug-Nam Kwon

    2014-01-01

    Full Text Available CMP-Neu5Ac hydroxylase (Cmah-null mice fed with a high-fat diet develop fasting hyperglycemia, glucose intolerance, and pancreatic β-cell dysfunction and ultimately develop characteristics of type 2 diabetes. The precise metabolic role of the Cmah gene remains poorly understood. This study was designed to investigate the molecular mechanisms through which microRNAs (miRNAs regulate type 2 diabetes. Expression profiles of miRNAs in Cmah-null mouse livers were compared to those of control mouse livers. Liver miFinder miRNA PCR arrays (n=6 showed that eight miRNA genes were differentially expressed between the two groups. Compared with controls, seven miRNAs were upregulated and one miRNA was downregulated in Cmah-null mice. Specifically, miR-155-5p, miR-425-5p, miR-15a-5p, miR-503-5p, miR-16-5p, miR-29a-3p, and miR-29b-3p were significantly upregulated in the liver and pancreas of Cmah-null mice. These target miRNAs are closely associated with dysregulation of insulin/PI3K-AKT signaling, suggesting that the Cmah-null mice could be a useful model for studying diabetes.

  13. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  14. Aspects of the selection, design and use of high lysine cereals

    International Nuclear Information System (INIS)

    Munck, L.

    1976-01-01

    A discussion of the need for and the considerations involved in the breeding of high lysine cereals is presented. Progress in the discovery and exploitation of genotypes with high lysine characters in maize and barley are briefly reviewed. The role and some of the characteristics of the dye-binding capacity (DBC) methods are evaluated along with the ways in which DBC results should be used in combination with other information. Lastly, the changes in attitudes and procedures associated with the acceptance of a product of a new technology such as nutritionally improved cereals is discussed. (author)

  15. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.

    Science.gov (United States)

    Macián, M; Seguer, J; Infante, M R; Selve, C; Vinardell, M P

    1996-01-08

    The toxic effects of new synthetic monodisperse non-ionic long-chain N alpha, N epsilon-diacyl lysine polyoxyethylene glycol amide compounds with a structural resemblance to natural lecithin phospholipids were studied by the haemolytic method and the test of the chorioallantoic membrane of the hen's egg (HET-CAM). The following compounds were tested: symmetrical N alpha,N epsilon-diacyl lysine homologues (N alpha,N epsilon-dihexanoyl, N alpha,N epsilon-dioctanoyl and N alpha,N epsilon-didecanoyl lysine) with one methyl ether polyoxyethylene glycol chain of different oxyethylene units (dioxyethylene glycol, tetraoxyethylene glycol and hexaoxyethylene glycol) as headgroup; symmetrical N alpha,N epsilon-diacyl lysine homologues with two methyl ether dioxyethylene glycol chains and the asymmetrical N alpha-butanoyl, N epsilon-dodecyl lysine with two hydrophilic methyl ether dioxyethylene glycol chains as headgroup. A commercial (polydisperse) oleoyl polyoxyethylene glycol diethanolamide with an average of eight units of ethylene oxide was used as control. All the synthesized tested compounds appeared to be less haemolytic and less irritant than the control. The synthesized products were studied with regard to their hydrophobic and hydrophilic chains in order to evaluate the influence of their structure on their haemolytic and irritative action. The results of this study show that the acyl chain distribution of these compounds greatly influence toxic effects: the asymmetrical compound N alpha-butanoyl,N epsilon-dodecyl lysine-bis[methyl ether diethylene glycol]amide was found to be the most haemolytic and irritating compound. Among the symmetrical homologues, the shortest-chain compounds N alpha,N epsilon-dihexanoyl lysine methyl ether polyoxyethylene glycol amides present the least haemolytic and irritating activity, independently of the number and length of the hydrophilic methyl ether polyoxyethylene glycol chains. Taking into account their surface activity

  16. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  17. Ehlers Danlos syndrome, kyphoscoliotic type due to Lysyl Hydroxylase 1 deficiency in two children without congenital or early onset kyphoscoliosis

    NARCIS (Netherlands)

    van Dijk, Fleur S.; Mancini, Grazia M. S.; Maugeri, Alessandra; Cobben, Jan M.

    2017-01-01

    We report two children with Ehlers Danlos, kyphoscoliotic type confirmed by Lysyl Hydroxylase 1 deficiency due to bi-allelic PLOD1 mutations (kEDS-PLOD1) who were initially thought to have either a diagnosis of classical EDS (cEDS) or a neuromuscular disorder due to absence of (congenital)

  18. A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogeneted derivatives by phenol hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.J.; Rietjens, I.M.C.M.; Vervoort, J.

    2000-01-01

    A combined quantum mechanical and molecular mechanical (QM/MM) method (AM1/CHARMM) was used to investigate the mechanism of the aromatic hydroxylation of phenol by a flavin dependent phenol hydroxylase (PH), an essential reaction in the degradation of a wide range of aromatic compounds. The model

  19. Combined quantum mechanical and molecular mechanical reaction pathway calculation for aromatic hydroxylation by p-hydroxybenzoate-3-hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.; Rietjens, I.M.C.M.; Vervoort, J.

    1999-01-01

    The reaction pathway for the aromatic 3-hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in p-hydroxybenzoate hydroxylase (PHBH) has been investigated by a combined quantum mechanical and molecular mechanical (QM/MM) method. A structural model for the

  20. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase

    International Nuclear Information System (INIS)

    Hundahl, C.A.; Fahrenkrug, J.; Luuk, H.; Hay-Schmidt, A.; Hannibal, J.

