WorldWideScience

Sample records for hydroxycinnamic acid derivatives

  1. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review

    Directory of Open Access Journals (Sweden)

    Oludemi Taofiq

    2017-02-01

    Full Text Available Bioactive compounds from natural sources, due to their widely-recognized benefits, have been exploited as cosmeceutical ingredients. Among them, phenolic acids emerge with a very interesting potential. In this context, this review analyzes hydroxycinnamic acids and their derivatives as multifunctional ingredients for topical application, as well as the limitations associated with their use in cosmetic formulations. Hydroxycinnamic acids and their derivatives display antioxidant, anti-collagenase, anti-inflammatory, antimicrobial and anti-tyrosinase activities, as well as ultraviolet (UV protective effects, suggesting that they can be exploited as anti-aging and anti-inflammatory agents, preservatives and hyperpigmentation-correcting ingredients. Due to their poor stability, easy degradation and oxidation, microencapsulation techniques have been employed for topical application, preventing them from degradation and enabling a sustained release. Based on the above findings, hydroxycinnamic acids present high cosmetic potential, but studies addressing the validation of their benefits in cosmetic formulations are still scarce. Furthermore, studies dealing with skin permeation are scarcely available and need to be conducted in order to predict the topical bioavailability of these compounds after application.

  2. Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arroniz-Crespo, M.; Nunez-Olivera, E. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Martinez-Abaigar, J. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain)], E-mail: javier.martinez@unirioja.es

    2008-01-15

    We examined, under laboratory conditions, the physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to artificially enhanced ultraviolet (UV) radiation for 82 days, especially considering the responses of five hydroxycinnamic acid derivatives. This species lives in mountain streams, where it is exposed to low temperatures and high UV levels, and this combination is believed to increase the adverse effects of UV. Enhanced UV radiation hardly caused any change in several physiological variables indicative of vitality, such as F{sub v}/F{sub m} and chlorophylls/phaeopigments ratio (OD430/OD410). Thus, this liverwort seemed to be tolerant to UV radiation, probably due to the accumulation of three UV-absorbing hydroxycinnamic acid derivatives: p-coumaroylmalic acid, 5''-(7'',8''-dihydroxycoumaroyl)-2-caffeoylmalic acid, and 5''-(7'',8''-dihydroxy-7-O-{beta}-glucosyl-coumaroyl)-2-caffeoylmalic acid. These compounds might serve as bioindicators of enhanced UV radiation. - Several hydroxycinnamic acid derivatives of an aquatic liverwort are induced by enhanced UV radiation and might serve as bioindicators of changes in UV levels.

  3. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study

    International Nuclear Information System (INIS)

    Yue Jiang; Lin Weizhen; Yao Side; Lin Nianyun; Zhu Dayuan

    1999-01-01

    Using pulse radiolytic techniques, it has been demonstrated that the interactions of oxidizing OH adducts of DNA (ssDNA and dsDNA), polyA and polyG with hydroxycinnamic acid derivatives proceed via an electron transfer process (k=5-30x10 8 dm 3 mol -1 s -1 ). In addition, the rates for fast repair of OH adducts of dAMP, polyA and DNA (ssDNA and dsDNA) are slower than the corresponding rates for the rest OH adducts of DNA constituents. The slower rates for repair of oxidizing OH adducts of dAMP may be the rate determining step during the interaction of hydroxycinnamic acid derivatives with OH adducts of DNA containing the varieties of OH adducts of DNA constituents

  4. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids.

    Science.gov (United States)

    El-Seedi, Hesham R; El-Said, Asmaa M A; Khalifa, Shaden A M; Göransson, Ulf; Bohlin, Lars; Borg-Karlson, Anna-Karin; Verpoorte, Rob

    2012-11-07

    Hydroxycinnamic acids are the most widely distributed phenolic acids in plants. Broadly speaking, they can be defined as compounds derived from cinnamic acid. They are present at high concentrations in many food products, including fruits, vegetables, tea, cocoa, and wine. A diet rich in hydroxycinnamic acids is thought to be associated with beneficial health effects such as a reduced risk of cardiovascular disease. The impact of hydroxycinnamic acids on health depends on their intake and pharmacokinetic properties. This review discusses their chemistry, biosynthesis, natural sources, dietary intake, and pharmacokinetic properties.

  5. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.

    Science.gov (United States)

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2017-11-01

    Mechanisms to recreate many anthocyanin blue hues in nature are not fully understood, but interactions with metal ions and phenolic compounds are thought to play important roles. Bluing effects of hydroxycinnamic acids on cyanidin and chelates were investigated by addition of the acids to triglycosylated cyanidin (0-50×[anthocyanin]) and by comparison to hydroxycinnamic acid monoacylated and diacylated Cy fractions by spectrophotometry (380-700nm) and colorimetry in pH 5-8. With no metal ions, λ max and absorbance was greatest for cyanidin with diacylation>monoacylation>increasing [acids]. Hydroxycinnamic acids added to cyanidin solutions weakly impacted color characteristics (ΔEacid attachment) resulted in ΔE 5-15. Triglycosylated cyanidin expressed blue color (pH 7-8), suggesting glycosylation pattern also plays a role. Al 3+ chelation increased absorbance 2-42× and λ max ≳40nm (pH 5-6) compared to added hydroxycinnamic acids. Metal chelation and aromatic diacylation resulted in the most blue hues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    Science.gov (United States)

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  7. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Enzymatic Extraction of Hydroxycinnamic Acids from Coffee Pulp

    Directory of Open Access Journals (Sweden)

    Ernesto Favela-Torres

    2011-01-01

    Full Text Available Ferulic, caffeic, p-coumaric and chlorogenic acids are classified as hydroxycinnamic acids, presenting anticarcinogenic, anti-inflammatory and antioxidant properties. In this work, enzymatic extraction has been studied in order to extract high value-added products like hydroxycinnamic acids from coffee pulp. A commercial pectinase and enzyme extract produced by Rhizomucor pusillus strain 23aIV in solid-state fermentation using olive oil or coffee pulp (CP as an inducer of the feruloyl esterase activity were evaluated separately and mixed. The total content (covalently linked and free of ferulic, caffeic, p-coumaric and chlorogenic acids was 5276 mg per kg of coffee pulp. Distribution was as follows (in %: chlorogenic acid 58.7, caffeic acid 37.6, ferulic acid 2.1 and p-coumaric acid 1.5. Most of the hydroxycinnamic acids were covalently bound to the cell wall (in %: p-coumaric acid 97.2, caffeic acid 94.4, chlorogenic acid 76.9 and ferulic acid 73.4. The content of covalently linked hydroxycinnamic acid was used to calculate the enzyme extraction yield. The maximum carbon dioxide rate for the solid-state fermentation using olive oil as an inducer was higher and it was reached in a short cultivation time. Nevertheless, the feruloyl esterase (FAE activity (units per mg of protein obtained in the fermentation using CP as an inducer was 31.8 % higher in comparison with that obtained in the fermentation using olive oil as the inducer. To our knowledge, this is the first report indicating the composition of both esterified and free ferulic, caffeic, p-coumaric and chlorogenic acids in coffee pulp. The highest yield of extraction of hydroxycinnamic acids was obtained by mixing the produced enzyme extract using coffee pulp as an inducer and a commercial pectinase. Extraction yields were as follows (in %: chlorogenic acid 54.4, ferulic acid 19.8, p-coumaric acid 7.2 and caffeic acid 2.3. An important increase in the added value of coffee pulp was mainly

  9. Production of cinnamic and p-hydroxycinnamic acids in engineered microbes

    Directory of Open Access Journals (Sweden)

    Alejandra eVargas-Tah

    2015-08-01

    Full Text Available The aromatic compounds cinnamic and p-hydroxycinnamic acids are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and p-hydroxycinnamic acids by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of L-phenylalanine and L-tyrosine to cinnamic acid and p-hydroxycinnamic acid, respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the L-phenylalanine or L-tyrosine biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  10. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  11. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  12. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast

    DEFF Research Database (Denmark)

    Eudes, Aymerick; Mouille, Maxence; Robinson, David S.

    2016-01-01

    the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol...

  13. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures

    Czech Academy of Sciences Publication Activity Database

    Moyo, M.; Amoo, S.O.; Aremu, A.O.; Grúz, Jiří; Šubrtová, Michaela; Doležal, Karel; van Staden, J.

    2014-01-01

    Roč. 227, OCT 2014 (2014), s. 157-164 ISSN 0168-9452 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Antioxidants * Hydroxybenzoic acids * Hydroxycinnamic acids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.607, year: 2014

  14. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD.

    Science.gov (United States)

    Harbaum, Britta; Hubbermann, Eva Maria; Wolff, Christian; Herges, Rainer; Zhu, Zhujun; Schwarz, Karin

    2007-10-03

    Twenty-eight polyphenols (11 flavonoid derivatives and 17 hydroxycinnamic acid derivatives) were detected in different cultivars of the Chinese cabbage pak choi ( Brassica campestris L. ssp. chinensis var. communis) by HPLC-DAD-ESI-MS(n). Kaempferol was found to be the major flavonoid in pak choi, glycosylated and acylated with different compounds. Smaller amounts of isorhamnetin were also detected. A structural determination was carried out by (1)H and (13)C NMR spectroscopy for the main compound, kaempferol-3-O-hydroxyferuloylsophoroside-7-O-glucoside, for the first time. Hydroxycinnamic acid derivatives were identified as different esters of quinic acid, glycosides, and malic acid. The latter ones are described for the first time in cabbages. The content of polyphenols was determined in 11 cultivars of pak choi, with higher concentrations present in the leaf blade than in the leaf stem. Hydroxycinnamic acid esters, particularly malic acid derivatives, are present in both the leaf blade and leaf stem, whereas flavonoid levels were determined only in the leaf blade.

  15. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  16. Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity.

    Science.gov (United States)

    Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik

    2016-07-01

    Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. Copyright © 2016. Published by Elsevier B.V.

  17. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-07

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.

  18. Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort.

