WorldWideScience

Sample records for hydroxyl radical oxidation

  1. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    Science.gov (United States)

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  2. Quantification of hydroxyl radical produced during phacoemulsification.

    Science.gov (United States)

    Gardner, Jonathan M; Aust, Steven D

    2009-12-01

    To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.

  3. Comparative study of radical oxidation of DNA and its nucleosides by hydroxyl radicals and ferryl ions generated by the Fenton reaction

    International Nuclear Information System (INIS)

    Mouret, J.F.; Berger, M.; Anselmino, C.; Polverelli, M.; Cadet, J.

    1991-01-01

    A comparative study of the reaction of hydroxyl radicals and Fenton type oxidative species with DNA and 2'-deoxyribonucleosides was investigated. This study was based on the characterization of the diamagnetic products resulting from the chemical transformation of the transient radicals. Emphasis was placed on the radical oxidative reactions of the purine nucleosides. It is interesting to note that oxidative purine radicals can be reduced by reagents such as ascorbic acid or N,N,N',N'-tetramethyl-1, 4-p-phenylenediamine. The observed differences in the nature of the decomposition products resulting from the Fenton reaction are not consistent with the nature of the oxidative species (hydroxyl radicals or ferryl ions) involved, but due to the presence of ferrous sulfate [fr

  4. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    International Nuclear Information System (INIS)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-01-01

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t d,E ) and hydroxyl-radical oxidation half-lives (t ·OH,E ) in sunlit surface waters. The t d,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas t ·OH,E ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways

  5. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Siyu [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Ren, Honglei; Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t{sub d,E}) and hydroxyl-radical oxidation half-lives (t{sub ·OH,E}) in sunlit surface waters. The t{sub d,E} values range from 0.56 min to 28.8 min at 45° N latitude, whereas t{sub ·OH,E} ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways.

  6. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  7. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  8. DNA Binding Hydroxyl Radical Probes.

    Science.gov (United States)

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  9. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.

    Science.gov (United States)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.

  10. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    Science.gov (United States)

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Oxidation of alpha-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals

    International Nuclear Information System (INIS)

    Fukuzawa, K.; Gebicki, J.M.

    1983-01-01

    Rates of oxidation of alpha-tocopherol by the hydroxyl- and superoxide free radicals were measured. The radicals were produced in known yields by radiolysis of aqueous solutions with gamma rays. Two main systems were used to dissolve the tocopherol; micelles, made up from charged and uncharged amphiphiles, and membranes made from dimyristyl phosphatidylcholine which could be charged by addition of stearyl amine or dicetyl phosphate. The HO. radicals were efficient oxidants of alpha-tocopherol in all systems, with up to 83% of radicals generated in micelle and 32% in membrane suspensions initiating the oxidation. The HO 2 radical was an even more effective oxidant, but when most of it was in the O 2 form at neutral or alkaline pH, the oxidation rates became low. Tocopherol held in positively charged micelles or membranes was oxidized at a higher rate by the O 2 than in uncharged or negative particles. Possible biological significance of these results is discussed

  12. Hydroxyl radical induced degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Illés, Erzsébet, E-mail: erzsebet.illes@chem.u-szeged.hu [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary); Takács, Erzsébet [Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary); Dombi, András [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Gajda-Schrantz, Krisztina [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged (Hungary); EMPA, Laboratory for High Performance Ceramics, Duebendorf (Switzerland); Rácz, Gergely; Gonter, Katalin; Wojnárovits, László [Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-03-01

    Pulse radiolysis experiments were used to characterize the intermediates formed from ibuprofen during electron beam irradiation in a solution of 0.1 mmol dm{sup −3}. For end product characterization {sup 60}Co γ-irradiation was used and the samples were evaluated either by taking their UV–vis spectra or by HPLC with UV or MS detection. The reactions of {sup ·}OH resulted in hydroxycyclohexadienyl type radical intermediates. The intermediates produced in further reactions hydroxylated the derivatives of ibuprofen as final products. The hydrated electron attacked the carboxyl group. Ibuprofen degradation is more efficient under oxidative conditions than under reductive conditions. The ecotoxicity of the solution was monitored by Daphnia magna standard microbiotest and Vibrio fischeri luminescent bacteria test. The toxic effect of the aerated ibuprofen solution first increased upon irradiation indicating a higher toxicity of the first degradation products, then decreased with increasing absorbed dose. Highlights: ► In hydroxyl radical attack on the ring mainly hydroxylated products form ► The hydrated electron attacks the carboxyl group. ► Oxidative conditions are more effective in ibuprofen decomposition than reductive. ► Ecotoxicity of ibuprofen solution first increases then decreases with irradiation.

  13. Hydroxyl radical induced degradation of ibuprofen

    International Nuclear Information System (INIS)

    Illés, Erzsébet; Takács, Erzsébet; Dombi, András; Gajda-Schrantz, Krisztina; Rácz, Gergely; Gonter, Katalin; Wojnárovits, László

    2013-01-01

    Pulse radiolysis experiments were used to characterize the intermediates formed from ibuprofen during electron beam irradiation in a solution of 0.1 mmol dm −3 . For end product characterization 60 Co γ-irradiation was used and the samples were evaluated either by taking their UV–vis spectra or by HPLC with UV or MS detection. The reactions of · OH resulted in hydroxycyclohexadienyl type radical intermediates. The intermediates produced in further reactions hydroxylated the derivatives of ibuprofen as final products. The hydrated electron attacked the carboxyl group. Ibuprofen degradation is more efficient under oxidative conditions than under reductive conditions. The ecotoxicity of the solution was monitored by Daphnia magna standard microbiotest and Vibrio fischeri luminescent bacteria test. The toxic effect of the aerated ibuprofen solution first increased upon irradiation indicating a higher toxicity of the first degradation products, then decreased with increasing absorbed dose. Highlights: ► In hydroxyl radical attack on the ring mainly hydroxylated products form ► The hydrated electron attacks the carboxyl group. ► Oxidative conditions are more effective in ibuprofen decomposition than reductive. ► Ecotoxicity of ibuprofen solution first increases then decreases with irradiation

  14. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Cohn Corey A

    2008-02-01

    Full Text Available Abstract Background Reactive oxygen species including hydroxyl radicals can cause oxidative stress and mutations. Inhaled particulate matter can trigger formation of hydroxyl radicals, which have been implicated as one of the causes of particulate-induced lung disease. The extreme reactivity of hydroxyl radicals presents challenges to their detection and quantification. Here, three fluorescein derivatives [aminophenyl fluorescamine (APF, amplex ultrared, and dichlorofluorescein (DCFH] and two radical species, proxyl fluorescamine and tempo-9-ac have been compared for their usefulness to measure hydroxyl radicals generated in two different systems: a solution containing ferrous iron and a suspension of pyrite particles. Results APF, amplex ultrared, and DCFH react similarly to the presence of hydroxyl radicals. Proxyl fluorescamine and tempo-9-ac do not react with hydroxyl radicals directly, which reduces their sensitivity. Since both DCFH and amplex ultrared will react with reactive oxygen species other than hydroxyl radicals and another highly reactive species, peroxynitite, they lack specificity. Conclusion The most useful probe evaluated here for hydroxyl radicals formed from cell-free particle suspensions is APF due to its sensitivity and selectivity.

  15. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.

    Science.gov (United States)

    Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun

    2002-02-01

    Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues.

  16. Hydroxyl radical reactivity at the air-ice interface

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-01-01

    Full Text Available Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL that exists at air-ice interfaces.

  17. EPR detection of hydroxyl radical generation and its interaction with antioxidant system in Carassius auratus exposed to pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yi [Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, College of Environmental Sciences and Engineering, Nankai University, Tianjin 300071 (China); Wang Xiaorong, E-mail: yiyluo@gmail.com [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Ji Liangliang; Su Yan [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2009-11-15

    In the present study, direct evidence of hydroxyl radical production in livers of Carassius auratus exposed to pentachlorophenol (PCP) was provided using electron paramagnetic resonance (EPR) with spin-trapping. A dose-effect relationship was obtained between hydroxyl radical intensities and PCP exposure. It was observed that hydroxyl radical was significantly induced by 0.001 mg l{sup -1} (below the criteria for Chinese fishery water quality) of PCP exposure. A strong positive correlation (r = 0.9581, p < 0.001) was observed between PCP liver concentrations and hydroxyl radical intensities within 7 d of PCP exposure, which suggests that hydroxyl radical are mainly produced from PCP itself. However, no correlation was observed between PCP liver concentrations and hydroxyl radical intensities after 7 d, and a higher intensity of hydroxyl radical could still be observed when the PCP liver concentrations decreased to a lower level, which suggests that other mechanisms may possibly contribute to hydroxyl radical production after 7 d. The glutathione/oxidized glutathione (GSH/GSSG) ratio decreased below that of the control level during the entire period of PCP exposure (0.05 mg l{sup -1}), which suggested oxidative stress occurred.

  18. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  19. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Energy Technology Data Exchange (ETDEWEB)

    Wink, D A [National Cancer Inst., Frederick, MD (United States); Desrosiers, M F [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR{sub 2}{sup -}). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author).

  20. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    International Nuclear Information System (INIS)

    Wink, D.A.; Desrosiers, M.F.

    1991-01-01

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3.5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (BR 2 - ). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive inter-mediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented. (author)

  1. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    Science.gov (United States)

    Wink, David A.; Desrosiers, Marc F.

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.

  2. Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water.

    Directory of Open Access Journals (Sweden)

    Takayuki Mokudai

    Full Text Available BACKGROUND: Acid electrolyzed water (AEW, which is produced through the electrolysis of dilute sodium chloride (NaCl or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. CONCLUSIONS: It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.

  3. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  4. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics.

    Science.gov (United States)

    Li, Kai; Zhang, Peng; Ge, Linke; Ren, Honglei; Yu, Chunyan; Chen, Xiaoyang; Zhao, Yuanfeng

    2014-09-01

    Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    Science.gov (United States)

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.

  6. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    Science.gov (United States)

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  7. New fluorescent probes of the hydroxyl radical: characterisation and modelization of the reactivity of coumarin derivatives with HO

    International Nuclear Information System (INIS)

    Louit, G.

    2005-10-01

    The hydroxyl radical is involved in a wide range of different fields, from oxidative stress to atmospheric chemistry. In addition to the study of oxidative damage in biological media, the hydroxyl radical detection allows to perform a dosimetry when it is produced by ionising radiation. The aims of this work have been double: - to improve the detection of the hydroxyl radical by the design of new probes - to improve knowledge on the reactive pathways in which the hydroxyl radical is involved. We have studied the coumarin molecule, as well as 6 derivatives that we have synthesised, as fluorescent probes of the hydroxyl radical. Firstly, fluorescence spectroscopy and HPLC chromatography have allowed the evaluation of the sensibility and selectivity of detection of the probes. Consequently to this study, two applications have been developed, concerning the determination of rate constants by competition kinetics and bidimensional dosimetry. Secondly, we have studied the reactivity of the hydroxyl radical through the regioselectivity of its addition on the aromatic cycle. This problem was addressed by the combined use of experimental methods such as time resolved kinetics and HPLC along with interpretation from classical and ab initio modelization. (author)

  8. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  9. Formation of Hydroxylamine from Ammonia and Hydroxyl Radicals

    Science.gov (United States)

    Krim, Lahouari; Zins, Emilie-Laure

    2014-06-01

    In the interstellar medium, as well as in icy comets, ammonia may be a crucial species in the first step toward the formation of amino-acids and other prebiotic molecules such as hydroxylamine (NH2OH). It is worth to notice that the NH3/H2 ratio in the ISM is 3 10-5 compared the H2O/H2 one which is only 7 10-5. Using either electron-UV irradiations of water-ammonia ices or successive hydrogenation of solid nitric oxide, laboratory experiments have already shown the feasibility of reactions that may take place on the surface of ice grains in molecular clouds, and may lead to the formation of this precursor. Herein is proposed a new reaction pathway involving ammonia and hydroxyl radicals generated in a microwave discharge. Experimental studies, at 3 and 10 K, in solid phase as well as in neon matrix have shown that this reaction proceed via a hydrogen abstraction, leading to the formation of NH2 radical, that further recombine with hydroxyl radical to form hydroxylamine, under non-energetic conditions.

  10. Hydroxyl-radical-induced oxidation of cyclic dipeptides: Reactions of free peptide radicals and their peroxyl radicals

    International Nuclear Information System (INIS)

    Mieden, O.J.

    1989-01-01

    In the course of this study investigations were carried out into the reactions of hydroxyl radicals and hydrogen atoms with cyclic dipeptides as well as the subsequent reactions of peptide radicals and their peroxyl radicals in aqueous solution. The radiolysis products formed in the absence and presence of oxygen or transient metal complexes were characterized and determined on a quantitative basis. The linking of information from product analyses to the kinetic data for transient species obtained by time-resolving UV/VIS and conductivity measurements (pulse radiolysis) as well as computer-assisted simulations of individual events during the reaction permitted an evaluation of the mechanisms underlying the various processes and an identification of interim products with short life-times, which did or did not belong to the group of radicals. Through the characterization of key reactions of radicals and peroxyl radicals of this substance class a major advance has been made towards a better understanding of the role of radicals in the peptide compound and the mechanisms involved in indirect radiation effects on long-chain peptides and proteins. (orig.) [de

  11. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    Science.gov (United States)

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  12. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  13. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate.

    Science.gov (United States)

    Lutze, Holger V; Kerlin, Nils; Schmidt, Torsten C

    2015-04-01

    Sulfate radical (SO4(-)) based oxidation is discussed as a potential water treatment option and is already used in ground water remediation. However, the complex SO4(-) chemistry in various matrices is poorly understood. In that regard, the fast reaction of SO4(-) with Cl(-) is of high importance since Cl(-) belongs to the main constituents in aqueous environments. This reaction yields chlorine atoms (Cl) as primary products. Cl initiate a cascade of subsequent reactions with a pH dependent product pattern. At low pH ( 5 Cl mainly react with water yielding hydroxyl radicals. Thus, at moderate Cl(-) concentrations (mM range) the SO4(-)-based process may be converted into a conventional (hydroxyl radical -based) advanced oxidation process. The conversion of SO4(-) into OH, however, is interrupted in presence of bicarbonate by scavenging of Cl. Copyright © 2014. Published by Elsevier Ltd.

  14. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2011-01-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  15. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  16. One- or two-electron water oxidation, hydroxyl radical, or H_2O_2 evolution

    International Nuclear Information System (INIS)

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K.

    2017-01-01

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H_2O_2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O_2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H_2O_2, and O_2.

  17. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  18. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract

    DEFF Research Database (Denmark)

    Garner, B; Davies, Michael Jonathan; Truscott, R J

    2000-01-01

    Recent studies have identified specific hydroxylated amino acid oxidation products which strongly suggest the presence of hydroxyl radical (HO.)-damaged proteins in human cataractous lenses. In the present study, the ability of early stage (type II) and advanced (type IV) nuclear cataractous lens...

  19. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    Science.gov (United States)

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  20. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  1. Hydroxyl-radical induced dechlorination of pentachlorophenol in water

    International Nuclear Information System (INIS)

    He Yongke; Wu Jilan; Fang Xingwang; Sonntag, C. von

    1998-01-01

    The hydroxyl-radical induced dechlorination of pentachlorophenol (PCP) in water has been investigated pulse radiolytically. Hydroxyl radicals react with PCP by both electron transfer and addition. The former process results in pentachlorophenoxyl radicals (PCP-O), the latter process followed by rapid HCl elimination gives birth to deprotonated hydroxytetrachlorophenoxyl radicals ( - O-TCP-O). These phenoxyl radicals exhibit maximum absorption around 452 nm, which hinders the proper estimation of the ratio of the two processes. However, these two processes cause different changes in conductivity. In basic solution, the electron transfer causes a conductivity increase due to the formation of OH - whereas an addition followed by HCl elimination results in a conductivity decrease. The concurrence of these two processes reduces the relative variation in conductivity, from which about 53% electron transfer is deduced

  2. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    Science.gov (United States)

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  3. Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Kozak Jolanta

    2018-01-01

    Full Text Available The efficiency of the removal of selected PAHs from the pretreated coking wastewater with usage of CaO2, Fenton reagent (FeSO4 and UV rays are presented in this article. The investigations were carried out using coking wastewater originating from biological, industrial wastewater treatment plant. At the beginning of the experiment, the calcium peroxide (CaO2 powder as a source of hydroxyl radicals (OH• and Fenton reagent were added to the samples of wastewater. Then, the samples were exposed to UV rays for 360 s. The process was carried out at pH 3.5-3.8. After photo-oxidation process a decrease in the PAHs concentration was observed. The removal efficiency of selected hydrocarbons was in the ranged of 89-98%. The effectiveness of PAHs degradation was directly proportional to the calcium peroxide dose.

  4. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    Science.gov (United States)

    Waring, Michael S.; Wells, J. Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  5. Supercharging by m-NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting

    Science.gov (United States)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2015-08-01

    Hydroxyl radical protein footprinting (HRPF) is an MS-based technique for analyzing protein structure based on measuring the oxidation of amino acid side chains by hydroxyl radicals diffusing in solution. Spatial resolution of HRPF is limited by the smallest portion of the protein for which oxidation amounts can be accurately quantitated. Previous work has shown electron transfer dissociation (ETD) to be the most reliable method for quantifying the amount of oxidation of each amino acid side chain in a mixture of peptide oxidation isomers, but efficient ETD requires high peptide charge states, which limits its applicability for HRPF. Supercharging reagents have been used to enhance peptide charge state for ETD analysis, but previous work has shown supercharging reagents to enhance charge state differently for different peptides sequences; it is currently unknown if different oxidation isomers will experience different charge enhancement effects. Here, we report the effect of m-nitrobenzyl alcohol ( m-NBA) on the ETD-based quantification of peptide oxidation. The addition of m-NBA to both a defined mixture of synthetic isomeric oxidized peptides and Robo-1 protein subjected to HRPF increased the abundance of higher charge state ions, improving our ability to perform efficient ETD of the mixture. No differences in the reported quantitation by ETD were noted in the presence or absence of m-NBA, indicating that all oxidation isomers were charge-enhanced to a similar extent. These results indicate the utility of m-NBA for residue-level quantification of peptide oxidation in HRPF and other applications.

  6. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  7. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    Science.gov (United States)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  8. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  9. Evidence for radical-oxidation of plasma proteins in humans

    International Nuclear Information System (INIS)

    Wang, D.; Davies, M.; Dean, R.; Fu, S.; Taurins, A.; Sullivans, D.

    1998-01-01

    Oxidation of proteins by radicals has been implicated in many pathological processes. The hydroxyl radical is known to generate protein-bound hydroxylated derivatives of amino acids, for example hydroxyvaline (from Val), hydroxyleucine (from Leu), o-tyrosine (from Phe), and DOPA (from Tyr). In this study, we have investigated the occurrence of these oxidised amino acids in human plasma proteins from both normal subjects and dialysis patients. By employing previously established HPLC methods [Fu et al. Biochemical Journal, 330, 233-239, 1998], we have found that oxidised amino acids exist in normal human plasma proteins (n=32). The level of these oxidised amino acids is not correlated to age. Similar levels of oxidised amino acids are found in the plasma proteins of the dialysis patients (n=6), but a more detailed survey is underway. The relative abundance of the oxidised amino acids is similar to that resulting from oxidation of BSA by hydroxy radicals or Fenton systems [Fu et al. Biochemical Journal, 333, 519-525, 1998]. The results suggest that metal-ion catalysed oxyl-radical chemistry may be a key contributor to the oxidative damage in plasma proteins in vivo in humans

  10. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    Science.gov (United States)

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  11. The Synthesis and Evaluation of Novel Hydroxyl Substituted Chalcone Analogs with in Vitro Anti-Free Radicals Pharmacological Activity and in Vivo Anti-Oxidation Activity in a Free Radical-Injury Alzheimer’s Model

    Directory of Open Access Journals (Sweden)

    Ying Pan

    2013-01-01

    Full Text Available Alzheimer’s disease (AD pathogenesis involves an imbalance between free radical formation and destruction. In order to obtain a novel preclinical anti-AD drug candidate, we synthesized a series of novel hydroxyl chalcone analogs which possessed anti-free radical activity, and screened their effects on scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH and OH free radicals in vitro. Compound C7, 4,2'-dihydroxy-3,5-dimethoxychalcone was found to have potent activity in these anti-free radical activity tests. Further research revealed that C7 could elevate glutathione peroxidase (GSH-PX and super oxide dismutase (SOD levels and lower malonaldehyde (MDA level in vivo in the Alzheimer’s model. The indication of C7’s effect on AD needs further study.

  12. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  13. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  14. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  15. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Directory of Open Access Journals (Sweden)

    I. J. George

    2007-08-01

    Full Text Available The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl sebacate (BES particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS and scanning mobility particle sizer (SMPS was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4, confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  16. Electron spin resonance of spin-trapped radicals of amines and polyamines. Hydroxyl radical reactions in aqueous solutions and. gamma. radiolysis in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mossoba, M.M.; Rosenthal, I.; Riesz, P. (National Cancer Inst., Bethesda, MD (USA))

    1982-06-15

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H/sub 2/O/sub 2/ and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ..gamma..-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the ..cap alpha..-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H/sub 2/O/sub 2/ in the dark. ..gamma..-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the ..cap alpha..-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine.

  17. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  18. Electrochemical behavior of free-radical derivatives of tetra(4hydroxyl-3,5-di-tert-butylphenyl) porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Pokhodenko, V.D.; Melezhik, A.V.; Platonova, E.P.; Vovk, D.N.

    1984-08-01

    The electrochemical behavior of free-radical derivatives of tetra(4hydroxyl-3,5-di-tert-butylphenyl) porphyrins and their complexes with Mg(II), Zn(II), Ni(II), CU(II), and Pd(II) ions was studied by the methods of voltamperometry, ESR, and spectrophotometry. It was shown that the introduction of free-radical substituents into the porphin macrocycle leads to a substantial decrease in the oxidation and reduction potentials of the complexes. The degree of conjunction of substituents with the porphin macrocycle is estimated according to the difference of the redox potentials of free-radical and quinoid derivatives of metalloporphyrins.

  19. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  20. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    Science.gov (United States)

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  2. Progress modelling of aqueous electrons and hydroxyl radicals in RAIM code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Yeong; Kim, Han-Chul; Lee, Jongseong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, the RAIM code was revised minutely with regards to aqueous electrons and hydroxyl radicals, and simulated the P10T2 test. The recent study indicated that the RAIM had the potential for improvement of simulating the iodine behavior influenced by water radiolysis products such as aqueous electrons and hydroxyl radicals. In the existing RAIM modelling, it was considered that aqueous electrons only interacted with oxygen as a consumption reaction, but the reaction with hydrogen peroxide also could be major contributor to the iodine behavior as well as the consumption reaction of aqueous electrons. In case of hydroxyl radicals, RAIM took no notice of the pH impact. In other words, it dealt with the consumption reaction constants but not as a variable of pH. In this communication, the procedures to develop the model related to aqueous electrons and hydroxyl radicals in RAIM will be addressed. And the upgraded RAIM (RAIM-1, 2, 3) codes were applied to OECD-BIP P10T2 test which showed the effect of pH on the iodine behavior and compared with the existing RAIM1.8.3 code. Comparing with the existing RAIM, the improvement reduced the difference about 10%. However, the absolute difference values that is about one order at pH 10 could not be reduced by this approach.

  3. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    Science.gov (United States)

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  4. Novel denture-cleaning system based on hydroxyl radical disinfection.

    Science.gov (United States)

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  5. Radical decomposition of 2,4-dinitrotoluene (DNT at conditions of advanced oxidation. Computational study

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2016-12-01

    Full Text Available At the present time one of the main remediation technologies for such environmental pollutant as 2,4-dinitrotoluene (DNT is advanced oxidation processes (AOPs. Since hydroxyl radical is the most common active species for AOPs, in particular for Fenton oxidation, the study modeled mechanism of interaction between DNT and hydroxyl radical at SMD(Pauling/M06-2X/6-31+G(d,p level. Computed results allow to suggest the most energetically favourable pathway for the process. DNT decomposition consists of sequential hydrogen abstractions and hydroxyl attachments passing through 2,4-dinitrobenzyl alcohol, 2,4-dinitrobenzaldehyde, and 2,4-dinitrobenzoic acid. Further replacement of nitro- and carboxyl groups by hydroxyl leads to 2,4-dihydroxybenzoic acid and 2,4-dinitrophenol, respectively. Reaction intermediates and products are experimentally confirmed. Mostly of reaction steps have low energy barriers, some steps are diffusion controlled. The whole process is highly exothermic.

  6. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  7. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  8. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  9. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  10. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  11. Measurements of hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets

    Science.gov (United States)

    Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Michoud, V.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; de Gouw, J. A.; Roberts, J.; Young, C.; Washenfelder, R.; Brown, S. S.; Thalman, R.; Waxman, E.; Volkamer, R.; Tsai, C.; Stutz, J.; Flynn, J. H.; Grossberg, N.; Lefer, B.; Alvarez, S. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.; Stevens, P. S.

    2016-04-01

    Measurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends.

  12. SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Strack, G; Sajo, E [University of Massachusetts Lowell, Lowell, MA (United States)

    2016-06-15

    Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCA and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.

  13. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  14. Formation of 5,6-dihydroxydihydrothymine-type products in DNA by hydroxyl radicals

    International Nuclear Information System (INIS)

    Remsen, J.F.; Roti, J.L.R.

    1977-01-01

    The purpose of the study is to determine whether 5,6-dihydroxydihydrothymine type products in purified DNA and in intact cells results from direct or indirect action and, if indirect, which radical species is primarily responsible. It is concluded that hydroxyl radical is primarily responsible. (U.K.)

  15. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  16. Hydroxyl radical scavenging activity of peptide from sea cucumber ...

    African Journals Online (AJOL)

    enzyme complex, sea cucumber protein hydrolysis was carried out to obtain hydrolysates that have hydroxyl-radical-scavenging activity (HRSA). The hydrolytic process was monitored by HRSA and conditions for this process were optimized as follows: pH 6.5, temperature 35°C, 12 mg enzyme complex in a reaction solution ...

  17. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    International Nuclear Information System (INIS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-01-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4–47.2 kJ mol −1 ) are low and also the Gibbs free energies have high negative values ((−27.4) to (−5.9) kJ mol −1 ). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate. - Highlights: • Attack of • OH to aniline, phenol, fenuron, monuron, diuron was studied by DFT. • Ortho-para directing is suggested with –NH 2 , –OH and –NHCON(CH 3 ) 2 groups. • • OH addition to the ring gives hydroxycyclohexadienyl radical. • Attack at C-Cl leads to • OH/Cl substitution without cyclohexadienyl intermediate.

  18. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    International Nuclear Information System (INIS)

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F.; Jha, Awadhesh N.

    2008-01-01

    TiO 2 nanoparticles ( 2 nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO 2 alone (0.1-1000 μg ml -1 ) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m -2 ) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO 2 and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 μg ml -1 in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO 2 . UVA irradiation of TiO 2 -treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO 2 were most likely due to hydroxyl radical (·OH) formation

  19. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  20. Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide

    Science.gov (United States)

    Zhao, He; Wang, Juehua; Zhang, Di; Dai, Qin; Han, Qingzhen; Du, Penghui; Liu, Chenming; Xie, Yongbing; Zhang, Yi; Cao, Hongbin; Fan, Zhuangjun

    2017-03-01

    Carbon-based metal-free catalyst has attracted more and more attention. It is a big challenge to improve catalytic activity of metal-free catalyst for decomposition of H2O2 to produce hydroxyl radical (HO•). Here, we report chloro-benquinone (TCBQ) modified on graphene oxide (GO) as metal-free catalyst for strong promotion of HO•. By the incorporation of GO, the HO• production by H2O2 and TCBQ is significantly promoted. Based on density functional theory, TCBQ modified GO (GO-TCBQ) is more prone to be nucleophilic attacked by H2O2 to yield HO• via electron transfer acceleration. Furthermore, the generated HO• can cut GO nanosheets into uniform ultra-small graphene oxide (USGO) through the cleavage of epoxy and C-C bonds. Interestingly, the damaged GO and in situ formed GO fragments can further enhance decomposition of H2O2 to produce HO•. Different from other catalytic processes, the GO-TCBQ metal-free catalysis process can be enhanced by GO itself, producing more HO•, and uniform USGO also can be generated. Thus, the metal free catalysis will be considered a fabrication method for uniform USGO, and may be extended to other fields including detoxifying organic pollutants and the application as disinfectants.

  1. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  2. Involvement of hydroxyl radicals in the release by ionizing radiation of a cell surface nuclease from Micorcoccus radiodurans

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1975-01-01

    The ionizing radiation-induced release of a surface exonuclease from Micrococcus radiodurans is to a large extent inhibited by the removal of water. Irradiation of a cell suspension saturated with O 2 (an effective aqueous electron and hydrogen atom scavenger) allows the same release as irradiation in the presence of N 2 . Ethanol (a good hydroxyl radical scavenger) protects the enzyme from release. These data suggest that hydroxyl radicals produced by the radiolysis of water are important releasing agents. Hydroxyl radicals produced by the ultraviolet decomposition of H 2 O 2 were effective in releasing the enzyme

  3. Urocanic acid isomers are good hydroxyl radical scavengers: a comparative study with structural analogues and with uric acid

    NARCIS (Netherlands)

    Kammeyer, A.; Eggelte, T. A.; Bos, J. D.; Teunissen, M. B.

    1999-01-01

    UV-exposure of the epidermis leads to the isomerisation of trans-UCA into cis-UCA as well as to the generation of hydroxyl radicals. This study shows by means of the deoxyribose degradation test that UCA isomers are more powerful hydroxyl radical scavengers than the other 4-(5-)substituted imidazole

  4. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    Science.gov (United States)

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  5. Activity of Oligoresveratrols from Stem Bark of Hopea mengarawan (Dipterocarpaceae as Hydroxyl Radical Scavenger

    Directory of Open Access Journals (Sweden)

    SRI ATUN

    2006-06-01

    Full Text Available Four oligoresveratrols ranging from dimer to tetramer, isolated from stem bark of Hopea mengarawan (Dipterocarpaceae plants were tested for their activity as hydroxyl radical scavenger. The activity of these compounds was evaluated against the 2-deoxyribose degradation induced by the hydroxyl radical generated via a Fenton-type reaction. Result showed that balanocarpol, heimiol A, vaticanol G, and vaticanol B had IC50 3.83; 15.44; 2.01; and 4.71 µM, respectively. These results suggest that oligoresveratrols from stem bark of H. mengarawan maybe useful as potential sources of natural antioxidants.

  6. A new method for measuring scavenging activity of antioxidants to the hydroxyl radical formed by gamma-irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Hiroe; Ohashi, Yasunori

    2000-01-01

    A new method using ESR spin trapping was proposed for measuring scavenging activity of antioxidants to the hydroxyl (OH) radical. (-)-epigallocatechin gallate (EGCg) and 5,5-dimethyl-l-pyrroline N-oxide (DMPO) were used as an antioxidant and a spin trapping agent, respectively. Conventional method using a Fenton reaction had some defects on the estimation of the activity, because antioxidant disturbed the generating system of OH radical besides it scavenged the spin adduct (DMPO-OH). This method used intense γ-irradiation as OH radical generating system, and the intensity decrease of DMPO-OH after the end of the irradiation was followed to obtain the rate constant of the scavenging of DMPO-OH with EGCg and to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful to compare precisely the OH radical scavenging activity of various antioxidants. (author)

  7. Determining the local origin of hydroxyl radical generation during phacoemulsification.

    Science.gov (United States)

    Aust, Steven D; Terry, Scott; Hebdon, Thomas; Gunderson, Broc; Terry, Michael; Dimalanta, Ramon

    2011-06-01

    To determine the local origin of hydroxyl radicals during phacoemulsification using an ultrasonic phacoemulsification device that includes longitudinal and torsional modalities. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were conducted using the Infiniti Vision System and Ozil handpiece. Hydroxyl radical concentrations during longitudinal and torsional phacoemulsification were quantitated as malondialdehyde (MDA) determined spectrophotometrically using the deoxyribose assay. The difference between the total concentration found in the aspirated solution at steady-state concentrations and the pre-aspirate levels deductively determined the concentration of MDA formed along the interior of the sonicating tip. The time to reach 50% of steady state as a function of reaction vessel volume was determined. The mean maximum for torsional ultrasound at 100% amplitude was 7.70 nM ± 0.38 (SD), 91.1% of which was generated outside the tip. During longitudinal ultrasound at 100% power, MDA concentration in the aspirated solution was 29.5 ± 0.3 nM, 71.6% of which was generated outside the tip. The time (seconds) to reach 50% of maximum for longitudinal ultrasound using 5 mL, 10 mL, and 20 mL reaction vessels was 12.6 ± 1.5, 21.0 ± 1.5, and 25.3 ± 3.4, respectively. Although a significantly greater proportion of the hydroxyl radicals generated during ultrasound modality were formed outside the phaco tip (91.1% torsional; 71.6% longitudinal), torsional ultrasound generated only about one-fourth the amount of MDA as longitudinal ultrasound in total and about one-third that generated outside the tip (7.02 nM versus 21.1 nM). No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Oxidative degradation of lignin by photochemical and chemical radical generating systems

    International Nuclear Information System (INIS)

    Gold, M.H.; Kutsuki, H.; Morgan, M.A.