    2012-01-01

    Highlights: ► Restricted Neuroglobin expression in the mouse retina. ► Antibody validation using Neuroglobin-null mice. ► Co-expression of Neuroglobin with Melanopsin and tyrosine hydroxylase. ► No effect of Neuroglobin deficiency on neuronal survival. -- Abstract: Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb’s function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.

  1. Functional characterization of a p-coumaroyl quinate/shikimate 3’-hydroxylase from potato (Solanum tuberosum)

    Science.gov (United States)

    Chlorogenic acid (CGA) plays an important role in protecting plants against pathogens and promoting human health. Although CGA accumulates to high levels in potato tubers, the key enzyme p-coumaroyl quinate/shikimate 3’-hydroxylase (C3’H) for CGA biosynthesis has not been isolated or characterized i...

  2. Increased protein expression of LHCG receptor and 17a-hydroxylase/17,20-lyase in human polycystic ovaries

    NARCIS (Netherlands)

    Comim, F.V.; Teerds, K.J.; Hardy, K.; Franks, S.

    2013-01-01

    STUDY QUESTION Does the expression of LHCG receptor (LHCGR) protein and key enzymes in the androgen biosynthetic pathway differ in normal human versus polycystic ovarian tissue? SUMMARY ANSWER LHCGR and 17a-hydroxylase/17-20-lyase (CYP17A1) protein levels are increased in polycystic ovaries (PCOs).

  3. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    Science.gov (United States)

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  4. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    Science.gov (United States)

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-04-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amino acid polypeptide of 31,372 daltons.

  5. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    OpenAIRE

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-01-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amin...

  6. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    Science.gov (United States)

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-01-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amino acid polypeptide of 31,372 daltons. Images PMID:3514578

  7. Adsorption of Lysine on Na-Montmorillonite and Competition with Ca(2+): A Combined XRD and ATR-FTIR Study.

    Science.gov (United States)

    Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun

    2016-05-17

    Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites.

  8. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  9. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  10. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lappi, D. A.; Robertson, D.

    1994-01-01

    Sympathectomy has been achieved by a variety of methods but each has its limitations. These include lack of tissue specificity, incomplete lesioning, and the age range of susceptibility to the lesioning. To circumvent these drawbacks, an immunotoxin was constructed using a monoclonal antibody against the noradrenergic specific enzyme dopamine beta-hydroxylase (D beta H) coupled via a disulfide bond to saporin, a ribosomal inactivating protein. Three days after intravenous injection of the anti-D beta H immunotoxin (50 micrograms) into adult Sprague-Dawley rats, 66% of neurons in the superior cervical ganglia were chromatolytic. Superior cervical ganglia neurons were poisoned in 1 day old and 1 week old (86% of neurons) neonatal rats following subcutaneous injection of 3.75 and 15 micrograms, respectively. The anti-D beta H immunotoxin will be a useful tool in the study of the peripheral noradrenergic system in adult and neonatal animals.

  11. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    Science.gov (United States)

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  12. Reproductive outcomes of female patients with congenital adrenal hyperplasia due to 21-hydroxylase defi ciency

    Directory of Open Access Journals (Sweden)

    Mouna Feki Mnif

    2013-01-01

    Full Text Available Fertility in women with congenital adrenal hyperplasia (CAH due to 21-hydroxylase deficiency (21-OHD appears to be reduced, especially in women with the classic salt-wasting type. Several factors have been suggested to contribute to this subfertility such as androgen excess, adrenal progesterone hypersecretion, consequences of genital reconstructive surgery, secondary polycystic ovaries syndrome, and psychosexual factors. In contrast to this subfertility, pregnancies are commonly normal and uneventful. Adequate glucocorticoid therapy and improvement of surgical and psychological management could contribute to optimize fertility in CAH female patients, even among women with the classic variant. This review provides current information regarding the reproductive outcomes of women with CAH due to 21-OHD and the fertility and pregnancy issues in this population.

  13. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu

    Energy Technology Data Exchange (ETDEWEB)

    Schnicker, Nicholas J. [Department; Razzaghi, Mortezaali [Department; Guha Thakurta, Sanjukta [Department; Chakravarthy, Srinivas [Biophysics; Dey, Mishtu [Department

    2017-10-17

    Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC–SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC–SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.

  14. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    Science.gov (United States)

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  15. Lysine supplementation in late gestation of gilts: effects on piglet birth weight, and gestational and lactational performance

    Directory of Open Access Journals (Sweden)

    Diogo Magnabosco

    2013-08-01

    Full Text Available Lysine requirements for gain in maternal body reserves and piglet birth weight, during pregnancy, in contemporary prolific genotypes, are not well established. This study aimed to evaluate the effect of dietary lysine in late pregnancy on piglet birth weight, and on the gestational and lactational performance of gilts. Pregnant gilts were uniformly distributed into two groups and received, from 85 to 110 days of gestation, either of two lysine levels in their diet: Control group - 28g lysine/day (n=136, and Lysine group - 35g lysine/day (n=141. There were no effects (P>0.10 of supplemental lysine on body weight and backfat (BF gain of females or on piglet birth weight. Gilts supplemented with lysine tended to have a lower percentage of stillbirths (P=0.077, reduced within-litter birth weight variation (P=0.094 and a lower percentage of piglets weighing less than 1100g (P=0.082 than in the Control group. During lactation, the performance of sows and litters was also evaluated in a subgroup of sows (n=26/group. There were no differences between the Control and Lysine groups (P>0.10 in voluntary feed intake, body reserve losses (weight and BF, weaning-to-estrus interval of the sows, and litter weaning weight. In conclusion, an increase in lysine (from 28 to 35g/day in late gestation of gilts (85 to 110 days tends to reduce the rate of stillbirths and to improve the uniformity of litter weight at birth, but does not affect the performance of females until farrowing or during subsequent lactation.

  16. Differential