    Science.gov (United States)

    Otero, Saúl; Núñez-Olivera, Encarnación; Martínez-Abaigar, Javier; Tomás, Rafael; Huttunen, Satu

    2009-01-01

    We analyzed bulk UV absorbance of methanolic extracts and levels of five UV-absorbing compounds (hydroxycinnamic acid derivatives) in 135 herbarium samples of the liverwort Jungermannia exsertifolia subsp. cordifolia from northern Europe. Samples had been collected in 1850-2006 (96% in June-August). Both UV absorbance and compound levels were correlated positively with collection year. p-Coumaroylmalic acid (C1) was the only compound showing a significant (and negative) correlation with stratospheric ozone and UV irradiance in the period that real data of these variables existed. Stratospheric ozone reconstruction (1850-2006) based on C1 showed higher values in June than in July and August, which coincides with the normal monthly variation of ozone. Combining all the data, there was no long-term temporal trend from 1850 to 2006. Reconstructed UV showed higher values in June-July than in August, but again no temporal trend was detected in 1918-2006 using the joint data. This agrees with previous UV reconstructions.

  19. Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort

    Energy Technology Data Exchange (ETDEWEB)

    Otero, Saul [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Nunez-Olivera, Encarnacion, E-mail: encarnacion.nunez@unirioja.e [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Martinez-Abaigar, Javier; Tomas, Rafael [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Huttunen, Satu [Department of Biology, University of Oulu, P.O. Box 3000, FIN-90 014 Finland (Finland)

    2009-08-15

    We analyzed bulk UV absorbance of methanolic extracts and levels of five UV-absorbing compounds (hydroxycinnamic acid derivatives) in 135 herbarium samples of the liverwort Jungermannia exsertifolia subsp. cordifolia from northern Europe. Samples had been collected in 1850-2006 (96% in June-August). Both UV absorbance and compound levels were correlated positively with collection year. p-Coumaroylmalic acid (C1) was the only compound showing a significant (and negative) correlation with stratospheric ozone and UV irradiance in the period that real data of these variables existed. Stratospheric ozone reconstruction (1850-2006) based on C1 showed higher values in June than in July and August, which coincides with the normal monthly variation of ozone. Combining all the data, there was no long-term temporal trend from 1850 to 2006. Reconstructed UV showed higher values in June-July than in August, but again no temporal trend was detected in 1918-2006 using the joint data. This agrees with previous UV reconstructions. - On the basis of the levels of p-coumaroylmalic acid in liverwort samples, reconstructions of both ozone and UV radiation showed no significant temporal trend in, respectively, 1850-2006 and 1918-2006.

  20. Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort

    International Nuclear Information System (INIS)

    Otero, Saul; Nunez-Olivera, Encarnacion; Martinez-Abaigar, Javier; Tomas, Rafael; Huttunen, Satu

    2009-01-01

    We analyzed bulk UV absorbance of methanolic extracts and levels of five UV-absorbing compounds (hydroxycinnamic acid derivatives) in 135 herbarium samples of the liverwort Jungermannia exsertifolia subsp. cordifolia from northern Europe. Samples had been collected in 1850-2006 (96% in June-August). Both UV absorbance and compound levels were correlated positively with collection year. p-Coumaroylmalic acid (C1) was the only compound showing a significant (and negative) correlation with stratospheric ozone and UV irradiance in the period that real data of these variables existed. Stratospheric ozone reconstruction (1850-2006) based on C1 showed higher values in June than in July and August, which coincides with the normal monthly variation of ozone. Combining all the data, there was no long-term temporal trend from 1850 to 2006. Reconstructed UV showed higher values in June-July than in August, but again no temporal trend was detected in 1918-2006 using the joint data. This agrees with previous UV reconstructions. - On the basis of the levels of p-coumaroylmalic acid in liverwort samples, reconstructions of both ozone and UV radiation showed no significant temporal trend in, respectively, 1850-2006 and 1918-2006.

  1. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures.

    Science.gov (United States)

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. LC-MSn study of the chemical transformations of hydroxycinnamates during yerba maté (Ilex paraguariensis) tea brewing.

    Science.gov (United States)

    Matei, Marius Febi; Jaiswal, Rakesh; Patras, Maria A; Kuhnert, Nikolai

    2016-12-01

    Yerba maté is one of the most popular beverages in South American countries and its consumption is associated with a wide array of health effects. In this study, we used advanced HPLC-ESI-MS n and HPLC-ESI-HRMS methods for the identification and characterization of hydroxycinnamates and their derivatives formed during the brewing process of yerba maté. We report on the hydroxylation of the hydroxycinnamates cinnamoyl substituent by conjugate addition of water to form 3-hydroxy-dihydrocinnamic acid derivatives using a series of model compounds, including caffeoylglucoses, dicaffeoylquinic acids, methyl caffeoylquinate and mono caffeoylquinic acids. The regiochemistry of conjugate addition was determined by targeted tandem MS experiments performed on authentic standards. It was interesting to note that hydroxylation of hydroxycinnamates produced cis and acyl-migration isomers, which is in line with previously reported data. Copyright © 2016. Published by Elsevier Ltd.

  3. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary......Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets...

  4. Redox chemistry of o-and m-hydroxycinnamic acids: A pulse ...

    Indian Academy of Sciences (India)

    The transient absorption spectrum measured in the ∙ OH with -hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of O ∙ − with the -isomer whereas the meta isomer has a ...

  5. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside

  6. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  7. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    Science.gov (United States)

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  8. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid......, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts...

  9. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    Science.gov (United States)

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  10. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides

    Directory of Open Access Journals (Sweden)

    Koch Gerald

    2011-03-01

    Full Text Available Abstract Background Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV microspectrophotometry (UMSP to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours. Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20

  11. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn.

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2009-04-08

    Kale is a leafy green vegetable belonging to the Brassicaceae family, a group of vegetables including cabbage, broccoli, cauliflower, and Brussels sprouts, with a high content of health-promoting phytochemicals. The flavonoids and hydroxycinammic acids of curly kale ( Brassica oleracea L. ssp. oleracea convar. acephala (DC.) Alef. var. sabellica L.), a variety of kale, were characterized and identified primarily through HPLC-DAD-ESI-MS(n) analysis. Thirty-two phenolic compounds including glycosides of quercetin and kaempferol and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid were tentatively identified, providing a more complete identification of phenolic compounds in curly kale than previously reported. Moreover, three hydroxycinnamic acids and one flavonoid with an unusual high grade of glycosylation, quercetin-3-disinapoyl-triglucoside-7-diglucoside, have been tentatively identified for the first time. The influence of different extraction conditions (extraction method, solvent type, solvent/solid ratio, and duration of extraction) was investigated. The total flavonol and hydroxycinnamic acid contents in curly kale determined as rutin equivalents (RE) were 646 and 204 mg of RE/100 g of fresh weight (fw), respectively. The contents of individual flavonoids ranged from 2 to 159 mg of RE/100 g of fw, with main compounds kaempferol-3-sinapoyl-diglucoside-7-diglucoside (18.7%) and quercetin-3-sinapoyl-diglucoside-7-diglucoside (16.5%). After acidic hydrolysis, two flavonol aglycones were identified in curly kale, quercetin and kaempferol, with total contents of 44 and 58 mg/100 g of fw, respectively.

  12. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Eudes, Aymerick [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mouille, Maxence [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, David S. [Joint BioEnergy Institute, Emeryville, CA (United States); Benites, Veronica T. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); San Francisco State Univ., San Francisco, CA (United States); Wang, George [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roux, Lucien [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Tsai, Yi-Lin [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiu, Tsan-Yu [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heazlewood, Joshua L. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); The Univ. of Melbourne, Melbourne, VIC (Australia); Scheller, Henrik V. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mukhopadhyay, Aindrila [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Keasling, Jay D. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Technical Univ. of Denmark, Horsholm (Denmark); Deutsch, Samuel [Joint BioEnergy Institute, Emeryville, CA (United States); Loqué, Dominique [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. Claude Bernard Lyon 1, Villeurbanne (France)

    2016-11-21

    BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. As a result, for the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters

  13. The effect of temperature on the stability of compounds used as UV-MALDI-MS matrix: 2,5-dihydroxybenzoic acid, 2,4,6-trihydroxyacetophenone, alpha-cyano-4-hydroxycinnamic acid, 3,5-dimethoxy-4-hydroxycinnamic acid, nor-harmane and harmane.

    Science.gov (United States)

    Tarzi, Olga I; Nonami, Hiroshi; Erra-Balsells, Rosa

    2009-02-01

    The thermal stability of several commonly used crystalline matrix-assisted ultraviolet laser desorption/ionization mass spectrometry (UV-MALDI-MS) matrices, 2,5-dihydroxybenzoic acid (gentisic acid; GA), 2,4,6-trihydroxyacetophenone (THA), alpha-cyano-4-hydroxycinnamic acid (CHC), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid; SA), 9H-pirido[3,4-b]indole (nor-harmane; nor-Ho), 1-methyl-9H-pirido[3,4-b]indole (harmane; Ho), perchlorate of nor-harmanonium ([nor-Ho+H]+) and perchlorate of harmanonium ([Ho+H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI-MS), ultraviolet laserdesorption/ionization-time-of-flight-mass spectrometry (UV-LDI-TOF-MS) and electrospray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV-absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans-/cis-4-hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H-NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well-known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV-MALDI-MS. Commercial SA (SA 98%; trans-SA/cis-SA 5:1) showed mainly cis- to-trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3',5'-dimethoxy-4'-hydroxyphenyl)-1-ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV-MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright (c) 2008 John Wiley & Sons, Ltd.

  14. Redox chemistry of o- and m-hydroxycinnamic acids: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Yadav, P.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.

    2002-01-01

    Radiation chemical reactions of . OH, O .- , N 3 . and e aq - with o- and m- hydroxycinnamic acids were studied. The second-order rate constants for the reaction of . OH with ortho and meta isomers in buffer solution at pH 7 are 3.9 ± 0.2 x 10 9 and 4.4 ± 0.3 x 10 9 dm 3 mol -l S -1 respectively. At pH 3 the rate with the ortho isomer was halved (1.6 ± 0.4 x 10 9 dm 3 mol -l s -1 ) but it was unaffected in the case of meta isomer (k = 4.2 ± 0.6 x 10 9 dm 3 mol -l s -1 ). The rate constant in the reaction of N 3 . with the ortho isomer is lower by an order of magnitude (k = 4.9 ± 0.4 x 10 8 dm 3 mol -l s -1 ). The rates of the reaction of e aq - with ortho and meta isomers were found to be diffusion controlled. The transient absorption spectrum measured in the . OH with o- hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of O .- with the o-isomer whereas the meta isomer has a maximum at 390 and a broad shoulder at 450 nm. In the reaction of e aq - , the absorption peaks were centred al 370-380 nm in both the isomers. The underlying reaction mechanism is discussed. (author)

  15. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces ' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus . These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p -coumaric acid, a trait not shared among the spoilage strains.