    1983-01-01

    Oxidation of specifically radiolabeled 14 C-lignins by UV/H 2 O 2 , Fenton's reagent, photosensitizing riboflavin, UV- and γ-irradiation was examined. In the presence of UV/H 2 O 2 , a hydroxyl radical (radicalOH) generating system, 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin were rapidly and extensively degraded as measured by gel filtration of the reaction products on Sephadex LH-20. This suggested that exposure to radicalOH leads to rapid, nonspecific lignin degradation. Rapid degradation of 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin also occurred in the presence of the radicalOH generating system, Fenton's reagent, confirming the primary role of radicalOH in these reactions. Photosensitizing riboflavin, also capable of effecting transformation of organic compounds via Type I hydrogen radical abstractions, caused extensive oxidative degradation of 14 C-methoxy labeled lignin and significant degradation of 2-[ 14 C-sidechain] and 14 C-ring labeled lignin. In addition, UV- and γ-irradiation caused slower but extensive degradation of the polymers, probably via radical type mechanisms. All of these results indicate that radicalOH as well as organic radical generating systems are effective agents for the purpose of degrading this heterogeneous, optically inactive and random biopolymer. (author)

  9. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Zhu, Hong; Jia, Zhenquan [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Li, Jianrong [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Misra, Hara P. [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Zhou, Kequan, E-mail: kzhou@wayne.edu [Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202 (United States); Li, Yunbo, E-mail: yli@vcom.vt.edu [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States)

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  10. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    International Nuclear Information System (INIS)

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  11. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  12. Oxidative damage to fibronectin. 2. The effect of H2O2 and the hydroxyl radical

    International Nuclear Information System (INIS)

    Vissers, M.C.; Winterbourn, C.C.

    1991-01-01

    The effect of H2O2 and the hydroxyl radical (.OH) on fibronectin was investigated. .OH was generated in three ways: (1) by radiolysis with 60Co under N2O, or by the Fenton system using either (2) equimolar Fe(2+)-EDTA and H2O2 or (3) H2O2 and catalytic amounts of Fe(2+)-EDTA recycled with ascorbate. Each system had a different effect. H2O2 alone caused no changes, even at an 800-fold molar excess. Radiolytic .OH caused a rapid loss of tryptophan fluorescence, an increase in bityrosine fluorescence, and extensive crosslinking. The Fenton system using Fe-EDTA, H2O2, and ascorbate caused a loss in tryptophan fluorescence, a smaller increase in bityrosine than was seen with radiolytic .OH, and a threefold increase in carbonyl groups. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis fragmentation of fibronectin was seen. In contrast, when .OH was generated with equimolar Fe-EDTA and H2O2, the only change was a small increase in bityrosine fluorescence at the highest dose of oxidant. None of the systems used affected cysteine. All the changes except the loss of tryptophan by radiolytic .OH were completely inhibited with mannitol. The differences seen with radiolytic .OH and the Fe-EDTA, H2O2, ascorbate system were not solely due to O2 in the latter system since similar results were obtained under N2. The differences between radiolytic .OH and the Fenton systems could be partly due to the components of the latter systems reacting with .OH and thus competing with fibronectin. The authors results demonstrate that the extent and type of fibronectin damage by .OH is dependent on the mode of radical generation

  13. Immuno-chemistry of hydroxyl radical modified GAD-65: A possible role in experimental and human diabetes mellitus.

    Science.gov (United States)

    Moinuddin; Ansari, Nadeem A; Shahab, Uzma; Habeeb, Safia; Ahmad, Saheem

    2015-10-01

    The repertoire of known auto-antigens is limited to a very small proportion of all human proteins, and the reason why only some proteins become auto-antigens is unclear. The 65 kDa isoform of the enzyme glutamic acid decarboxylase (GAD-65) is a major auto-antigen in type I diabetes, and in various neurological diseases. Most patients with type I diabetes (70-80%) have auto-antibodies against GAD-65, which often appear years before clinical onset of the autoimmune diabetes. Thus, the aim of the study is to focus on the immunogenicity of GAD65 and its reactive oxygen species (ROS) conformer in STZ-induced diabetic rats and on human diabetic patients. In the present study, GAD-65 was modified by hydroxyl radical following Fenton's reaction. The modifications in the structure of the GAD-65 are supported by UV-vis and fluorescence spectral studies. Immunogenicity of both native and hydroxyl radical modified GAD-65 (ROS-GAD-65) was studied in experimental rabbits and was confirmed by inducing type I diabetes in experimental male albino rats using streptozotocin (45 mg/kg). We found that ROS-GAD-65 was a better immunogen as compared to the native GAD-65. A considerable high binding to ROS-GAD-65 was observed as compared to native GAD-65 in both the serum antibodies from diabetes animal models and as well as in the serum samples of type I diabetes. Hydrogen peroxide under the exposure of UV light produces hydroxyl radical (·OH) which is most potent oxidant, and could cause protein damage (GAD-65) to the extent of generating neo-epitopes on the molecule, thus making it immunogenic. © 2015 International Union of Biochemistry and Molecular Biology.

  14. EPR detection of hydroxyl radical generation and oxidative perturbations in lead-exposed earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether.

    Science.gov (United States)

    Liu, Kou; Chen, Lin; Zhang, Wei; Lin, Kuangfei; Zhao, Li

    2015-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg(-1)) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg(-1)). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms.

  15. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available A systematic study of the antioxidation mechanisms behind hydroxyl (•OH and hydroperoxyl (•OOH radical scavenging activity of piceatannol (PIC and isorhapontigenin (ISO was carried out using density functional theory (DFT method. Two reaction mechanisms, abstraction (ABS and radical adduct formation (RAF, were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB are considerable in determining the antioxidant activity of PIC and ISO.

  16. Hydroxyl and Hydroperoxy Radical Chemistry during the MCMA-2006 Field Campaign: Measurement and Model Comparison

    Science.gov (United States)

    Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.

    2007-12-01

    The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.

  17. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  18. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Balchen, T

    1994-01-01

    Systemic administration of salicylate (SA) to rats (100 mg kg-1 i.p. ) was used as an in vivo trap of hydroxyl radicals (.OH). In the brain SA reacts with hydroxyl radicals to form the stable adducts 2, 3- and 2,5 dihydroxybenzoic acid (DHBAs) which can thus be taken as an index of .OH formation...

  19. Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting

    OpenAIRE

    Wang, Liwen; Chance, Mark R.

    2011-01-01

    Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described.

  20. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N2O-saturated buffers

    International Nuclear Information System (INIS)

    Krokosz, Anita; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia

    2008-01-01

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N 2 O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes

  1. Study of the hydroxyl radical: Experimental advances in microwave spectroscopy, theoretical model and astrophysical consequences

    International Nuclear Information System (INIS)

    Destombes, Jean-Luc

    1978-01-01

    This research thesis mainly addresses the experimental and theoretical study of the hydroxyl radical, and the consequences of the obtained results in astrophysics which are studied with a model of pumping by the far infrared. After a recall of notions related to microwave spectroscopy and to molecular radio-astronomy, the author more particularly discusses different aspects of microwave spectroscopy in the interstellar environment and in laboratory. He also reviews different types of spectrometers for unsteady molecules. In the second part, he addresses issues related to the hydroxyl radical (OH): presentation of spectrometers, study of the reaction environment, study of the radical microwave spectrum, identification of transitions by frequency measurements. In the last parts, the author addresses some aspects of interstellar OH masers, and reports the application of some results to simple models of pumping by the far infra red

  2. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity

    Science.gov (United States)

    Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi

    2018-03-01

    Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.

  3. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  4. Hydroxyl free radical production during torsional phacoemulsification.

    Science.gov (United States)

    Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon

    2010-12-01

    To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Scattering of State-Selected and Oriented Hydroxyl Radicals by Halogen Hydrides and Xenon

    NARCIS (Netherlands)

    Moise, A.V.

    2007-01-01

    The interaction of the OH radical with atoms and other molecules is relevant for many physical and chemical processes involved in atmospheric, combustion and interstellar chemistry. Various experimental and theoretical studies have revealed information concerning the interaction of the hydroxyl

  6. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water

    International Nuclear Information System (INIS)

    Hayon, E.; Rao, P.S.

    1975-01-01

    The one-electron oxidation by hydroxyl radicals of aromatic amines and diamines in water was studied using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The following compounds were examined: N,N,N 1 ,N 1 - tetramethyl-p-phenylenediamine (TMPD), p-phenylenediamine (PD), N,N-dimethyl-p-phenylenediamene (DMPD), N,N,N 1 ,N 1 -tetramethylbenzidine (TMB), and diphenylamine (DPA). The main initial reaction of the OH radicals is suggested to be an addition to these compounds to give absorption spectra which absorb strongly in the visible and uv regions. These OH radical adducts decay by first-order kinetics and have lifetimes of approximately 5-50 μsec, dependent on the pH, buffer concentration, and the nature of the aromatic amines and diamines. They decay to give species with somewhat similar absorption spectra and extinction coefficients, which are very long lived in the absence of oxygen. The latter species are assigned to the cation radicals TMPD. + , PD. + , DMPD. + , TMB. + , and DPA. + . The OH radical adducts and the cation radicals have acid-base properties. The pK/sub a/ values of the cation radicals TMPDH. 2+ , PDH. 2+ , DMPDH. 2+ , TMBH. 2+ , and DPAH. 2+ were found to be 5.3, 5.9, 6.1, 5.1, and 4.2, respectively. The results indicate that these aromatic amines and diamines can be oxidized by free radicals to yield the corresponding cation radicals. (U.S.)

  7. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.

    OpenAIRE

    Heyduk, T; Heyduk, E; Severinov, K; Tang, H; Ebright, R H

    1996-01-01

    Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta ...

  8. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N{sub 2}O-saturated buffers

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)], E-mail: krokosz@biol.uni.lodz.pl; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)

    2008-06-15

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N{sub 2}O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes.

  9. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation

    DEFF Research Database (Denmark)

    Brochmann, Rikke Prejh; Toft, Anders; Ciofu, Oana

    2014-01-01

    The bactericidal effect of several major types of antibiotics has recently been demonstrated to be dependent on the formation of toxic amounts of hydroxyl radicals (OH·) resulting from oxidative stress in metabolically active cells. Since killing by the antimicrobial peptide colistin does...... not require bacterial metabolic activity, we tested whether the bactericidal effect of colistin depends on the formation of OH·. In Pseudomonas aeruginosa cultures, OH-mediated killing by ciprofloxacin was demonstrated by decreased bacterial survival and induction of 3'-(p-hydroxyphenyl) fluorescein (HPF......) fluorescence. OH·-mediated killing by ciprofloxacin was further confirmed by rescue of cells and reduction of HPF fluorescence due to prevention of OH· accumulation by scavenging with thiourea, by chelating with dipyridyl, by decreasing metabolism as well as by anoxic growth. In contrast, no formation of OH...

  10. Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals.

    Science.gov (United States)

    Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut

    2013-04-07

    Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.

  11. Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.

    Science.gov (United States)

    Henderson, Giles; And Others

    1982-01-01

    Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)

  12. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast

    International Nuclear Information System (INIS)

    Teixeira, Miguel C.; Telo, Joao P.; Duarte, Nuno F.; Sa-Correia, Isabel

    2004-01-01

    The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Δsod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p

  13. Modelling On Photogeneration Of Hydroxyl Radical In Surface Waters And Its Reactivity Towards Pharmaceutical Wastes

    International Nuclear Information System (INIS)

    Das, Radha; Vione, Davide; Rubertelli, Francesca; Maurino, Valter; Minero, Claudio; Barbati, Stephane; Chiron, Serge

    2010-01-01

    This paper reports a simple model to describe the formation and reactivity of hydroxyl radicals in the whole column of freshwater lakes. It is based on empirical irradiation data and is a function of the water chemical composition (the photochemically significant parameters NPOC, nitrate, nitrite, carbonate and bicarbonate), the lake conformation best expressed as the average depth, and the water absorption spectrum in a simplified Lambert-Beer approach. The purpose is to derive the lifetime of dissolved molecules, due to reaction with OH, on the basis of their second-order rate constants with the hydroxyl radical. The model was applied to two compounds of pharmaceutical wastes ibuprofen and carbamazepine, for which the second-order rate constants for reaction with the hydroxyl radical were measured by means of the competition kinetics with 2-propanol. The measured values of the rate constants are 1.0x10 10 and 1.6x10 10 M -1 s -1 for ibuprofen and carbamazepine, respectively. The model suggests that the lifetime of a given compound can be very variable in different lakes, even more than the lifetime of different compounds in the same lake. It can be concluded that as far as the reaction with OH, is concerned the concepts of photolability and photostability, traditionally attached to definite compounds, are ecosystem-dependent at least as much as they depend on the molecule under consideration.

  14. Characterisation of an inlet pre-injector laser induced fluorescence instrument for the measurement of ambient hydroxyl radicals

    Science.gov (United States)

    Novelli, A.; Hens, K.; Tatum Ernest, C.; Kubistin, D.; Regelin, E.; Elste, T.; Plass-Dülmer, C.; Martinez, M.; Lelieveld, J.; Harder, H.

    2014-01-01

    Ambient measurements of hydroxyl radicals (OH) are challenging due to a high reactivity and consequently low concentration. The importance of OH as an atmospheric oxidant has resulted in a sustained effort leading to the development of a number of analytical techniques. Recent work has indicated that the laser-induced fluorescence of the OH molecules method based on the fluorescence assay by gas expansion technique (LIF-FAGE) for the measurement of atmospheric OH in some environments may be influenced by artificial OH generated within the instrument, and a chemical method to remove this interference was implemented in a LIF-FAGE system by Mao et al. (2012). We have applied this method to our LIF-FAGE HORUS (HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy) system, and developed and deployed an inlet pre-injector (IPI) to determine the chemical zero level in the instrument via scavenging the ambient OH radical. We describe and characterise this technique in addition to its application at field sites in forested locations in Finland, Spain, and Germany. Ambient measurements show that OH generated within the HORUS instrument is a non-negligible fraction of the total OH signal, which can comprise 30% to 80% during the day and 60% to 100% during the night. The contribution of the background OH varied greatly between measurement sites and was likely related to the type and concentration of volatile organic compounds (VOCs) present at each particular location. Two inter-comparisons in contrasting environments between the HORUS instrument and two different chemical ionisation mass spectrometers (CIMS) are described to demonstrate the efficacy of the inlet-pre-injector and the necessity of the chemical zeroing method in such environments.

  15. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Kyung; Zoh, Kyung-Duk, E-mail: zohkd@snu.ac.kr

    2013-04-01

    Photo-decomposition of methylmercury (MeHg) in surface water is thought to be an important process that reduces the bioavailability of mercury (Hg) to aquatic organisms. In this study, photo-initiated decomposition of MeHg was investigated under UVA irradiation in the presence of natural water constituents including NO{sub 3}{sup −}, Fe{sup 3+}, and HCO{sub 3}{sup −} ions, and dissolved organic matter such as humic and fulvic acid. MeHg degradation followed the pseudo-first-order kinetics; the rate constant increased with increasing UVA intensity (0.3 to 3.0 mW cm{sup −2}). In the presence of NO{sub 3}{sup −}, Fe{sup 3+}, and fulvic acid, the decomposition rate of MeHg increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO{sub 3}{sup −} ions lowered the degradation rate through a radical scavenging effect. Increasing the pH of the solution increased the degradation rate constant by enhancing the generation of hydroxyl radicals. Hydroxyl radicals play an important role in the photo-decomposition of MeHg in water, and natural constituents in water can affect the photo-decomposition of MeHg by changing radical production and inhibition. - Highlights: ► The abiotic photodecomposition of methylmercury (MeHg) in water was examined. ► UVA light is a primary factor inducing MeHg photodecomposition in water. ► Fulvic acid, NO{sub 3}{sup −}, and Fe{sup 3+} ion increased MeHg photo-decomposition rate significantly. ► Humic acid and HCO{sub 3}{sup −} ions inhibited photodecomposition through radical scavenging. ► OH radical is an important compound affecting photodecomposition of MeHg in water.

  16. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    , for which the FRAP (ferric reducing antioxidant potency) test is basically nonresponsive. The additivity of absorbances of all the tested antioxidants confirmed that antioxidants in the CUPRAC test do not chemically interact among each other so as to cause an intensification or quenching of the theoretically expected absorbance, and that a total antioxidant capacity (TAC) assay of serum is possible. As a distinct advantage over other electron-transfer based assays (e.g., Folin, FRAP, ABTS, DPPH), CUPRAC is superior in regard to its realistic pH close to the physiological pH, favorable redox potential, accessibility and stability of reagents, and applicability to lipophilic antioxidants as well as hydrophilic ones. The CUPRAC procedure can also assay hydroxyl radicals, being the most reactive oxygen species (ROS). As a more convenient, efficient, and less costly alternative to HPLC/electrochemical detection techniques and to the nonspecific, low-yield TBARS test, we use p-aminobenzoate, 2,4- and 3,5-dimethoxybenzoate probes for detecting hydroxyl radicals generated from an equivalent mixture of [Fe(II)+EDTA] with hydrogen peroxide. The produced hydroxyl radicals attack both the probe and the water-soluble antioxidants in 37 degrees C-incubated solutions for 2 h. The CUPRAC absorbance of the ethylacetate extract due to the reduction of Cu(II)-neocuproine reagent by the hydroxylated probe decreases in the presence of (.)OH scavengers, the difference being proportional to the scavenging ability of the tested compound. The developed method is less lengthy, more specific, and of a higher yield than the classical TBARS assay.

  17. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures

    DEFF Research Database (Denmark)

    Hickel, B.; Sehested, K.

    1992-01-01

    The reaction of hydroxyl radical with ammonia in aqueous solutions has been studied by pulse radiolysis in the temperature range 20-200-degrees-C. The rate constant of the reaction was determined by monitoring the decay of the OH radical absorption at 260 nm for different concentrations of ammonia....... At room temperature the rate constant is (9.7 +/- 1) x 10(7) dm3 mol-1 s-1. In the whole range of temperatures the Tate constant follows Arrhenius law with an activation energy of (5.7 +/- 1) kJ mol-1. The protective effect of dissolved hydrogen on the radiolytic decomposition of ammon a is discussed....

  18. Hydroxyl radicals ({center_dot}OH) are associated with titanium dioxide (TiO{sub 2}) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2008-04-02

    TiO{sub 2} nanoparticles (<100 nm diameter) have been reported to cause oxidative stress related effects, including inflammation, cytotoxicity and genomic instability, either alone or in the presence of UVA irradiation in mammalian studies. Despite the fact that the aquatic environment is often the ultimate recipient of all contaminants there is a paucity of data pertaining to the potential detrimental effects of nanoparticles on aquatic organisms. Therefore, these investigations aimed to evaluate the potential cytotoxic and genotoxic effects of TiO{sub 2} nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO{sub 2} alone (0.1-1000 {mu}g ml{sup -1}) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m{sup -2}) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO{sub 2} and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 {mu}g ml{sup -1} in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO{sub 2}. UVA irradiation of TiO{sub 2}-treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO{sub 2} were most likely due to hydroxyl radical ({center_dot}OH) formation.

  19. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Ikuo; Takahashi, Hitoshi (Kumamoto Univ. Medical School (Japan). Inst. for Medical Immunology)

    1992-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H{sub 2}O{sub 2})-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H{sub 2}O{sub 2}-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCl) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo(2,2,2)octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H{sub 2}O{sub 2}-chloride, MPO-H{sub 2}O{sub 2}-iodide and LPO-H{sub 2}O{sub 2}-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D{sub 2}O) medium better than that in H{sub 2}O medium. The D{sub 2}O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg. (orig.).

  20. DNA radiolysis in DNA-protein complex: a stochastic simulation of attack by hydroxyl radicals

    Czech Academy of Sciences Publication Activity Database

    Běgusová, Marie; Giliberto, S.; Gras, J.; Sy, D.; Charlier, M.; Spotheim Maurizot, M.

    2003-01-01

    Roč. 79, č. 6 (2003), s. 385-391 ISSN 0955-3002 R&D Projects: GA AV ČR IAA1048103 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiolysis * DNA-protein complexes * hydroxyl radicals Subject RIV: BO - Biophysics Impact factor: 2.165, year: 2003

  1. New model system for testing effects of flavonoids on doxorubicin-related formation of hydroxyl radicals

    Czech Academy of Sciences Publication Activity Database

    Souček, P.; Kondrová, E.; Heřmánek, J.; Stopka, Pavel; Boumendjel, A.; Ueng, YF.; Gut, I.

    2011-01-01

    Roč. 22, č. 2 (2011), s. 176-184 ISSN 0959-4973 Institutional research plan: CEZ:AV0Z40320502 Keywords : doxorubicin * electron spin resonance * flavonoids hydroxyl radicals Subject RIV: FD - Oncology ; Hematology Impact factor: 2.407, year: 2011

  2. Kinetics and mechanism of the reaction of recombination of vinyl and hydroxyl radicals

    Science.gov (United States)

    Knyazev, Vadim D.

    2017-10-01

    The recombination of the vinyl (C2H3) and the hydroxyl (OH) radicals was studied computationally using quantum chemistry and master equation/RRKM. The reaction mechanism includes the initial addition, several isomerization steps, and decomposition via seven different channels. The spectrum of products demonstrates temperature dependence in the 300-3000 K range. At low temperatures (below 1600 K), CH3 + HCO products are dominant but at elevated temperatures vinoxy radical (CH2CHO) and hydrogen atom become more important. The acetyl (CH3CO) + H products and formation of vinylidene (CH2C:) and water products are minor but non-negligible.

  3. Characterisation of an inlet pre-injector laser-induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals

    Science.gov (United States)

    Novelli, A.; Hens, K.; Tatum Ernest, C.; Kubistin, D.; Regelin, E.; Elste, T.; Plass-Dülmer, C.; Martinez, M.; Lelieveld, J.; Harder, H.

    2014-10-01

    Atmospheric measurements of hydroxyl radicals (OH) are challenging due to a high reactivity and consequently low concentration. The importance of OH as an atmospheric oxidant has motivated a sustained effort leading to the development of a number of highly sensitive analytical techniques. Recent work has indicated that the laser-induced fluorescence of the OH molecules method based on the fluorescence assay by gas expansion technique (LIF-FAGE) for the measurement of atmospheric OH in some environments may be influenced by artificial OH generated within the instrument, and a chemical method to remove this interference was implemented in a LIF-FAGE system by Mao et al. (2012). While it is not clear whether other LIF-FAGE instruments suffer from the same interference, we have applied this method to our LIF-FAGE HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy) system, and developed and deployed an inlet pre-injector (IPI) to determine the chemical zero level in the instrument via scavenging the ambient OH radical. We describe and characterise this technique in addition to its application at field sites in forested locations in Finland, Spain and Germany. Ambient measurements show that OH generated within the HORUS instrument is a non-negligible fraction of the total OH signal, which can comprise 30 to 80% during daytime and 60 to 100% during the night. The contribution of the background OH varied greatly between measurement sites and was likely related to the type and concentration of volatile organic compounds (VOCs) present at each particular location. Two inter-comparisons in contrasting environments between the HORUS instrument and two different chemical ionisation mass spectrometers (CIMS) are described to demonstrate the efficacy of IPI and the necessity of the chemical zeroing method for our LIF-FAGE instrument in such environments.

  4. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods.

    Science.gov (United States)

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro

    2011-01-01

    The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.

  5. Reactions of OH-radicals with hydroxylated and methoxylated benzoic acids and cinnamic acids. Radiation-induced chemical changes in mushrooms

    International Nuclear Information System (INIS)

    Gaisberger, B.

    2001-05-01

    In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem

  6. Vacuum ultraviolet photoionization cross section of the hydroxyl radical.

    Science.gov (United States)

    Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio

    2018-05-14

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  7. Vacuum ultraviolet photoionization cross section of the hydroxyl radical

    Science.gov (United States)

    Dodson, Leah G.; Savee, John D.; Gozem, Samer; Shen, Linhan; Krylov, Anna I.; Taatjes, Craig A.; Osborn, David L.; Okumura, Mitchio

    2018-05-01

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  8. Generation of radicals and antimalarial activity of dispiro-1,2,4-trioxolanes

    Science.gov (United States)

    Denisov, E. T.; Denisova, T. G.

    2013-01-01

    The kinetic schemes of the intramolecular oxidation of radicals generated from substituted dispiro-1,2,4-trioxolanes (seven compounds) in the presence of Fe2+ and oxygen were built. Each radical reaction was defined in terms of enthalpy, activation energy, and rate constant. The kinetic characteristics were calculated by the intersecting parabolas method. The competition between the radical reactions was considered. The entry of radicals generated by each compound into the volume was calculated. High antimalarial activity was found for 1,2,4-trioxolanes, which generated hydroxyl radicals. The structural features of trioxolanes responsible for the generation of hydroxyl radicals were determined.

  9. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    Science.gov (United States)

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Kinetics of the reaction of hydroxyl radicals with ethane and a series of Cl- and F-substituted methanes at 300-400degK

    International Nuclear Information System (INIS)

    Bjarnov, E.; Munk, J.; Nielsen, O.J.; Pagsberg, P.; Sillesen, A.

    1982-04-01

    Gas phase reactions of hydroxyl radicals with ethane and a series of Cl- and F-substituted methanes were studied at atmospheric pressure and over the temperature range 300-400degK. Hydroxyl radicals were produced by pulse radiolysis of water vapour and the decay rate was studied by monitoring the transient light absorption at 3090 A. Arrhenius parameters (A,Esub(a)) for the reaction RH + OH arrow R + HOH were obtained for the reactants RH = C 2 H 6 ,CH 3 Cl,CH 2 Cl 2 ,CHFCl 2 . CF 2 Cl 2 (CFC-12) which contains no C-H bonds was found to be inert toward attack by hydroxyl radicals. Since no other tropospheric sink reactions have been reported for CFC-12 its possible impact on the stratospheric ozone remains a controversial problem. (author)

  11. Hydroxyl radical observations during the wintertime in Beijing and comparison with steady state model calculations.

    Science.gov (United States)

    Slater, E.; Whalley, L.; Woodward-Massey, R.; Ye, C.; Crilley, L.; Kramer, L. J.; Vu, T.; Bloss, W.; Squires, F. A.; Dunmore, R.; Lee, J. D.; Heard, D. E.

    2017-12-01

    In Beijing poor urban air quality has a demonstrable effect on human health. During the wintertime, anthropogenic emissions from fossil fuel combustion can lead to high aerosol loadings and haze events. A high oxidation capacity on hazy days has previously been inferred from the significant contribution secondary organic aerosol (SOA) make to total PM2.5 (Huang et al., 2014). The hydroxyl radical (OH) mediates virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and SOA. Understanding the sources and sinks of OH in the atmosphere is essential in improving predictions of the lifetimes and chemical processing of pollutants and their transport within urban areas. We will present OH and HO2 measurements made in central Beijing during the recent `An Integrated Study of AIR Pollution PROcesses in Beijing (AIRPRO)' project which took place in November and December 2016. OH measurements were made using the FAGE (Fluorescence Assay by Gas Expansion) technique, with the use of an inlet pre injector (IPI) which provides an alternative method to determine the background by injecting a scavenger (propane) to remove ambient OH. The OH measurements were made over a range of meteorological conditions including a number of haze days, with the average maximum OH concentration measured for the campaign being 2.5 x 106 cm-3 and for haze days the OH concentration reached levels of 3.5 x 106 cm-3 which is comparable to OH levels in non-haze days. We will compare the OH observations to steady state calculations constrained to the total OH reactivity and key OH precursors that were measured alongside OH. Through this comparison we will identify the major OH sources which sustain the wintertime oxidation capacity. The current understanding is that gas-phase oxidation via the OH radical becomes less important in haze events due to lower light and ozone levels, making photochemistry

  12. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  13. In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants.

    Science.gov (United States)

    Karthikeyan, S; Sekaran, G

    2014-03-07

    The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).

  14. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  15. Changes in free-radical scavenging ability of kombucha tea during fermentation.

    Science.gov (United States)

    Jayabalan, R; Subathradevi, P; Marimuthu, S; Sathishkumar, M; Swaminathan, K

    2008-07-01

    Kombucha tea is a fermented tea beverage produced by fermenting sugared black tea with tea fungus (kombucha). Free-radical scavenging abilities of kombucha tea prepared from green tea (GTK), black tea (BTK) and tea waste material (TWK) along with pH, phenolic compounds and reducing power were investigated during fermentation period. Phenolic compounds, scavenging activity on DPPH radical, superoxide radical (xanthine-xanthine oxidase system) and inhibitory activity against hydroxyl radical mediated linoleic acid oxidation (ammonium thiocyanate assay) were increased during fermentation period, whereas pH, reducing power, hydroxyl radical scavenging ability (ascorbic acid-iron EDTA) and anti-lipid peroxidation ability (thiobarbituric assay) were decreased. From the present study, it is obvious that there might be some chances of structural modification of components in tea due to enzymes liberated by bacteria and yeast during kombucha fermentation which results in better scavenging performance on nitrogen and superoxide radicals, and poor scavenging performance on hydroxyl radicals. Copyright © 2007 Elsevier Ltd. All rights reserved.

  16. Radiolysis of the polyethylene/water system: Studies on the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Billamboz, Nicolas [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Grivet, Manuel, E-mail: manuel.grivet@univ-fcomte.f [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Foley, Sarah [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Baldacchino, Gerard [CEA, IRAMIS, SIS2M, Laboratoire de Radiolyse, Bat. 546, F-91191 Gif-sur-Yvette (France); CNRS, Laboratoire Claude Frejacques, F-91191 Gif-sur-Yvette (France); Hubinois, Jean-Charles [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France)

    2010-01-15

    The role of hydroxyl radical on polyethylene degradation under aqueous conditions has been studied. The reactivity of HO{sup .} towards PE is highlighted by pulse radiolysis experiments on a PE powder suspension in water using the thiocyanate competition technique. Infrared analysis of PE films irradiated in the presence of water is performed. Solutions have been either degassed with Ar, in order to remove O{sub 2} which would react with the PE, or N{sub 2}O which enhances the production of HO{sup .} radicals. Oxygenated groups and double bond groups created at the surface of PE are characterized using IR analysis, and the results for both saturated solution systems are compared.

  17. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    Science.gov (United States)

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a

  18. Self-Terminating, Oxidative Radical Cyclizations

    Directory of Open Access Journals (Sweden)

    Uta Wille

    2004-05-01

    Full Text Available The recently discovered novel concept of self-terminating, oxidative radical cyclizations, through which alkynes can be converted into carbonyl compounds under very mild reaction conditions using O-centered inorganic and organic radicals as oxidants, is described

  19. Configuration of a pulse radiolysis system for the study of gas-phase reactions and kinetic investigations of the reactions of hydroxyl radicals with methyl and ethyl radicals

    International Nuclear Information System (INIS)

    Fagerstroem, K.

    1993-01-01

    The work that is presented in this thesis deals with the assembling and testing of a pulse radiolysis system for kinetic studies of gas-phase reactions as well as with the kinetics of the gas-phase reactions of hydroxyl radicals with methyl and ethyl radicals. These radicals are very important as these are formed at an early stage in hydrocarbon combustion processes. The two studied reactions are key reactions in those processes. (6 refs., 4 figs., 2 tabs.)

  20. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  1. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    Science.gov (United States)

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  2. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway.