  16. Interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids in aqueous radical environment.

    Science.gov (United States)

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens Larsen; Gökmen, Vural

    2018-06-01

    The interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids (HCA/HBA) containing different numbers of -OH and -OCH₃ groups localized at different positions on the aromatic ring were investigated. By doing so, mechanism of the interactions was intended to be explained with a structural approach. Experimental studies were carried out in DPPH radical medium. Chemometric methods were used for experimental design and multivariate data analysis. Area under the curve (AUC) values calculated from the plots of time versus inhibition (%) for coffee and bread crust melanoidins and HCA/HBA derivatives were ranged between 6532 ± 97-19,106 ± 85, 3997 ± 102-7565 ± 159 and - 1678 ± 81-22,486 ± 119, respectively. Synergistic interactions were revealed for both coffee and bread crust melanoidins and HCA/HBA derivatives. The significance of the concentrations of coffee and bread crust melanoidins on radical scavenging activity was clearly centered from the scores plots obtained via Principal component analysis (PCA). Phases of radical scavenging reactions were also revealed from the loadings plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The effects of extracellular pH and hydroxycinnamic acids influence the intracellular pH of Brettanomyces bruxellensis DSM 7001

    DEFF Research Database (Denmark)

    Campolongo, Simona; Siegumfeldt, Henrik; Aabo, Thomas Ask

    2014-01-01

    and intracellular pH changes in B. bruxellensis DSM 7001, in response to extracellular pH, as well as to the presence of an energy source and hydroxycinnamic acids, have been investigated in this paper by means of Fluorescent Ratio Imaging Microscopy (FRIM). The results show that B. bruxellensis DSM 7001 is able...

  18. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  19. Use of UHPLC-TripleQ with synthetic standards to profile anti-inflammatory hydroxycinnamic acid amides in root barks and leaves of Lycium barbarum

    Directory of Open Access Journals (Sweden)

    Siyu Wang

    2018-04-01

    Full Text Available Hydroxycinnamic acid amides (HCAA are the secondary metabolites ubiquitously exist in flowering plants, formed by condensation between hydroxycinnamates and mono or polyamines. HCAA species not only serve multiple functions in plant growth and development, but also exert significant positive effects on human health. In this study, we combined organic synthesis and UPHLC-TripleQ-MS/MS specifically targeting at HCAA species. The method was fully validated with respect to specificity, linearity, intra- and inter-day precision and accuracy, limit of detection (LOD, limit of quantification (LOQ, recovery, and reproducibility. We applied this method to identify and quantify HCAAs from the root barks and leaves of Lycium barbarum. HCAA species were reported in leaves for the first time, and 10 new HCAA species were further identified in root barks in addition to the ones reported in the literature. We also examine anti-inflammatory properties of identified HCAAs species. Seven HCAA compounds had a potent NO inhibitory effect with IC50 as low as 2.381 μM (trans-N-caffeoyl phenethylamine. Our developed method largely improved analytical sensitivity of HCAAs species that potentially contributes to plant metabolomics studies. Keywords: Hydroxycinnamic acid amide, Lycium barbarum, UHPLC-MS/MS, Quantification, Anti-inflammatory

  20. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In vitro Lignification and Cell Wall Studies with Rosmarinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuki, Tobimatsu; Sasikumar, Elumalai; Grabber, John H.; Davidson, Christy L.; Xuejun, Pan; John, Ralph

    2012-04-01

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability and promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.

  1. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  2. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary...... hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained...... from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye...

  3. Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films

    Directory of Open Access Journals (Sweden)

    Letícia Mello Rechia

    2010-09-01

    Full Text Available The aim of this study was to investigate the mechanical properties of starch/glycerol/Melissa officinalis, a topical drug delivery system for labial herpes treatment. Four films were prepared with different concentrations of starch, glycerol, and Melissa officinalis extract. The results revealed that increasing the glycerol concentration in the film reduced elasticity modulus and tensile strength, exhibiting a plasticizing effect. The increase in free volume resulted in increased release of hydroxycinnamic derivatives expressed as rosmarinic acid.O objetivo deste trabalho foi estudar as propriedades mecânicas e o mecanismo de liberação de um sistema tópico de liberação prolongada para o tratamento do Herpes labial a partir de filmes de amido/glicerol/extrato de Melissa officinalis, planta com comprovada atividade antiviral. Foram obtidos quatro filmes poliméricos com diferentes concentrações de amido, glicerol e extrato de Melissa officinalis os quais foram caracterizados mecanicamente e determinado o perfil de liberação de derivados hidroxicinâmicos. Os resultados demonstraram que o aumento da concentração de glicerol no filme produz uma redução no módulo de elasticidade e na tensão de deformação como conseqüência do efeito plastificante. O aumento no volume livre do polímero resultou em aumento da liberação dos derivados hidroxicinâmicos expressos como ácido rosmarínico.

  4. Bioinspired Syntheses of Dimeric Hydroxycinnamic Acids (Lignans and Hybrids, Using Phenol Oxidative Coupling as Key Reaction, and Medicinal Significance Thereof

    Directory of Open Access Journals (Sweden)

    George E. Magoulas

    2014-11-01

    Full Text Available Lignans are mainly dimers of 4-hydroxycinnamic acids (HCAs and reduced analogs thereof which are produced in Nature through phenol oxidative coupling (POC as the primary C-C or C-O bond-forming reaction under the action of the enzymes peroxidases and laccases. They present a large structural variety and particularly interesting biological activities, therefore, significant efforts has been devoted to the development of efficient methodologies for the synthesis of lignans isolated from natural sources, analogs and hybrids with other biologically interesting small molecules. We summarize in the present review those methods which mimic Nature for the assembly of the most common lignan skeleta by using either enzymes or one-electron inorganic oxidants to effect POC of HCAs and derivatives, such as esters and amides, or cross-POC of pairs of HCAs or HCAs with 4-hydrocycinnamyl alcohols. We, furthermore, provide outlines of mechanistic schemes accounting for the formation of the coupled products and, where applicable, indicate their potential application in medicine.

  5. Cinnamic acid derivatives in cosmetics - current use and future prospects.

    Science.gov (United States)

    Gunia-Krzyżak, Agnieszka; Słoczyńska, Karolina; Popiół, Justyna; Koczurkiewicz, Paulina; Marona, Henryk; Pękala, Elżbieta

    2018-06-05

    Cinnamic acid derivatives are widely used in cosmetics and possess various functions. This group of compounds includes both naturally occurring as well as synthetic substances. On the basis of the Cosmetic Ingredient Database (CosIng) and available literature, this review summarizes their functions in cosmetics, including their physicochemical and biological properties as well as reported adverse effects. A perfuming function is typical of many derivatives of cinnamaldehyde, cinnamyl alcohol, dihydrocinnamyl alcohol, and cinnamic acid itself; these substances are commonly used in cosmetics all over the world. Some of them show allergic and photoallergic potential, resulting in restrictions in maximum concentrations and/or a requirement to indicate the presence of some substances in the list of ingredients when their concentrations exceed certain fixed values in a cosmetic product. Another important function of cinnamic acid derivatives in cosmetics is UV protection. Ester derivatives such as ethylhexyl methoxycinnamate (octinoxate), isoamyl p-methoxycinnamte (amiloxiate), octocrylene, and cinoxate are used in cosmetics all over the world as UV filters. However, their maximum concentrations in cosmetic products are restricted due to their adverse effects, which include contact and a photocontact allergies, phototoxic contact dermatitis, contact dermatitis, estrogenic modulation, and generation of reactive oxygen species. Other rarely utilized functions of cinnamic acid derivatives are as an antioxidant, in skin conditioning, hair conditioning, as a tonic, and in antimicrobial activities. Moreover, some currently investigated natural and synthetic derivatives of cinnamic acid have shown skin lightening and anti-aging properties. Some of them may become new cosmetic ingredients in the future. In particular, 4-hydroxycinnamic acid, which is currently indexed as a skin-conditioning cosmetics ingredient, has been widely tested in vitro and in vivo as a new drug candidate

  6. Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.

    Science.gov (United States)

    Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang

    2017-07-01

    This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Kontogeorgis, Georgios; Riisager, Anders

    2012-01-01

    as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening......-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher...... of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems...

  8. A simple method for enzymatic synthesis of unlabeled and radiolabeled Hydroxycinnamate-CoA

    Energy Technology Data Exchange (ETDEWEB)

    Rautergarten, Carsten; Baidoo, Edward; Keasling, Jay; Vibe Scheller, Henrik

    2011-07-20

    Hydroxycinnamate coenzyme A (CoA) thioesters are substrates for biosynthesis of lignin and hydroxycinna- mate esters of polysaccharides and other polymers. Hence, a supply of these substrates is essential for investigation of cell wall biosynthesis. In this study, three recombinant enzymes, caffeic acid 3-O-methyltransferase, 4-coumarate- CoA ligase 1, and 4-coumarate-CoA ligase 5, were cloned from wheat, tobacco, and Arabidopsis, respectively, and were used to synthesize {sup 14}C-feruloyl-CoA, caffeoyl-CoA, p-coumaroyl-CoA, feruloyl-CoA, and sinapoyl-CoA. The corresponding hydroxycinnamoyl-CoA thioesters were high-performance liquid chromatography purified, the only extraction/purification step necessary, with total yields between 88-95%. Radiolabeled {sup 14}C-feruloyl-CoA was generated from caffeic acid and S-adenosyl-{sup 14}C-methionine under the combined action of caffeic acid 3-O-methyltransferase and 4-coumarate-CoA ligase 1. About 70% of {sup 14}C-methyl groups from S-adenosyl methionine were incorporated into the final product. The methods presented are simple, fast, and efficient for the preparation of the hydroxycinnamate thioesters.

  9. Multifaceted adsorption of α-cyano-4-hydroxycinnamic acid on silver colloidal and island surfaces

    Science.gov (United States)

    Jung, Dawoon; Jeon, Kooknam; Yeo, Juhyun; Hussain, Shafqat; Pang, Yoonsoo

    2017-12-01

    The surface adsorption of organic nitrile compounds on the silver colloidal and island surfaces has been studied using surface-enhanced Raman scattering (SERS). α-Cyano-4-hydroxycinnamic acid (CHCA) with nitrile and carboxyl groups shows various surface adsorption on the silver surfaces. In acidic conditions, the surface adsorption of CHCA via the nitrile group with a more or less tilted geometry to the surface was found. When the solution pH increases, the carboxylate and nitrile groups of deprotonated CHCA participate in the surface adsorption, whereas the molecular plane of CHCA becomes more parallel to the surface. The ν(Ctbnd N) band in SERS of CHCA is the indicator of the surface adsorption geometry. The strongly red-shifted and broadened ν(Ctbnd N) band in SERS represents the surface adsorption via π-electrons of the Ctbnd N bond (side-on geometry; π-coordination). Nitriles adsorbed on the surface via the nonbonding electron pair of the nitrogen atom (end-on geometry; σ-coordination) often cause the blue-shifts and small band broadening in ν(Ctbnd N) in SERS. The surface adsorption geometry of organic nitriles based on many previous experimental results was further confirmed by the surface adsorption of CHCA on the silver island surfaces and dinitrile compounds on the silver colloidal surfaces.

  10. Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Sandström, B.

    2003-01-01

    A quantitative liquid chromatography mass spectrometry (LC-MS) methodology with online sample clean up by column switching is described for the simultaneous determination of the hydroxycinnamates, caffeic acid and chlorogenic acid, and of the catechins, epicatechin and catechin in human urine...

  11. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-09-01

    Full Text Available Hydroxycinnamic acids (HCAs are typical monocyclic phenylpropanoids, including cinnamic acid (Cin, coumaric acid (Cou, caffeic acid (Caf, ferulic acid (FA and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.

  12. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico.

    Science.gov (United States)

    Mullen, W; Nemzer, B; Stalmach, A; Ali, S; Combet, E

    2013-06-05

    Air-dried whole coffee fruits, beans, and husks from China, India, and Mexico were analyzed for their chlorogenic acids (CGA), caffeine, and polyphenolic content. Analysis was by HPLC and Orbitrap exact mass spectrometry. Total phenol, total flavonol, and antioxidant capacity were measured. The hydroxycinnamate profile consisted of caffeoylquinic acids, feruloyquinic acids, dicaffeoylquinic acids, and caffeoyl-feruloylquinic acids. A range of flavan-3-ols as well as flavonol conjugates were detected. The CGA content was similar for both Mexican and Indian coffee fruits but was much lower in the samples from China. Highest levels of flavan-3-ols were found in the Indian samples, whereas the Mexican samples contained the highest flavonols. Amounts of CGAs in the beans were similar to those in the whole fruits, but flavan-3-ols and flavonols were not detected. The husks contained the same range of polyphenols as those in the whole fruits. The highest levels of caffeine were found in the Robusta samples.

  13. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, M.F.; Landbo, Anne-Katrine Regel; Christensen, L.P.

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...

  14. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  15. In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Semiz Asli

    2017-01-01

    Full Text Available In the last decade, hydroxycinnamic acids (HCA have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mM/kg/day, i.p. was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19 activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(PH:quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx and glutathione S-transferases (GSTs activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels. These observations may be of importance given the potential use of HCA as a chemopreventive and as an anticancer agent.

  16. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines.

    Science.gov (United States)

    Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui

    2017-07-01

    A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30   min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  18. Phenylpropanoid profiling reveals a class of hydroxycinnamoyl glucaric acid conjugates in Isatis tinctoria leaves.

    Science.gov (United States)

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Grand, Eric; Morreel, Kris; Marcelo, Paulo; Gontier, Eric; Dauwe, Rebecca

    2017-12-01

    The brassicaceous herb, Isatis tinctoria, is an ancient medicinal plant whose rosette leaf extracts have anti-inflammatory and anti-allergic activity. Brassicaceae are known to accumulate a variety of phenylpropanoids in their rosette leaves acting as antioxidants and a UV-B shield, and these compounds often have pharmacological potential. Nevertheless, knowledge about the phenylpropanoid content of I. tinctoria leaves remains limited to the characterization of a number of flavonoids. In this research, we profiled the methanol extracts of I. tinctoria fresh leaf extracts by liquid chromatography - mass spectrometry (LC-MS) and focused on the phenylpropanoid derivatives. We report the structural characterization of 99 compounds including 18 flavonoids, 21 mono- or oligolignols, 2 benzenoids, and a wide spectrum of 58 hydroxycinnamic acid esters. Besides the sinapate esters of malate, glucose and gentiobiose, which are typical of brassicaceous plants, these conjugates comprised a large variety of glucaric acid esters that have not previously been reported in plants. Feeding with 13 C 6 -glucaric acid showed that glucaric acid is an acyl acceptor of an as yet unknown acyltransferase activity in I. tinctoria rosette leaves. The large amount of hydroxycinnamic acid derivatives changes radically our view of the woad metabolite profile and potentially contributes to the pharmacological activity of I. tinctoria leaf extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Conductimetric and Potentiometric Titration of Some Hydroxylated Cinnamic Acids with Tetrabutylammonium Hydroxide in Non-Aqueous Media

    OpenAIRE

    AKTAŞ, A. Hakan; YAŞAR, Gülsüm; ALSANCAK, Güleren ÖZKAN

    2001-01-01

    In this study, four hydroxycinnamic acids, namely 3,4-dihydroxycinnamic acid, 4-hydroxycinnamic acid, 4-hydroxy --3- methoxycinnamic acid and 4-hydroxy-3,5-dimethoxycinnamic acid, were titrated conductimetrically and potentiometrically using triethylamine and tetrabutylammonium hydroxide in acetonitrile, 2-propanol, and pyridine solvents under a nitrogen atmosphere at 25 oC. In conductimetric titration with tetrabutylammonium hydroxide all of the compounds exhibited conventional s...

  20. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.

  1. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Directory of Open Access Journals (Sweden)

    Hyun-Su Lee

    Full Text Available Atopic dermatitis (AD is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.

  2. Comparative proteome analysis of Brettanomyces bruxellensis under hydroxycinnamic acid growth

    Directory of Open Access Journals (Sweden)

    Lourdes Carmona

    2016-09-01

    Conclusions: The proteomic profile of B. bruxellensis cultivated in the presence of p-coumaric acid in synthetic wine, agrees with the hypothesis of metabolic flux regulation, allowing a better conditioning to an adverse environment. This study involved the translational level of B. bruxellensis in the production of ethylphenols and corroborated that this yeast presented an advantage in these stress conditions. Thus, this work will allow an understanding of the regulation and processes involved in the production of ethyl-derivate compounds by B. bruxellensis. Furthermore, it allows the development of newer and better techniques for spoilage yeast control.

  3. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  4. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  5. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis.

    Science.gov (United States)

    Salum, María L; Itovich, Lucia M; Erra-Balsells, Rosa

    2013-11-01

    Successful application of matrix-assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5-dimethoxy-4-hydroxycinnamic acid, SA; α-cyano-4-hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E-form and Z-form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E-cinnamic and trans-cinnamic acids). As a new rational design of MALDI matrices, Z-cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E-isomer and classical crystalline matrices (3,5-dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z-SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E-cinnamic and Z-cinnamic acids revealed some factors governing the analyte-matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.

  6. The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Yang

    2018-05-01

    Full Text Available Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, was investigated in terms of its effects on A2058 and A375 melanoma cell proliferation and protein expression in this study. We used flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in the two melanoma cell lines and employed comparative proteomic analysis to investigate the effects of this compound on protein expression in A375 cells. Master maps generated by PDQuest software from two-dimensional electrophoresis (2-DE analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in mitochondrial dysfunction and endoplasmic reticulum stress (ER stress, in addition to apoptosis-associated proteins, including prohibitin, hypoxia-upregulated protein 1, stress 70 protein, 78 kDa glucose-regulated protein (GRP78, and protein deglycase DJ-1 (protein DJ-1 in melanoma cells exposed to bornyl cis-4-hydroxycinnamate. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bcl-2-associated X protein (Bax, Bcl-2-associated death promoter protein (Bad, caspase-3, and caspase-9, and in the decreased expression of p-Bad, B-cell lymphoma 2 (Bcl-2, Bcl-xl, and induced myeloid leukemia cell differentiation protein-1 (Mcl-1, indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Also, salubrinal (an eukaryotic initiation factor 2α inhibitor; eIF2α inhibitor was able to protect the cells from bornyl cis-4-hydroxycinnamate-induced apoptosis. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the protein kinase R-like endoplasmic reticulum kinase (PERK–eIF2α–ATF4–CHOP signal

  7. The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

    Science.gov (United States)

    Yang, Tzu-Yen; Wu, Yu-Jen; Chang, Chi-I; Wu, Mei-Li

    2018-01-01

    Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, was investigated in terms of its effects on A2058 and A375 melanoma cell proliferation and protein expression in this study. We used flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in the two melanoma cell lines and employed comparative proteomic analysis to investigate the effects of this compound on protein expression in A375 cells. Master maps generated by PDQuest software from two-dimensional electrophoresis (2-DE) analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in mitochondrial dysfunction and endoplasmic reticulum stress (ER stress), in addition to apoptosis-associated proteins, including prohibitin, hypoxia-upregulated protein 1, stress 70 protein, 78 kDa glucose-regulated protein (GRP78), and protein deglycase DJ-1 (protein DJ-1) in melanoma cells exposed to bornyl cis-4-hydroxycinnamate. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad), caspase-3, and caspase-9, and in the decreased expression of p-Bad, B-cell lymphoma 2 (Bcl-2), Bcl-xl, and induced myeloid leukemia cell differentiation protein-1 (Mcl-1), indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Also, salubrinal (an eukaryotic initiation factor 2α inhibitor; eIF2α inhibitor) was able to protect the cells from bornyl cis-4-hydroxycinnamate-induced apoptosis. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the protein kinase R-like endoplasmic reticulum kinase (PERK)–eIF2α–ATF4–CHOP signal pathways

  8. Identification of Phenolic Acids and Changes in their Content during Fermentation and Ageing of White Wines Pošip and Rukatac

    Directory of Open Access Journals (Sweden)

    Tomislav Lovrić

    2002-01-01

    Full Text Available Identification of phenolic acids was performed and changes in their content during the production of autochthonous Croatian white wines Pošip and Rukatac (Vitis vinifera, L. were registered. In both varieties (Pošip, Rukatac the following phenolic acids were identified: gallic, protocatechuic and vanillic acids as hydroxybenzoic acids; and caffeic, p-coumaric and ferulic acids as hydroxycinnamic acids. It was found that there is a difference between hydroxybenzoic acid group and hydroxycinnamic acid group content and between their influences on the wine colour (colour intensity and hue.