    Science.gov (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S; Canneaux, Sébastien

    2014-07-03

    The oxidation mechanisms of naphthalene by OH radicals under inert (He) conditions have been studied using density functional theory along with various exchange-correlation functionals. Comparison has been made with benchmark CBS-QB3 theoretical results. Kinetic rate constants were correspondingly estimated by means of transition state theory and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Comparison with experiment confirms that, on the OH-addition reaction pathway leading to 1-naphthol, the first bimolecular reaction step has an effective negative activation energy around -1.5 kcal mol(-1), whereas this step is characterized by an activation energy around 1 kcal mol(-1) on the OH-addition reaction pathway leading to 2-naphthol. Effective rate constants have been calculated according to a steady state analysis upon a two-step model reaction mechanism. In line with experiment, the correspondingly obtained branching ratios indicate that, at temperatures lower than 410 K, the most abundant product resulting from the oxidation of naphthalene by OH radicals must be 1-naphthol. The regioselectivity of the OH(•)-addition onto naphthalene decreases with increasing temperatures and decreasing pressures. Because of slightly positive or even negative activation energies, the RRKM calculations demonstrate that the transition state approximation breaks down at ambient pressure (1 bar) for the first bimolecular reaction steps. Overwhelmingly high pressures, larger than 10(5) bar, would be required for restoring to some extent (within ∼5% accuracy) the validity of this approximation for all the reaction channels that are involved in the OH-addition pathway. Analysis of the computed structures, bond orders, and free energy profiles demonstrate that all reaction steps involved in the oxidation of naphthalene by OH radicals satisfy Leffler-Hammond's principle. Nucleus independent chemical shift indices and natural bond orbital analysis also show that the computed

  3. Evidence for hydroxyl radical scavenging action of nitric oxide donors in the protection against 1-methyl-4-phenylpyridinium-induced neurotoxicity in rats.

    Science.gov (United States)

    Banerjee, Rebecca; Saravanan, Karuppagounder S; Thomas, Bobby; Sindhu, Kizhake M; Mohanakumar, Kochupurackal P

    2008-06-01

    In the present study we provide evidence for hydroxyl radical (*OH) scavenging action of nitric oxide (NO*), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO* donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro *OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced *OH production in the mitochondria. We also tested whether co-administration of NO* donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced *OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in *OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO*, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of *OH in the nigrostriatal degeneration caused by MPP+, indicate the *OH scavenging ability of NO*, and demonstrate protection by NO* donors against MPP+-induced dopaminergic neurotoxicity in rats.

  4. A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.; Bump, E.; Sahu, S.K.; Berman, R.M.; Kassis, A.I.

    1993-01-01

    A novel method is described to quantitate radiation-induced hydroxyl radicals in the vicinity of biomolecules in aqueous solutions. Coumarin-3-carboxylic acid (CCA) is a non-fluorescent molecule that, upon interaction with radiation in aqueous solution, produces fluorescent products. CCA was derivatized to its succinimidyl ester (SECCA) and coupled to free primary amines of albumin, avidin, histone-H1, polylysine, and an oligonucleotide. When SECCA-biomolecule conjugates were irradiated, the relationship between induced fluorescence and dose was linear in the dose range examined (0.01-10 Gy). The data indicate that the induction of fluorescence on SECCA-biomolecule conjugates records specifically the presence of the hydroxyl radical in the immediate vicinity of the irradiated biomolecule. The method is rapid and sensitive, uses standard instrumentation, and the sample remains available for further studies. (Author)

  5. Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals.

    Science.gov (United States)

    Mercado, D Fabio; Bracco, Larisa L B; Arques, Antonio; Gonzalez, Mónica C; Caregnato, Paula

    2018-01-01

    Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 10 9 s -1 M -1 for the reaction of the fungicide with HO and 4.6 × 10 8  s -1  M -1 for the same reaction with SO 4 - radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S 2 O 8 2- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively. Copyright © 2017. Published by Elsevier Ltd.

  6. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    International Nuclear Information System (INIS)

    B. J. Mincher; R. V. Fox; S. P. Mezyk; T. Helgeson; S. K. Cole; W. J. Cooper; P. R. Gardinali

    2006-01-01

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, e aq - , reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M -1 s -1 ), for e aq - /OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) x 10 10 /(1.94 ± 0.32) x 10 8 ; dichloronitromethane (3.21 ± 0.17) x 10 10 /(5.12 ± 0.77) x 10 8 ; bromonitromethane (3.13 ± 0.06) x 10 10 /(8.36 ± 0.57) x 107; dibromonitromethane (3.07 ± 0.40) x 10 10 /(4.75 ± 0.98) x 10 8 ; tribromonitromethane (2.29 ± 0.39) x 10 10 /(3.25 ± 0.67) x 10 8 ; bromochloronitromethane (2.93 ± 0.47) x 10 10 /(4.2 ± 1.1) x 10 8 ; bromodichloronitromethane (2.68 ± 0.13) x 10 10 /(1.02 ± 0.15) x 10 8 ; and dibromochloronitromethane (2.95 ± 0.43) x 10 10 /(1.80 ± 0.31) x 10 8 at room temperature and pH ∼7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) x 10 8 , bromodichloromethane (7.11 ± 0.26) x 10 7 , and chlorodibromomethane (8.31 ± 0.25) x 10 7 M -1 s -1 , respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds

  7. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  8. Observations and Modeling of the Green Ocean Amazon 2014/15: Hydroxyl Radical (OH) Chemical Ionization Mass Spectrometer (CIMS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2016-05-01

    The University of California, Irvine, science team (Dr. Saewung Kim, Dr. Roger Seco, Dr. Alex Guenther, and Dr. Jim Smith) deployed a chemical ionization mass spectrometer system for hydroxyl radical (OH) and sulfuric acid quantifications. As part of the GoAmazon 2014/15 field campaign. Hydroxyl radical determines tropospheric oxidation capacity and had been expected to be very low in the pristine rain forest region such as the Brazilian Amazon because of the presence of significant levels of highly reactive biogenic volatile organic compounds and very low levels of NO, which is an OH recycling agent. However, several recent in situ OH observations provided by a laser-induced fluorescence system reported unaccountably high OH concentrations. To address this discrepancy, a series of laboratory and theoretical studies has postulated chemical reaction mechanisms of isoprene that may regenerate OH in photo-oxidation processes. Along with these efforts, potential artifacts on the laser induced fluorescence system from isoprene and its oxidation products also have been explored. Therefore, the first chemical ionization mass spectrometer observations at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s T3 site in Manacapuru, Brazil, are expected to provide a critical experimental constraint to address uncertainty in constraining oxidation capacity over pristine rain forest environments. In addition, we deployed a National Center for Atmospheric Research (NCAR) proton transfer reaction time-of-flight mass spectrometer to characterize atmospheric volatile organic compound levels, especially isoprene and its oxidation products, which are critical input parameters for box modeling to simulate OH with different isoprene photo-oxidation schemes. As there has been no report on noticeable new particle formation events, our first in situ sulfuric acid observations in the Amazon rain forest were expected to constrain the

  9. Muconaldehyde formation from 14C-benzene in a hydroxyl radical generating system

    Energy Technology Data Exchange (ETDEWEB)

    Latriano, L.; Zaccaria, A.; Goldstein, B.D.; Witz, G.

    1985-01-01

    It has recently been proposed that muconaldehyde, a six carbon, alpha, beta-unsaturated dialdehyde, may be a hematotoxic metabolite of benzene. The present studies indicate that trans, trans-muconaldehyde is formed from benzene in vitro in a hydroxyl radical (.OH) generating system containing ascorbate, ferrous sulfate and EDTA in phosphate buffer, pH 6.7. Muconaldehyde formed from benzene in the .OH generating system was identified by trapping it with thiobarbituric acid (TBA), which results in the formation of an adduct with a 495 nm absorption maximum and a 510 nm fluorescence emission maximum. These maxima were identical to those observed after reacting authentic trans, trans-muconaldehyde with TBA. This finding was supported by thin layer chromatography and solid phase extraction studies. In those studies benzene-derived muconaldehyde cochromatographed with the muconaldehyde/TBA standard. Analyses of the products from the .OH generating system using high performance liquid chromatography (HPLC) confirm that trans, trans-muconaldehyde is a product of benzene ring fission. Regardless of whether or not TBA was used for trapping, samples from the .OH system incubated with benzene contained a peak which cochromatographed with the muconaldehyde standard. The radioactivity profile of fractions collected during HPLC analysis demonstrates 14C-benzene to be the source of the trans, trans-muconaldehyde. The role of hydroxyl radicals in the formation of muconaldehyde was investigated by using dimethyl sulfoxide, mannitol, and ethanol as .OH scavengers. These scavengers, at concentrations of 10 and 100 mM, were found to cause a dose-dependent decrease in the formation of muconaldehyde.

  10. Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2003-01-01

    Full Text Available Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, p-xylene and 1,3,5-trimethyl-benzene with hydroxyl radicals in the presence of NOx have been investigated using comprehensive gas chromatography (GCxGC. A GCxGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE, a large volume outdoor reaction chamber in Valencia, Spain. Experiments were carried as part of the EXACT project (Effects of the oXidation of Aromatic Compounds in the Troposphere. Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 minutes, allowing the evolution of species to be followed over oxidation periods of 3-6 hours. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards. For toluene reactions, observed oxygenated intermediates found included the co-eluting pair a-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and p-methyl benzoquinone. In the p-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCxGC for the measurement of the parent aromatics generally showed good agreement. Comparison of the concentrations observed by GCxGC to concentration-time profiles simulated using the Master Chemical Mechanism, MCMv3, demonstrates that this mechanism significantly over-predicts the concentrations of many product compounds and highlights the

  11. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Briales, Alejandra; Brochmann, Rikke Prejh

    2014-01-01

    induction of cytotoxic hydroxyl radicals (OH˙) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ΔkatA and a ciprofloxacin resistant mutant of PAO1 (gyr...

  12. Importance of iron complexation for Fenton-mediated hydroxyl radical production at circumneutral pH

    Directory of Open Access Journals (Sweden)

    Christopher J. Miller

    2016-08-01

    Full Text Available The reaction between Fe(II and H2O2 to yield hydroxyl radicals (HO•, the Fenton reaction, is of interest due to its role in trace metal and natural organic matter biogeochemistry, its utility in water treatment and its role in oxidative cell degradation and associated human disease. There is significant dispute over whether HO•, the most reactive of the so-called reactive oxygen species, is formed in this reaction, particularly under circumneutral conditions relevant to natural systems. In this work we have studied the oxidation kinetics of Fe(II complexed by L = citrate, ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA and also measured HO• production using phthalhydrazide as a probe compound at pH 8.2. It is shown that HO• is the sole product of the Fe(IIL-H2O2 reaction for L = EDTA and DTPA, with kinetic modelling of the full reaction pathway utilized to confirm this finding. Quantitative HO• production also appears likely for L = citrate, although uncertainties with the speciation of Fe(II-citrate complexes as well as difficulties in modelling the oxidation kinetics of these complexes has prevented a definitive conclusion. In the absence of ligands at circumneutral pH, inorganic Fe(II reacts with H2O2 to yield a species other than HO•, contrary to the well-established production of HO• from inorganic Fe(II at low pH. Our results suggest that at high pH Fe(II must be complexed for HO• production to occur.

  13. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.

    Science.gov (United States)

    Yang, Yi; Jiang, Jin; Lu, Xinglin; Ma, Jun; Liu, Yongze

    2015-06-16

    In this work, simultaneous generation of hydroxyl radical (•OH) and sulfate radical (SO4•−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both •OH and SO4•− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for •OH and atrazine forb oth •OH and SO4•−). The yields of •OH and SO4•− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 → −O3SO5−, is assumed as the first step, which further decomposes into SO5•− and O3•−. The subsequent reaction of SO5•− with O3is proposed to generate SO4•−, while O3•− converts to •OH. A definition of R(ct,•OH) and R(ct,SO4•−) (i.e., respective ratios of •OH and SO4•− exposures to O3 exposure) is adopted to quantify relative contributions of •OH and SO4•−. Increasing pH leads to increases in both values of R(ct,•OH) and R(ct,SO4•−) but does not significantly affect the ratio of R(ct,SO4•−) to R(ct,•OH) (i.e., R(ct,SO4•−)/R(ct,•OH)), which represents the relative formation of SO4•− to •OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of •OH for their degradation, which may be attributed to the conversion of both •OH and SO4•− to the more selective carbonate radical (CO3•−).Humic acid promotes O3 consumption to generate •OH and thus leads to an increase in the R(ct,•OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4•−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO

  14. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology

    NARCIS (Netherlands)

    Chen, H.; Xu, X.; Zhu, Y.

    2010-01-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different

  15. Calorimetric and spectroscopic properties of small globular proteins (bovine serum albumin, hemoglobin) after free radical generation

    International Nuclear Information System (INIS)

    Farkas, N.; Belagyi, J.; Lorinczy, D.

    2003-01-01

    Mild oxidation of -SH-containing proteins (serum albumin, hemoglobin) by Ce(IV)-ions in the presence of the spin trap phenyl-tert-butylnitrone (PBN) resulted in the appearance of strongly immobilized nitroxide free radicals which evidences the formation of thiyl radicals on the thiol site of the proteins. In hydroxyl free radical generating system a fraction of strongly immobilized nitroxide radicals was also detected in these proteins, which implies that the oxidation of a fraction of the thiol groups was also involved in the free radical reaction. According to the differential scanning calorimetry (DSC) experiments the melting processes of the proteins were calorimetrically irreversible, therefore the two-state kinetic model was used to evaluate the experiments. The results support the view that site-specific interaction of SH-containing proteins with hydroxyl and thiyl free radicals is able to modify the internal dynamics of proteins and affect the conformation of large molecules

  16. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: A single−descriptor based QSAR and DFT study

    International Nuclear Information System (INIS)

    Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang

    2016-01-01

    The second‒order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure–activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi−linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = −0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas‒phase ·OH oxidation of 2,4′,5-trichlorobiphenyl (PCB31), 2,2′,4,4′-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB169), and 2,3,3′,4,5,5′,6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6–311++G**//B3LYP/6–31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single–descriptor based QSAR model we developed. - Highlights: • We developed a single−descriptor based QSAR model for ·OH oxidation of PCBs. • We independently validated the QSAR predicted k values of five PCB congeners with the DFT method. • The QSAR predicted and DFT calculated k for the five PCB congeners exhibit excellent agreement. - We developed a single

  17. Ortho- and meta-tyrosine formation from phenylalanine in human saliva as a marker of hydroxyl radical generation during betel quid chewing.

    Science.gov (United States)

    Nair, U J; Nair, J; Friesen, M D; Bartsch, H; Ohshima, H

    1995-05-01

    The habit of betel quid chewing, common in South-East Asia and the South Pacific islands, is causally associated with an increased risk of oral cancer. Reactive oxygen species formed from polyphenolic betel quid ingredients and lime at alkaline pH have been implicated as the agents responsible for DNA and tissue damage. To determine whether hydroxyl radical (HO.) is generated in the human oral cavity during chewing of betel quid, the formation of o- and m-tyrosine from L-phenylalanine was measured. Both o- and m-tyrosine were formed in vitro in the presence of extracts of areca nut and/or catechu, transition metal ions such as Cu2+ and Fe2+ and lime or sodium carbonate (alkaline pH). Omission of any of these ingredients from the reaction mixture significantly reduced the yield of tyrosines. Hydroxyl radical scavengers such as ethanol, D-mannitol and dimethylsulfoxide inhibited the phenylalanine oxidation in a dose-dependent fashion. Five volunteers chewed betel quid consisting of betel leaf, areca nut, catechu and slaked lime (without tobacco). Their saliva, collected after chewing betel quid, contained high concentrations of p-tyrosine, but no appreciable amounts of o- or m-tyrosine. Saliva samples from the same subjects after chewing betel quid to which 20 mg phenylalanine had been added contained o- and m-tyrosine at concentrations ranging from 1010 to 3000 nM and from 1110 to 3140 nM respectively. These levels were significantly higher (P betel quid, which ranged from 14 to 70 nM for o-tyrosine and from 10 to 35 nM for m-tyrosine. These studies clearly demonstrate that the HO. radical is formed in the human oral cavity during betel quid chewing and is probably implicated in the genetic damage that has been observed in oral epithelial cells of chewers.

  18. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals

    International Nuclear Information System (INIS)

    Li Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki

    2007-01-01

    Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH· signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH· signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]· radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions

  19. Hydroxyl radicals' production and ECG parameters during ischemia and reperfusion in rat, guinea pig and rabbit isolated heart.

    Science.gov (United States)

    Paulova, Hana; Stracina, Tibor; Jarkovsky, Jiri; Novakova, Marie; Taborska, Eva

    2013-06-01

    Ischemic and reperfusion injury is a serious condition related to numerous biochemical and electrical abnormalities of the myocardium. It has been repeatedly studied in various animal models. In this study, the production of hydroxyl radicals and electrophysiological parameters were compared in three species. Rat, guinea pig and rabbit isolated hearts were perfused according to Langendorff under strictly identical conditions. The heart rate and arrhythmia were monitored during ischemia and reperfusion periods at defined time intervals; the production of hydroxyl radical was determined by HPLC as 2.5-dihydroxybenzoic acid (2.5-DHBA) formed by salicylic acid hydroxylation. Relationship between arrhythmias and production of 2.5-DHBA was studied. The inter-species differences were observed in timing of arrhythmias onset and their severity, and in the production of 2.5-DHBA in both ischemia and reperfusion. The most considerable changes were observed in rats, where arrhythmias appeared early and with highest severity during ischemia on one side and the regular rhythm was restored early and completely during reperfusion. The corresponding changes in the production of 2.5-DHBA were observed. It can be concluded that rat isolated heart is the most suitable model for evaluation of ischemia/reperfusion injury under given experimental conditions.

  20. Free radicals, oxygen and radiosensitizing drugs: a very brief introduction

    International Nuclear Information System (INIS)

    Willson, R.

    1981-01-01

    A review is presented of the historical aspects of the search for radiation sensitizing drugs. Metronidazole, Flagyl and misonidazole are undergoing clincial trials as the result of basic free radical and cellular research. Studies at the molecular, biochemical and cellular levels are described. From the information obtained it now appears that several processes may be involved in sensitization: interference with charge recombination due to a sensitizer having a high electron affinity; an increase in the yield of oxidizing hydroxyl radicals by electron sequestration; interference with radical combination reactions due to a sensitizer having a high one electron oxidation potential; oxidation or organic radicals so fixing them; formation of products which are toxic; and changes in the biochemistry of the cell. 106 references, 4 figures

  1. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: Roles and sources of hydroxyl and hydroperoxyl/superoxide radicals

    International Nuclear Information System (INIS)

    Wang, Yajie; Xu, Jing; Li, Jinjun; Wu, Feng

    2013-01-01

    Highlights: • Natural montmorillonite contributes to photochemical oxidation of arsenite. • Ferrous ions significantly affect photochemical behavior of montmorillonite. • HO· and HO 2 ·/O 2 − · play different roles in this process. -- Abstract: Photooxidation of arsenite(As(III)) in a suspension of natural montmorillonite under the irradiation of metal halide lamp (λ ≥ 313 nm)has been investigated. The results showed that the natural montmorillonite induced the photooxidation of As(III) by generating hydroxyl radicals (HO·) and hydroperoxyl/superoxide radicals (HO 2 ·/O 2 − ·). HO· which was responsible for the As(III) photooxidation. Approximately 38% of HO· was generated by the photolysis of ferric ions, and the formation of the remaining 62% was strongly dependent on the HO 2 ·/O 2 − ·. The presence of free ironions (Fe 2+ and Fe 3+ ), made significant contributions to the photogeneration of these reactive oxygen species (ROS). The photooxidation of As(III) in natural montmorillonite suspensions was greatly influenced by the pH values. The photooxidation of As(III) by natural montmorillonite followed the Langmuir–Hinshelwood equation. In addition, the photooxidation of As(III) could be enhanced by the addition of humic acid. This work demonstrates that photooxidation may be an important environmental process for the oxidation of As(III) and may be a way to remove As(III) from acidic surface water containing iron-bearing clay minerals

  2. Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO{sub 2} hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shiyi [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Tsang, Yuenhong [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-09-30

    Graphical abstract: The structure model and enhancement mechanism of hydroxylation treatment on adsorbability and photocatalytic activity. - Highlights: • Highly-hydroxylated TiO{sub 2}/rGO hybrids can be obtained by UV pre-excitation and microwave method. • Surface hydroxylation induces many defects (Ti{sup 3+}, O vacancy and Ti-OH) and changes color into yellow. • Hydroxylation expands the light absorption up to about 600 nm and benefits to adsorb organic dyes. • ESR reveals the self-accumulation of hydroxyl radicals under the irradiation of UV and visible light. • The photoinduced defects and rGO/TiO{sub 2}@OH-TiO{sub 2} heterojunctions enable the excellent applicability. - Abstract: To extend the spectra response of TiO{sub 2} and enhance its photocatalytic activity, surface modification and catalyst supporter have attracted great attention. In this report, a simple and versatile approach has been developed to hydroxylate the reduced graphene oxide/TiO{sub 2} hybrids (OH-rGO/TiO{sub 2}) by UV-microwave method, and the enhanced mechanisms of hydroxylation were analyzed in details. Experimental results show that TiO{sub 2} nanocrystals@OH-TiO{sub 2} heterojunctions formed on rGO sheets in situ by UV/H{sub 2}O{sub 2} process. Hydroxylation not only can induce many surface defects (Ti{sup 3+}, O vacancy and Ti-OH) on the surface of TiO{sub 2}, but also change the color into yellow and strengthen the interaction between rGO and TiO{sub 2}. OH-rGO/TiO{sub 2} hybrids showed excellent durability for high-concentration dyes, and exhibited strong adsorbability and photocatalytic activity. These enhancements are attributed to the excellent property of rGO and surface defects of TiO{sub 2} induced by hydroxylation, which expand the light absorption up to 600 nm, benefit to the self-dispersion of hybrids, and improve the adsorption dynamic and charge transfer with lower carrier’s recombination.

  3. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  4. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study

    International Nuclear Information System (INIS)

    O'Neill, P.; Chapman, P.W.

    1985-01-01

    Using the technique of pulse radiolysis, it has been demonstrated that the interaction of hydroxyl-radical adducts of dG and dGMP with a series of reductants with different oxidation potentials at pH 7.0-7.4 proceeds via an electron transfer process (k approx. 1.4-34 x 10 8 dm 3 mol -1 s -1 ). The one-electron oxidation of dGMP (dG) by Br2-anion radicals was shown to result in the formation of a species, the properties of which are similar to those of the OH-radical adduct of dGMP with oxidizing properties based upon both spectral and kinetic information. The nature of the dGMP species produced on interaction with Br2-anion radicals to produce specific base damage. The implications of these findings are presented in terms of potential free radical repair of hydroxyl radical damage and of synergistic effects whereby one reductant may be regenerated at the expense of another reductant. (author)

  5. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    Science.gov (United States)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  6. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    Science.gov (United States)

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  7. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lester, M.I. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    The DOE supported work in this laboratory has focused on the spectroscopic characterization of the interaction potential between an argon atom and a hydroxyl radical in the ground X{sup 2}II and excited A {sup 2}{summation}{sup +} electronic states. The OH-Ar system has proven to be a test case for examining the interaction potential in an open-shell system since it is amenable to experimental investigation and theoretically tractable from first principles. Experimental identification of the bound states supported by the Ar + OH (X {sup 2}II) and Ar + OH(A {sup 2}{summation}{sup +}) potentials makes it feasible to derive realistic potential energy surfaces for these systems. The experimentally derived intermolecular potentials provide a rigorous test of ab initio theory and a basis for understanding the dramatically different collision dynamics taking place on the ground and excited electronic state surfaces.

  8. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    W.N. Sloot (W.); J. Korf (Jakob); J.F. Koster (Johan); L.E.A. de Wit (Elly); J.-B.P. Gramsbergen (J. B P)

    1996-01-01

    textabstractThe present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals (.OH) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  9. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  10. A pulse radiolysis study of the reaction of hydroxyl radicals with trans-dihydroxo(1,4,8,11-tetraazacyclotetradecane)chromium(3)

    International Nuclear Information System (INIS)

    Moensted, O.; Nord, G.; Pagsberg, P.

    1987-01-01

    Hydroxyl radicals react rapidly with the title chromium(III) complex. In weakly alkaline solution, around pH≅ the product rearranges by a first-order process followed by a second-order process. This sequence is interpreted as the formation of a chromium(IV) complex which then forms a μ-peroxochromium(III) dimer. The dimer decomposes by a two-electron oxidation of the macrocyclic ligan with the concomitant formation of a double bond. In more strongly basic solution and also in dilute acid, the decay kinetics are more complicated. Supplementary measurements using trans-difluoro(1,4,8,11-tetraazacyclotetradecane)Chromium(III), which does not contain coordinated hydroxide, and cis-dihydroxo(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)-chromium(III), for which dimerization is sterically hindered, support the above interpretation of the consecutive reactions for the title complex. (author)

  11. Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide

    NARCIS (Netherlands)

    Sun, K.; Xia, H.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    The effect of the iron content and the pretreatment conditions of Fe/ZSM-5 catalysts on the Fe speciation and the catalytic activities in nitrous oxide decomposition and benzene hydroxylation with nitrous oxide has been investigated. Iron-containing ZSM-5 zeolites with varying iron content (Fe/Al =

  12. Free radical scavenging injectable hydrogels for regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Komeri, Remya [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India); Thankam, Finosh Gnanaprakasam [Dept. of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha NE68178 (United States); Muthu, Jayabalan, E-mail: mjayabalan52@gmail.com [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India)

    2017-02-01

    . • The PEAX-P hydrogel has suitable swelling, mechanical and degradation characterestics for injectable myocardial therapy. • The PEAX-P hydrogel scavenge 51% DPPH radical, 40% hydroxyl radicals and 41% nitrate radicals. • The in vitro studies confirm the protective effect of the present hydrogel on cardiomyoblast cells under oxidative stress. • The free electrons, hydrogen atoms and free water are responsible for the free radical scavenging property of hydrogel. • The present hydrogel is a potential candidate for myocardial regenerative therapy even with hypoxic microenvironment.

  13. Free radical scavenging injectable hydrogels for regenerative therapy

    International Nuclear Information System (INIS)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-01-01

    . • The PEAX-P hydrogel has suitable swelling, mechanical and degradation characterestics for injectable myocardial therapy. • The PEAX-P hydrogel scavenge 51% DPPH radical, 40% hydroxyl radicals and 41% nitrate radicals. • The in vitro studies confirm the protective effect of the present hydrogel on cardiomyoblast cells under oxidative stress. • The free electrons, hydrogen atoms and free water are responsible for the free radical scavenging property of hydrogel. • The present hydrogel is a potential candidate for myocardial regenerative therapy even with hypoxic microenvironment.

  14. Shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, N.; Koffend, J.B.

    1998-02-01

    Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.

  15. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  16. Effects of Hydroxyl Radicals on Introduced Organisms of Ship's Ballast Water Based Micro-Gap Discharge

    International Nuclear Information System (INIS)

    Bai Mindong; Zhang Zhitao; Bai Mindi; Yang Bo; Bai Xiyao

    2007-01-01

    With the physical method of micro-gap gas discharge, OH· radicals were produced by the ionization of O 2 in air and H 2 O in the gaseous state, in order to explore more effective method to treat the ship's ballast water. The surface morphology of Al 2 O 3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al 2 O 3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved

  17. Determination of oxidation products in radiolysis of halophenols with pulse radiolysis, hplc, and ion chromatography

    International Nuclear Information System (INIS)

    Ye, M.; Schuler, R.H.

    1990-01-01

    This paper reports on hydroxyl radicals that react with halogen substituted phenols by several different ways. One is addition of OH radicals to the aromatic ring, which is followed by elimination of hydrogen halide, H 2 O or H - . The positions of OH radicals attack are dependent on the nature of the halogen which affects the electronic distribution in the ring. The oxidation of fluorophenols, chlorophenols and bromophenols with hydroxyl radicals in N 2 O saturated solution has been investigated with pulse radiolysis and γ-irradiation experiments. The intermediates of the reactions were studied by pulse radiolysis. The products created in the γ-irradiation of aqueous solutions of halophenols were analyzed by ion chromatography and high performance liquid chromatography (HPLC). With the combination of time-resolved and steady-state experiments a complete and detailed description of radiolytic oxidation of halophenols by hydroxyl radicals was obtained

  18. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu

    2017-12-01

    Besides acidic environments, pyrite oxidation also occurs in circumneutral environments, such as well-buffered marine and estuarine sediments and salt marshes where low-molecular-weight organic acids (LMWOAs) (e.g., citrate and oxalate) prevail. However, the production of hydroxyl radicals (radOH) from pyrite oxidation by oxygen (O2) in these circumneutral environments is poorly understood. In this study, radOH production was measured during the abiotic oxidation of pyrite by O2 under circumneutral conditions. A pyrite suspension (50 g/L pyrite) that was buffered at pH 6-8 was exposed to air for oxygenation in the dark. Benzoate (20 mM) was added into the suspension to trap radOH. At pH 7, the cumulative radOH reached 7.5 μM within 420 min in the absence of LMWOAs, whereas it increased to 14.8, 12 and 11.2 μM in the presence of 1 mM ethylenediaminotetraacetate, citrate and oxalate, respectively. When the citrate concentration, which serves as a LMWOAs model, was increased from 0.5 to 5 mM, the cumulative radOH increased from 10.3 to 27.3 μM within 420 min at pH 7. With the decrease in pH from 8 to 6, the cumulative radOH increased from 2.1 to 23.3 μM in the absence of LMWOAs, but it increased from 8.8 to 134.9 μM in the presence of 3 mM citrate. The presence of LMWOAs enhanced the radOH production from pyrite oxidation under circumneutral conditions. In the absence of LMOWAs, radOH is produced mostly from the oxidation of adsorbed Fe(II) by O2. In the presence of citrate, radOH production is attributed mainly to the oxidation of Fe(II)-citrate- by O2 and secondarily to the oxidation of H2O on surface-sulfur defects. The acceleration of pyrite oxidation by Fe(III)-citrate increases radOH production. Fe(II)-citrate- is generated mainly from the complexation of adsorbed Fe(II) by citrate and the reduction of Fe(III)-citrate, and the generation is suppressed by the oxidation of adsorbed Fe(II). Fe(III)-citrate is generated predominantly from Fe

  19. Radical chemistry of epigallocatechin gallate and its relevance to protein damage

    DEFF Research Database (Denmark)

    Hagerman, Ann E; Dean, Roger T; Davies, Michael Jonathan

    2003-01-01

    The radical chemistry of the plant polyphenolics epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were investigated using electron paramagnetic resonance spectroscopy. Radical species formed spontaneously in aqueous solutions at low pH without external oxidant and were spin stabilized...... redox potentials of EGCG and EGC varied from 1000 mV at pH 3 to 400 mV at pH 8. The polyphenolics did not produce hydroxyl radicals unless reduced metal ions such as iron(II) were added to the system. Zinc(II)-stabilized EGCG radicals were more effective protein-precipitating agents than unoxidized EGCG...

  20. Quantification of Radicals Generated in a Sonicator

    Directory of Open Access Journals (Sweden)

    Kassim Badmus

    2016-06-01

    Full Text Available The hydroxyl radical (OH• is a powerful oxidant produced as a consequence of cavitation in water. It can react nonspecifically in breaking down persistent organic pollutants in water into their mineral form. It can also recombine to form hydrogen peroxide which is very useful in water treatment. In this study, terephthalic acid (TA and potassium iodide dosimetry were used to quantify and investigate the behaviour of the generated OH radical in a laboratory scale sonicator. The 2-hydroxyl terephthalic acid (HTA formed during terephthalic acid dosimetry was determined by optical fibre spectrometer. The production rate of HTA served as a means of evaluating and characterizing the OH• generated over given time in a sonicator. The influence of sonicator power intensity, solution pH and irradiation time upon OH• generation were investigated. Approximately 2.2 ´ 10-9 M s-1 of OH radical was generated during the sonication process. The rate of generation of the OH radicals was established to be independent of the concentration of the initial reactant. Thus, the rate of generation of OH• can be predicted by zero order kinetics in a sonicator.

  1. Detecting irradiated foods: use of hydroxyl radical biomarkers

    International Nuclear Information System (INIS)

    Karam, L.R.; Simic, M.G.

    1988-01-01

    Recent legislation in the United States has increased the probability of using ionizing radiation for preserving food. The possible increased use of food irradiation in this country, in addition to current use of the technique in other countries, makes it important to develop a method whereby the extent of irradiation of foods can be determined. Both opponents and proponents of this particular food-processing technique support postirradiation dosimetry (PID) as a way to measure the extent of changes in irradiated products. To prevent tampering and alteration of the dosimeters, the best postirradiation dosimeters are those that are inherent in the product exposed to the ionizing radiation. Therefore detection of the intermediates and subsequent products arising from the interaction of ionizing radiation with biomolecules in food should be a viable means by which the irradiated status of a food sample can be determined. To be useful as biomarkers, however, the products formed by irradiation must be detectable by routine analytical methods, formed exclusively by ionizing radiation (unless formation from alternate methods can be readily determined), and stable for the duration of the expected shelf life of the food product. In this article Lisa R. Karam and Michael G. Simic of the National Institute of Standards and Technology describe methodology developed to identify the irradiated status of foods using hydroxyl radical biomarkers

  2. Photocatalytic Oxidation in Drinking Water Treatment Using Hypochlorite and Titanium Dioxide

    NARCIS (Netherlands)

    El-Kalliny, A.S.M.

    2013-01-01

    The main focus of this thesis is to study the advanced oxidation processes (AOPs) of water pollutants via UV/hypochlorite (homogeneous AOPs), and UV solar light/TiO2 (heterogeneous AOPs) in which the highly oxidative hydroxyl radicals (•OH) are produced. These radicals are capable of destructing the

  3. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    Science.gov (United States)

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  4. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  5. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method.

    Science.gov (United States)

    Airianah, Othman B; Vreeburg, Robert A M; Fry, Stephen C

    2016-03-01

    Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides

  6. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  7. Pulse radiolysis and ab initio SCF MO studies of hydroxyl radical reactions with 2,2'-bipyridine and its complexes with transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Maliyachel, A C

    1984-01-01

    In the present study, reactions of hydroxyl radical with 2,2'-bipyridine (bpy) and complexes of iron(II) and cobalt(III) containing 2,2'-bipyridine and/or cyanide as ligands have been investigated by pulse radiolysis and also by ab initio self-consistent field, molecular orbital (SCF MO) theoretical techniques for 2,2'-bipyridine and pyridines. In the pulse radiolysis experiments, the nascent products of hydroxyl radical reactions with these compounds have been characterized through their spectral and kinetic properties. All these reactions occur at near diffusion controlled rates to give transient products having absorption in the ultraviolet, visible and, in some cases, near-IR region. The primary reactions of OH are considered to take place by addition mechanisms in the cases of 2,2'-bipyridine, (Fe(bpy)/sub 3/)/sup 2 +/, (Fe(DMbpy)/sub 3/)/sup 2 +/ and (Co(bpy)/sub 3/)/sup 3 +/. With (Fe(pby)/sub 2/(CN)/sub 2/) and (Fe(bpy)(CN)/sub 4/)/sup 2 -/, both addition and charge transfer processes occur. The present study indicates that hydroxyl radical reactions with 2,2'-bipyridine can be considerably altered by complexation with metal ions such as iron(II) and cobalt(III), and the factors associated with this are discussed. In the second part of this work, ab initio SCF MO calculations have been performed for the reactions of OH with pyridine, pyridinium ion and 2,2'-bipyridine. Based on the calculated total energies for the various hydroxy radical products, the relative stability of OH addition products are found to be for pyridine, meta-C > N >> para-C > ortho-C; for pyridinium ion, meta-C >> para-C > ortho-C > N, and for 2,2'- bipyridine, C/sub 5/ > C/sub 6/ > C/sub 3/ > C/sub 4/ > N.

  8. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  9. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    Toussaint, O.; Lerch, K.

    1987-01-01

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18 O 2

  10. Free Radical Oxidation in Rat Myocardium after Maximum Permissible Hepatic Resection.

    Science.gov (United States)

    Ermolaev, P A; Khramykh, T P; Barskaya, L O

    2016-03-01

    Free radical oxidation in rat myocardial homogenate was studied by chemiluminescent assay during the early terms after maximum permissible liver resection. During this period, activation of free radical oxidation was biphasic. The critical terms characterized by dramatic intensification of free radical oxidation in the myocardium are the first hour and the first day after surgery. The period from 3 to 12 h after surgery, in which the indices of chemiluminescence decrease, can be tentatively termed as the period of "putative wellbeing". Normalization of the free radical oxidation processes in the myocardium occurred by day 7 after surgery.

  11. Confirmation of hydroxyl radicals ({sup •} OH) generated in the presence of TiO{sub 2} supported on AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Fengyang; Huang, Lirong; Jiatieli, Jianaerguli; Li, Yuanyuan; Song, Lijun [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Ning [Experiment Center of Environmental Monitoring of Liaoning Province, Shenyang 110161 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Generation of {sup •} OH in MW integrated with loaded TiO{sub 2}/AC system was confirmed. • Confirmation of {sup •} OH was conducted using radical scavenger such as BHT, MT and VC. • More {sup •} OH was formed using anatase TiO{sub 2}/AC than rutile TiO{sub 2}/AC under MW irradiation. • Effect of mass ratio, irradiation time, catalyst dose and DPCI on {sup •} OH was studied. - Abstract: In order to study the degradation mechanism of technology of microwave (MW) combined with TiO{sub 2} supported on activated carbon (TiO{sub 2}/AC), the reactive oxygen species (ROS) was explored through oxidation of 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). Furthermore, 2,6-di-tert-butyl-4-methylphenol (BHT), Mannitol (MT) and Vitamin C (VC) were used as radical scavengers to confirm the generation of the hydroxyl radicals ({sup •} OH). In addition, the influence of some parameters such as TiO{sub 2} mass ratio content, irradiation time, material dose, DPCI concentration and MW power on the determination of {sup •} OH were examined. The results showed that the {sup •} OH could be generated under MW combined with loaded TiO{sub 2}/AC. Also, anatase TiO{sub 2}/AC can generate more {sup •} OH radicals than rutile TiO{sub 2}/AC under MW irradiation. This work would provide new mechanistic insights on the enhanced degradation effect of organic pollutants in water using the supported TiO{sub 2}/AC coupled with MW technology.

  12. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  13. From cation to oxide: hydroxylation and condensation of aqueous complexes

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al 3+ ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  14. Electron spin resonance of spin-trapped radicals of amines and polyamines

    International Nuclear Information System (INIS)

    Mossoba, M.M.; Rosenthal, Ionel; Riesz, Peter

    1982-01-01

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H 2 O 2 and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ν-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the α-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H 2 O 2 in the dark. ν-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the α-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine

  15. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  16. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  17. Chemical repair activity of free radical scavenger edaravone. Reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Hata, Kuniki; Katsumura, Yosuke; Urushibara, Ayumi; Yamashita, Shinichi; Lin Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu Haiying

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10 8 dm 3 mol -1 s -1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm -3 ) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. (author)

  18. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system

    International Nuclear Information System (INIS)

    Zhou, Lei; Zheng, Wei; Ji, Yuefei; Zhang, Jinfeng; Zeng, Chao; Zhang, Ya; Wang, Qi; Yang, Xi

    2013-01-01

    Highlights: • Effective oxidation of As(III)/diuron is achieved by Fe(II)-activated persulfate. • Hydroxyl and sulfate radical play important roles in As(III) and diuron oxidation. • CA and Na 2 S 2 O 3 are efficient and environmental friendly chelating agents. • DFT calculation is found to be useful for degradation products prediction. -- Abstract: In situ chemical oxidation (ISCO) can be an effective technology for the remediation of soil and groundwater polluted by organic and inorganic contaminants. This study investigated the oxidation of arsenic(III) (As(III)) and diuron using ferrous activated persulfate-based ISCO. The results indicated that Fe(II)/persulfate oxidation could be an effective method to oxidize As(III) and diuron. Effects of pH, S 2 O 8 2− and Fe(II) amounts on the destruction of As(III) and diuron were examined in batch experiments. Acidic conditions favored the removal of As(III) and diuron. Four chelating agents, citric acid (CA), Na 2 S 2 O 3 , diethylene triamine pentaacetic acid (DTPA) and ethylene diamine tetraacetic acid disodium (EDTA-Na 2 ) were used in attempt to maintain the quantity of ferrous ion in solution. In our experiments, CA and Na 2 S 2 O 3 were found to be more effective than DTPA and EDTA-Na 2 . Our results also revealed a widely practical prospect of inorganic chelating agent Na 2 S 2 O 3 . Hydroxyl and sulfate radical were determined to play key roles in the oxidation process by using ethanol and tertiary butanol as molecular probes. Oxidation of As(III) yielded As(V) via the electron-transfer reaction. In the oxidation process of diuron, a stepwise nucleophilic substitution of chlorine by hydroxyl and a stepwise oxidation process of the methyl on the dimethylurea group by hydroxyl and sulfate radical were proposed

  19. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study

    OpenAIRE

    Zhang, Quing An; Shen, Yuan; Fan, Xue-Hui; García-Martín, Juan Francisco; Wang, Xi; Song, Yun

    2015-01-01

    © 2015 Published by Elsevier B.V. Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radic...

  20. Electron transfer oxidation of DNA radicals by paranitroacetophenone

    Energy Technology Data Exchange (ETDEWEB)

    Whillans, D W; Adams, G E [Mount Vernon Hospital, Northwood (UK)

    1975-12-01

    The reaction of a typical electron-affinic sensitizer, paranitroacetophenone (PNAP) with the model compounds thymine, thymidine, thymidylic acid, deoxyribose and single and double-stranded DNA has been investigated by pulse radiolysis. Radicals formed by one-electron reduction of the bases and of DNA reacted rapidly and efficiently with PNAP by electron transfer. A small yield of transfer (< 10 per cent) was also observed arising from oxidation of the radicals formed by the small proportion of OH which reacted at the sugar moieties in DNA. In contrast, electron transfer oxidation by PNAP of radicals formed by the addition of OH to the base moieties, e.g. thymine, was not an efficient process. Further, addition of the sensitizer to the thymine OH-adduct proceeded at a rate that was too low to measure the pulse radiolysis. We conclude that, since the major sites of OH reaction by DNA are the heterocyclic bases (> 80 per cent), oxidation of the resultant radicals is unlikely to be a major step in the mechanism of sensitization by this typical hypoxic-cell sensitizer.

  1. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations.

    Science.gov (United States)

    Rodríguez-Chueca, Jorge; Amor, Carlos; Mota, Joana; Lucas, Marco S; Peres, José A

    2017-10-01

    The treatment of winery effluents through sulphate radical-based advanced oxidation processes (SR-AOPs) driven by solar radiation is reported in this study. Photolytic and catalytic activations of peroxymonosulphate (PMS) and persulphate (KPS and SPS) at different pH values (4.5 and 7) were studied in the degradation of organic matter. Portugal is one of the largest wine producers in Europe. The wine making activities generate huge volume of effluents characterized by a variable volume and organic load, being their seasonal nature one of the most important drawbacks. Recently, SR-AOPs are gradually attracting attention as in situ chemical oxidation technologies, instead of hydroxyl radical AOPs (HR-AOPs). The studied concentrations are suitable to obtain notable values of organic matter degradation, with TOC removal around 50%. In general terms, no notable differences were observed between treatments at pH values 4.5 and 7. Photolytic activation of SPS with solar radiation treatments obtained the highest efficiency (28 and 40% of TOC removal with 1 and 50 mM, respectively, at pH 4.5) in comparison to KPS and PMS. The addition of a transition metal as catalyst, such as Fe(II) or Co(II), increased considerably the TOC removal efficiency higher than 50%, but not in all cases. For instance, the combination KPS or PMS with Co(II) at pH 4.5 did not allow to obtain better results than photolytic activation of these persulphate salts. In summary, the use of SR-AOPs could be a serious alternative as tertiary treatment for winery wastewaters.

  2. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Science.gov (United States)

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  3. Investigation of OH Radical Regeneration from Isoprene Oxidation Across Different NOx Regimes in the Atmosphere Simulation Chamber SAPHIR

    Science.gov (United States)

    Novelli, A.; Bohn, B.; Dorn, H. P.; Häseler, R.; Hofzumahaus, A.; Kaminski, M.; Yu, Z.; Li, X.; Tillmann, R.; Wegener, R.; Fuchs, H.; Kiendler-Scharr, A.; Wahner, A.

    2017-12-01

    The hydroxyl radical (OH) is the dominant daytime oxidant in the troposphere. It starts the degradation of volatile organic compounds (VOC) originating from both anthropogenic and biogenic emissions. Hence, it is a crucial trace species in model simulations as it has a large impact on many reactive trace gases. Many field campaigns performed in isoprene dominated environment in low NOx conditions have shown large discrepancies between the measured and the modelled OH radical concentrations. These results have contributed to the discovery of new regeneration paths for OH radicals from isoprene-OH second generation products with maximum efficiency at low NO. The current chemical models (e.g. MCM 3.3.1) include this novel chemistry allowing for an investigation of the validity of the OH regeneration at different chemical conditions. Over 11 experiments focusing on the OH oxidation of isoprene were performed at the SAPHIR chamber in the Forschungszentrum Jülich. Measurements of VOCs, NOx, O3, HONO were performed together with the measurement of OH radicals (by both LIF-FAGE and DOAS) and OH reactivity. Within the simulation chamber, the NO mixing ratio was varied between 0.05 to 2 ppbv allowing the investigation of both the "new" regeneration path for OH radicals and the well-known NO+HO2 mechanism. A comparison with the MCM 3.3.1 that includes the upgraded LIM1 mechanism showed very good agreement (within 10%) for the OH data at all concentrations of NOx investigated. Comparison with different models, without LIM1 and with updated rates for the OH regeneration, will be presented together with a detailed analysis of the impact of this study on results from previous field campaigns.

  4. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols.

    Science.gov (United States)

    Lin, Kunde; Zhou, Shiyang; Chen, Xi; Ding, Jiafeng; Kong, Xiaoyan; Gan, Jay

    2015-11-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  7. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  8. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  9. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    Science.gov (United States)

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    Science.gov (United States)

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  11. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    Science.gov (United States)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  12. Total free radical species and oxidation equivalent in polluted air.

    Science.gov (United States)

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  14. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  15. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  16. Chemical oxidizers treat wastewater

    International Nuclear Information System (INIS)

    Stephenson, F.A.

    1992-01-01

    Based on the inherent benefits of these original oxidation systems, a second generation of advanced oxidation processes (AOPs) has emerged. These processes combine key features of the first generation technologies with more sophisticated advances in UV technology, such as the new pulsed plasma xenon flash lamp that emits high-energy, high-intensity UV light. Second generation systems can be equipped with a transmittance controller to prevent lamp fouling or scaling. The coupling of the first generation's technology with the new UV sources provides the rapid destruction of chlorinated and nonchlorinated hydrocarbons and humic acids from contaminated water. It also is effective in the treatment of organic laden gases from soil vapor extraction systems. AOPs may promote the oxidation (and subsequent removal) of heavy metals in water, though few data are available to verify the claim. The success of AOPs, including ozonation with UV light, hydrogen peroxide with UV light and advanced photolysis, is linked with their creation of hydroxyl-free radicals (OH·) that are effective in eliminating contaminants such as formaldehyde, chlorinated hydrocarbons and chlorinated solvents. Hydroxyl free-radicals are consumed in microsecond reactions and exhibit little substrate selectivity with the exception of halogenated alkanes such as chloroform. They can act as chain carriers. Given their power, hydroxyl free-radicals react with virtually all organic solutes more quickly (especially in water) than any other oxidants, except fluorine. There are projects that have found the combination of some AOPs to be the most efficient organic destruction techniques for the job. For example, one project successfully remediated groundwater contaminated with gasoline and Number 2 diesel through successive treatments of ozone and hydrogen peroxide with ultraviolet light, followed by granular activated carbon. 5 refs., 2 tabs

  17. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    DEFF Research Database (Denmark)

    Munk, Line; Punt, A. M.; Kabel, M. A.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators...... better than HBT (1-hydroxybenzotriazole). Three different mechanisms are suggested to explain the grafting of HPI and HBT, all involving radical-radical coupling to produce covalent bonding to lignin. Lignin from exhaustive cellulase treatment of wheat straw was more susceptible to grafting than beech...... organosolv lignin with the relative abundance of grafting being 35% vs. 11% for HPI and 5% vs. 1% for HBT on these lignin substrates. The data imply that lignin can be functionalized via laccase catalysis with-N-OH type mediators....

  18. Free radical reactions of monochloramine and hydroxylamine in aqueous solution

    International Nuclear Information System (INIS)

    Johnson, H.D.; Cooper, William J.; Mezyk, Stephen P.; Bartels, David M.

    2002-01-01

    The use of Advanced Oxidation Technologies to destroy organic contaminants in drinking water may be impacted by the presence of disinfection chemicals such as monochloramine (NH 2 Cl). To allow a quantitative evaluation of the effect of NH 2 Cl on the destruction of organics in water rate constants for its reaction with the hydrated electron, the hydroxyl radical and the hydrogen atom were determined in this study. The corresponding values of (2.2±0.2)x10 10 , (2.8±0.2)x10 9 , and (1.2±0.1)x10 9 M -1 s -1 , respectively, were incorporated into a kinetic computer model whose predictions were in good agreement with experimental chloramine removal under large scale, steady-state electron-beam irradiation conditions. Rate constants were also determined for the reaction of the hydroxyl radical and hydrogen atom with the chloramine hydration product hydroxylamine to supplement established literature data. Hydroxyl radical rate constants for the basic (NH 2 OH) and acidic (NH 3 OH + ) forms were determined as (8.5±0.4)x10 9 and ≤5x10 7 M -1 s -1 , respectively, while for hydrogen atom reaction, corresponding rate constants of (4.5±0.1)x10 7 and (3.6±1.5)x10 5 M -1 s -1 were found

  19. Effect of nitrogen doping of graphene oxide on hydrogen and hydroxyl adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byeong June; Jeong, Hae Kyung [Daegu University, Kyungsan (Korea, Republic of)

    2014-05-15

    We investigate how nitrogen-doping affects the hydrogen (H) and the hydroxyl (OH) adsorption on graphene oxide (GO) and on nitrogen-doped GO (NGO) via pseudopotential plane wave density functional calculations within the local spin density approximation. We find that the nitrogen doping brings about drastic changes in the hydrogen and the hydroxyl adsorption energetics, but its effects depend sensitively on the nitrogen configuration in NGO. The H and the OH adsorption energies are comparable only for pyrrolic NGO. In GO and quarternary NGO, the H adsorption energy is greater than the OH adsorption energy while the trend is reversed in pyridinic NGO. Also, the OH adsorption process is less affected by nitrogen-doping than the H adsorption is.

  20. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Directory of Open Access Journals (Sweden)

    Hong Sheng

    Full Text Available The bactericidal effect of hydroxyl radical (·OH generated by combination of photolysis of hydrogen peroxide (H2O2 and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2 and ultrasound (power: 30 w, frequency: 1.65 MHz at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  1. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Directory of Open Access Journals (Sweden)

    M. Martinez

    2010-04-01

    Full Text Available Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy, adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest.

    The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.

  2. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  3. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    Science.gov (United States)

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  4. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  5. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I.; Gunten, Urs von

    2012-01-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu ® ) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10 5 and 4.7 ± 0.2 × 10 9 M −1 s −1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  6. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zheng, Wei [Jiangsu Product Quality Supervision and Inspection Research Institute, Nanjing 210007 (China); Ji, Yuefei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Université Lyon 1, UMR CNRS 5256, Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), 2 Avenue Albert Einstein, F-69626 Villeurbanne (France); Zhang, Jinfeng; Zeng, Chao; Zhang, Ya; Wang, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2013-12-15

    Highlights: • Effective oxidation of As(III)/diuron is achieved by Fe(II)-activated persulfate. • Hydroxyl and sulfate radical play important roles in As(III) and diuron oxidation. • CA and Na{sub 2}S{sub 2}O{sub 3} are efficient and environmental friendly chelating agents. • DFT calculation is found to be useful for degradation products prediction. -- Abstract: In situ chemical oxidation (ISCO) can be an effective technology for the remediation of soil and groundwater polluted by organic and inorganic contaminants. This study investigated the oxidation of arsenic(III) (As(III)) and diuron using ferrous activated persulfate-based ISCO. The results indicated that Fe(II)/persulfate oxidation could be an effective method to oxidize As(III) and diuron. Effects of pH, S{sub 2}O{sub 8}{sup 2−} and Fe(II) amounts on the destruction of As(III) and diuron were examined in batch experiments. Acidic conditions favored the removal of As(III) and diuron. Four chelating agents, citric acid (CA), Na{sub 2}S{sub 2}O{sub 3}, diethylene triamine pentaacetic acid (DTPA) and ethylene diamine tetraacetic acid disodium (EDTA-Na{sub 2}) were used in attempt to maintain the quantity of ferrous ion in solution. In our experiments, CA and Na{sub 2}S{sub 2}O{sub 3} were found to be more effective than DTPA and EDTA-Na{sub 2}. Our results also revealed a widely practical prospect of inorganic chelating agent Na{sub 2}S{sub 2}O{sub 3}. Hydroxyl and sulfate radical were determined to play key roles in the oxidation process by using ethanol and tertiary butanol as molecular probes. Oxidation of As(III) yielded As(V) via the electron-transfer reaction. In the oxidation process of diuron, a stepwise nucleophilic substitution of chlorine by hydroxyl and a stepwise oxidation process of the methyl on the dimethylurea group by hydroxyl and sulfate radical were proposed.

  7. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  8. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    Science.gov (United States)

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  9. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  10. Oxidation and Free Radical Decay in Vitamin E-stabilized, Radiation Cross-linked UHMWPE

    International Nuclear Information System (INIS)

    Oral, E.

    2006-01-01

    A novel a-tocopherol (vitamin E, α-T)-stabilized, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (αTPE) was developed for total joint arthroplasty as a bearing surface with low wear and improved mechanical properties. Accelerated aging showed α-T protects irradiated UHMWPE against oxidation. However, accelerated aging may not truly reflect in vivo and shelf oxidation. We used real-time aging to monitor the evolution of oxidation and free radical signals of α-T to determine the mechanism of oxidative stability. UHMWPE blocks (30x30x10 mm) were machined and γ-irradiated (85 kGy) in argon. The blocks were doped in α-T for 5 hours at 120 degree and homogenized for 64 hours at 120 degree in argon, packaged in vacuum and γ-sterilized (25 kGy). Samples were aged in air at room temperature, in air at 40 degree and in water at 40 degree. Measurements were at 1, 2, 3, 4 and 7 months. Sections cut from the aged blocks (150μm) were boiled in hexane overnight to extract free species and evaluated by FTIR. Oxidation indices were calculated by taking the area under the carbonyl peak and normalizing it to a skeletal peak. ESR was used to determine the content and type of free radicals. Control was 100-kGy irradiated, unstabilized UHMWPE. αTPE showed a small amount of oxidation, which stabilized after 2 months. This indicated that the decay of the hydroperoxides formed by the reaction of the residual free radicals with oxygen was exhausted by α-T due to its ability to scavenge free radicals. In contrast, control UHMWPE continued to oxidize because the residual free radicals likely continued to form hydroperoxides and additional free radicals, furthering the oxidation reactions. There was a shift in the free radical signature of both αTPE and control from the sextet alkyl/allyl radicals to a sharp singlet during aging. Most likely, trapped free radicals move along the crystal stems until they react with another free radical or until they reach the crystal

  11. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion

    International Nuclear Information System (INIS)

    Villanueva-Rodriguez, M.; Hernandez-Ramirez, A.; Peralta-Hernandez, J.M.; Bandala, Erick R.; Quiroz-Alfaro, Marco A.

    2009-01-01

    This work shows preliminary results on the electrochemical oxidation process (EOP) using boron-doped diamond (BDD) electrode for acidic yellow 36 oxidation, a common azo dye used in textile industry. The study is centred in the synergetic effect of ferrous ions and hydroxyl free radicals for improving discoloration of azo dye. The assays were carried out in a typical glass cell under potentiostatic conditions. On experimental conditions, the EOP was able to partially remove the dye from the reaction mixture. The reaction rate increased significantly by addition of Fe 2+ (1 mM as ferrous sulphate) to the system and by (assumed) generation of ferrate ion [Fe(VI)] over BDD electrode. Ferrate is considered as a highly oxidizing reagent capable of removing the colorant from the reaction mixture, in synergistic action with the hydroxyl radicals produced on the BDD surface. Further increases in the Fe 2+ concentration lead to depletion of the reaction rate probably due to the hydroxyl radical scavenging effect of Fe 2+ excess in the system.

  12. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  13. Rubidium uptake by mouse pancreatic islets exposed to 6-hydroxydopamine, ninhydrin, or other generators of hydroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Grankvist, K.; Sehlin, J.; Taeljedal, I.-B.

    1986-01-01

    The purpose was to study the toxicity of drugs known to generate free radicals on isolated pancreatic islets. The accumulation of /sup 86/Rb/sup +/ by mouse pancreatic islets was measured in vitro. Exposing the islets to 6-hydroxydopamine, minhydrin, or phenazine methosulphate + NADH inhibited the Rb/sup +/ uptake, whereas paraquat or acetylphenylhydrazine had no effect. This effect of 6-hydroxydopamine was prevented by either of the hydroxyl radical scavengers, sodium benzoate and mannitol, but not by the non-scavenger urea; ninhydrin was partially protected against by mannitol but not by benzoate. Protection against 6-hydroxydopamine was also afforded by D-glucose but not by L-glucose or 3-O-methyl-D-glucose; none of the sugars protected against ninhydrin. In damaging islet beta-cells and in being protected against by D-glucose, 6-hydroxydopamine closely resembles the diabetogenic drug, alloxan. It is suggested that protection against alloxan may involve both glucose metabolism and the interaction of glucose with its membrane-located carrier, while protection against 6-hydroxydopamine appears to be unrelated to the hexose carrier mechanism.

  14. Iron induced RNA-oxidation in the general population and in mouse tissue

    DEFF Research Database (Denmark)

    Cejvanovic, Vanja; Kjær, Laura Kofoed; Bergholdt, Helle Kirstine Mørup

    2018-01-01

    Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overloa...

  15. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis.

    Science.gov (United States)

    Moukette Moukette, Bruno; Constant Anatole, Pieme; Nya Biapa, Cabral Prosper; Njimou, Jacques Romain; Ngogang, Jeanne Yonkeu

    2015-01-01

    Considerations on antioxidants derived from plants have continuously increased during this decade because of their beneficial effects on human health. In the present study we investigated the free radical scavenging properties of extracts from Piper guineense ( P. guineense ) and their inhibitory potentials against oxidative mediated ion toxicity. The free radical quenching properties of the extracts against [1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS•), hydroxyl radical (HO•), nitric oxide (NO•)] radical and their antioxidant potentials by FRAP and phosphomolybdenum were determined as well as their protective properties on liver enzymes. The phenolic profile was also investigated by HPLC. The results obtained, revealed that the extracts significantly inhibited the DPPH, NO, HO and ABTS radicals in a concentration depending manner. They also showed a significant ferrous ion chelating ability through FRAP and phosphomolybdenum antioxidant potential. Their polyphenol contents varied depending on the type of extracts and the solvent used. The hydroethanolic extracts (FFH) and the ethanolic extracts (FFE) of P. guineense leaves showed the higher level of phenolic compounds respectively of 21.62 ± 0.06 mg caffeic acid/g dried extract (CAE/g DE) and 19.01 ± 0.03 CAE/g DE. The HPLC phenolic compounds profile revealed a higher quantity of Eugenol, quercetin, rutin and catechin in the stem than in the leaves. The presence of these molecules could be responsible of the protective potentials of P. guineense extracts against lipid peroxidation and SOD, catalase and peroxidase. In conclusion, P. guineense extracts demonstrated significant antioxidant property and may be used as a prospective protector against metal related toxicity.

  16. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  17. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun

    2014-01-01

    To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

    Science.gov (United States)

    Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I

    2017-11-21

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.

  19. A comprehensive experimental and modeling study of isobutene oxidation

    KAUST Repository

    Zhou, Chong-Wen

    2016-03-17

    Isobutene is an important intermediate in the pyrolysis and oxidation of higher-order branched alkanes, and it is also a component of commercial gasolines. To better understand its combustion characteristics, a series of ignition delay time (IDT) and laminar flame speed (LFS) measurements have been performed. In addition, flow reactor speciation data recorded for the pyrolysis and oxidation of isobutene is also reported. Predictions of an updated kinetic model described herein are compared with each of these data sets, as well as with existing jet-stirred reactor (JSR) species measurements. IDTs of isobutene oxidation were measured in four different shock tubes and in two rapid compression machines (RCMs) under conditions of relevance to practical combustors. The combination of shock tube and RCM data greatly expands the range of available validation data for isobutene oxidation models to pressures of 50 atm and temperatures in the range 666–1715 K. Isobutene flame speeds were measured experimentally at 1 atm and at unburned gas temperatures of 298–398 K over a wide range of equivalence ratios. For the flame speed results, there was good agreement between different facilities and the current model in the fuel-rich region. Ab initio chemical kinetics calculations were carried out to calculate rate constants for important reactions such as H-atom abstraction by hydroxyl and hydroperoxyl radicals and the decomposition of 2-methylallyl radicals. A comprehensive chemical kinetic mechanism has been developed to describe the combustion of isobutene and is validated by comparison to the presently considered experimental measurements. Important reactions, highlighted via flux and sensitivity analyses, include: (a) hydrogen atom abstraction from isobutene by hydroxyl and hydroperoxyl radicals, and molecular oxygen; (b) radical–radical recombination reactions, including 2-methylallyl radical self-recombination, the recombination of 2-methylallyl radicals with

  20. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting.

    Science.gov (United States)

    Hulscher, Ryan M; Bohon, Jen; Rappé, Mollie C; Gupta, Sayan; D'Mello, Rhijuta; Sullivan, Michael; Ralston, Corie Y; Chance, Mark R; Woodson, Sarah A

    2016-07-01

    The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    Science.gov (United States)

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Oxidation of benzene by radiolytically produced OH radicals. [x rays

    Energy Technology Data Exchange (ETDEWEB)

    Klein, G W; Schuler, R H [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1978-01-01

    The radiolysis of N/sub 2/O saturated-aqueous solutions of benzene-/sup 14/C has been examined using radio-liquid chromatographic methods to follow the quantitative aspects of the reactions of hydroxycyclohexadienyl radicals. In the absence of a radical oxidant, at least five important products are produced. The total yield of 5.8 observed for the incorporation of benzene into products accounts for essentially all of the radicals initially produced from the water. Dimeric products predominate with a total yield of 4.1. Phenol is produced with a yield of only 0.8 indicating a disproportionation/combination ratio for hydroxycyclohexadienyl radicals of < = 0.4. In the presence of 2mM ferricyanide the hydroxycyclohexadienyl radicals are quantitatively oxidized to phenol with no trace (< 1%) remaining of dimeric or other high molecular weight products. The initial yield for phenol formation (6.0 molecules/100 eV) provides a measure for OH production in N/sub 2/O saturated aqueous solutions.

  3. Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp.

    Science.gov (United States)

    Liu, Xianli; Wu, Feng; Deng, Nansheng

    2004-01-01

    Photoproduction of hydroxyl radicals (*OH) could be induced in aqueous solution with algae (Nitzschia hantzschiana, etc.) and (or not) Fe3+ under high-pressure mercury lamp with an exposure time of 4 h. *OH was determined by HPLC using benzene as a probe. The photoproduction of *OH increased with increasing algae concentration. Fe3+ could enhance the photoproduction of *OH in aqueous solution with algae. The results showed that the photoproduction of *OH in algal solution with Fe3+ was greater than that in algal solution without Fe3+. The light intensity and pH affected the photoproduction of *OH in aqueous solution with algae with/without Fe3+. The photoproduction of *OH in aqueous solution with algae and Fe3+ under 250 W was greater than that under 125 W HPML. The photoproduction of *OH in algal solution (pH ranged from 4.0 to 7.0) with (or not) Fe3+ at pH 4 was the greatest.

  4. Accessibility of nucleic acid-complexed biomolecules to hydroxyl radicals correlates with their conformation: a fluorescence polarization spectroscopy study

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Bump, E.; Huang, C.; Kassis, A.I.; Baranowska-Kortylewicz, J.