  9. Isotope-labelled folic acid derivatives

    International Nuclear Information System (INIS)

    Lewin, N.; Wong, E.T.

    1976-01-01

    The suggestion deals with the production of folic acid derivatives suitable as indicators or tracers for analyses of serum folates. These folic acid derivatives contain folic acid which is bound by one or both carboxyl groups to the amino nitrogen of compounds such as, e.g., tyramine, glycyl tyrosine, tyrosine, or the methyl ester of tyrosine. The derivative obtained can be substituted by a gamma emitter, e.g. the iodine isotope I 125. The radioactive derivative is used in the method for the competitive protein bonding to determine endogenic folates in the serum. (UWI) [de

  10. Phenolic acid profiles and antioxidant potential of Pelargonium sidoides callus cultures

    Czech Academy of Sciences Publication Activity Database

    Kumar, V.; Moyo, M.; Grúz, Jiří; Šubrtová, Michaela; van Staden, J.

    2015-01-01

    Roč. 77, DEC 23 (2015), s. 402-408 ISSN 0926-6690 Institutional support: RVO:61389030 Keywords : Antioxidants * Hydroxybenzoic acids * Hydroxycinnamic acids Subject RIV: EF - Botanics Impact factor: 3.449, year: 2015

  11. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  12. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  13. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  14. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates.

    Science.gov (United States)

    Budryn, Grażyna; Pałecz, Bartłomiej; Rachwał-Rosiak, Danuta; Oracz, Joanna; Zaczyńska, Donata; Belica, Sylwia; Navarro-González, Inmaculada; Meseguer, Josefina María Vegara; Pérez-Sánchez, Horacio

    2015-02-01

    The aim of the study was to characterise the interactions of hydroxycinnamic and chlorogenic acids (CHAs) from green coffee, with isolates of proteins from egg white (EWP), whey (WPC) and soy (SPI), depending on pH and temperature. The binding degree was determined by liquid chromatography coupled to a diode array detector and an ultrahigh resolution hybrid quadruple-time-of-flight mass spectrometer with ESI source (LC-QTOF-MS/MS). As a result of binding, the concentration of CHAs in proteins ranged from 9.44-12.2, 11.8-13.1 and 12.1-14.4g/100g for SPI, WPC and EWP, respectively. Thermodynamic parameters of protein-ligand interactions were determined by isothermal titration calorimetry (ITC) and energetics of interactions at the atomic level by molecular modelling. The amount of CHAs released during proteolytic digestion was in the range 0.33-2.67g/100g. Inclusion of CHAs with β-cyclodextrin strongly limited these interactions to a level of 0.03-0.06g/100g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cinnamic Acid Derivatives as Antidiabetics Agents

    Directory of Open Access Journals (Sweden)

    Teni Ernawati

    2017-04-01

    Full Text Available Diabetes mellitus is a metabolic disorder of carbohydrate metabolism. Treatment of type II diabetes is usually done by prescribing diet and exercise for the patient however it can also be treated with antidiabetic drugs. The purpose of this paper is to illustrate some cinnamic acid derivative compounds which are either isolated from natural materials or the results of the chemical synthesis. In addition, their biological activities as an agent of α-glucosidase inhibitors have also been evaluated. Chemically, cinnamic acid has three main functional groups:  first is the substitution on the phenyl group, second is the additive reaction into the α-β unsaturated, and third is the chemical reaction with carboxylic acid functional groups. Chemical aspects of cinnamic acid derivative compounds have received much attention in the research and development of drugs, especially modifications within three functional groups are very influential. In the last 10 years, a lot of research and development of cinnamic acid derivatives as inhibitors of the α-glucosidase enzyme has been done. One example of the research done in this field is the modification of para position in the structure of cinnamic acid and addition of alkyl groups in the carboxylic group which would increase the activity of the α-glucosidase enzyme therefore the level of inhibition is 100 times higher than that of cinnamic acid compound itself. The novelty of this review article is to focus on the antidiabetic activity of cinnamic acid derivatives.

  17. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression.

    Science.gov (United States)

    Calabriso, Nadia; Scoditti, Egeria; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-03-01

    The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. Human endothelial cells were incubated with increasing concentrations (1-50 μg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 μmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. Both PWPE and NWPE, already at 1 μg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.

  18. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    Science.gov (United States)

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  19. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    Science.gov (United States)

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  20. Comparative analysis of amino acids and amino-acid derivatives in protein crystallization

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    New types of aggregation suppressors, such as amino acids and their derivatives, were focused on as fourth-component additives. Data were obtained that indicated that the additives promote protein crystallization. Optimal conditions for protein crystallization are difficult to determine because proteins tend to aggregate in saturated solutions. This study comprehensively evaluates amino acids and amino-acid derivatives as additives for crystallization. This fourth component of the solution increases the probability of crystallization of hen egg-white lysozyme in various precipitants owing to a decrease in aggregation. These results suggest that the addition of certain types of amino acids and amino-acid derivatives, such as Arg, Lys and esterified and amidated amino acids, is a simple method of improving the success rate of protein crystallization

  1. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Bisht Surendra S

    2006-12-01

    Full Text Available Abstract Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  2. Modulating p-hydroxycinnamate behavior as a ditopic linker or photoacid in copper(ii) complexes with an auxiliary pyridine ligand.

    Science.gov (United States)

    Soldevila-Sanmartín, Joan; Calvet, Teresa; Font-Bardia, Merce; Domingo, Concepción; Ayllón, José A; Pons, Josefina

    2018-05-08

    The reaction of copper(ii) acetate monohydrate with p-hydroxycinnamic acid (HpOHcinn) and different pyridine derivatives (4-tert-butylpyridine, 4-tBupy; 4-acetylpyridine, 4-Acpy; 3-phenylpyridine, 3-Phpy; 4-phenylpyridine, 4-Phpy) was essayed in methanol solvent at room temperature. The crystal structures of the resulting compounds were elucidated. Their analysis shows that the choice of pyridine ligands determines different coordination modes of the pOHcinn ligand and the Cu(ii) coordination, nuclearity and geometry. The pOHcinn acts as a monodentate carboxylate ligand in combination with 4-tBupy or 4-Phpy, yielding monomers and dimers, associated by hydrogen bonds into supramolecular networks in which the phenol group plays a key role. Conversely, in combination with 4-Acpy or 3-Phpy, the phenol group coordinates directly to the Cu(ii), acting as a ditopic ligand and yielding 2D coordination polymers. The compound containing 3-Phpy shows interesting MeOH-H2O reversible exchange behavior. Not only has the pyridine auxiliary ligand had a tremendous effect on the coordination mode of pOHcinn, but also its reactivity is influenced. Particularly, in the case of the compound containing 4-Phpy, it undergoes a photoinduced process, in which the phenol group deprotonates and coordinates to Cu(ii) as a phenoxy ligand. This yields a coordination polymer in which two different dimers alternate, bridged by the resulting pOcinn ligand. The magneto-structural correlation of this compound is also discussed.

  3. Complexes of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Tel' zhenskaya, P N; Shvarts, E M [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1977-01-01

    A generalization and systematization have been made of literature data on complexing of various elements, including beryllium, cadmium, boron, indium, rare-earth elements, actinides, and transition elements with salicylic acid and it derivatives (amino-, nitro- and halosalicylic acids). The effect of the position and nature of the substitute, in the case of salicylic acid derivatives, on the complexing process is discussed. Certain physicochemical properties of the complexes under consideration are described along with data indicative of their stability.

  4. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  5. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  6. Synthesis of ellagic acid and its 4,4'-di-Ο-alky derivatives from gallic acid

    OpenAIRE

    Alam, Ashraful; 高口, 豊; 坪井, 貞夫

    2005-01-01

    Synthesis of ellagic acid and its 4,4'-di-Ο-alkyl derivatives from gallic acid is described. Ellagic acid is prepared by oxidative coupling of gallic acid with ο-chloranil. Functionalized methyl bormogallate underwent Ullmann coupling to give the biphenyl that upon lactonization resulted in the ellagic acid and its alkoxy derivatives.

  7. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    Science.gov (United States)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  8. Synthesis and complex forming property of phosphor acid derivatives

    International Nuclear Information System (INIS)

    Babaev, B.N.

    2004-01-01

    Full text:With the aim to get new effective and selective extra gents of noble and non-ferrous metals from acid solution and industrial sewage, research of the dependence of 'structure effectiveness' the various phosphor acid derivatives with logical changeable structure (thio phosphor acids, derivatives of dialkoxythiophosphor, O-alkyl-methylphosphon, alkylphenylphosphon, diphenylphosphine acids also 4 methyl-1,3,2 dioxaphosphorinane) which contain different functional groups, the remains of heterocyclic amines and alkaloids, new derivatives of some analytical reagents were synthesized. The structure of synthesized compounds is approved by the results of IR-, PMR-, mass-spectrum analyze. Researching mass-spectrum decay of synthesized phosphor acid derivatives we defined that differing from O-dihexyl-S-propargyl-benzylthio phosphat, mass spectrum decay of O-dialkyl-S-(piperdynobutin-2-il)thio phosphat is characterized by the appearing [M-H] + ions and during the decay ions with high intensiveness are formed. Fragmentation of M + O-alkyl-O-(aminoalkyl)phenylphosphonate proceeds in various directions and characterized with the great number of phosphor containing ions, the possession of the second phenyl radical in the molecule of diphenylphosphon acid derivatives changes the fragmentation of molecular ion of diphenylphosphon acid derivatives. The process of extraction of noble (Au, Ag, Pt, Pd, Os) metals from hydrochloric-sulphur-nitrogen acid medium was analyzed by radioactive indicator's method. It was noticed that structure, strength, conformation of compounds, the temperature, of acid medium (0,1-10 M) and the nature of acids (HCL, H 2 SO 4 , HNO 3 ) could have strong influence to the effectiveness of metal extraction. During the research of metals extraction from pure solutions we can see the followings: 1) There are such substances, which can be used as effective group reagent towards the Au, Ag and Pd. 2) Derivatives with acetylene extract ions of gold from

  9. Folic acid derivatives for use in radioimmunoassay

    International Nuclear Information System (INIS)

    Ali, A.

    1981-01-01

    The chemical preparation of two folic acid derivatives, labelled with 125 I or 131 I, is described for use in radioimmunoassay of folic acid and its metabolites in biological fluids such as blood serum. Labelled compounds of the present invention more closely resemble folic acid in that they have glutamic acid in the terminal position. Examples of the use of these compounds in three different assays are given. (U.K.)