    1994-01-01

    A fluorescence methodology has been developed to examine the relationship between the conformational state of specific biomolecules in simple chromatin models and their accessibility to hydroxyl radicals ( . OH). Polylysine and histone H1 were labelled with SECCA, the succinimidyl ester of coumarin-3-carboxylic acid, which generates the fluorescent derivative 7-OH-SECCA following its interaction with radiation-induced . OH in aqueous solution. The fluorescence induced per unit γ-ray dose reflecting the accessibility of . OH to such SECCA-conjugated biomolecules was recorded. The biomolecules were also labelled with the fluorescent derivative 7-OH-SECCA in trace amounts to study their conformation under identical conditions via fluorescence polarization spectroscopy. (author)

  5. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  6. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  7. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  8. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde. The subsequent

  9. Functionalization of hydroxyl terminated polybutadiene with ...

    Indian Academy of Sciences (India)

    Administrator

    The hydroxyl terminated polybutadiene (HTPB) used in this work was prepared by free radical polymerization using hydrogen peroxide as initiator and was received from HEMRL Pune, India, as a gift sample. The molecu- lar weight and polydispersity of the HTPB was deter- mined by using gel permeable chromatography ...

  10. Synthetic bovine proline-rich-polypeptides generate hydroxyl radicals and fail to protect dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Knaryan, Varduhi H; Samantaray, Supriti; Varghese, Merina; Srinivasan, Ambika; Galoyan, Armen A; Mohanakumar, Kochupurackal P

    2006-08-01

    Proline-rich-polypeptides (PRPs) isolated from bovine hypothalamus have been shown to render protection against neuronal injury of the brain and spinal cord. We examined two PRPs containing 15 and 10 amino acid residues (PRP-1 and PRP-4 synthetic polypeptide) for their effect, if any, on dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effects of these PRPs on hydroxyl radical ((*)OH) generation in a Fenton-like reaction as well as from isolated mitochondria were monitored, employing a sensitive salicylate hydroxylation procedure. Balb/c mice treated (i.p., twice, 16 h apart) with MPTP (30 mg/kg) or PRP-1 (1.6 mg/kg), but not PRP-4 (1.6 mg/kg) showed significant loss of striatal dopamine and norepinephrine as assayed by an HPLC-electrochemical procedure. Pretreatment with the PRPs, 30 min prior to the neurotoxin administration failed to attenuate MPTP-induced striatal dopamine or norepinephrine depletion, but significantly attenuated the MPTP-induced decrease in dopamine turnover. A significant increase in the generation of (*)OH by the PRPs in a Fenton-like reaction or from isolated mitochondria suggests their pro-oxidant action, and explains their failure to protect against MPTP-induced parkinsonism in mice.

  11. Improvement in electrical characteristics of eco-friendly indium zinc oxide thin-film transistors by photocatalytic reaction.

    Science.gov (United States)

    Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae

    2018-05-11

    Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

  12. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice.

    Science.gov (United States)

    Sengupta, T; Mohanakumar, K P

    2010-11-01

    Behavioral and neurochemical effects of chronic administration of high doses of 2-phenylethylamine (PEA; 25-75 mg/kg, i.p. for up to 7 days) have been investigated in Balb/c mice. Depression and anxiety, as demonstrated respectively by increased floating time in forced swim test, and reduction in number of entries and the time spent in the open arms in an elevated plus maze were observed in these animals. General motor disabilities in terms of akinesia, catalepsy and decreased swimming ability were also observed in these animals. Acute and sub-acute administration of PEA caused significant, dose-dependent depletion of striatal dopamine, and its metabolites levels. PEA caused dose-dependent generation of hydroxyl radicals in vitro in Fenton's reaction in test tubes, in isolated mitochondrial fraction, and in vivo in the striatum of mice. A significant inhibition of NADH-ubiquinone oxidoreductase (complex-I; EC: 1.6.5.3) activity suggests the inhibition in oxidative phosphorylation in the mitochondria resulting in hydroxyl radical generation. Nissl staining and TH immnunohistochemistry in brain sections failed to show any morphological aberrations in dopaminergic neurons or nerve terminals. Long-term over-consumption of PEA containing food items could be a neurological risk factor having significant pathological relevance to disease conditions such as depression or motor dysfunction. However, per-oral administration of higher doses of PEA (75-125 mg/kg; 7 days) failed to cause such overt neurochemical effects in rats, which suggested safe consumption of food items rich in this trace amine by normal population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S., E-mail: samadchemistry@gmail.com [Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali; Nawaz, Shah; Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2014-08-15

    Highlights: • Removal of endosulfan was assessed by gamma irradiation under different conditions. • Removal of endosulfan by gamma irradiation was mainly due to reaction of aqueous electron. • The radiation yield value decreased while dose constant increased with increasing gamma-ray dose-rate. • Second-order rate constant of endosulfan with aqueous electron was determined by competition kinetic method. • Degradation pathways were proposed from the nature of identified by-products. - Abstract: The removal of endosulfan, an emerging water pollutant, from water was investigated using gamma irradiation based advanced oxidation and reduction processes (AORPs). A significant removal, 97% of initially 1.0 μM endosulfan was achieved at an absorbed dose of 1020 Gy. The removal of endosulfan by gamma-rays irradiation was influenced by an absorbed dose and significantly increased in the presence of aqueous electron (e{sub aq}{sup −}). However, efficiency of the process was inhibited in the presence of e{sub aq}{sup −} scavengers, such as N{sub 2}O, NO{sub 3}{sup −}, acid, and Fe{sup 3+}. The observed dose constant decreased while radiation yield (G-value) increased with increasing initial concentrations of the target contaminant and decreasing dose-rate. The removal efficiency of endosulfan II was lower than endosulfan I. The degradation mechanism of endosulfan by the AORPs was proposed showing that reductive pathways involving e{sub aq}{sup −} started at the chlorine attached to the ring while oxidative pathway was initiated due to attack of hydroxyl radical at the S=O bond. The mass balance showed 95% loss of chloride from endosulfan at an absorbed dose of 1020 Gy. The formation of chloride and acetate suggest that gamma irradiation based AORPs are potential methods for the removal of endosulfan and its by-products from contaminated water.

  14. Efecto secuestrador del D-002 sobre radicales hidroxilo en mucosa gástrica Scavenger effect of D-002 on hydroxyl radicals in the gastric mucosa

    Directory of Open Access Journals (Sweden)

    Yohani Pérez Guerra

    2012-03-01

    purified from the beeswax, cause some multiple mechanism-mediated gastroprotective effects and decrease of lipid peroxidation in the gastric mucosa. Objective: to determine whether D-002 can scavenge the in vivo added or in vivo generated hydroxyl radical in rats with indometacin-induced gastric ulcer or not. Methods: For the in vitro experiment, D-002 was added at concentrations 0.9 and 1 000 mg/mL For the in vivo experiment, the rats were randomized into 6 groups: one negative control, and five indometacin-treated groups as follows a positive excipient-treated control, three under D-002 treatment (5, 25 or 100 mg/kg, respectively, p.o., and another group treated with Omeprazole (20 mg/kg i.p.. These lines of treatment were given 1 hour (excipient and D-002 or 30 min (Omeprazole prior to inducing the ulcers. In both experiments, aliquots from the gastric mucosa were taken and the damage infringed to 2-deoxiribose by the hydroxyl radical was determined. Results: oral administration of D-002, rather than in vitro addition, significantly protected 2-desoxiribose from the oxidative damage depending on the dosage as compared to the positive control. Conclusions: these results indicate that the ability of the orally administered D-002 (25 and 100 mg/kg to scavenge the hydroxyl radical endogenously generated on the gastric mucosa by indometacin could contribute to its antioxidant and gastroprotective effects against the damage that the non-steroidal anti-inflammatory drugs carry to the gastric mucosa.

  15. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    Science.gov (United States)

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  16. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  17. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  18. In vitro free radical scavenging activity of ethanolic extract of the whole plant of Evolvulus alsinoides (L.) L.

    Science.gov (United States)

    Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Vidya, Balasubramaniam; Uma, Chandrasekar

    2015-06-01

    To identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides. The free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard. The extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner. Evolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.

  19. Photolysis and oxidation of azidophenyl-substituted radicals: delocalization in heteroatom-based radicals.

    Science.gov (United States)

    Serwinski, Paul R; Esat, Burak; Lahti, Paul M; Liao, Yi; Walton, Richard; Lan, Jiang

    2004-08-06

    2-(4-Azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (14), 2-(4-azidophenyl)benzimidazole-1-oxide-3-oxyl (16), 2-(4-azidophenyl)-1,2,6-triphenylverdazyl (19), 2-(3-azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (21), and (3-azidophenyl)-N-tert-butyl-N-aminoxyl (25) were photolyzed in frozen solution to give S = 3/2 state ESR spectra of the corresponding nitrenophenyl radicals with the following zero-field splitting parameters: |D/hc| = 0.277 cm(-1), |E/hc| ions were unsuccessful: Cu(ClO4)2 x 6H2O instead oxidized them to the corresponding diamagnetic nitrosonium perchlorate salts. Copyright 2004 American Chemical Society

  20. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals

    International Nuclear Information System (INIS)

    Peak, J.G.; Ito, T.; Peak, M.J.; Robb, F.T.

    1994-01-01

    A supercoiled plasmid of 7300 base pairs was isolated and exposed in an aqueous environment to 60 Co γ rays and JANUS 0.85 MeV fission-spectrum neutrons. Dose responses for the production of single-strand breaks (SSBs), double-strand breaks (DSBs) and alkali-labile sites (ALSs) were compared with computations made from the conversion of the supercoil to its relaxed and linear forms. The relative biological effectiveness (RBE) for production of SSBs and DSBs was similar to that previously measured in the cellular environment. The RBE for destruction of genetic transforming activity of M13 viral DNA followed that for DNA damage. This is in contrast to the situation for biological effects such as lethality, mutagenesis, and cellular transformation measured in mammalian cells, where the RBE values are reversed. The role of hydroxyl (OH) radical in DNA damage induction by neutrons was investigated by exposure of plasmid in the presence of known quenchers of this species. Of four quenchers tested, all were able to reduce the yields of both SSBs and DSBs. These findings are consistent with a model for SSB and DSB induction by high linear energy transfer that involves OH radical mediation

  1. Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide

    NARCIS (Netherlands)

    Li, Y.; Giesbers, M.; Zuilhof, H.

    2012-01-01

    This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic

  2. Mobil pilot unit of the advanced oxidation process for waste water treatment and reuse of the hydrics effluents; Unidade piloto movel de processo oxidativo avancado aplicado a tratamento e reuso de efluentes hidricos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Lucia Maria Limoeiro; Pereira Junior, Oswaldo de Aquino; Henriques, Sheyla de Oliveira Carvalho; Jacinto Junior, Agenor [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The chemical oxidation processes which generate free hydroxyl radicals are called Advanced Oxidation Process (AOP). These processes have been studied, in the last decades, as a new alternative for pollutants degradation. In the (AOP)'s there are in situ formation of hydroxyl radicals (OH{center_dot}), which are highly oxidant. Its high oxidation strength becomes it indicated in the treatment of effluent with highly refractory contaminants. It can be used as a partial treatment (taking the effluent to more degradable compounds), as a final treatment (taking the effluent to complete mineralization) or as a complementary treatment to other processes, allowing, for example, its reuse. The applicability of this technology in oily water effluents in all segments of the oil industry, has taken to the development, in the LARA (Laboratory of Treatment and Reuse of Waters - CENPES), of the Advanced Oxidation Process Mobile Pilot Unit (AOP's- MU) with capacity up to 1 m3/h. The (AOP's- MU) are able to produce hydroxyl radical from Fenton's reaction, titanium dioxide heterogeneous photo catalysis and hydrogen peroxide, photo-radiated or not. It is equipped with ultraviolet reactors of different wave lengths and power. (author)

  3. Structural and immunological characterization of hydroxyl radical modified human IgG: Clinical correlation in rheumatoid arthritis

    Science.gov (United States)

    Islam, Sidra; Mir, Abdul Rouf; Arfat, Mir Yasir; Khan, Farzana; Zaman, Masihuz; Ali, Asif; Moinuddin

    2018-04-01

    Structural alterations in proteins under oxidative stress have been widely implicated in the immuno-pathology of various disorders. This study has evaluated the extent of damage in the conformational characteristics of IgG by hydroxyl radical (OHrad) and studied its implications in the immuno-pathology of rheumatoid arthritis (RA). Using various biophysical and biochemical techniques, changes in aromatic microenvironment of the IgG and the protein aggregation became evident after treatment with OHrad . The SDS-PAGE study confirmed the protein aggregation while far ultraviolet circular dichroism spectroscopy (Far-UV CD) and fourier transform infrared spectroscopy (FTIR) inferred towards the alterations in secondary structure of IgG under OHrad stress. Dynamic light scattering showed that the modification increased the hydrodynamic radius and polydispersity of IgG. The free arginine and lysine content reduced upon modification. OHrad induced aggregation was confirmed by enhanced thioflavin-T (ThT) fluorescence and red shift in the congo red (CR) absorbance. The study on experimental animals reiterates the earlier findings of enhanced immunogenicity of OHrad treated IgG (OHrad -IgG) compared to that of native IgG. OHrad -IgG strongly interacted with the antibodies derived from the serum of 80 rheumatoid arthritis (RA) patients. The overwhelming and strong tendency of OHrad -IgG to bind the antibodies derived from the serum of RA patients points towards the modification of IgG under patho-physiological conditions in RA that generate neo-epitopes and eventually cause the generation of auto antibodies that circulate in the patient sera. Further studies on this aspect may possibly lead to the development of a biomarker for RA.

  4. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide.

    Science.gov (United States)

    Mardyukov, Artur; Schreiner, Peter R

    2018-02-20

    The large number and amounts of volatile organosulfur compounds emitted to the atmosphere and the enormous variety of their reactions in various oxidation states make experimental measurements of even a small fraction of them a daunting task. Dimethyl sulfide (DMS) is a product of biological processes involving marine phytoplankton, and it is estimated to account for approximately 60% of the total natural sulfur gases released to the atmosphere. Ocean-emitted DMS has been suggested to play a role in atmospheric aerosol formation and thereby cloud formation. The reaction of ·OH with DMS is known to proceed by two independent channels: abstraction and addition. The oxidation of DMS is believed to be initiated by the reaction with ·OH and NO 3 · radicals, which eventually leads to the formation of sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 SO 3 H). The reaction of DMS with NO 3 · appears to proceed exclusively by hydrogen abstraction. The oxidation of DMS consists of a complex sequence of reactions. Depending on the time of the day or altitude, it may take a variety of pathways. In general, however, the oxidation proceeds via chains of radical reactions. Dimethyl sulfoxide (DMSO) has been reported to be a major product of the addition channel. Dimethyl sulfone (DMSO 2 ), SO 2 , CH 3 SO 3 H, and methanesulfinic acid (CH 3 S(O)OH) have been observed as products of further oxidation of DMSO. Understanding the details of DMS oxidation requires in-depth knowledge of the elementary steps of this seemingly simple transformation, which in turn requires a combination of experimental and theoretical methods. The methylthiyl (CH 3 S·), methylsulfinyl (CH 3 SO·), methylsulfonyl (CH 3 SO 2 ·), and methylsulfonyloxyl (CH 3 SO 3 ·) radicals have been postulated as intermediates in the oxidation of DMS. Therefore, studying the chemistry of sulfur-containing free radicals in the laboratory also is the basis for understanding the mechanism of DMS oxidation in the

  5. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.

    Science.gov (United States)

    Zhou, Lei; Zheng, Wei; Ji, Yuefei; Zhang, Jinfeng; Zeng, Chao; Zhang, Ya; Wang, Qi; Yang, Xi

    2013-12-15

    In situ chemical oxidation (ISCO) can be an effective technology for the remediation of soil and groundwater polluted by organic and inorganic contaminants. This study investigated the oxidation of arsenic(III) (As(III)) and diuron using ferrous activated persulfate-based ISCO. The results indicated that Fe(II)/persulfate oxidation could be an effective method to oxidize As(III) and diuron. Effects of pH, S2O8(2-) and Fe(II) amounts on the destruction of As(III) and diuron were examined in batch experiments. Acidic conditions favored the removal of As(III) and diuron. Four chelating agents, citric acid (CA), Na2S2O3, diethylene triamine pentaacetic acid (DTPA) and ethylene diamine tetraacetic acid disodium (EDTA-Na2) were used in attempt to maintain the quantity of ferrous ion in solution. In our experiments, CA and Na2S2O3 were found to be more effective than DTPA and EDTA-Na2. Our results also revealed a widely practical prospect of inorganic chelating agent Na2S2O3. Hydroxyl and sulfate radical were determined to play key roles in the oxidation process by using ethanol and tertiary butanol as molecular probes. Oxidation of As(III) yielded As(V) via the electron-transfer reaction. In the oxidation process of diuron, a stepwise nucleophilic substitution of chlorine by hydroxyl and a stepwise oxidation process of the methyl on the dimethylurea group by hydroxyl and sulfate radical were proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A facile synthesis of reduced holey graphene oxide for supercapacitors.

    Science.gov (United States)

    Hu, Xinjun; Bai, Dongchen; Wu, Yiqi; Chen, Songbo; Ma, Yu; Lu, Yue; Chao, Yuanzhi; Bai, Yongxiao

    2017-12-12

    Hydroxyl radicals (˙OH) generated from a UV/O 3 solution reaction is used to efficiently etch graphene oxide nanosheets under moderate conditions. Reduced holey graphene oxide is directly used as a supercapacitor electrode material and exhibits high specific capacitance (224 F g -1 at a current density of 1 A g -1 ) and high volumetric capacitance (up to 206 F cm -3 ).

  7. Improvement of biodegradability of oil wastewater contained PAM by pretreatment with Fenton oxidation

    International Nuclear Information System (INIS)

    Bao, M.; Wang, N.

    2008-01-01

    The use of polymer flooding in enhanced oil recovery operations has resulted in higher levels of polyacrylamide (PAM) found in oil wastewater. PAM is harmful to the environment, particularly the monomer acrylamide that is generated from PAM degradation. In this study, PAM derived from oil wastewater was pretreated by Fenton oxidation. This oxidation method is based on the use of a mixture of H 2 O 2 and iron salts which produce hydroxyl radicals in acidic conditions. The method offers a cost-effective source of hydroxyl radicals, using easy-to-handle reagents. The purpose of this study was to transform PAM to biodegradable intermediums. The optimal conditions for the Fenton reactions were also determined and described. Under optimal conditions, the removal ratios of PAM and chemical oxygen demand (COD) were 83.8 and 77 per cent respectively. It was concluded that Fenton's oxidation is an effective treatment to improved the biodegradability of PAM. 14 refs., 1 tab., 7 figs

  8. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Rafiee, Mohammad

    2018-02-27

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers or oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.

  9. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    Science.gov (United States)

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  10. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  11. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    Science.gov (United States)

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap

  12. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  13. Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice

    Directory of Open Access Journals (Sweden)

    T. Hullar

    2011-07-01

    Full Text Available Hydrogen peroxide (HOOH is a significant oxidant in atmospheric condensed phases (e.g., cloud and fog drops, aqueous particles, and snow that also photolyzes to form hydroxyl radical (OH. OH can react with organics in aqueous phases to form organic peroxyl radicals and ultimately reform HOOH, but the efficiency of this process in atmospheric aqueous phases, as well as snow and ice, is not well understood. We investigate HOOH formation from OH attack on 10 environmentally relevant organic compounds: formaldehyde, formate, glycine, phenylalanine, benzoic acid, octanol, octanal, octanoic acid, octanedioic acid, and 2-butoxyethanol. Liquid and ice samples with and without nitrate (as an OH source were illuminated using simulated solar light, and HOOH formation rates were measured as a function of pH and temperature. For most compounds, the formation rate of HOOH without nitrate was the same as the background formation rate in blank water (i.e., illumination of the organic species does not produce HOOH directly, while formation rates with nitrate were greater than the water control (i.e., reaction of OH with the organic species forms HOOH. Yields of HOOH, defined as the rate of HOOH production divided by the rate of OH production, ranged from essentially zero (glycine to 0.24 (octanal, with an average of 0.12 ± 0.05 (95 % CI. HOOH production rates and yields were higher at lower pH values. There was no temperature dependence of the HOOH yield for formaldehyde or octanedioic acid between −5 to 20 °C and ice samples had approximately the same HOOH yield as the aqueous solutions. In contrast, HOOH yields in formate solutions were higher at 5 and 10 °C compared to −5 and 20 °C. Yields of HOOH in ice for solutions containing nitrate and either phenylalanine, benzoate, octanal, or octanoic acid were indistinguishable from zero. Our HOOH yields were approximately

  14. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    Science.gov (United States)

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  15. Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder?

    Science.gov (United States)

    Bagis, Selda; Tamer, Lulufer; Sahin, Gunsah; Bilgin, Ramazan; Guler, Hayal; Ercan, Bahadir; Erdogan, Canan

    2005-04-01

    The role of free radicals in fibromyalgia is controversial. In this study, 85 female patients with primary fibromyalgia and 80 age-, height-, and weight-matched healthy women were evaluated for oxidant/antioxidant balance. Malondialdehyde is a toxic metabolite of lipid peroxidation used as a marker of free radical damage. Superoxide dismutase is an intracellular antioxidant enzyme and shows antioxidant capacity. Pain was assessed by visual analog scale. Tender points were assessed by palpation. Age, smoking, body mass index (BMI), and duration of disease were also recorded. Malondialdehyde levels were significantly higher and superoxide dismutase levels significantly lower in fibromyalgic patients than controls. Age, BMI, smoking, and duration of disease did not affect these parameters. We found no correlation between pain and number of tender points. In conclusion, oxidant/antioxidant balances were changed in fibromyalgia. Increased free radical levels may be responsible for the development of fibromyalgia. These findings may support the hypothesis of fibromyalgia as an oxidative disorder.

  16. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    Science.gov (United States)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min

  17. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant.

    Science.gov (United States)

    Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W

    1997-07-08

    Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

  18. Free radical scavenging injectable hydrogels for regenerative therapy.

    Science.gov (United States)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of tungsten doping on catalytic properties of niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Franciane P.; Nogueira, Andre E. [Departamento de Quimica, Universidade Federal de Lavras, Lavras-MG (Brazil); Patricio, Patricia S.O., E-mail: patriciapatricio@cefetmg.br [Centro Federal de Educacao Tecnologica, CEFET, Belo Horizonte, MG (Brazil); Oliveira, Luiz C.A. [Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-04-15

    A novel material based on niobia (Nb{sub 2}O{sub 5}) was synthesized to oxidize an organic compound in aqueous medium in the presence of H{sub 2}O{sub 2} after chemical modifications. Niobia was modified by doping with tungsten and also treating with H{sub 2}O{sub 2} in order to maximize the oxidative properties of this oxide. The analysis of the products from methylene blue dye oxidation with electro spray ionization mass spectrometry (ESI-MS) showed that the dye was successively oxidized to different intermediate compounds. The successive hydroxylation during this oxidation strongly suggests that highly reactive hydroxyl radicals are generated involving H{sub 2}O{sub 2} on the W-doped niobia grain surface. These results strongly suggest that the H{sub 2}O{sub 2} can regenerate in situ the peroxo group remaining active the system. (author)

  20. Ethylene formation from methionine as a method to evaluate oxygen free radical scavenging and metal inactivation by cosmetics.

    Science.gov (United States)

    Galey, J B; Millecamps, F; Nguyen, Q L

    1991-04-01

    Synopsis It has been proposed that oxygen free radicals are involved in skin aging. This paper describes a new method for the evaluation of oxygen free radical scavenging by cosmetic products. It is based on the measurement, by gas chromatography, of ethylene produced during the oxidation of methionine by the hydroxyl radical. OH. is produced by an iron catalyzed superoxide-driven Fenton reaction in which superoxide is obtained by photochemical oxygen reduction. The cosmetic is applied, together with methionine, riboflavine, NADH, FeCl(3) and EDTA, on a glass microfibre filter and submitted to UVA exposure through a quartz cell. Ethylene is then measured from aliquots of the atmosphere inside the cell. Catalase or Desferal completely inhibits ethylene production. SOD or high concentrations of hydroxyl radical scavengers (Mannitol, DMSO etc.) afford a partial protection. Thus the efficiency of O(2) (-)., H(2)O(2) and OH. scavengers and iron chelators can be measured. The main advantage of this test is that it is performed in conditions which simulate skin during UV exposure (e.g. air and UV exposed thin layer). Furthermore, as it is non-invasive, it can also be applied to human skin in vivo.

  1. Hydroxyl radical modify amino acids and prevent E. coli growth

    International Nuclear Information System (INIS)

    Zhang, Y.; Davies, K.J.A.

    1986-01-01

    The authors report that hydroxyl radical (/sup ./OH) damage to amino acids (AA) affects their incorporation into E. coli proteins. Modification of AA (Try, Trp, Met, Cys, His, Lys, Asn, Gln) by /sup ./OH was achieved by exposure to 60 Co radiation (1-100 krads at 600 rads/min) in N 2 O saturated water. Following exposure to /sup ./OH, the modified AA were added to suspensions of 8 AA requiring E. coli mutants in M9 medium + glucose. Mutants incubated with the /sup ./OH modified AA underwent less growth than those incubated with unmodified AA; with a declining exponential relationship between /sup ./OH exposure of AA and cell growth. The sensitivity of each AA to modification by /sup ./OH was as follows: Tyr > Trp > Met > Cys > His > Lys > Asn > Gln. Essentially the same pattern was observed for inhibition of mutant growth, which was proportional to the concentration of remaining unmodified (i.e. native) AA. Furthermore, cell growth was restored to normal levels by replenishment of native AA. When AA were irradiated at 50μM and then diluted to concentrations expected to support exponential growth (different for each AA) the radiation doses at which mutant growth was inhibited by 63% were as follows (in krad): Tyr 41, Trp 48, Met 53, Cys 56, His 57, Lys 68, Asn 80, Gln 116. /sup ./OH-modified 3 H-Trp was not a substrate for protein synthesis in Trp requiring mutants but was taken up by the cells. Modified Trp was also not incorporated in cell-free synthesis experiments. No toxicity was observed when wild type E. coli, in M9 medium + glucose, were supplemented with any of the/sup ./OH-modified AA. Thus /sup ./OH-modified AA do not support E. coli growth

  2. Insights into the Structures of DNA Damaged by Hydroxyl Radical: Crystal Structures of DNA Duplexes Containing 5-Formyluracil

    Directory of Open Access Journals (Sweden)

    Masaru Tsunoda

    2010-01-01

    Full Text Available Hydroxyl radicals are potent mutagens that attack DNA to form various base and ribose derivatives. One of the major damaged thymine derivatives is 5-formyluracil (fU, which induces pyrimidine transition during replication. In order to establish the structural basis for such mutagenesis, the crystal structures of two kinds of DNA d(CGCGRATfUCGCG with R = A/G have been determined by X-ray crystallography. The fU residues form a Watson-Crick-type pair with A and two types of pairs (wobble and reversed wobble with G, the latter being a new type of base pair between ionized thymine base and guanine base. In silico structural modeling suggests that the DNA polymerase can accept the reversed wobble pair with G, as well as the Watson-Crick pair with A.

  3. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal

    2014-01-01

    Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  4. [The relationship between neuroendocrine dysfunction and free-radical oxidation in old age alcoholism].

    Science.gov (United States)

    Vinogradov, D B; Mingazov, A Kh; Izarovskaya, I V; Babin, K A; Sinitsky, A I

    2015-01-01

    to study the relationship between dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and free-radical oxidation in old age alcoholism. Authors examined 46 men and women, aged 60-80 years, with alcoholism. Contents of cortisol, lipid peroxidation products and the level of an oxidatively modified protein were measured. A decrease in blood cortisol content and correlations between its level and activity of free-radical oxidation were identified. The severity of neuroendocrine dysfunction in old patients was sex-related. It has been suggested that the impairment of HPA system activity may be a cause of oxidative stress and development of alcoholism.

  5. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    Science.gov (United States)

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures.

  6. Free radical scavenging activity and lipid peroxidation inhibition of Hypericum helianthemoides (spach Boiss

    Directory of Open Access Journals (Sweden)

    Soheila Moein

    2015-06-01

    Full Text Available Antioxidants are compounds that obstruct the oxidation of macromolecules in the body. In general, there are two categories of antioxidants, natural and synthetic. Recently, interest has been increased considerably for obtaining new natural antioxidants. In this study, the scavenging of free radicals such as DPPH, NO and OH by Hypericum helianthemoides extract was evaluated. Also, the antioxidant properties of this extract were evaluated by FRAP, FTC methods and determination phenolic compounds. The plant was collected from north of Fars Province and plant extraction was obtained using ethanol. In DPPH radical scavenging, different concentrations of the Hypericum extract were added to DPPH radical. In hydroxyl radical scavenging, Fenton reaction mixture, TCA and TBA were mixed with Hypericum extract. In nitric radical scavenging, nitropruside was mixed with Hypericum extract and then sulphanilic acid, naphthylene diamine were added. In determination of phenolic compounds, Folin-ciocalteu and sodium carbonate were added to Hypericum extract. In DPPH radical scavenging, the IC50 of Hypericum extract (309.35±6.5μg/ml was higher than the antioxidant standards, BHT (IC50=81.9±2.6 μg/ml and quercetin (IC50=60.04±6.48 μg/ml. The highest scavenging of hydroxyl radicals was observed in Hypericum extract (70.3±0.8%, 125 μg/ml. In gallic acid it was (73.8±3.3%. In 200 μg/ml of Hypericum extract scavenged NO radical (85.2±2.7%. In FRAP method, the IC50 of this extract was 109.7±10.5 μg/ml. In FTC method, the inhibition of lipid peroxidation by Hypericum extract, BHT and ascorbic acid were 59.2±2.2, 66.9±0.15, 64.06±0.02 respectively. Total phenol of the plant extract was 3±0.4 mg/g.

  7. Observation of OH radicals produced by pulsed discharges on the surface of a liquid

    Science.gov (United States)

    Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy

    2011-06-01

    The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.

  8. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    Science.gov (United States)

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-07

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM.

  9. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  10. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  11. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  13. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  14. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes

    Directory of Open Access Journals (Sweden)

    GORAN BACIC

    2005-02-01

    Full Text Available Plant plasma membranes are known to produce superoxide radicals, while the production of hydroxyl radical is thought to occur only in the cell wall. In this work it was demonstrated using combined spin-trap and spin-probe EPR spectroscopic techniques, that plant plasma membranes do produce superoxide and hydroxyl radicals but by kinetically different mechanisms. The results show that superoxide and hydroxyl radicals can be detected by DMPO spin-trap and that the mechanisms and location of their production can be differentiated using the reduction of spin-probes Tempone and 7-DS. It was shown that the mechanism of production of oxygen reactive species is NADH dependent and diphenylene iodonium inhibited. The kinetics of the reduction of Tempone, combined with scavengers or the absence of NADH indicates that hydroxyl radicals are produced by a mechanism independent of that of superoxide production. It was shown that a combination of the spin-probe and spin-trap technique can be used in free radical studies of biological systems, with a number of advantages inherent to them.

  15. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection.

    Science.gov (United States)

    Ganini, Douglas; Canistro, Donatella; Jiang, JinJie; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P; Kadiiska, Maria B

    2012-10-01

    Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification. Published by Elsevier Inc.