  10. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Fan, Yanzhen; Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey)

    2008-05-15

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains. (author)

  11. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  12. Radiolabeled derivatives of folic acid

    International Nuclear Information System (INIS)

    1980-01-01

    Derivatives of folic acid are described, in which the α-carboxyl group is substituted with an amino compound having an aromatic or heterocyclic ring substituent which is capable of being radiolabelled. Particularly mentioned as a radiolabel is 125 I. (author)

  13. Determination of free diferulic, disinapic and dicoumaric acids in plants and foods

    Czech Academy of Sciences Publication Activity Database

    Grúz, Jiří; Pospíšil, Jiří; Kozubíková, Hana; Pospíšil, Tomáš; Doležal, Karel; Bunzel, M.; Strnad, Miroslav

    2015-01-01

    Roč. 171, MAR 15 (2015), s. 280-286 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Hydroxycinnamic and dicinnamic acids * Phenylpropanoids * Oxidative coupling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.052, year: 2015

  14. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    Science.gov (United States)

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  15. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    Science.gov (United States)

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  17. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession.

    Science.gov (United States)

    Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David

    2017-12-01

    Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic

  18. Phytochemical analysis and botanical origin of Apis mellifera bee pollen from the municipality of Canavieiras, Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Giuseppina Negri

    2018-05-01

    Full Text Available Abstract An Apis mellifera bee pollen sample from Bahia state in Brazil was studied to evaluate its botanical origin and phytochemical composition. The bee pollen sample was collected in the municipality of Canavieiras, in an area with a very high predominance of Cocos nucifera L (Aracaceae, which was identified as the major taxon (99%, thus being the possible botanical origin of this pollen. The main constituents found in the non-polar extract analysed by GC-EI-MS were saturated fatty acids and long chain esters, together with phytosterols such as ergosta-5,24(28-dien-3-ol, campesterol and sitosterol, detected in smaller quantities. Flavonoid glycosides, as well as hydroxycinnamic acid amide derivatives were detected in the polar extract analysed by HPLC-ESI-MS/MS. The presence of flavonoid glycosides, hydroxycinnamic acid amide derivatives, fatty acids and phytosterols have been reported in many bee pollen taxa. To the best of the authors’ knowledge, this is the first study of the chemical composition of bee pollen from C. nucifera , which is cultivated for its coconut fruit.

  19. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.

    Science.gov (United States)

    Mathew, Sindhu; Abraham, T Emilia

    2004-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

  20. Hydrogen/deuterium exchange of cross-linkable alpha-amino acid derivatives in deuterated triflic acid

    OpenAIRE

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

    2014-01-01

    In this paper we report here a hydrogen/deuterium exchange (H/D exchange) of cross-linkable alpha-amino acid derivatives with deuterated trifluoromethanesulfonic acid (TfOD). H/D exchange with TfOD was easily applied to o-catechol containing phenylalanine (DOPA) within an hour. A partial H/D exchange was observed for trifluoromethyldiazirinyl (TFMD) phenylalanine derivatives. N-Acetyl-protected natural aromatic alpha-amino acids (Tyr and Trp) were more effective in H/D exchange than unprotect...

  1. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  2. Tritium derivatives of the glycyrrhetinic acid and procedure for its preparation

    International Nuclear Information System (INIS)

    Turner, J.C.

    1977-01-01

    The invention concerns tritium derivatives of glycyrrhetinic acid which is largely used to treat ulcers and inflammations, and it deals with a method for their production. The 3α- 3 H-glycyrrhetinic acid, 3 α- 3 H-carbene oxolone, Na-salt and basic Al salt of this carbene oxolone, as well as the acetyl derivates, piperazine amide derivatives and further derivatives of the glycyrrhetinic acid (e.g. cinnamyl ester) are claimed in nine examples. (HK) [de

  3. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  4. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  5. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    Science.gov (United States)

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  6. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  7. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    Science.gov (United States)

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  8. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  9. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...... acids. Upon acidic release, the aldehyde instantaneously formed the cyclic N-carbamyliminium ion, which rearranged to the corresponding imidazolone. Under strongly acidic conditions the imidazolones acted as nuclophiles in the Pictet-Spengler reaction....

  10. Synthesis and stability of strongly acidic benzamide derivatives

    DEFF Research Database (Denmark)

    Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael

    2018-01-01

    Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported....

  11. Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara viticola.

    Science.gov (United States)

    Latouche, Gwendal; Bellow, Sébastien; Poutaraud, Anne; Meyer, Sylvie; Cerovic, Zoran G

    2013-01-01

    Flavonols and hydroxycinnamic acids are known to contribute to plant resistance against pathogens, but there are few reports on the implication of flavonols in the resistance of grapevine against Plasmopara viticola, and none on the involvement of hydroxycinnamic acids. In order to analyze the effect of flavonols on P. viticola infection, variable amounts of flavonols were induced by different light conditions in otherwise phenologically identical leaves. Differences in content of leaf hydroxycinnamic acids were induced at the same time. A non-invasive monitoring of flavonols and hydroxycinnamic acids was performed with Dualex leaf-clip optical sensors. Whatever the light condition, there were no significant changes in flavonol or in hydroxycinnamic acid contents for control and inoculated leaves during the development of P. viticola until 6 days after inoculation. The violet-blue autofluorescence of stilbenes, the main phytoalexins of grapevine that accumulate in inoculated leaves, was used as an indicator of infection by P. viticola. The implication of leaf constitutive flavonols and hydroxycinnamic acids in the defence of Vitis vinifera against P. viticola could be investigated in vivo thanks to this indicator. The increase in stilbene violet-blue autofluorescence started earlier for leaves with low flavonol content than for leaves with higher content, suggesting that constitutive flavonols are able to slow down the infection by P. viticola. On the contrary, constitutive hydroxycinnamic acids did not seem to play a role in defence against P. viticola. The non-destructive nature of the methods used alleviates the major problem of destructive experiments: the large variability in leaf phenolic contents.

  12. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  13. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  14. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  15. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L. and Their Antioxidative Activity

    Directory of Open Access Journals (Sweden)

    Jeong-Yong Cho

    2016-08-01

    Full Text Available Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester, and 3,5-di-dihydrocaffeoylquinic acid methyl ester. Their chemical structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy (LC-ESI-MS. In addition, the presence of dicaffeoylquinic acid derivatives in this plant was reconfirmed by LC-ESI-MS/MS analysis. The isolated compounds strongly scavenged 1,1-diphenyl-2-picrylhydrazyl radicals and inhibited cholesteryl ester hydroperoxide formation during rat blood plasma oxidation induced by copper ions. These results indicate that the caffeoylquinic acid derivatives may partially contribute to the antioxidative effect of S. herbacea.

  16. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, γ-oryzanol and phenolic acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2016-03-01

    The impacts of traditional and alternative parboiling processes on the concentrations of fatty acids, tocopherol, tocotrienol, γ-oryzanol and phenolic acids in glutinous rice were investigated. Differences between the two methods were the soaking temperatures and the steaming methods. Results showed that parboiling processes significantly increased the concentrations of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), γ-oryzanol, γ-tocotrienol and total phenolic acids (TPA) in glutinous rice, while α-tocopherol, γ-tocopherol and polyunsaturated fatty acids (PUFA) decreased (p-oryzanol by three or fourfold compared with the level of γ-oryzanol in raw rice. Parboiling caused both adverse and favorable effects on phenolic acids content (p-oryzanol, hydrobenzoic acid, hydroxycinnamic acid and TPA compared to the traditional method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  18. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  19. Selenium- or tellurium- containing bile acids and derivatives thereof

    International Nuclear Information System (INIS)

    Monks, R.; Riley, A.L.M.

    1981-01-01

    This invention relates to the preparation of selenium and tellurium derivatives, particularly γ-emitting radioactive derivatives of bile acids and bile salts. Such compounds are valuable in the examination of body function, especially small bowel function. (author)

  20. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

    International Nuclear Information System (INIS)

    Kampa, Marilena; Boskou, Dimitrios; Gravanis, Achille; Castanas, Elias; Alexaki, Vassilia-Ismini; Notas, George; Nifli, Artemissia-Phoebe; Nistikaki, Anastassia; Hatzoglou, Anastassia; Bakogeorgou, Efstathia; Kouimtzoglou, Elena; Blekas, George

    2004-01-01

    The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid. This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production). The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system. Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action

  1. (Tul.) LP Queiroz

    African Journals Online (AJOL)

    Aghomotsegin

    glucopyranosyloxy-7-Z- hydroxycinnamic acid and 4-Ob-glucopiranosiloxi Z-8- hydroxycinnamic acid were also isolated from the leaves. The chloroform extract gave the stem 4, 4'-dihydroxy-2'- methoxy-chalcone, (-) - Methyl gallate and syringaresinol.

  2. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    Science.gov (United States)

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  3. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools.

    Science.gov (United States)

    Ekinci, Deniz; Sentürk, Murat; Küfrevioğlu, Ömer İrfan

    2011-12-01

    In the field of medicinal chemistry, there is a growing interest in the use of small molecules. Although acetyl salicylic acid is well known for medical applications, little is known about other salicylic acid derivatives, and there is serious lack of data and information on the effects and biological evaluation that connect them. This review covers the synthesis and drug potencies of salicylic acid derivatives. After a brief overview of the information on salicylic acid and its features, a detailed review of salicylic acids as drugs and prodrugs, usage as cyclooxygenase inhibitors, properties in plants, synthesis and recent patents, is developed. Salicylic acid research is still an important area and innovations continue to arise, which offer hope for new therapeutics in related fields. It is anticipated that this review will guide the direction of long-term drug/nutraceutical safety trials and stimulate ideas for future research.

  4. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  5. A Standard Structure for Bile Acids and Derivatives

    Directory of Open Access Journals (Sweden)

    Francisco Meijide

    2018-02-01

    Full Text Available The crystal structures of two ester compounds (a monomer in its methyl ester form, with an amino isophthalic group, and a dimer in which the two steroid units are linked by a urea bridge recrystallized from ethyl acetate/methanol derived from cholic acid are described. Average bond lengths and bond angles from the crystal structures of 26 monomers and four dimers (some of them in several solvents of bile acids and esters (and derivatives are used for proposing a standard steroid nucleus. The hydrogen bond network and conformation of the lateral chain are also discussed. This standard structure was used to compare with the structures of both progesterone and cholesterol.