  16. Multiple free-radical scavenging capacity in serum

    Science.gov (United States)

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  17. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  18. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  19. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  20. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study

    Directory of Open Access Journals (Sweden)

    Ono Hirohisa

    2011-06-01

    Full Text Available Abstract Background In acute stage of cerebral infarction, MRI indices (rDWI & rADC deteriorate during the first 3-7 days after the ictus and then gradually normalize in approximately 10 days (pseudonormalization time, although the tissue is already infarcted. Since effective treatments improve these indices significantly and in less than the natural pseudonormalization time, a combined analysis of these changes provides an opportunity for objective evaluation on the effectiveness of various treatments for cerebral infarction. Hydroxyl radicals are highly destructive to the tissue and aggravate cerebral infarction. We treated brainstem infarction patients in acute stage with hydroxyl radical scavengers (Edaravone and hydrogen by intravenous administration and evaluated the effects of the treatment by a serial observation and analysis of these MRI indices. The effects of the treatment were evaluated and compared in two groups, an Edaravone alone group and a combined group with Edaravone and hydrogen, in order to assess beneficial effects of addition of hydrogen. Methods The patients were divided in Edaravone only group (E group. 26 patients and combined treatment group with Edaravone and hydrogen enriched saline (EH group. 8 patients. The extent of the initial hump of rDWI, the initial dip of rADC and pseudo-normalization time were determined in each patient serially and averages of these data were compared in these two groups and also with the natural course in the literatures. Results The initial hump of rDWI reached 2.0 in the E group which was better than 2.5 of the natural course but was not as good as 1.5 of the EH group. The initial dip of rADC was 0.6 in the E group which was close to the natural course but worse than 0.8 of the EH group. Pseudonormalization time of rDWI and rADC was 9 days only in EH group but longer in other groups. Addition of hydrogen caused no side effects. Conclusions Administration of hydroxyl radical scavengers in

  1. An Efficient Synthesis of Phenols via Oxidative Hydroxylation of Arylboronic Acids Using (NH42S2O8

    Directory of Open Access Journals (Sweden)

    Claudia A. Contreras-Celedón

    2014-01-01

    Full Text Available A mild and efficient method for the ipso-hydroxylation of arylboronic acids to the corresponding phenols was developed using (NH42S2O8 as an oxidizing agent. The reactions were performed under metal-, ligand-, and base-free conditions.

  2. 3-Hydroxylysine, a potential marker for studying radical-induced protein oxidation

    DEFF Research Database (Denmark)

    Morin, B; Bubb, W A; Davies, Michael Jonathan

    1998-01-01

    albumin (BSA) and human low-density lipoprotein (LDL)] and diseased human tissues (atherosclerotic plaques and lens cataractous proteins). This work was aimed at investigating oxidized lysine as a sensitive marker for protein oxidation, as such residues are present on protein surfaces, and are therefore...... likely to be particularly susceptible to oxidation by radicals in bulk solution. HO* attack on lysine in the presence of oxygen, followed by NaBH4 reduction, is shown to give rise to (2S)-3-hydroxylysine [(2S)-2,6-diamino-3-hydroxyhexanoic acid], (2S)-4-hydroxylysine [(2S)-2,6-diamino-4-hydroxyhexanoic...... acid], (2S, 5R)-5-hydroxylysine [(2S,5R)-2,6-diamino-5-hydroxyhexanoic acid], and (2S,5S)-5-hydroxylysine [(2S,5S)-2,6-diamino-5-hydroxyhexanoic acid]. 5-Hydroxylysines are natural products formed by lysyl oxidase and are therefore not good markers of radical-mediated oxidation. The other...

  3. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

    2008-09-01

    The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

  4. Generation of various radicals in nitrogen plasma and their behavior in media

    International Nuclear Information System (INIS)

    Uhm, Han S.

    2015-01-01

    Research on the generation of radicals in nitrogen plasma shows that the most dominant radicals are excited nitrogen molecules in the metastable state of N 2 (A 3 ∑ u + ). Hydroxyl molecules are generated from the dissociation of water molecules upon contact with excited nitrogen molecules. The estimated densities of various radicals in nitrogen plasma with an electron temperature of 1 eV are presented in this study. The behavior of these radicals in media is also investigated. Excited nitrogen molecules in the N 2 (A 3 ∑ u + ) state from a plasma jet are injected into water, after which the molecules disappear instantaneously within a few tens of nm, producing hydroxyl molecules. Hydrogen peroxide, hydrogen dioxide, and nitrogen monoxide molecules can diffuse much deeper into water, implying the possibility that a chemical reaction between hydrogen dioxide and nitrogen monoxide molecules produces hydroxyl molecules in deep water, even though density in this case may not be very high

  5. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  6. Observation of OH radicals produced by pulsed discharges on the surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu [Department of Electrical and Electronic Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan); Kocik, Marek; Mizeraczyk, Jerzy, E-mail: skana@cc.oita-u.ac.jp [Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera 14, 80-952, Gdansk (Poland)

    2011-06-15

    The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO{sub 2}), hydrogen peroxide(H{sub 2}O{sub 2}) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A {sup 2}{Sigma}{sup +}(v' = 1) <- X {sup 2}{Pi}(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.

  7. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    Science.gov (United States)

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  8. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  9. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  10. Anti-radical power gives insight into early lipid oxidation events during frying

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2006-01-01

    The aim of this research was to use anti-radical power (ARP) to study early lipid oxidation events during frying. The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH¿) test was used to determine the ARP. As oil does not dissolve completely in methanol, which is generally used for the DPPH¿ test, butanol

  11. Radical scavenging potentials of single and combinatorial herbal formulations in vitro

    Directory of Open Access Journals (Sweden)

    Okey A. Ojiako

    2016-04-01

    Full Text Available Reactive oxygen and nitrogen species (RONS are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR, hydrogen peroxide (HP, nitric oxide radical (NOR, hydroxyl radical (HR, and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs, double herbal formulations (DHfs, triple herbal formulations (THfs, and a quadruple herbal formulation (QHf. The phytochemical composition and radical scavenging capacity index (SCI of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.

  12. Radical scavenging activity of crude polysaccharides from Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2011-01-01

    Full Text Available A preparation of crude polysaccharides (TPS was isolated from Camellia sinensis by precipitation and ultrafiltration. TPS1, TPS2, and TPS3 had molecular weights of 240, 21.4, and 2.46 kDa, respectively. The radical scavenging activities of TPS were evaluated by DPPH free radical, hydroxyl radical and superoxide radical scavenging. These results revealed that TPS exhibited strong radical scavenging activity in a concentration-dependent manner. TPS3 with lowest molecular weight showed a higher radical scavenging activity.

  13. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    Science.gov (United States)

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  14. Can Carbamates Undergo Radical Oxidation in the Soil Environment? A Case Study on Carbaryl and Carbofuran.

    Science.gov (United States)

    Ćwieląg-Piasecka, Irmina; Witwicki, Maciej; Jerzykiewicz, Maria; Jezierska, Julia

    2017-12-19

    Radical oxidation of carbamate insecticides, namely carbaryl and carbofuran, was investigated with spectroscopic (electron paramagnetic resonance [EPR] and UV-vis) and theoretical (density functional theory [DFT] and ab initio orbital-optimized spin-component scaled MP2 [OO-SCS-MP2]) methods. The two carbamates were subjected to reaction with • OH, persistent DPPH • and galvinoxyl radical, as well as indigenous radicals of humic acids. The influence of fulvic acids on carbamate oxidation was also tested. The results obtained with EPR and UV-vis spectroscopy indicate that carbamates can undergo direct reactions with various radical species, oxidizing themselves into radicals in the process. Hence, they are prone to participate in the prolongation step of the radical chain reactions occurring in the soil environment. Theoretical calculations revealed that from the thermodynamic point of view hydrogen atom transfer is the preferred mechanism in the reactions of the two carbamates with the radicals. The activity of carbofuran was determined experimentally (using pseudo-first-order kinetics) and theoretically to be noticeably higher in comparison with carbaryl and comparable with gallic acid. The findings of this study suggest that the radicals present in soil can play an important role in natural remediation mechanisms of carbamates.

  15. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  16. In vitro antibacterial and free radical scavenging activity of green hull of Juglans regia

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2013-08-01

    Full Text Available Antioxidant supplements from plants are vital to count the oxidative damage in cells. We assessed the antioxidants and antibacterial activity of green hull of Juglans regia in this study. According to our results the maximum antibacterial activity was observed in ethanolic extract when compared to other extract. So, the ethanolic extract was studied for antioxidant activity which exhibited high antiradical activity against DPPH, hydroxyl, and nitric oxide radicals. In conclusion, green hull of J. regia showed strong reducing power activity and total antioxidant capacity. The results justify the therapeutic application of plant in the indigenous system of medicine. Keywords: Juglans regia, Ethanolic extract, Antioxidants, DPPH, Antibacterial activity

  17. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  18. Protein capped nanosilver free radical oxidation: role of biomolecule capping on nanoparticle colloidal stability and protein oxidation.

    Science.gov (United States)

    Ahumada, Manuel; Bohne, Cornelia; Oake, Jessy; Alarcon, Emilio I

    2018-05-03

    We studied the effect of human serum albumin protein capped spherical nanosilver on the nanoparticle stability upon peroxyl radical oxidation. The nanoparticle-protein composite is less prone to oxidation compared to the individual components. However, higher concentrations of hydrogen peroxide were formed in the nanoparticle-protein system.

  19. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3.

    Science.gov (United States)

    Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin

    2018-03-02

    The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.

  20. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids : evidence for involvement of Fe(IV)=O species

    NARCIS (Netherlands)

    Berg, Tieme A. van den; Boer, Johannes W. de; Browne, Wesley R.; Roelfes, Gerard; Feringa, Bernard

    2004-01-01

    Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

  1. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution.

    Science.gov (United States)

    Zrinyi, Nick; Pham, Anh Le-Tuan

    2017-09-01

    Heat activates persulfate (S 2 O 8 2- ) into sulfate radical (SO 4 - ), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. N-Hydroxylation of 4-Aminobiphenyl by CYP2E1 Produces Oxidative Stress in a Mouse Model of Chemically Induced Liver Cancer

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S.; Tung, Aveline; McPherson, J. Peter; Grant, Denis M.

    2015-01-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(−/−) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  3. OH, HO2, and HO2* Radical Chemistry During PROPHET-AMOS 2016: Measurements and Model Comparison

    Science.gov (United States)

    Bottorff, B.; Lew, M.; Rickly, P.; Stevens, P. S.

    2017-12-01

    The hydroxyl (OH) and peroxy radicals, both the hydroperoxy radical (HO2) and organic peroxy radicals (RO2), play an important role in atmospheric chemistry. In addition to controlling lifetimes of many trace gases important to issues of global climate change, reactions of these radicals can also lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in remote forest environments have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOX conditions. In the summer of 2016, OH, HO2 and HO2* (HO2 + αRO2) radicals were measured using the Indiana University Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Program for Research on Oxidants: PHtochemistry, Emissions, and Transport- Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS). This campaign took place in a forested area in northern Michigan characterized by high mixing ratios of isoprene and low mixing ratios of NOX. Ambient measurements from this campaign will be compared to previous measurements at this site and to modeled predictions using both the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism. Potential interferences associated with the OH measurements will also be examined.

  4. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  5. Free Radicals and Extrinsic Skin Aging

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2012-01-01

    Full Text Available Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR. It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−•, hydrogen peroxide (H2O2, hydroxyl radical (OH•, and singlet oxygen (1O2. The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants and antioxidants we consume from the food (vitamin A, C, E, etc.. The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.

  6. Oxidation of Refractory Benzothiazoles with PMS/CuFe2O4: Kinetics and Transformation Intermediates

    KAUST Repository

    Zhang, Tao; Chen, Yin; Leiknes, TorOve

    2016-01-01

    Benzothiazole (BTH) and its derivatives, 2-(methylthio)bezothiazole (MTBT), 2-benzothiazolsulfonate (BTSA) and 2-hydroxybenzothiazole (OHBT), are refractory pollutants ubiquitously existing in urban runoff at relatively high concentrations. Here, we report their oxidation by CuFe2O4-activated peroxomonosulfate (PMS/CuFe2O4), focusing on kinetics and transformation intermediates. These benzothiazoles can be efficiently degraded by this oxidation process which is confirmed to generate mainly sulfate radicals (with negligible hydroxyl-radical formation) under slightly acidic to neutral pH conditions. The molar exposure ratio of sulfate radical to residual PMS (i.e. Rct) of this process is a constant which is related to reaction condition and can be easily determined. Reaction rate constants of these benzothiazoles towards sulfate radical are (3.3 ± 0.3) × 109, (1.4 ± 0.3) × 109, (1.5 ± 0.1) × 109 and (4.7 ± 0.5) × 109 M-1s-1, respectively (pH 7 and 20 oC). Based on Rct and these rate constants, their degradation in the presence of organic matter can be well predicted. A number of transformation products were detected and tentatively identified using triple-quadruple/linear ion trap MS/MS and high-resolution MS. It appears that sulfate radicals attack BTH, MTBT and BTSA on their benzo ring via electron transfer, generating multiple hydroxylated intermediates which are reactive towards common oxidants. For OHBT oxidation, it prefers to break down the thiazole ring. Due to competitions of the transformation intermediates, a minimum PMS/pollutant molar ratio of 10-20 is required for effective degradation. The flexible PMS/CuFe2O4 could be a useful process to remove the benzothiazoles from low DOC waters like urban runoff or polluted groundwater.

  7. Oxidation of Refractory Benzothiazoles with PMS/CuFe2O4: Kinetics and Transformation Intermediates

    KAUST Repository

    Zhang, Tao

    2016-05-04

    Benzothiazole (BTH) and its derivatives, 2-(methylthio)bezothiazole (MTBT), 2-benzothiazolsulfonate (BTSA) and 2-hydroxybenzothiazole (OHBT), are refractory pollutants ubiquitously existing in urban runoff at relatively high concentrations. Here, we report their oxidation by CuFe2O4-activated peroxomonosulfate (PMS/CuFe2O4), focusing on kinetics and transformation intermediates. These benzothiazoles can be efficiently degraded by this oxidation process which is confirmed to generate mainly sulfate radicals (with negligible hydroxyl-radical formation) under slightly acidic to neutral pH conditions. The molar exposure ratio of sulfate radical to residual PMS (i.e. Rct) of this process is a constant which is related to reaction condition and can be easily determined. Reaction rate constants of these benzothiazoles towards sulfate radical are (3.3 ± 0.3) × 109, (1.4 ± 0.3) × 109, (1.5 ± 0.1) × 109 and (4.7 ± 0.5) × 109 M-1s-1, respectively (pH 7 and 20 oC). Based on Rct and these rate constants, their degradation in the presence of organic matter can be well predicted. A number of transformation products were detected and tentatively identified using triple-quadruple/linear ion trap MS/MS and high-resolution MS. It appears that sulfate radicals attack BTH, MTBT and BTSA on their benzo ring via electron transfer, generating multiple hydroxylated intermediates which are reactive towards common oxidants. For OHBT oxidation, it prefers to break down the thiazole ring. Due to competitions of the transformation intermediates, a minimum PMS/pollutant molar ratio of 10-20 is required for effective degradation. The flexible PMS/CuFe2O4 could be a useful process to remove the benzothiazoles from low DOC waters like urban runoff or polluted groundwater.

  8. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  9. Quantification of Lightning-induced Nitrogen Oxides in CMAQ and the Assessment of its impact on Ground-level Air Quality

    Science.gov (United States)

    Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...

  10. Free radicals, oxidative stress and importance of antioxidants in human health

    Directory of Open Access Journals (Sweden)

    K.I. Priyadarsini

    2011-07-01

    Full Text Available Reactive oxygen species (ROS is a collective term used for oxygen containing free radicals, depending on their reactivity and oxidizing ability. ROS participate in a variety of chemical reactions with biomolecules leading to a pathological condition known as oxidative stress. Antioxidants are employed to protect biomolecules from the damaging effects of such ROS. In the beginning, antioxidant research was mainly aimed at understanding free radical reactions of ROS with antioxidants employing biochemical assays and kinetic methods. Later on, studies began to be directed to monitor the ability of anti-oxidants to modulate cellular signaling proteins like receptors, secondary messengers, transcription factors, etc. Of late several studies have indicated that antioxidants can also have deleterious effects on human health depending on dosage and bio-availability. It is therefore, necessary to validate the utility of antioxidants in improvement of human health in order to take full advantage of their therapeutic potential.

  11. Effects of hydroxyl radical induced-Injury in atrial versus ventricular myocardium of dog and rabbit

    Directory of Open Access Journals (Sweden)

    Nitisha Hiranandani

    2010-09-01

    Full Text Available Aim: Despite the widespread use of ventricular tissue in the investigation involving hydroxyl-radical (OH* injury, one of the most potent mediators in ischemia-reperfusion injury, little is known about the impact on atrial myocardium. In this study we thus compared the OH*-induced injury response between atrial and right ventricular muscles from both rabbits and dogs under identical experimental conditions. Methods: Small, contracting ventricular and atrial rabbit and dog trabeculae were directly exposed to OH*, and contractile properties were examined and quantified. Results: A brief OH* exposure led to transient rigor like contracture with marked elevation of diastolic tension and depression of developed force. Although the injury response showed similarities between atrial and ventricular myocardium, there were significant differences as well. In rabbit atrial muscles, the development of the contracture and its peak was much faster as compared to ventricular muscles. Also, at the peak of contracture, both rabbit and dog atrial muscles show a lesser degree of contractile dysfunction. Conclusion: These results indicate that both atrial and ventricular muscles develop a rigor like contracture after acute OH*-induced injury, and atrial muscles showed a lesser degree of contractile dysfunction. Comparison of dog versus rabbit tissue shows that the response was similar in magnitude, but slower to develop in dog tissue.

  12. Quantification of Hydroxyl Radical reactivity in the urban environment using the Comparative Reactivity Method (CRM)

    Science.gov (United States)

    Panchal, Rikesh; Monks, Paul

    2015-04-01

    Hydroxyl (OH) radicals play an important role in 'cleansing' the atmosphere of many pollutants such as, NOx, CH4 and various VOCs, through oxidation. To measure the reactivity of OH, both the sinks and sources of OH need to be quantified, and currently the overall sinks of OH seem not to be fully constrained. In order to measure the total rate loss of OH in an ambient air sample, all OH reactive species must be considered and their concentrations and reaction rate coefficients with OH known. Using the method pioneered by Sinha and Williams at the Max Plank Institute Mainz, the Comparative Reactivity Method (CRM) which directly quantifies total OH reactivity in ambient air without the need to consider the concentrations of individual species within the sample that can react with OH, has been developed and applied in a urban setting. The CRM measures the concentration of a reactive species that is present only in low concentrations in ambient air, in this case pyrrole, flowing through a reaction vessel and detected using Proton Transfer Reaction - Mass Spectrometry (PTR-MS). The poster will show a newly developed and tested PTR-TOF-MS system for CRM. The correction regime will be detailed to account for the influence of the varying humidity between ambient air and clean air on the pyrrole signal. Further, examination of the sensitivity dependence of the PTR-MS as a function of relative humidity and H3O+(H2O) (m/z=37) cluster ion allows the correction for the humidity variation, between the clean humid air entering the reaction vessel and ambient air will be shown. NO, present within ambient air, is also a potential interference and can cause recycling of OH, resulting in an overestimation of OH reactivity. Tests have been conducted on the effects of varying NO concentrations on OH reactivity and a correction factor determined for application to data when sampling ambient air. Finally, field tests in the urban environment at the University of Leicester will be shown

  13. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  14. Oxidation of substituted alkyl radicals by IrCl62-, Fe(CN)63-, and MnO4- in aqueous solution. Electron transfer versus chlorine transfer from IrCl62-

    International Nuclear Information System (INIS)

    Steenken, S.; Neta, P.

    1982-01-01

    Alkyl radicals substituted at C/sub α/ by alkyl, carboxyl, hydroxyl, alkoxyl, and chlorine react in aqueous solutions with Ir/sup IV/Cl 6 2- to yield Ir(III) species. In the case of substitution by hydroxyl and alkoxyl, the rate constants are in the diffusion-controlled range ((4-6) x 10 9 M -1 s -1 ) and the reaction proceeds by electron transfer. In the case of ethyl, methyl, carboxymethyl, and chloromethyl radicals the rate constants range from 3.1 x 10 9 for ethyl to 2.8 x 10 7 M -1 s -1 for trichloromethyl and the reaction proceeds by chlorine transfer from IrCl 6 2- to the alkyl radical. With isopropyl and tert-butyll radicals the reaction proceeds by both electron and chlorine transfer. Alkyl radicals also react with Fe(CN) 6 3- . The rate constants increase strongly with increasing alkylation at C/sub α/ from 5 x 10 6 for methyl to 3.6 x 10 9 M -1 s -1 for tert-butyl, indicating that the transition state for the reaction is highly polar. Rate constants for reaction of MnO 4 - with alkyl radicals are of the order 10 9 M -1 s -1 . 4 figures, 1 table

  15. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  16. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  17. Anti-oxidation and scavenging effects of some extracts from Chinese medicines on free radicals

    International Nuclear Information System (INIS)

    Wang Chongdao; Qiang Yizhong; Lao Qinhua; Cui Fengmei; Shao Yuan; Sun Cunpu

    1999-11-01

    The inhibiting effects of Chinonin, Quercetin and Tannic Acid on the lipid oxidation induced by radiation exposure were investigated by means of a modified TBA spectrophotometry. The scavenging effects on free radicals caused by γ-irradiation exposure of the three active principles were observed by technique of ESR. The results showed that anti-oxidation effects of Chinonin and Quercetin were better than that of Tannic Acid, while the scavenging effects of the three active principles on free radicals were similar

  18. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    M. Vrekoussis

    2004-01-01

    Full Text Available During the MINOS campaign (28 July-18 August 2001 the nitrate (NO3 radical was measured at Finokalia station, on the north coast of Crete in South-East Europe using a long path (10.4 km Differential Optical Absorption Spectroscopy instrument (DOAS. Hydroxyl (OH radical was also measured by a Chemical Ionization Mass-Spectrometer (Berresheim et al., 2003. These datasets represent the first simultaneous measurements of OH and NO3 radicals in the area. NO3 radical concentrations ranged from less than 3x107 up to 9x108 radicals· cm-3 with an average nighttime value of 1.1x108 radicals· cm-3. The observed NO3 mixing ratios are analyzed on the basis of the corresponding meteorological data and the volatile organic compound (VOC observations which were measured simultaneously at Finokalia station. The importance of the NO3 radical chemistry relatively to that of OH in the dimethylsulfide (DMS and nitrate cycles is also investigated. The observed NO3 levels regulate the nighttime variation of DMS. The loss of DMS by NO3 during night is about 75% of that by OH radical during day. NO3 and nitrogen pentoxide (N2O5 reactions account for about 21% of the total nitrate (HNO3(g+NO-3(g production.

  19. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  20. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress.

    Science.gov (United States)

    Pérez-González, Adriana; Galano, Annia; Alvarez-Idaboy, J Raúl; Tan, Dun Xian; Reiter, Russel J

    2017-09-01

    Melatonin is well known for its antioxidant capacity, which has been attributed to the combined protective effects of the parent molecule and its metabolites. However, the potential role of 2-hydroxymelatonin (2OHM) and 4-hydroxymelatonin (4OHM) in such protection has not been previously investigated. The calculations were performed using the Density Functional Theory, with the M05-2X and M05 functionals, the 6-311+G(d,p) basis set and the solvation model based on density (SMD). 4OHM shows excellent antioxidant activity via radical-trapping, reacting with peroxyl radicals faster than Trolox and melatonin. 4OHM can be moderately efficient as a preventing antioxidant by inhibiting Cu(II). This effect would lower the Cu(I) availability, which is the redox state required for the OH to be formed, via Fenton-like reactions. 4OHM turns off the oxidant effects of copper-ascorbate mixtures. The presence of a phenolic group was identified as the key structural feature in the antioxidant activity of 4OHM. On the other hand, 2OHM does not present a phenolic group, despite its formal name. Its keto tautomer was identified as the most abundant one (~100%). This may explain the relative low antioxidant protection of 2OHM. 4OHM significantly contributes to the overall antioxidant activity exhibited by melatonin, while the effects of 2OHM in this context are predicted to be only minor. This low reactivity might justify the relatively large abundance of 2OHM in biological systems. Hydroxylated melatonin metabolites, such as 4OHM, may play an important role in the protective effects of melatonin against oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study of anti-oxidation and scavenging effects on free radicals of quercetin

    International Nuclear Information System (INIS)

    Wang Chongdao; Qiang Yizhong; Lao Qinhua; Shao Yuan

    1999-01-01

    The effects of Quercetin on the contents of lipid peroxides (LPO) in the mice caused by γ-whole-body irradiation by method of the modified spectrophotometry of TBA, and the scavenging effects of Quercetin on the free radicals of DNA induced by radiation exposure by means of ESR technique were investigated. The results demonstrates that Quercetin has a good anti-oxidation effect and is very effective in scavenging of free radicals

  2. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  3. Glutathione mediation of papain inactivation by hydrogen peroxide and hydroxyl radicals

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1977-01-01

    Glutathione reacts with papainCys 25 SOH, formed by the reaction of papain with hydrogen peroxide, to give papainCys 25 SSG. Subsequent reaction of this mixed disulfide with glutathione is slow (k -1 sec -1 ). However, at 30 0 C it is readily cleaved by cysteine to form active papain, i.e., papainCys 25 SH. Glutathione resembles cysteine in protecting papain by the scavenging of .OH radicals, but, unlike cysteine, glutathione gave no evidence for the repair of enzyme radical lesions or for the conversion of papainCys 25 S. radicals to repairable derivatives. Its overall effectiveness for reducing the radiation inactivation of papain in aqueous solution is much less than that of cysteine

  4. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  5. Free Radical Scavenging Properties of Annona squamosa

    Science.gov (United States)

    Vikas, Biba; Akhil B, S; P, Remani; Sujathan, K

    2017-10-26

    Annona squamosa has extensively been used in the traditional and folkloric medicine and found to possess many biological activities. Different solvents, petroleum ether, chloroform, ethyl acetate and methanol extracts of Annona squamosa seeds (ASPE, ASCH, ASEA, ASME) have been used to prepare plant extracts. The present investigations dealt with the free radical scavenging activity of four extracts using various techniques such as total reducing power estimation, total phenolic count, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging effect, evaluation of ABTS cation decolorisation capacity, FRAP assay, hdroxyl radical scavenging assay, super oxide assay and Nitric oxide radical scavenging assay of the extracts. The results showed that the four extracts of Annona squamosa showed significant reducing power in four extracts. The total phenolic contents in petroleum ether, chloroform, ethyl acetate, methanol extracts and positive control were 0.64±0.17, 0.54±0.27, 0.49±0.24, 0.57±0.22 and 0.66±0.33. The antioxidant capacity by ABTS assay of ASPE, ASCH, ASEA, ASME and positive control, trolox showed 77.75±0.5,73.25±1.7,78.5± 1.2 , 80 ± 0.8 μg/ml and 94.2 ± 0.9 respectively. The (50 % scavenging activity) SA50 of ASPE and ASCH, ASEA and ASME was found to be 34.4 μg/ml, 43.8 μg/ml 34.7 μg/m and 28.8 μg/ml respectively by DPPH assay. The percentage of hydroxyl radical scavenging increased with the increasing concentration of the extracts. ASPE, ASCH, ASEA and ASME showed superoxide radical scavenging activity, as indicated by their values 66 ± 0.5, 68 ± 1 ,63 ± 1 and 70 ± 0.5 μg/ml respectively compared to gallic acid which was 97 ± 0.5 μg/ml. The values for scavenging of nitric oxide for ASPE, ASCH, ASEA and ASME were 91.0 ± 1.0, 66.75 ± 0.5, 71.75 ± 1.1 and 75.75 ± 1.15 μg/ml while value for standard ascorbic acid was 91.0 ± 1.0 μg/ml. The results revealed strong antioxidants in four extracts may lead to the development of potent

  6. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    International Nuclear Information System (INIS)

    Podder, Soumik; Halder, Suman; Roychowdhury, Anirban; Das, Dipankar; Ghosh, Chandan Kr.

    2016-01-01

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical ("·OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights "·OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O_2"·"−), hydrogen peroxide (H_2O_2) and "·OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV–Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about ~24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of "·OH among all ROS. Here we have proposed the enhanced production of "·OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I_2) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and "·OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a plausible mechanism was hypothesized focusing on hole

  7. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    Science.gov (United States)

    Podder, Soumik; Halder, Suman; Roychowdhury, Anirban; Das, Dipankar; Ghosh, Chandan Kr.

    2016-10-01

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical (·OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights ·OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O 2 ·- ), hydrogen peroxide (H2O2) and ·OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV-Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about 24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of ·OH among all ROS. Here we have proposed the enhanced production of ·OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I2) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and ·OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a plausible mechanism was hypothesized focusing on hole generation in ZnO NP and

  8. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Soumik [Jadavpur University, School of Materials Science and Nanotechnology (India); Halder, Suman [Jadavpur University, Department of Pharmaceutical Technology (India); Roychowdhury, Anirban; Das, Dipankar [Kolkata Centre, UGC-DAE Consortium for Scientific Research (India); Ghosh, Chandan Kr., E-mail: chandu-ju@yahoo.co.in [Jadavpur University, School of Materials Science and Nanotechnology (India)

    2016-10-15

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical ({sup ·}OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights {sup ·}OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O{sub 2}{sup ·−}), hydrogen peroxide (H{sub 2}O{sub 2}) and {sup ·}OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV–Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about ~24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of {sup ·}OH among all ROS. Here we have proposed the enhanced production of {sup ·}OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I{sub 2}) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and {sup ·}OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a

  9. The Load of Lightning-induced Nitrogen Oxides and Its Impact on the Ground-level Ozone during Summertime over the Mountain West States

    Science.gov (United States)

    Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...

  10. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    Science.gov (United States)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryousuke; Miyahara, Kento; Majima, Takuya; Itoh, Akio

    2015-12-01

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  11. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryousuke; Miyahara, Kento [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2015-12-15

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  12. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    International Nuclear Information System (INIS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryousuke; Miyahara, Kento; Majima, Takuya; Itoh, Akio

    2015-01-01

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  13. On the quantification of the dissolved hydroxyl radicals in the plasma-liquid system using the molecular probe method

    Science.gov (United States)

    Ma, Yupengxue; Gong, Xinning; He, Bangbang; Li, Xiaofei; Cao, Dianyu; Li, Junshuai; Xiong, Qing; Chen, Qiang; Chen, Bing Hui; Huo Liu, Qing

    2018-04-01

    Hydroxyl (OH) radical is one of the most important reactive species produced by plasma-liquid interactions, and the OH in liquid phase (dissolved OH radical, OHdis) takes effect in many plasma-based applications due to its high reactivity. Therefore, the quantification of the OHdis in a plasma-liquid system is of great importance, and a molecular probe method usually used for the OHdis detection might be applied. Herein, we investigate the validity of using the molecular probe method to estimate the [OHdis] in the plasma-liquid system. Dimethyl sulfoxide is used as the molecular probe to estimate the [OHdis] in an air plasma-liquid system, and usually the estimation of [OHdis] is deduced by quantifying the OHdis-induced derivative, the formaldehyde (HCHO). The analysis indicates that the true concentration of the OHdis should be estimated from the sum of three terms: the formed HCHO, the existing OH scavengers, and the H2O2 formed from the OHdis. The results show that the measured [HCHO] needs to be corrected since the HCHO consumption is not negligible in the plasma-liquid system. We conclude from the results and the analysis that the molecular probe method generally underestimates the [OHdis] in the plasma-liquid system. If one wants to obtain the true concentration of the OHdis in the plasma-liquid system, one needs to know the consumption behavior of the OHdis-induced derivatives, the information of the OH scavengers (such as hydrated electron, atomic hydrogen besides the molecular probe), and also the knowledge of the H2O2 formed from the OHdis.

  14. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    Science.gov (United States)

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  15. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  17. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  18. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    Science.gov (United States)

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  19. Study on the plasma reaction process of hydroxyl generation by strong electric field ionization discharge

    International Nuclear Information System (INIS)

    Bai Mindi; Deng Shufang; Bai Xiyao; Zhang Zhitao

    2004-01-01

    Considering the change in the structure of reaction room, dielectric materials and process technology, authors have specifically studied the plasma reaction process of creating hydroxyl radical OH * and e aq - from ionization of O 2 and H 2 O through a strong electric field discharge. The production volume of hydroxyl radical OH * is up to the project application level, and process technology meets the 12 laws of green chemistry, free from environmental pollution from the source. The authors have emphatically researched on the green method of flue gas desulfurization, which will ionize SO 2 , H 2 O and O 2 in the flue gas to synthesis H 2 SO 4 in molecular level within 0.8 s without absorbent and catalyst. (author)

  20. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  1. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  2. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  3. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  4. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Jensen, Peter Ø; Briales, Alejandra; Brochmann, Rikke P; Wang, Hengzhuang; Kragh, Kasper N; Kolpen, Mette; Hempel, Casper; Bjarnsholt, Thomas; Høiby, Niels; Ciofu, Oana

    2014-04-01

    Antibiotic-tolerant, biofilm-forming Pseudomonas aeruginosa has long been recognized as a major cause of chronic lung infections of cystic fibrosis patients. The mechanisms involved in the activity of antibiotics on biofilm are not completely clear. We have investigated whether the proposed induction of cytotoxic hydroxyl radicals (OH˙) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ΔkatA and a ciprofloxacin resistant mutant of PAO1 (gyrA), were grown as biofilms in microtiter plates and treated with ciprofloxacin. Formation of OH˙ and total amount of reactive oxygen species (ROS) was measured and viability was estimated. Formation of OH˙ and total ROS in PAO1 biofilms treated with ciprofloxacin was shown but higher levels were measured in ΔkatA biofilms, and no ROS production was seen in the gyrA biofilms. Treatment with ciprofloxacin decreased the viability of PAO1 and ΔkatA biofilms but not of gyrA biofilms. Addition of thiourea, a OH˙ scavenger, decreased the OH˙ levels and killing of PAO1 biofilm. Our study shows that OH˙ is produced by P. aeruginosa biofilms treated with ciprofloxacin, which may contribute to the killing of biofilm subpopulations. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  6. Free radical-scavenging delta-lactones from Boletus calopus.