  6. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1 contributes to resistance against Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Raghavendra Gunnaiah

    Full Text Available BACKGROUND: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai. FINDINGS: The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy. CONCLUSION: The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.

  7. The substituent and solvent effects on the antioxidant activity of the ferulic acid derivations

    International Nuclear Information System (INIS)

    Najafi, M.; Bukhari, S.A.

    2014-01-01

    The antioxidant activity of ortho and meta substituted ferulic acid derivatives have been investigated in the gas phase and water. The reaction enthalpies of antioxidant activity of studied derivatives have been calculated and compared with corresponding values of ferulic acid. Results show that EWG substituents increase the BDE, IP, while EDG ones cause a rise in the PA. The ferulic acid derivatives with lowest BDE, IP and PA values were identified as the compounds with high antioxidant activity. Results show that the substituents at ortho position have high potential for synthesis of novel ferulic acid derivatives. Results show that ferulic acid derivatives can process their protective role via HAT and SPLET mechanism in gas phase and solvent, respectively. The calculated reaction enthalpies of the substituted ferulic acids have linear dependences with Hammett constants and EHOMO that can be utilized in the selection of suitable substituents for the synthesis of novel antioxidants based on ferulic acid. (author)

  8. Isotope derivative assay of human serum bile acids

    International Nuclear Information System (INIS)

    Pageaux, J.F.; Duperray, B.; Dubois, M.; Pacheco, H.

    1981-01-01

    A new method for the selective determination of the main serum bile acids has been developed. Serum samples with added 14 C-labeled bile acid were submitted to deproteinization, alkaline hydrolysis, methylation, and were then chromatographed on alumina before acetylation with 2 microliters of [ 3 H]acetic anhydride. Excess reagent was eliminated by evaporation; elimination of residual tritiated contaminants and separation of the doubly labeled bile acid derivatives were obtained by thin-layer chromatography, column chromatography on Lipidex 5000, and crystallization. The sensitivity of the method is about 10 pmol of each bile acid. Analyses of seven sera with normal or elevated concentration of bile acids by the proposed method and gas-liquid chromatography showed a close correlation

  9. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  10. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Science.gov (United States)

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  11. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Alkylation of Zwitterionic Thiooxalic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Manfred Michalik

    2001-05-01

    Full Text Available The new S-alkyl thiooxal-1-hydrazono-2-amidrazonium halides 2-4 were synthesized by reaction of the corresponding zwitterionic thiooxalic acid derivatives 1 with alkyl halides in methanol. The structures of compounds 4b and 4d were proven by X-ray structural analysis. Both compounds form an interesting intermolecular network of hydrogen bonds in the solid state.

  13. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: identification of chlorogenic acid as one of the major fluorophores and age-mediated changes.

    Science.gov (United States)

    Morales, Fermín; Cartelat, Aurélie; Alvarez-Fernández, Ana; Moya, Ismael; Cerovic, Zoran G

    2005-12-14

    Synchrotron radiation and the time-correlated single-photon counting technique were used to investigate the spectral and time-resolved characteristics of blue-green fluorescence (BGF) of artichoke leaves. Leaves emitted BGF under ultraviolet (UV) excitation; the abaxial side was much more fluorescent than the adaxial side, and in both cases, the youngest leaves were much more fluorescent than the oldest ones. The BGF of artichoke leaves was dominated by the presence of hydroxycinnamic acids. A decrease in the percentage of BGF attributable to the very short kinetic component (from 42 to 20%), in the shape of the BGF excitation spectra, and chlorogenic acid concentrations indicate that there is a loss of hydroxycinnamic acid with leaf age. Studies on excitation, emission, and synchronized fluorescence spectra of leaves and trichomes and chlorogenic acid contents indicate that chlorogenic acid is one of the main blue-green fluorophores in artichoke leaves. Results of the present study indicate that 20-42% (i.e., the very short kinetic component) of the overall BGF is emitted by chlorogenic acid. Time-resolved BGF measurements could be a means to extract information on chlorogenic acid fluorescence from the overall leaf BGF.

  14. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Science.gov (United States)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  15. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  16. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and 'northblue' blueberry (Vaccinium corymbosum x V. angustifolium).

    Science.gov (United States)

    Riihinen, Kaisu; Jaakola, Laura; Kärenlampi, Sirpa; Hohtola, Anja

    2008-09-01

    Blueberries and bilberries are recognized as some of the best sources of flavonoids, especially anthocyanins. The contents of flavonoids (anthocyanins, proanthocyanidins, flavonols) and hydroxycinnamic acids in the flower, fruit skin and pulp, leaf and rhizome of bilberry and the blueberry cultivar 'Northblue' were analyzed using high-performance liquid chromatography combined with diode-array detection. The most striking difference in the fruits was the predominance of hydroxycinnamic acids in blueberry, whereas in bilberry the anthocyanin content was much higher, particularly in the pulp. Differences in flavonoid contents of fruits were already apparent at the flower stage. Bilberry and blueberry leaves both contained high amounts of proanthocyanidins, flavonols and hydroxycinnamic acids. Blueberry rhizomes accumulated high amounts of hydroxycinnamic acids. All plant parts of bilberry and blueberry are potential sources of phenolic compounds for use either as dietary botanicals or by the pharmaceutical industry. Copyright © 2008 Elsevier Ltd. All rights reserved.

  17. Proportion of root-derived acid phosphomonoesterase in total soil acid phosphomonoesterase in different forests

    Directory of Open Access Journals (Sweden)

    Ladislav Holík

    2011-01-01

    Full Text Available Enzyme acid phosphomonoesterase (APM plays an important role in phosphorus mineralization in different type of terrestrial ecosystems. This enzyme is of great agronomic significance because it hydrolyses organic phosphorus to different forms of inorganic phosphorus which are assimilable by plants. APM may also indicate changes in the quantity and quality of phosphorylated substrates in soil and is a good indicator of its biological state as well as presence of pollutants. APM may be produced by plant roots and soil microorganisms and both of these sources may play different role in phosphorus mineralization in different ecosystems. The aim of this work was determine acid phosphomonoesterase (APM activity location in soil of different forest ecosystems. The APM activity location determination was performed on the basis of root-derived and soil-derived APM and expression of proportion of those root-derived in total soil APM up to 13 cm depth. The results of this preliminary study showed that root-derived APM formed 21–34 % of total soil APM in pine and oak forest.

  18. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  19. Photooxidative cleavage of 4(1H)-quinolinones to 2-acylaminobenzoic acids and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Staskun, B. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Chemistry); Foote, C.S. (California Univ., Los Angeles (USA). Dept. of Chemistry)

    1984-12-01

    4(1H)-Quinolinones undergo oxidative cleavage to afford the corresponding 2-acylaminobenzoic acids when subjected to dye-sensitized photooxygenation in methanol-aqueous sodium hydroxide solution. The derived 2-aminobenzoic acid was the predominant product in certain instances. The reaction, with singlet oxygen suggested as the active species, provides an alternative methodology for access to nuclear- substituted anthranilic acids and derivatives.

  20. [Phenolic compounds in leaves insertions of Mentha × villosa Huds. cv. Snežná].

    Science.gov (United States)

    Tekeľová, Daniela; Bittner Fialová, Silvia; Tóth, Jaroslav; Czigle, Szilvia

    Lamiaceae plants mostly accumulate active ingredients in their leaves. The subfamily Nepetoideae, including the genus Mentha L., is characterized by the presence of essential oil and antioxidant phenolics, chiefly hydroxycinnamic acids with predominance of rosmarinic acid, and flavonoids. Mentha × piperita and M. spicata are the most broadly used mints in both medicine and industry, while M. x villosa is less known in our country. Herbal drugs in the form of leaves are usually analysed unpartitioned, while single leaves insertions have only been studied occasionally. Therefore, the aim of this work was the quantification of the active compounds content in the leaves pairs of Mentha × villosa Huds. cv. Snežná, using pharmacopoeial methods: total hydroxycinnamic derivatives expressed as rosmarinic acid (THD) and luteolin-type flavonoids. THD content ranged from 6.7% to 9.4% in the leaves pairs water extracts, and from 6.6% to 14.0% in methanol extracts. Flavonoids contents, expressed as luteolin-7-O-glucoside, ranged from 4.0% to 8.8% in water extracts, and from 4.0% to 10.5% in methanol extracts. Antioxidant activity (DPPH) expressed as SC50 ranged from 10.2 to 16.9 μg.ml-1 (drug dry weight) in water extracts, and from 10.7 to 21.6 μg.ml-1 in methanol extracts. The highest content of phenolic compounds as well as the highest antioxidant activity were found to be in the top sheet, while the lowest content of phenolic compounds and lowest antioxidant activity were detected in the leaves of the middle stem part.Key words: Mentha × villosa Huds cv. Snežná hydroxycinnamic derivatives rosmarinic acid luteolin-7-O-glucoside DPPH.

  1. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  2. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector.

    Science.gov (United States)

    Ifeanacho, Mercy O; Ikewuchi, Catherine C; Ikewuchi, Jude C

    2017-05-01

    The profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii was investigated using gas chromatography coupled with flame ionization detector. The leaves and stems had high flavonoids and benzoic acid derivatives content, and moderate levels of lignans and hydroxycinnamates. Twenty-eight known flavonoids were detected, which consisted mainly of kaempferol (41.93% in leaves and 47.97% in stems), (+)-catechin (17.12% in leaves and 16.11% in stems), quercetin (13.83% in leaves and 9.39% in stems), luteolin (7.34% in leaves and 7.71% in stems), and artemetin (6.53% in leaves and 4.83% in stems). Of the six known hydroxycinnamates detected, chlorogenic acid (80.79% in leaves and 87.56% in stems) and caffeic acid (18.98% in leaves and 12.30% in stems) were the most abundant, while arctigenin (77.81% in leaves and 83.40% in stems) and retusin (13.82% in leaves and 10.59% in stems) were the most abundant of the nine known lignans detected. Twelve known benzoic acid derivatives were detected, consisting mainly of ellagic acid (65.44% in leaves and 72.89% in stems), p-hydroxybenzoic acid (25.10% in leaves and 18.95% in stems), and vanillic acid (8.80% in leaves and 7.30% in stems). The rich phytochemical profile of the leaves and stems is an indication of their ability to serve as sources of nutraceuticals.

  3. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    Directory of Open Access Journals (Sweden)

    Luis Chícharo

    2008-08-01

    Full Text Available Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1 at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2 at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3 at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems.