    Science.gov (United States)

    Kim, Jin-Woo; Yoo, Ick-Dong; Kim, Won-Gon

    2006-12-01

    The methanol extracts from the fruiting body of the mushroom Boletus calopus showed free radical-scavenging activity. Bioactivity-guided fractionation of the methanol extracts led to a new hydroxylated calopin named calopin B, along with the known delta-lactones calopin and cyclocalopin A. The structure of the new calopin analogue was elucidated by spectroscopic methods. All compounds showed potent free radical-scavenging activity against superoxide, DPPH, and ABTS radicals with IC (50) values of 1.2 - 5.4 microg/mL.

  7. Peculiarities of the free radical processes in rat liver mitochondria under toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2016-04-01

    Full Text Available The rate of superoxide anion radical, hydroxyl radical and hydrogen peroxide generation, the level of oxidative modification of mitochondrial proteins in the liver of rats with toxic hepatitis was investigated on the background of alimentary protein deficiency. We did not find significant increases of the intensity of free radical processes in liver mitochondria of rats maintained on the protein-deficient ration. The most significant intensification of free radical processes in liver mitochondria is observed under the conditions of toxic hepatitis, induced on the background of alimentary protein deprivation. Under these conditions the aggravation of all studied forms of reactive oxygen species generation was observed in liver mitochondria. The generation rates were increased as follows: O2 – by 1.7 times, Н2О2 – by 1.5 times, •ОН – practically double on the background of accumulation of oxidized mitochondria-derived proteins. The established changes in thiol groups’ redox status of respiratory chain proteins insoluble in 0.05 M sodium-phosphate buffer (pH 11.5, and changes of their carbonyl derivatives content may be considered as one of the regulatory factors of mitochondrial energy-generating function.

  8. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  9. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses.

    Science.gov (United States)

    Kim, Seo-Young; Kim, Eun-A; Kim, Young-Sun; Yu, Seok-Kyu; Choi, Changyong; Lee, Jung-Suk; Kim, Yong-Tae; Nah, Jae-Woon; Jeon, You-Jin

    2016-10-01

    The aim of this study was to analyze antioxidant properties of a polysaccharide isolated from Psidium guajava leaves (PS-PGL) in vitro including its radical scavenging activities and protective effects against damage to cells as well as in vivo in zebrafish. The water extract of P. guajava leaves (WE-PGL) and PS-PGL showed strong radical scavenging effects in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical. Compared to WE-PGL, PS-PGL enhanced all scavenging activities and in particular strongly scavenged the hydroxyl radical (50% inhibitory concentration [IC50], 0.02mg/mL). In addition, PS-PGL exerted a protective effect against hydrogen peroxide-induced oxidative stress and against toxicity to Vero cells. Furthermore, in vivo experiments using zebrafish embryos indicated that treatment with hydrogen peroxide decreased the survival rate and heart-beating rate of zebrafish embryos, whereas these problems were reduced by PS-PGL treatment. Moreover, PS-PGL inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production, lipid peroxidation, and cell death. Taken together, these results suggest that PS-PGL may be useful as a beneficial antioxidant material in the food and cosmetic industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products

    International Nuclear Information System (INIS)

    Florenza, Xavier; Solano, Aline Maria Sales; Centellas, Francesc; Martínez-Huitle, Carlos Alberto

    2014-01-01

    Highlights: • Degradation of Acid Red 1 by anodic oxidation, electro-Fenton and photoelectro-Fenton • Quicker and similar decolorization by electro-Fenton and photoelectro-Fenton due to oxidation with ● OH in the bulk • Almost total mineralization by photoelectro-Fenton with Pt or BDD due to fast photolysis of products by UVA light • Detection of 11 aromatic products, 15 hydroxylated compounds, 13 desulfonated derivatives and 7 carboxylic acids • Release of NH 4 + , NO 3 − and SO 4 2− ions, and generation of persistent N-products of low molecular mass - Abstract: Solutions of 236 mg dm −3 Acid Red 1 (AR1), an azo dye widely used in textile dying industries, at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) at constant current density (j). Assays were performed with a stirred tank reactor equipped with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 generation from O 2 reduction. The main oxidizing agents were hydroxyl radicals produced at the anode from water oxidation in all methods and in the bulk from Fenton's reaction between generated H 2 O 2 and 0.5 mmol dm −3 Fe 2+ in EF and PEF. For each anode, higher oxidation power was found in the sequence AO-H 2 O 2 < EF < PEF. The oxidation ability of the BDD anode was always superior to that of Pt. Faster and similar decolorization efficiency was achieved in EF and PEF owing to the quicker destruction of aromatics with hydroxyl radicals produced in the bulk. The PEF process with BDD was the most potent method yielding almost total mineralization due to the additional rapid photolysis of recalcitrant intermediates like Fe(III)-carboxylate complexes under UVA irradiation. The increase in j always enhanced the decolorization and mineralization processes because of the greater production of hydroxyl radicals, but decreases the mineralization current efficiency

  12. Pulse radiolysis investigations on the oxidation of bilirubin by chlorinated peroxyl radicals (Preprint No. RC.18)

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1989-01-01

    Chlorinated peroxyl radicals were observed to oxidize bilirubin. The rate constants, estimated from the formation kinetics of bilirubin cation, were observed to decrease with decrease in the chlorine substitution of various chlorinated peroxyl radicals. (author)

  13. Hormonal shifts and intensity of free radical oxidation in the blood of patients with facial nerve neuropathies

    Directory of Open Access Journals (Sweden)

    L. V. Govorova

    2010-01-01

    Full Text Available Pathochemical characteristic features of facial nerve neuropathy (FNN have been more accurately defined. Heterogeneous patochemical pattern of facial nerve neuropathy has been shown to be dependent on the severity of the disease, intensity of free radical oxidation processes, and hormonal status of the patient. We have found reliable distinctions in dynamics of free radical oxidation processes, and hormo-nal status in the blood of the patients with moderately severe and severe forms of facial nerve neuropathies. In facial nerve neuropathies we observed regulatory effects of cortisol and somatotropic hormone; in facial nerve neuropathywith moderate severity the hormones of thyroid group were seen to be switching off, falling out the processes regulating metabolism. Follicle stimulating hormone (FSH and luteinizing hormone (LH were found to have regulating effects, especially in the acute phase of the disease. Different dynamics of the hormones in patients with high and low free radical oxidation levels suggests that the oxidative stress intensity could be associated with regulatory effects of the hormones . The results of correlation analysis confirm the reliable distinctions in free radical oxidation characteristics andand cortisole levels, STH, FSH and LH levels.

  14. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  15. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  16. Developments in laser-induced fluorescence spectroscopy for quantitative in situ measurements of free radicals in the troposphere

    Science.gov (United States)

    Heard, Dwayne

    2015-04-01

    Photo-oxidation in the troposphere is highly complex, being initiated by short lived free radical species, in the daytime dominated by the hydroxyl radical, OH. Chemical oxidation cycles, which also involve peroxy radicals (HO2 and RO2), remove natural or anthropogenic emissions (for example methane) and generate a range of secondary products, for example ozone, nitrogen dioxide, acidic and multifunctional organic species, and secondary organic aerosol, which impact on human health and climate. Owing to their short lifetime in the atmosphere, the abundance of radicals is determined solely by their rate of chemical production and loss, and not by transport. Field measurements of the concentrations of radicals and comparison with calculations using a numerical model therefore constitutes one of the very best ways to test whether the chemistry in each of these locations is understood and accurately represented in the model. Validation of the chemistry is important, as the predictions of climate and air quality models containing this chemistry are used to drive the formulation of policy and legislation. However, in situ measurements of radical species, owing to their very low abundance (often sub part per trillion) and short lifetimes (pulse repetition rate tunable laser systems, will be discussed, together with calibration methods to make signals absolute, and identification of potential interferences. LIF instruments have been operated on ground, ship and aircraft platforms at a number of locations worldwide, and examples from recent fieldwork involving the Leeds instruments will be presented.

  17. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  18. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations.

    Science.gov (United States)

    Minakata, Daisuke; Coscarelli, Erica

    2018-02-28

    Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV) photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N -nitrosodimethylamine (NDMA), N -nitrosomethylethylamine, and N -nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  19. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations

    Directory of Open Access Journals (Sweden)

    Daisuke Minakata

    2018-02-01

    Full Text Available Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N-nitrosodimethylamine (NDMA, N-nitrosomethylethylamine, and N-nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  20. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  1. Aspects of reaction of N-oxide radical with ethers in 13C NMR spectrum

    International Nuclear Information System (INIS)

    Kolodziejski, W.

    1980-01-01

    The stable radical N-oxide 2,2,6,6-tetramethylpiperidine was dissolved in ethers. The 13 C NMR spectra were recorded in the temperature 313K at the frequency 22,625 MHz on the spectrometers with Fourier transformation. The dissolution of the radical in ether caused the contact shifts in NMR spectra. The shifts were measured. (A.S.)

  2. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  3. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  4. Oxidative transformation of polybrominated diphenyl ether congeners (PBDEs) and of hydroxylated PBDEs (OH-PBDEs).

    Science.gov (United States)

    Moreira Bastos, Patricia; Eriksson, Johan; Vidarson, Jenny; Bergman, Ake

    2008-10-01

    The historical and widespread use of polybrominated diphenyl ethers (PBDEs) as flame retardants in consumer products worldwide has caused PBDEs to now be regarded as pervasive environmental contaminants. Most recently, hydroxylated PBDEs (OH-PBDEs) and methoxylated PBDEs (MeO-PBDEs) have emerged as environmentally relevant due to reports of their natural production and metabolism. An important parameter for assessing the environmental impact of a chemical substance is persistence. By formulating the concept that persistence is the result of the substance's physicochemical properties and chemical reactivity, Green and Bergman have proposed a new methodology to determine the inherent persistence of a chemical. If persistence could be predicted by straightforward methods, substances with this quality could be screened out before large-scale production/manufacturing begins. To provide data to implement this concept, we have developed new methodologies to study chemical transformations through photolysis; hydrolysis, substitution, and elimination; and via oxidation. This study has focused on adapting an oxidative reaction method to be applicable to non-water soluble organic pollutants. PBDEs and one MeO-PBDE were dissolved in tetrahydrofuran/methanol and then diluted in alkaline water. The OH-PBDEs were dissolved in alkaline water prior to reaction. The oxidation degradation reaction was performed at 50 degrees C using potassium permanganate as described elsewhere. The pH was maintained at 7.6 with disodium hydrogen phosphate and barium hydrogen phosphate, the latter also serving as a trapping agent for manganate ions. The oxidation reactions were monitored by high-performance liquid chromatography and reaction rates were calculated. The OH-PBDEs have very fast oxidative transformation rates compared to the PBDEs. The reaction rates seem to be primarily dependent on substitution pattern of the pi-electron-donating bromine substituents and of bromine content. There are

  5. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  7. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  8. Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Bruins, Andries P; Bischoff, Rainer; Permentier, Hjalmar P

    2012-10-21

    Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by direct electron transfer. In the case of substituted-aromatic compounds, oxidation proceeds through a Wheland-type intermediate where resonance stabilization of the positive charge determines the regioselectivity of the anodic substitution reaction, and hence limits the extent of generating drug metabolites in comparison with in vivo oxygen insertion reactions. In this study, we show that the electrocatalytic oxidation of hydrogen peroxide on a platinum electrode generates reactive oxygen species, presumably surface-bound platinum-oxo species, which are capable of oxygen insertion reactions in analogy to oxo-ferryl radical cations in the active site of Cytochrome P450. Electrochemical oxidation of lidocaine at constant potential in the presence of hydrogen peroxide produces both 3- and 4-hydroxylidocaine, suggesting reaction via an arene oxide rather than a Wheland-type intermediate. No benzylic hydroxylation was observed, thus freely diffusing radicals do not appear to be present. The results of the present study extend the possibilities of electrochemical imitation of oxidative drug metabolism to oxygen insertion reactions.

  9. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    Science.gov (United States)

    Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi

    2016-10-01

    Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  10. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    Science.gov (United States)

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  11. OH radical induced depolymerization of poly(methacrylic acid)

    Science.gov (United States)

    Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens

    1999-05-01

    Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.

  12. The research progress of several kinds of free radical scavengers

    International Nuclear Information System (INIS)

    Qian Liren; Huang Yuecheng; Cai Jianming

    2009-01-01

    Ionization radiation can generate free radicals in biological system, which could induce lipid peroxi-dation, biomacromolecule and biomembrane damage, lost of cell function, cell cycle disturbance, genetic mutation and so on. The scavenging free radicals can protect organism from radiation damage. Many radio-protective agents, such as amylase, hydroxyl-benzene derivatives, hormone, vitamin, have great abilities to protect organism from radiation via scavenging free radicals. In this paper, we mainly review the free radical scavenging effects of several kinds of radio-protective agents. (authors)

  13. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  14. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  15. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  16. Antioxidant effects of crude extracts from Baccharis species: inhibition of myeloperoxidase activity, protection against lipid peroxidation, and action as oxidative species scavenger

    Directory of Open Access Journals (Sweden)

    Tiago O. Vieira

    2011-05-01

    Full Text Available The objective of this study was to show a comparison of the antioxidant properties of aqueous and ethanolic extracts obtained from Baccharis articulata (Lam. Pers., Baccharis trimera (Less. DC., Baccharis spicata (Lam. Baill. and Baccharis usterii Heering, Asteraceae, by several techniques covering a range of oxidant species and of biotargets. We have investigated the ability of the plant extracts to scavenge DPPH (1,1-diphenyl-2-picryl-hydrazyl free radical, action against lipid peroxidation of membranes including rat liver microsomes and soy bean phosphatidylcholine liposomes by ascorbyl radical and peroxynitrite. Hydroxyl radical scavenger activity was measured monitoring the deoxyribose oxidation. The hypochlorous acid scavenger activity was also evaluated by the prevention of protein carbonylation and finally the myeloperoxidase (MPO activity inhibition. The results obtained suggest that the Baccharis extracts studied present a significant antioxidant activity scavenging free radicals and protecting biomolecules from the oxidation. We can suggest that the supposed therapeutic efficacy of this plant could be due, in part, to these properties.

  17. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    Science.gov (United States)

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  18. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.

    Science.gov (United States)

    Oueslati, Khaled; de La Pomélie, Diane; Santé-Lhoutellier, Véronique; Gatellier, Philippe

    2016-10-15

    The production of oxygen free radicals catalysed by non-haem iron was investigated in an in vitro mimetic model of the digestive tract using specific chemical traps. Superoxide radicals (O2(∗-)) and their protonated form (hydroperoxyl radicals, HO2(∗)) were detected by the reduction of nitroblue tetrazolium into formazan, and hydroxyl radicals (OH(∗)) were detected by the hydroxylation of terephthalate. Under gastric conditions, O2(∗-)/HO2(∗) were detected in higher quantity than OH(∗). Increasing the pH from 3.5 to 6.5 poorly affected the kinetics of free radical production. The oxidations generated by these free radicals were estimated on myofibrils prepared from pork rectus femoris muscle. Myofibrillar lipid and protein oxidation increased with time and oxidant concentration, with a negative impact on the digestibility of myofibrillar proteins. Plant food antioxidants considerably decreased free radical production and lipid oxidation but not protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  20. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  1. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA

    DEFF Research Database (Denmark)

    Luxford, C; Morin, B; Dean, R T

    1999-01-01

    analysis has demonstrated that radicals from histone H1-hydroperoxides, and other protein and amino acid hydroperoxides, can also oxidize both free 2'-deoxyguanosine and intact calf thymus DNA to give the mutagenic oxidized base 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine, 8-oxod......Exposure of amino acids, peptides and proteins to radicals, in the presence of oxygen, gives high yields of hydroperoxides. These materials are readily decomposed by transition metal ions to give further radicals. We hypothesized that hydroperoxide formation on nuclear proteins, and subsequent...... decomposition of these hydroperoxides to radicals, might result in oxidative damage to associated DNA. We demonstrate here that exposure of histone H1 and model compounds to gamma-radiation in the presence of oxygen gives hydroperoxides in a dose-dependent manner. These hydroperoxides decompose to oxygen...

  2. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  3. Oxidation Kinetics of Bromophenols by Nonradical Activation of Peroxydisulfate in the Presence of Carbon Nanotube and Formation of Brominated Polymeric Products.

    Science.gov (United States)

    Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Ma, Jun; Zhou, Yang; Yang, Yi

    2017-09-19

    This work demonstrated that bromophenols (BrPs) could be readily oxidized by peroxydisulfate (PDS) activated by a commercial carbon nanotube (CNT), while furfuryl alcohol (a chemical probe for singlet oxygen ( 1 O 2 )) was quite refractory. Results obtained by radical quenching experiments, electron paramagnetic resonance spectroscopy, and Fourier transform infrared spectroscopy further confirmed the involvement of nonradical PDS-CNT complexes rather than 1 O 2 . Bicarbonate and chloride ion exhibited negligible impacts on BrPs degradation by the PDS/CNT system, while a significant inhibitory effect was observed for natural organic matter. The oxidation of BrPs was influenced by solution pH with maximum rates occurring at neutral pH. Linear free energy relationships (LFERs) were established between the observed pseudo-first-order oxidation rates of various substituted phenols and the classical descriptor variables (i.e., Hammett constant σ + , and half-wave oxidation potential E 1/2 ). Products analyses by liquid chromatography tandem mass spectrometry clearly showed the formation of hydroxylated polybrominated diphenyl ethers and hydroxylated polybrominated biphenyls on CNT surface. Their formation pathway possibly involved the generation of bromophenoxyl radicals from BrPs one-electron oxidation and their subsequent coupling reactions. These results suggest that the novel nonradical PDS/CNT oxidation technology is a good alternative for selectively eliminating BrPs with alleviating toxic byproducts in treated water effluent.

  4. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.

    Science.gov (United States)

    Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-12-15

    Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  6. Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates

    Energy Technology Data Exchange (ETDEWEB)

    Do, Trinh T.; Tang, Vicky J.; Aguilera, Joseph A. [Department of Radiology University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.ed [Department of Radiology University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2010-11-15

    In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.

  7. Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions

    Science.gov (United States)

    Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.

    2015-12-01

    In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).

  8. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2017-01-18

    Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O3- and OH-initiated reactions during the day and reactions with NO3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water, 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.

  9. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  10. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  11. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  12. Controlled nitric oxide production via O(1D  + N2O reactions for use in oxidation flow reactor studies

    Directory of Open Access Journals (Sweden)

    A. Lambe

    2017-06-01

    Full Text Available Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3 is photolyzed at 254 nm to produce O(1D radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA formation pathways. Simple addition of nitric oxide (NO results in fast conversion of NOx (NO + NO2 to nitric acid (HNO3, making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2 radicals as a sink for organic peroxy (RO2 radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS measurements with nitrate (NO3− reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  13. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  14. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  15. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  16. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of

  17. Photochemical methodologies for organic waste treatment: advanced oxidation process using uranyl ion with H2O2

    International Nuclear Information System (INIS)

    Naik, D.B.; Sarkar, S.K.; Mukherjee, T.

    2009-01-01

    Excited uranyl ion is able to degrade dyes such as thionine and methylene blue on irradiation with 254 nm/300 nm light. By adding H 2 O 2 along with uranyl ion, photodegradation takes place with visible light and also with enhanced rate. The hydroxyl radicals generated in the reoxidation of U(IV)/UO 2 + to UO 2 2+ are responsible for this enhanced degradation. The above advanced oxidation process (AOP) was applied to study the oxidation of 2-propanol to acetone. (author)

  18. Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate.

    Science.gov (United States)

    Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh

    2016-01-01

    A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    International Nuclear Information System (INIS)

    Mahdi-Ahmed, Moussa; Chiron, Serge

    2014-01-01

    Highlights: • UV/PMS more efficient than UV/H 2 O 2 for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H 2 O 2 . In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H 2 O 2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H 2 O 2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity

  20. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi-Ahmed, Moussa; Chiron, Serge, E-mail: Serge.Chiron@msem.univ-montp2.fr

    2014-01-30

    Highlights: • UV/PMS more efficient than UV/H{sub 2}O{sub 2} for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H{sub 2}O{sub 2}. In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H{sub 2}O{sub 2} while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H{sub 2}O{sub 2} mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity.

  1. Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxia [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Duan, Jinming, E-mail: jinmingduan@xauat.edu.cn [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia); Li, Wei [Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, School of Environmental & Municipal Engineering, Xi’an University of Architecture and Technology (China); Beecham, Simon; Mulcahy, Dennis [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, South Australia (Australia)

    2016-02-13

    Highlights: • A simultaneous UV catalysed oxidation–coagulation for As(III) removal is proposed. • As(III) was effectively oxidised to As(V) by the UV catalysed coagulation. • >99% removal for As(III) in pH 4–6 at low doses of Ti(SO{sub 4}){sub 2} was achieved. • Concurrent UV radiation in massive small crystal formation facilitate the effects. • Reaction mechanisms involve both hydroxyl radicals and superoxide radicals. - Abstract: This study explored the efficacy and efficiency of a simultaneous UV-catalyzed oxidation–coagulation process of titanium sulfate (UV/Ti(SO{sub 4}){sub 2}) for efficient removal of As(III) from water. It revealed that, As(III) could be oxidized to As(V) during the UV catalyzed coagulation of Ti(SO{sub 4}){sub 2} with highly efficient As(III) removal in the pH range 4–6{sub .} The UV catalyzed oxidation–coagulation showed surprisingly effective oxidation of As(III) to As(V) within a short time. XPS indicated that 84.7% of arsenic on the coagulated precipitate was in the oxidized form of As(V) after the UV/Ti(SO{sub 4}){sub 2} treatment of As(III) aqueous solutions at pH 5. Arsenic remaining in solution at high pH was in the oxidized form As(V). Removal efficiencies of As(III) were investigated as a function of pH, Ti(SO{sub 4}){sub 2} dosage, initial As(III) concentration and irradiation energy. As(III) could almost completely be removed (>99%) by the photocatalytic oxidation–coagulation process with a moderate dose of Ti(SO{sub 4}){sub 2} in the pH range 4–6 at an initial arsenic concentration of 200 μg/L. The mechanisms of the photocatalytic coagulation oxidation of Ti(SO{sub 4}){sub 2} are similar to those of UV/crystalline TiO{sub 2} particles, involving the formation and reactions of the hydroxyl radical OH· and superoxide HO{sub 2}·/O{sub 2}{sup ·−}.

  2. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    Science.gov (United States)

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  3. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  4. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: role of alkoxyl and peroxyl radicals

    DEFF Research Database (Denmark)

    Fuentes-Lemus, E.; Dorta, E.; Escobar, E.

    2016-01-01

    The oxidation of tryptophan (Trp) residues, mediated by peroxyl radicals (ROOc), follows a complex mechanism involving free radical intermediates, and short chain reactions. The reactivity of Trp towards ROOc should be strongly affected by its inclusion in peptides and proteins. To examine...... the latter, we investigated (by fluorescence) the kinetic of the consumption of free, peptide- and protein-Trp residues towards AAPH (2,20 -azobis(2-amidinopropane)dihydrochloride)-derived free radicals. Interestingly, the initial consumption rates (Ri ) were only slightly influenced by the inclusion of Trp...... concentrations (10–50 mM), the values of Ri were nearly constant; and at high Trp concentrations (50 mM to 1 mM), a slower increase of Ri than expected for chain reactions. Similar behavior was detected for all three systems (free Trp, and Trp in peptides and proteins). For the first time we are showing...

  5. Formation of hydroxyl radical (sm-bulletOH) in illuminated surface waters contaminated with acidic mine drainage

    International Nuclear Information System (INIS)

    Allen, J.M.; Lucas, S.; Allen, S.K.

    1996-01-01

    Formation rates and steady-state concentrations of hydroxyl radical ( sm-bullet OH) in illuminated surface water samples collected in west-central Indiana that receive acidic mine drainage runoff are reported. Formation rates for sm-bullet OH in samples were measured by the addition of 1 x 10 -3 M benzene prior to illuminate in order to effectively scavenge all of the sm-bullet OH formed, thereby yielding phenol. The sm-bullet OH formation rates were calculated from the measured phenol formation rates. Steady-state concentrations of sm-bullet OH were measured by the addition of 5 x 10 -7 M nitrobenzene to the samples prior to illumination. Estimated sunlight sm-bullet OH formation rates range from 16 microM h -1 to 265 microM h -1 . Estimated sunlight steady-state sm-bullet OH concentrations range from 6.7 x 10 -15 to 4.0 x 10 -12 M. Both the formation rates and steady-state concentrations for sm-bullet OH are thus two to three orders of magnitude higher than values reported in the literature for other sunlit surface water samples. Due to the very high rates of formation and steady-state concentrations for sm-bullet OH in these samples, the authors conclude that aqueous-phase reactions involving sm-bullet OH represent a significant pathway by which organic pollutants in illuminated surface waters receiving acidic mine drainage runoff may be consumed

  6. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    Science.gov (United States)

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization

    International Nuclear Information System (INIS)

    Sun Wei; Chen Yiwang; Deng Qilan; Chen Lie; Zhou Lang

    2006-01-01

    Films of polytetrafluoroethylene (PTFE) were exposed to sodium naphthalenide (Na/naphtha) etchant so as to defluorinate the surface for obtaining hydroxyl functionality. Surface-initiators were immobilized on the PTFE films by esterification of 4,4'-azobis(4-cyanopentanoic acid) (ACP) and the hydroxyl groups covalently linked to the surface. Grafting of polymer brushes on the PTFE films was carried out by the surface-initiated free radical polymerization. Homopolymers brushes of methyl methacrylate (MMA) were prepared by free radical polymerization from the azo-functionalized PTFE surface. The chemical composition and topography of the graft-functionalized PTFE surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance (ATR) FT-IR spectroscopy and atomic force microscopy (AFM). Water contact angles on PTFE films were reduced by surface grafting of MMA

  8. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  9. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  10. Spin Trapping Radicals from Lipid Oxidation in Liposomes in the Presence of Flavonoids

    International Nuclear Information System (INIS)

    Arshad, N.

    2013-01-01

    Interactions of four structurally related flavonoids - quercetin, rutin, morin and catechin with peroxyl radicals using liposome/N-tert-butyl-alpha-phenylnitrone (PBN) and liposome -(4-pyridyl-N-oxide)-N-tert-butylnitrone (POBN)-spin trap systems have been studied through spin trapping ESR. Results obtained were different from that of conjugated diene analysis experiments, where lag phases indicated radical scavenging activity of all the flavonoids. No clear lag phase was observed in ESR experiments under same conditions. In the presence of flavonoids decreasing ESR signals of spin adducts in PBN, while no or negligibly smaller spin adducts with POBN system were observed which may be attributed to the possibility that spin traps interacted with free radicals. Experiments with buffer/spin trap systems without liposome revealed that spin adducts were only stable with catechin and destroyed by quercetin, rutin and morin in buffer/spin trap systems. These results further assured that quercetin, rutin and morin not only interacted with peroxyl radicals but also with spin adducts. (author)

  11. Free-radical chemistry as a means to evaluate lunar dust health hazard in view of future missions to the moon.

    Science.gov (United States)

    Turci, Francesco; Corazzari, Ingrid; Alberto, Gabriele; Martra, Gianmario; Fubini, Bice

    2015-05-01

    Lunar dust toxicity has to be evaluated in view of future manned missions to the Moon. Previous studies on lunar specimens and simulated dusts have revealed an oxidant activity assigned to HO· release. However, the mechanisms behind the reactivity of lunar dust are still quite unclear at the molecular level. In the present study, a complementary set of tests--including terephthalate (TA) hydroxylation, free radical release as measured by means of the spin-trapping/electron paramagnetic resonance (EPR) technique, and cell-free lipoperoxidation--is proposed to investigate the reactions induced by the fine fraction of a lunar dust analogue (JSC-1A-vf) in biologically relevant experimental environments. Our study proved that JSC-1A-vf is able to hydroxylate TA also in anaerobic conditions, which indicates that molecular oxygen is not involved in such a reaction. Spin-trapping/EPR measures showed that the HO· radical is not the reactive intermediate involved in the oxidative potential of JSC-1A-vf. A surface reactivity implying a redox cycle of phosphate-complexed iron via a Fe(IV) state is proposed. The role of this iron species was investigated by assessing the reactivity of JSC-1A-vf toward hydrogen peroxide (Fenton-like activity), formate ions (homolytic rupture of C-H bond), and linoleic acid (cell-free lipoperoxidation). JSC-1A-vf was active in all tests, confirming that redox centers of transition metal ions on the surface of the dust may be responsible for dust reactivity and that the TA assay may be a useful field probe to monitor the surface oxidative potential of lunar dust.

  12. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed.

    Science.gov (United States)

    Prasad, K

    1997-03-01

    Recently there has been a moderate resurgence in the use of flax-seed in a variety of ways including bread. The scientific basis of its use is very limited. There is some claim for beneficial effects in cancer and lupus nephritis. These claims could be due to its ability to scavenge oxygen radicals. However, its antioxidant activity is not known. Recently a method has been developed to isolate secoisolariciresinol diglucoside (SDG) from defatted flax-seed in large quantity (patent pending). We investigated the ability of SDG to scavenge .OH using high pressure liquid chromatography (HPLC) method. .OH was generated by photolysis of H2O2 (1.25-10.0 mumoles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce .OH-adduct products 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA. H2O2 produced a concentration-dependent .OH as estimated by 2,3-DHBA and 2,5-DHBA. A standard curve was constructed for known concentrations of 2,3-DHBA and 2,5-DHBA against corresponding area under the peaks which then was used for measurement of 2,3-DHBA and 2,5-DHBA generated by UV irradiation of H2O2 in the presence of salicylic acid. SDG in the concentration range of 25, 50, 100, 250, 500, 750, 1000 and 2000 micrograms/ml (36.4, 72.8, 145.6, 364.0, 728.0, 1092.0, 1456.0 and 2912.0 microM respectively) produced a concentration-dependent decrease in the formation of 2,3-DHBA and 2,5-DHBA, the inhibition being 4 and 4.65% respectively with 25 micrograms/ml (36.4 microM) and 82 and 74% respectively with 2000 micrograms/ml (2912.0 microM). The decrease in .OH-adduct products was due to scavenging of .OH and not by scavenging of formed 2,3-DHBA and 2,5-DHBA. SDG prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner in the concentration range from 319.3-2554.4 microM. These results suggest that SDG scavenges .OH and therefore has an antioxidant activity.

  13. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  14. Sol-gel Synthesis and Photocatalytic Characterization of Immobilized TiO2 Films

    OpenAIRE

    Liao, Haidong

    2009-01-01

       Contamination of surface and ground water from industrial wastes and anthropogenic activities represents one of the greatest challenges to the sustainable development of human society. Heterogeneous photocatalysis, a kind of advanced oxidation process characterized by the production of highly oxidative hydroxyl radicals, is a relatively novel subject with tremendous potential in water treatment applications.     The purpose of this research was first to develop feasible hydroxyl radical de...

  15. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  16. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  17. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  18. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  19. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    The nitration of aromatic compounds in the gas phase is an important source of toxic, carcinogenic, and mutagenic species in the atmosphere and has therefore received much attention. Gas phase nitration typically occurs by free-radical reactions. Condensed-phase free-radical reactions, and in particular nitrite and nitrate radical chemistry, have been studied far less. These condensed-phase free-radical reactions may be relevant in fog and cloud water in polluted areas, in urban aerosols with low pH, in water treatment using advanced oxidation processes such as electron beam (e-beam) irradiation, and in nuclear waste treatment applications. This study discusses research toward an improved understanding of nitration of aromatic compounds in the condensed phase under conditions conducive to free-radical formation. The results are of benefit in several areas of environmental chemistry, in particular nuclear waste treatment applications. The nitration reactions of anisole and toluene as model compounds were investigated in γ-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. Cs-7SB, 1-(2,2,3,3,-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, is used as a solvent modifier in the fission product extraction (FPEX) formulation for the extraction of Cs and Sr from dissolved nuclear fuel. The formulation also contains the ligands calix(4)arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for Cs extraction and 4,4(prime),(5(prime))-di-(t-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) for Sr extraction, all in Isopar L, a branched-chain alkane diluent. FPEX solvent has favorable extraction efficiency for Cs and Sr from acidic solution and was investigated at the Idaho National Laboratory (INL) for changes in extraction efficiency after γ-irradiation. Extraction efficiency decreased after irradiation. The decrease in solvent extraction efficiency was identical for Cs and Sr, even though they are complexed by different ligands. This suggests that

  20. Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles

    Science.gov (United States)

    Young, C. J.; Washenfelder, R. A.; Edwards, P. M.; Parrish, D. D.; Gilman, J. B.; Kuster, W. C.; Mielke, L. H.; Osthoff, H. D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P. R.; Roberts, J. M.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Flynn, J.; Grossberg, N.; Lefer, B.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Brown, S. S.

    2014-04-01

    The role of chlorine atoms (Cl) in atmospheric oxidation has been traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) showed it to be an important primary (first generation) radical source. Evolution of ratios of volatile organic compounds (VOCs) has been proposed as a method to quantify Cl oxidation, but we find no evidence from this approach for a significant role of Cl oxidation in Los Angeles. We use a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl sensitivity of commonly used VOC ratios as a function of NOx and secondary radical production. Model results indicate VOC tracer ratios could not detect the influence of Cl unless the ratio of [OH] to [Cl] was less than 200 for at least a day. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect obscures the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The [OH] to [Cl] ratio was below 200 for approximately 3 h in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratio evolution to follow that expected for OH oxidation, despite the significant input of primary Cl from ClNO2 photolysis in the morning. Even though OH is by far the dominant oxidant in Los Angeles, Cl

  1. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    Science.gov (United States)

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  2. Modulation of oxidative damage by nitroxide free radicals.

    Science.gov (United States)

    Dragutan, Ileana; Mehlhorn, Rolf J

    2007-03-01

    Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.

  3. Theoretical perspectives on the mechanism and kinetics of the OH radical-initiated gas-phase oxidation of PCB126 in the atmosphere

    International Nuclear Information System (INIS)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing

    2015-01-01

    Polychlorinated biphenyls (PCBs) primarily exist in the gas phase in air and may undergo atmospheric oxidation degradations, particularly the oxidation reaction initiated by OH radicals. In this work, the mechanism of the OH radical-initiated atmospheric oxidation of the most toxic PCB congener 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) was investigated by using quantum chemistry methods. The rate constants of the crucial elementary reactions were estimated by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The oxidation products of the reaction of PCB126 with OH radicals include 3,3′,4,4′,5-pentachlorobiphenyl-ols, chlorophenols, 2,3,4,7,8-pentachlorodibenzofuran, 2,3,4,6,7-pentachlorodibenzofuran, dialdehydes, 3,3′,4,4′,5-pentachloro-5′-nitro-biphenyl, and 4,5-dichloro-2-nitrophenol. Particularly, the formation of polychlorinated dibenzofurans (PCDFs) from the atmospheric oxidation of PCBs is revealed for the first time. The overall rate constant of the OH addition reaction is 2.52 × 10 −13 cm 3 molecule −1 s −1 at 298 K and 1 atm. The atmospheric lifetime of PCB126 determined by OH radicals is about 47.08 days which indicates that PCB126 can be transported long distances from local to global scales. - Highlights: • A comprehensive mechanism of OH-initiated oxidation of PCB126 was investigated. • The formation of PCDFs from the oxidation of PCBs is determined for the first time. • The rate constants for key elementary reactions were estimated by the RRKM theory. • The atmospheric lifetime of PCB126 determined by OH radicals is about 47.08 days

  4. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  5. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    Science.gov (United States)

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  6. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  7. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  8. Evidence that nitrous oxide enhances the radiosensitivity of bacterial vegetative cells by the co-operative action of the hydroxyl radical and hydrogen peroxide

    International Nuclear Information System (INIS)

    Watanabe, H.; Iizuka, H.; Takehisa, M.

    1980-01-01

    When the radiosensitivity in N 2 O suspension was compared with that in N 2 suspension, the dose modifying factors of N 2 O on Micrococcus radiodurans R 1 , Pseudomonas radiora 0-1, M. lysodeikticus and Bacillus pumilus E601 were 3.7, 2.9, 2.4 and 1.7, respectively. The sensitizing action of N 2 O was diminished by ethanol as OH radical scavenger. This sensitization was further prevented by catalase and peroxidase. However, thermally inactivated catalase was without effect. In addition, the number of viable cells did not change in 0.1 mM H 2 O 2 at 0 0 C. These results indicate that N 2 O sensitization is due to the cooperative action of OH radicals and H 2 O 2 , and that it would allow H 2 O 2 to sensitize only when OH radicals were present. (author)

  9. Free radical and thermal curing of terpyridine-modified terpolymers

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2004-01-01

    Terpolymers bearing terpyridine as well as (meth)acrylates as free radical curable groups (UV-curing) or hydroxyl groups (thermal curing with bis-isocyanates) were synthesized and characterized using 1H NMR, IR and UV-vis spectroscopy as well as GPC. Subsequently, the ability of covalent

  10. Interactions between simple radicals and water

    International Nuclear Information System (INIS)

    Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Suardiaz, Reynier; Montero, Luis A.; Sander, Wolfram

    2008-01-01

    The interactions of the simple radicals CH 3 , NH 2 , OH, and F with water have been studied by DFT (UB3LYP/6-311++G(2d,2p)) and ab initio (RHF-UCCSD(T)/6-311++G(2d,2p)) methods. In this order the number of lone pairs (from zero to three), the electronegativity, and the strength of the X-H bonds increase (X = C, N, and O). The various minima of the radical-water complexes were located using the multiple minima hypersurface (MMH) approach which had previously been proven to be useful for closed-shell molecules. The role of the unpaired electron in hydrogen bonding was investigated using the natural bond orbital (NBO) analysis. A considerable contribution of the unpaired electron to the complex stabilization was only found for the methyl radical and the fluorine atom, whereas in the aminyl and the hydroxyl radical the role of the unpaired electron is negligible

  11. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  12. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  13. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    International Nuclear Information System (INIS)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-01-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60 Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided. - Highlights: ► Radical-based mineralization of aqueous halonitromethane disinfection byproducts. ► Constructed kinetic computer model for tri-halogenated halonitromethane removal. ► Model predicted that superoxide reaction is unimportant for halonitromethanes. ► Measured superoxide reaction with chloropicrin was negligibly slow, 4 M −1 s −1 . ► Determined that superoxide reaction with nitrate also insignificant at ∼10 4 M −1 s −1 .

  14. Characterization of TEMPO-oxidized bacterial cellulose; Caracterizacao de celulose bacteriana tempo-oxidada

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A., E-mail: eligenessampaio@hotmail.com [Universidade Federal Ceara (UFC), Fortaleza, CE (Brazil); Barros, Matheus de O. [Instituto Federal do Ceara (IFCE), Fortaleza, CE (Brazil); Morais, Joao P.S. [Embrapa Algodao, Campina Grande, PB (Brazil); Borges, Maria de F.; Rosa, Morsyleide de F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2015-07-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  15. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation.

    Science.gov (United States)

    Li, Rui; Palm, Brett B; Ortega, Amber M; Hlywiak, James; Hu, Weiwei; Peng, Zhe; Day, Douglas A; Knote, Christoph; Brune, William H; de Gouw, Joost A; Jimenez, Jose L

    2015-05-14

    Oxidation flow reactors (OFRs) containing low-pressure mercury (Hg) lamps that emit UV light at both 185 and 254 nm ("OFR185") to generate OH radicals and O3 are used in many areas of atmospheric science and in pollution control devices. The widely used potential aerosol mass (PAM) OFR was designed for studies on the formation and oxidation of secondary organic aerosols (SOA), allowing for a wide range of oxidant exposures and short experiment duration with reduced wall loss effects. Although fundamental photochemical and kinetic data applicable to these reactors are available, the radical chemistry and its sensitivities have not been modeled in detail before; thus, experimental verification of our understanding of this chemistry has been very limited. To better understand the chemistry in the OFR185, a model has been developed to simulate the formation, recycling, and destruction of radicals and to allow the quantification of OH exposure (OHexp) in the reactor and its sensitivities. The model outputs of OHexp were evaluated against laboratory calibration experiments by estimating OHexp from trace gas removal and were shown to agree within a factor of 2. A sensitivity study was performed to characterize the dependence of the OHexp, HO2/OH ratio, and O3 and H2O2 output concentrations on reactor parameters. OHexp is strongly affected by the UV photon flux, absolute humidity, reactor residence time, and the OH reactivity (OHR) of the sampled air, and more weakly by pressure and temperature. OHexp can be strongly suppressed by high OHR, especially under low UV light conditions. A OHexp estimation equation as a function of easily measurable quantities was shown to reproduce model results within 10% (average absolute value of the relative errors) over the whole operating range of the reactor. OHexp from the estimation equation was compared with measurements in several field campaigns and shows agreement within a factor of 3. The improved understanding of the OFR185 and

  16. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Aynur Serçe

    2016-01-01

    Full Text Available Antioxidant properties of ethanol extract of Silybum marianum (milk thistle seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using diff erent in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also effi ciently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE. The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  17. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study

    Directory of Open Access Journals (Sweden)

    Wagner Brett A

    2010-08-01

    Full Text Available Abstract Background Gallic acid (3,4,5-trihydroxybenzoic acid is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR was used to detect the free radicals generated by the air-oxidation of gallic acid. Results We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G. This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2 = 1.07 G. Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. Conclusions This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.

  18. A review of the role of oxidative stress in the pathogenesis of eye diseases

    Directory of Open Access Journals (Sweden)

    O. A. Oduntan

    2011-12-01

    Full Text Available Free radicals, referred to as oxidants are molecules in the body with unpaired electrons, hence are unstable and ready to bond with other molecules with unpaired electrons.  They include Reactive Oxygen Species (ROS such as superoxide anion radicals (·O¯, hydrogen peroxide (H202, and hydroxyl free radicals (·OH.  Endogenous sources of ROS include metabolic and other organic processes, while exogenous sources include ultraviolet radiation and environmental toxins such as smoke.  Antioxidants (oxidant scavengers such as ascorbate, alpha-tocopherol and glutathione as well as various enzymatic compounds such as superoxide dismutase (SOD, catalase and glutathione reductase are also present in the body and in manyfoods or food supplements.  An imbalance between oxidants and antioxidants in favour of oxidantsis termed oxidative stress and can lead to cell or tissue damage and aging. Oxidative stress has been implicated in the pathogenesis of many serious systemic diseases such as diabetes, cancer and neurological disorders.  Also, laboratory and epidemiological studies have implicated oxidative stress in the pathogenesis of the majority of common serious eye diseases such as cataract, primary open angle glaucoma and age-related macular degeneration. In this article, we reviewed the current information on the roles of oxidative stress in the pathogenesis of various eye diseases and the probable roles of antioxidants.  Eye care practitioners will find this article useful as it provides information on the pathogenesis of common eye diseases. (S Afr Optom 2011 70(4 182-190

  19. Evidence that nitrous oxide enhances the radiosensitivity of bacterial vegetative cells by the co-operative action of the hydroxyl radical and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Iizuka, H; Takehisa, M [Science Univ. of Tokyo (Japan)

    1980-08-01

    When the radiosensitivity in N/sub 2/O suspension was compared with that in N/sub 2/ suspension, the dose modifying factors of N/sub 2/O on Micrococcus radiodurans R/sub 1/, Pseudomonas radiora 0-1, M. lysodeikticus and Bacillus pumilus E601 were 3.7, 2.9, 2.4 and 1.7, respectively. The sensitizing action of N/sub 2/O was diminished by ethanol as OH radical scavenger. This sensitization was further prevented by catalase and peroxidase. However, thermally inactivated catalase was without effect. In addition, the number of viable cells did not change in 0.1 mM H/sub 2/O/sub 2/ at 0/sup 0/C. These results indicate that N/sub 2/O sensitization is due to the cooperative action of OH radicals and H/sub 2/O/sub 2/, and that it would allow H/sub 2/O/sub 2/ to sensitize only when OH radicals were present.

  20. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    Science.gov (United States)

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  1. Induction of oxidative DNA damage by mesalamine in the presence of copper: A potential mechanism for mesalamine anticancer activity

    International Nuclear Information System (INIS)

    Zimmerman, Ryan P.; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P.; Wang, Jianmin; Li, Yunbo

    2011-01-01

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  2. Phytochemically evaluation and net anti-oxidant activity of Tunisian Melia azedarach leaves extract from their ProAntidex parameter

    Directory of Open Access Journals (Sweden)

    Maroua Akacha

    2016-06-01

    Full Text Available Phytotherapy is a discipline which is interested in the design, the preparation and the interpretation of structure activity relationship of the natural bioactive molecules. In this context, ethanolic leaves extract of Melia azedarach L. was phytochemically analysed on the bases of HPLC and by GC–MS. Extract wase tested for his in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH, H2O2, hydroxyl radical scavenging activity, Ferric Reducing Power (FRP and Ferrous ion chelating abilities methods. The antioxidant activity of the extract was analyzed simultaneously with their pro-oxidant capacity. The ratio of pro-oxidant to the antioxidant activity (ProAntidex represents a useful index of the net free radical scavenging potential of the synthesized compounds. Tested extract showed significant antioxidant activity with a moderate ProAntidex.

  3. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals

    International Nuclear Information System (INIS)

    Gajewski, E.; Rao, G.; Nackerdien, Z.; Dizdaroglu, M.

    1990-01-01

    Modification of DNA bases in mammalian chromatin in aqueous suspension by ionizing radiation generated free radicals was investigated. Argon, air, N2O, and N2O/O2 were used for saturation of the aqueous system in order to provide different radical environments. Radiation doses ranging from 20 to 200 Gy (J.kg-1) were used. Thirteen products resulting from radical interactions with pyrimidines and purines in chromatin were identified and quantitated by using the technique of gas chromatography/mass spectrometry with selected-ion monitoring after acidic hydrolysis and trimethylsilylation of chromatin. The methodology used permitted analysis of the modified bases directly in chromatin without the necessity of isolation of DNA from chromatin first. The results indicate that the radical environment provided by the presence of different gases in the system had a substantial effect on the types of products and their quantities. Some products were produced only in the presence of oxygen, whereas other products were detected only in the absence of oxygen. Products produced under all four gaseous conditions were also observed. Generally, the presence of oxygen in the system increased the yields of the products with the exception of formamidopyrimidines. Superoxide radical formed in the presence of air, and to a lesser extent in the presence of N2O/O2, had no effect on product formation. The presence of oxygen dramatically increased the yields of 8-hydroxypurines, whereas the yields of formamidopyrimidines were not affected by oxygen, although these products result from respective oxidation and reduction of the same hydroxyl-adduct radicals of purines. The yields of the products were much lower than those observed previously with DNA

  4. Solution phase and membrane immobilized iron-based free radical reactions: Fundamentals and applications for water treatment

    Science.gov (United States)

    Lewis, Scott Romak

    Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water

  5. Iron-functionalized Al-SBA-15 for benzene hydroxylation

    NARCIS (Netherlands)

    Li, Y.; Xia, H.; Fan, F.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    For the first time an ordered mesoporous silica (Fe–Al-SBA-15) with catalytically active isolated Fe surface species for the hydroxylation of benzene with nitrous oxide is prepared by introduction of Fe3+ in the synthesis gel of Al-SBA-15. Graphical abstract image for this article (ID: b717079c)

  6. Effect of metal complexation to anti-inflammatory over the action against oxidative and free radicals: ketoprofen action

    International Nuclear Information System (INIS)

    Manente, Francine Alessandra; Mello, Lucas Rosolen de Almeida; Vellosa, Jose Carlos Rebuglio; Khalil, Omar Arafat Kdudsi; Carvalho, Claudio Teodoro de; Bannach, Gilbert

    2011-01-01

    Free radicals are highly reactive species generated in living organisms for the purpose of protection. However, in some circumstances, they are responsible for the occurrence or aggravation of tissue damage. Many anti-inflammatory drugs have a direct effect on free radicals and not radical reactive species, which contributes to its actions against inflammation. Ketoprofen is a nonsteroidal anti-inflammatory agent that generates free radicals by photo irradiation and has an important hemolytic effect with that. The complexation of metals to different drugs has been used as a strategy to improve the pharmacological action of different molecules and reduce their side effects. This paper presents the results of ketoprofen and their metallic complexes action on erythrocytes and free radicals. It was observed that the cerium enhances the scavenger properties of ketoprofen on free radicals, while copper enhances its action over non-radical oxidants. Copper also reduced the hemolytic effect presented by ketoprofen meanwhile its cerium derivative maintained it. (author)

  7. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  8. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  9. Roles of free radicals in NO oxidation by Fenton system and the enhancement on NO oxidation and H2O2 utilization efficiency.

    Science.gov (United States)

    Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing

    2018-06-20

    Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.

  10. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  11. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  12. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Kombucha Tea Ameliorates Trichloroethylene Induced Hepatic Damages in Rats via Inhibition of Oxidative Stress and Free Radicals Induction

    International Nuclear Information System (INIS)

    Gharib, O.A.; Gharib, M.A.

    2008-01-01

    Kombucha Tea (KT) is reported to exhibit a wide variety of biological effects, including antioxidant. Evidence shows the important role of oxidative stress in the hepatic damage. The aim of this study is to investigate the possible protective effects of oral administration of KT in rats with trichloroethylene (TCE)-induced damage for ten consecutive days. Hepatic damage was evaluated by measuring total free radicals levels, biochemical and histological examinations. Serum gamma glutamyl transferase (GGT) activity (the hepatic damage marker), total protein, albumin and globulin as well as malonaldehyde (MDA), glutathione (GSH) content, nitric oxide (NO) concentration were evaluated in liver tissue homogenates. Total free radicals concentration in blood was examined by electron spin resonance (ESR). Total protein, DNA concentration, cell number and cell size in liver tissues were also examined. The rats orally administrated with TCE for ten days indicates hepatic damage changes, an increase in blood total free radicals concentration was observed, serum GGT activity, liver MDA, NO levels, total protein and decreased GSH content, DNA concentration and cell number. This accompanied with an increase in cell size of liver tissues, whereas KT reversed these effects. Furthermore, KT inhibits the concentration of total free radicals in blood and decreasing the increment of MDA and NO concentration. Histological studies reveal partial healing in those rats treated by KT after oral administration with TCE. The present results suggest that KT ameliorates TCE induced hepatic damage in rats probably due to its content of glucuronic, acetic acid and B vitamins via inhibition of oxidative stress and total free radicals

  14. A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals

    DEFF Research Database (Denmark)

    Park, J S; Wood, P M; Davies, Michael Jonathan

    1997-01-01

    The reaction of Fe(II) oxalate with hydrogen peroxide and dioxygen was studied for oxalate concentrations up to 20 mM and pH 2-5, under which conditions mono- and bis-oxalate complexes (Fe[II](ox) and Fe[II](ox)2[2-]) and uncomplexed Fe2+ must be considered. The reaction of Fe(II) oxalate...... with hydrogen peroxide (Fe2+ + H2O2 --> Fe3+ + .OH + OH-) was monitored in continuous flow by ESR with t-butanol as a radical trap. The reaction is much faster than for uncomplexed Fe2+ and a rate constant, k = 1 x 10(4) M(-1) s(-1) is deduced for Fe(II)(ox). The reaction of Fe(II) oxalate with dioxygen...... by oxalate. Further ESR studies with DMPO as spin trap reveal that reaction of Fe(II) oxalate with hydrogen peroxide can also lead to formation of the carboxylate radical anion (CO2-), an assignment confirmed by photolysis of Fe(II) oxalate in the presence of DMPO....

  15. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Radio reduction of the vitamin K in ethanolic solution: Contribution to radical oxidation study of a glutamic residue

    International Nuclear Information System (INIS)

    Fackir, L.

    1995-01-01

    The biological action of vitamin K may involve mono electronic exchanges. Therefore, in this work we achieved a radiolytical study on one land, of mono electronic reduction of vitamin K hydroquinone symbolized by KHsubn pp. We also studied the vitamin K2 model of glutamic residue( B - Glu ) by radiolytic mean. The study of radical mechanisms of vitamin K1 reduction in ethanolic solution showed that vitamin K1 is a good sensor of free radicals alpha - hydroxyethyles ( R sup . ) issued from the radiolysis of vitamin K1 ethanolic solutions, saturated with N sub2 O. The final product is hydroquinone K sub 1 H sub 2. It has been demonstrated that mono electronic reduction can be also initiated by solvated electrons. The mono electronic oxidation of K H sub p has been studied in ethanolic solution.The results showed that K H sub p is a good sensor of peroxyl radicals model (RO sub2) sup . issues from ethanol. The oxidation leads to the formation a dimeric from of the quinone K. All these results showed that the free radicals R sup . centred on carbon are efficient reducing agents of vitamin K1, and that the peroxyl radicals R Osub2 centred on oxygen are possible oxidants of KH sub p. At the end and for modeling the eventual interaction of semi quinonic radical with glutamic acid. We have irradiated mixture of vitamin K1 and a compound having a glutamic residue, the concentration ratio (B-Glu) sub 0/ (K sub 1) sub 0 varying for 0,03 to 1. The obtained results showed that the yield of vitamin K sub 1 disappearance is superior to G (R sup .)/R for low concentration of B-Glu. 80 figs., 5 tabs., 105 refs. (F. M.)

  17. Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories

    OpenAIRE

    Brewer, Gregory J.

    2009-01-01

    Harman’s free radical theory of aging posits that oxidized macromolecules accumulate with age to decrease function and shorten life-span. However, nutritional and genetic interventions to boost antioxidants have generally failed to increase life-span. Furthermore, the free radical theory fails to explain why exercise causes higher levels of oxyradical damage, but generally promotes healthy aging. The separate anti-aging paradigms of genetic or caloric reductions in the insulin signaling pathw...

  18. Suppression of new particle formation from monoterpene oxidation by NOx

    Science.gov (United States)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  19. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  20. Oxidation of Fe(II) in rainwater.

    Science.gov (United States)

    Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R

    2005-04-15

    Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.

  1. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  2. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite.

    Science.gov (United States)

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu

    2017-11-01

    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography

    NARCIS (Netherlands)

    Coolen, S.A.J.; Huf, F.A.; Reijenga, J.C.

    1998-01-01

    Hydroxylated radical products of salicylic acid are often used as a relative measurement in free radical research. Several analytical methods exist to determine the amount of 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid. In this study we use capillary zone electrophoresis (CZE) and

  4. Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai

    2018-01-10

    The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.

  5. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  6. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  7. One-electron oxidation of the hydroquinonic form of vitamin K by OH· and N3· free radicals. A steady-state gamma radiolysis study

    International Nuclear Information System (INIS)

    Nguyen Van Binh, E.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1991-01-01

    The oxidation of a water-soluble model of vitamin K hydroquinone, symbolised by KH 2 p, has been studied by γ radiolysis using OH· or N 3 · free radicals as oxidants. Irradiation doses were up to 300 Gy. The analysis of final products by spectrophotometric absorption and HPLC allowed to characterize the formation of the quinone K and to estimate the initial yield of KH 2 p-disappearance and K-formation. N 3 · radicals led selectively to the formation of the quinone K with a G-value of (3.0 ± 0.3) x 10 -7 mol/J, thus involving a simple one-electron oxidation mechanism. On the contrary, when OH· radicals oxidized KH 2 p, in addition to the quinone, other non identified species were simultaneously produced during the radiolysis, thus requiring a more complex oxidation mechanism [fr

  8. Measurement of radical scavenging activity of irradiated Kampo extracts using ESR spin-trap method

    International Nuclear Information System (INIS)

    Ohta, Yui; Kawamura, Shoei; Ukai, Mitsuko; Nakamura, Hideo; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2014-01-01

    The radical scavenging activity (RSA) of 13 kinds of γ-ray irradiated Kampo extracts were studied by ESR spin-trap method. The RSA against alkoxy radical and hydroxyl radical were measured using new spin trapping reagent CYPMPO. The RSA against these two radicals were evaluated using GSH for alkoxy RSA and L-ascorbic acid for hydroxy RSA as a standard antioxidant reagent. We revealed that a few Kampo extracts showed high RSA against alkoxy radical and also hydroxy radical. This RSA of Kampo extracts was changed by γ-ray irradiation treatment. Using ESR spin-trap method, it is concluded that the effect of radiation treatment on RSA of Kampo extracts were able to detect. (author)

  9. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1996-01-01

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  10. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor.

    Science.gov (United States)

    Aranda, Elisabet; Marco-Urrea, Ernest; Caminal, Gloria; Arias, María E; García-Romera, Inmaculada; Guillén, Francisco

    2010-09-15

    Advanced oxidation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) by the extracellular hydroxyl radicals (*OH) generated by the white-rot fungus Trametes versicolor is for the first time demonstrated. The production of *OH was induced by incubating the fungus with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. Under these conditions, *OH were generated through DBQ redox cycling catalyzed by quinone reductase and laccase. The capability of T. versicolor growing in malt extract medium to produce *OH by this mechanism was shown during primary and secondary metabolism, and was quantitatively modulated by the replacement of EDTA by oxalate and Mn2+ addition to DBQ incubations. Oxidation of BTEX was observed only under *OH induction conditions. *OH involvement was inferred from the high correlation observed between the rates at which they were produced under different DBQ redox cycling conditions and those of benzene removal, and the production of phenol as a typical hydroxylation product of *OH attack on benzene. All the BTEX compounds (500 microM) were oxidized at a similar rate, reaching an average of 71% degradation in 6 h samples. After this time oxidation stopped due to O2 depletion in the closed vials used in the incubations. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Science.gov (United States)

    Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-02-27

    Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  13. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Julio César Camarena-Tello

    2018-02-01

    Full Text Available Guava leaf (Psidium guajava L. extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  14. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Science.gov (United States)

    Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-01-01

    Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514

  15. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hydroxyl radical yields in the tracks of high energy 13C6+ and 36Ar18+ ions in liquid water

    International Nuclear Information System (INIS)

    Baldacchino, G.; Vigneron, G.; Renault, J.P.; Le Caer, S.; Pin, S.; Mialocq, J.-C.; Balanzat, E.; Bouffard, S.

    2006-01-01

    This article reports the determination of the OH · radiolytic yields in water irradiated by high energy C 6+ and Ar 18+ ions with LET values of 32 ± 2 and 280 ± 10 eV nm -1 . The time evolution of the yields between 9 x 10 -11 and 9 x 10 -8 s was deduced using the scavenging method with SCN - and Br - and pulse radiolysis with pulses of 5 and 10 μs. The thiocyanate chemical system is less affected with the local high dose rates specific to the high LET particles than the bromide system. At 32 eV nm -1 with C 6+ ions, G(OH · ) reaches a maximum of 1.5 x 10 -7 mol J -1 at 1 ns and decreases at earlier times. With Ar 18+ ions of 280 eV nm -1 G(OH · ) is always increasing at early times up to 1.6 x 10 -7 mol J -1 at 9 x 10 -11 s. In this case the evolution of the hydroxyl radical yields agrees with the high local concentrations obtained with Ar 18+ and C 6+ ions and depicted in recent literature with the yields of the hydrated electron in the ns range

  17. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.

    Science.gov (United States)

    Royer, Mariana; Diouf, Papa Niokhor; Stevanovic, Tatjana

    2011-09-01

    The crude ethanol and water extracts of different red maple (Acer rubrum L.) tissues: whole branches (WB), wood of branches (BW), bark of branches (BB), stem bark (SB) and whole twigs (T), were examined in order to determine their phenolic contents as well as their radical scavenging capacities. The total phenols (TP), total extractable tanins (TET) and non-precipitable phenols (NPP), were determined by combination of spectrophotometric and precipitation methods, while total flavonoids, hydroxy cinanmic acids and proanthocyanidins were determined spectrophotometrically. The radical scavenging activities of the extracts were determined against five reactive oxygen species (ROS): superoxide anion (O(2)(·-)), hydroxyl radical (HO(·)), peroxyl radical (ROO(·)), hypochlorite ion (ClO(-)), and hydrogen peroxide (H(2)O(2)) and one reactive nitrogen species (RNS): nitric oxide (NO). The extracts of stem bark were significantly more efficient (exhibiting the highest antioxidant efficiencies, AE) than the other studied extracts against all ROS (at p<0.05, Duncan statistical tests), except against NO. The correlation coefficients determined between total phenolic (TP) content and antiradical efficiencies were R(2)=0.12 for O(2)(·-); R(2)=0.29 for HO(·); R(2)=0.40 for H(2)O(2); R(2)=0.86 for ROO(·); R(2)=0.03 for NO(·) and R(2)=0.73 for ClO(-). Our results indicate potential utilisation of extracts as natural antioxidants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer.

    Science.gov (United States)

    Kovacic, Peter

    2005-01-01

    Cocaine is one of the principal drugs of abuse. Although impressive advances have been made, unanswered questions remain concerning mechanism of toxicity and addiction. Discussion of action mode usually centers on receptor binding and enzyme inhibition, with limited attention to events at the molecular level. This review provides extensive evidence in support of the hypothesis that oxidative metabolites play important roles comprising oxidative stress (OS), reactive oxygen species (ROS), and electron transfer (ET). The metabolites include norcocaine and norcocaine derivatives: nitroxide radical, N-hydroxy, nitrosonium, plus cocaine iminium and formaldehyde. Observed formation of ROS is rationalized by redox cycling involving several possible ET agents. Three potential ones are present in the form of oxidative metabolites, namely, nitroxide, nitrosonium, and iminium. Most attention has been devoted to the nitroxide-hydroxylamine couple which has been designated by various investigators as the principal source of ROS. The proximate ester substituent is deemed important for intramolecular stabilization of reactive intermediates. Reduction potential of nitroxide is in accord with plausibility of ET in the biological milieu. Toxicity by cocaine, with evidence for participation of OS, is demonstrated for many body components, including liver, central nervous system, cardiovascular system, reproductive system, kidney, mitochondria, urine, and immune system. Other adverse effects associated with ROS comprise teratogenesis and apoptosis. Examples of ROS generated are lipid peroxides and hydroxyl radical. Often observed were depletion of antioxidant defenses, and protection by added antioxidants, such as, thiol, salicylate, and deferoxamine. Considerable evidence supports the contention that oxidative ET metabolites of cocaine are responsible for much of the observed OS. Quite significantly, the pro-oxidant, toxic effects, including generation of superoxide and lipid peroxyl

  19. The Photocatalytic Destruction of Volatile Organic Compounds in Water

    Science.gov (United States)

    1991-12-10

    some common oxidants. It can be seen that the hydroxyl radical is only second to the fluorine ion in oxidation potential. 5 Table 2.1 Dissociation...Potential of Oxidants (Bernardin, 1991) Relative Oxidation Oxidative Power, Chlorine = 1 Species Potential (volts) 2.23 Fluorine 3.03 2.06 Hydroxyl... varnishes . It is used as a universal degreaser, in drycleaning, and in the manufacture of organic chemicals. On military bases it is used as a universal

  20. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    Science.gov (United States)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and separated by HPTLC. The antioxidant activity of the cumin extract was tested on 1,1'-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging. Coriander -- Coriandrum Sativum - the antioxidant and free-radical-scavenging property of the seeds was studied and also investigated whether the administration of seeds curtails oxidative stress. Coriander seed powder not only inhibited the process of Peroxidative damage, but also significantly reactivated the antioxidant enzymes and antioxidant levels. The seeds also showed scavenging activity against superoxides and hydroxyl radicals. The total polyphenolic content of the seeds was found to be 12.2 galic acid equivalents (GAE)/g while the total flavonoid content