  4. Acyl Meldrum's acid derivatives: application in organic synthesis

    International Nuclear Information System (INIS)

    Janikowska, K; Rachoń, J; Makowiec, S

    2014-01-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references

  5. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  6. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    Science.gov (United States)

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Copper(I) mediated cross-coupling of amino acid derived organozinc reagents with acid chlorides

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Tanner, David Ackland

    2006-01-01

    This paper describes the development of a straightforward experimental protocol for copper-mediated cross-coupling of amino acid derived beta-amido-alkylzinc iodides 1 and 3 with a range of acid chlorides. The present method uses CuCN center dot 2LiCl as the copper source and for organozinc reagent...... 1 the methodology appears to be limited to reaction with more stable acid chlorides, providing the desired products in moderate yields. When applied to organozinc reagent 3, however, the protocol is more general and provides the products in good yields in all but one of the cases tested....

  8. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emeĺyanenko, Vladimir N.; Stepurko, Elena N.; Zherikova, Kseniya V.

    2015-01-01

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  9. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Zaitsau, Dzmitry H. [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Emeĺyanenko, Vladimir N. [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Stepurko, Elena N. [Chemistry Faculty and Research Institute for Physical Chemical Problems, Belarusian State University, 220030 Minsk (Belarus); Zherikova, Kseniya V. [Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-12-20

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  10. Mass spectrometric studies of stable isotope-labelled carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Andersson, B.Aa.; Dinger, F.; Dinh-Nguyen, N.

    1975-01-01

    Low resolution mass spectra of deuterium and carbon-13 labelled fatty acid pyrrolidides are discussed. The simple fragmentation pattern of pyrrolidides makes them superior to other derivatives, regarding location of isotopes. Deuteriation of ethylenic fatty acid pyrrolidides therefore seems to be an improved method to locate carbon-carbon double bonds by mass spectrometry. (author)

  11. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  12. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids.

    Science.gov (United States)

    Rodrigues, Marieli O; Cantos, Jéssica B; D'Oca, Caroline R Montes; Soares, Karina L; Coelho, Tatiane S; Piovesan, Luciana A; Russowsky, Dennis; da Silva, Pedro A; D'Oca, Marcelo G Montes

    2013-11-15

    This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo

    DEFF Research Database (Denmark)

    Harder, H.; Tetens, I.; Let, Mette Bruni

    2004-01-01

    Background Rye bread contributes an important part of the whole grain intake in the Scandinavian diet. Ferulic acid is the major phenolic compound in rye bran and is an antioxidant in vitro and may, therefore, contribute to cardioprotective effects of whole grain consumption. Aim of study Firstly...... had no influence on lag time or propagation rate of the LDL oxidation ex vivo. Conclusions The present study demonstrated that ferulic acid from rye bran is bioavailable and that the urinary concentration of ferulic acid reflects the dietary intake of this hydroxycinnamic acid. Within the period...

  15. A new coruleoellagic acid derivative from stems of Rhodamnia dumetorum.

    Science.gov (United States)

    Lakornwong, Waranya; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej

    2018-07-01

    A new coruleoellagic acid derivative, 3,3',4,4',5'-pentamethylcoruleoellagic acid (1) together with nine known compounds, hexamethylcoruleoellagic acid (2), 3,4,3'-tri-O-methylellagic acid (3), heptaphylline (4), 7-methoxymukonal (5), dentatin (6), sinapaldehyde (7), gallic acid (8), 2,6-dimethoxy-4H-pyran-4-one (9) and β-sitosterol (10) were isolated from the stems of Rhodamnia dumetorum. Their structures were identified by physical and spectroscopic data (IR, 1D and 2D NMR, and MS). Compounds 1, 2 and 7-10 were tested for antibacterial activity against six pathogenic bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Methicillin resistant S. aureus (MRSA)).

  16. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase.

    Science.gov (United States)

    Bhattacharjee, Payel; Bera, Indrani; Chakraborty, Subhamoy; Ghoshal, Nanda; Bhattacharyya, Debasish

    2017-11-01

    Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Dolgorev, A V; Serikov, Yu A; Zolotavin, V L

    1977-03-01

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V/sup 3 +/ forms yellow complexes of the composition 1:1 with instability constants 2.2x10/sup -19/, 7.8x10/sup -11/, and 2.2x10/sup -12/, respectively. Complexes of V/sup 3 +/ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4).

  18. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    OpenAIRE

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinc...

  19. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives.

    Science.gov (United States)

    Chua, Lee Suan; Lau, Cher Haan; Chew, Chee Yung; Ismail, Nurul Izzati Mohd; Soontorngun, Nitnipa

    2018-01-15

    Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market. The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison. The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks. The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique. O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be

  20. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Taiwo Betty Ayeleso

    2017-11-01

    Full Text Available The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.

  1. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  2. On the Toxicity of the Aromatic Diamines and their Tetramethylcarboxylic Acid Derivatives

    OpenAIRE

    Gili, Pedro; Mederos, Alfredo

    2000-01-01

    The use of the theoretical PALLAS 3.0 program, to study the toxic behaviour of tetramethylcarboxylic acids, potential pharmaceuticals derived from o-phenylenediamines, indicates that o-phenylenediamines are highly toxic (level 1), while the tetramethycarboxylic acid derivatives (o-PhDTA and 3,4-TDTA) are slightly toxic, similar to EDTA (level 3). Therefore these ligands o-PhDTA and 3,4-TDTA, similar to EDTA, can be used as sequestering agents of toxic metals and overload of essential metals i...

  3. Inhibitory mechanism against oxidative stress of caffeic acid

    Directory of Open Access Journals (Sweden)

    Farhan Ahmed Khan

    2016-10-01

    Full Text Available The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid, so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables, oils, and tea. CA is among the most potential and abundantly found in nature, hydroxycinnamic acids with the potential of antioxidant behavior. Reactive oxygen species produced as a result of endogenous processes can lead to pathophysiological disturbances in the human body. Foods containing phenolic substances are a potential source for free radical scavenging; these chemicals are known as antioxidants. This review is focused on CA's structure, availability, and potential as an antioxidant along with its mode of action. A brief overview of the literature published about the prooxidant potential of caffeic acid as well as the future perspectives of caffeic acid research is described. CA can be effectively employed as a natural antioxidant in various food products such as oils.

  4. Banana-shaped molecules derived from substituted isophthalic acids

    Indian Academy of Sciences (India)

    In this paper we present a review of five-rings banana-shaped molecules derived from isophthalic acids. This study deals with about a hundred compounds and most of them have not been published. By a combination of several linking groups and different selected substituents either on the outer rings or on the central core ...

  5. Ion-pair high performance liquid chromatographic retention behavior of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.W.; Chung, Y.S. [Chungbuk National University, Cheongju (Korea); Oh, S.K. [Handok Pharmaceuticals Co. Ltd., Chungbuk (Korea)

    1999-06-01

    The ion-pair high performance liquid chromatographic elution behavior of salicylic acid and its derivatives was studied with measuring capacity factor, k', changing the concentration of ion-pairing reagent (tetrabutylammonium chloride, TBACl) in mobile phase. As a result, it was found that k' of the samples increase at pH 7.2 as the TBACl concentration increase. The derivatives of salicylic acid were separated each other at an optimum mobile phase condition which was found from the observation of the retention behavior. The optimum mobile phase condition was methanol solution(MeOH:H{sub 2}O 30:70) containing 20 mM TBACl for the determination of salicylic acid and methanol solution (MeOH:H{sub 2}O 20:80) containing 40 mM TBACl for p-aminosalicylic acid at pH 7.2. The method has been applied for the analysis of the contents of salicylic acid derivatives in an aspirin tablet and a tuberculosis curing agent. 8 refs., 4 figs., 2 tabs.

  6. Activity of caffeic acid in different fish lipid matrices: A review

    DEFF Research Database (Denmark)

    Medina, Isabel; Undeland, Ingrid; Larsson, Karin

    2012-01-01

    that the antioxidant activity depends on the physical state of the lipids and the composition of the intrinsic matrix in which they are situated. Caffeic acid significantly prevented rancidity in both unwashed and washed fish mince, the latter which was fortified with haemoglobin. In the unwashed mince, the activity......Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a natural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this review is to discuss the mechanisms involved in the antioxidative and prooxidative...... effects of caffeic acid found in different model systems containing fish lipids. These model systems include bulk fish oils, liposomes from cod roe phospholipids, fish oil emulsions, washed cod mince, regular horse mackerel mince and a fish oil fortified fitness bar. The data reported show...

  7. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  8. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  9. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  10. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  11. Evaluation of the Antiradical Properties of Phenolic Acids

    Science.gov (United States)

    Koroleva, Olga; Torkova, Anna; Nikolaev, Ilya; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail; Amarowicz, Ryszard

    2014-01-01

    Antioxidant capacity (AOC) against peroxyl radical and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical cation was measured for a series of p-hydroxybenzoic (HB) and p-hydroxycinnamic (HC) acids at different pH. Quantum-chemical computation was performed using Gaussian 3.0 software package to calculate the geometry and energy parameters of the same compounds. Significant correlations were revealed between AOC and a number of calculated parameters. The most significant AOC descriptors for the studied compounds against peroxyl radical were found to be HOMO energy, rigidity (η) and Mulliken charge on the carbon atom in m-position to the phenolic hydroxyl. The most significant descriptor of the antioxidant properties against the ABTS radical cation at pH 7.40 is electron transfer enthalpy from the phenolate ion. The mechanism of AOC realization has been proposed for HB and HC acids against both radicals. PMID:25229820

  12. AMINOMETHANESULPHONIC ACIDS AND ITS N-DERIVATIVES ARE COMPONENTS OF N. GOODS BUFFERS

    Directory of Open Access Journals (Sweden)

    R.E. Khoma

    2015-11-01

    Full Text Available On the basis of pH measuring the temperature dependence of the second ionization constant (pK2 are set for aminomethansulfonic acid (AMSA and its N-derivatives. It was found that the area of  effective buffering of AMSK and its N-benzyl derivative allows to maintain the pH of acid-compatible with life. The absolute values  of the coefficients in the equation pK2 = -Ai+ Bi/T for the aminosulfonic acids correlated with their molar masses. A simultaneous change in values  DpH /DT and Bicoefficient for the studied acids QSAR method are stayed. The values  of the distribution coefficients in the octanol – water (Pow and molar refraction are calculated. In the future the data obtained in this study will be used to predict the physical, chemical and toxicological properties of the compounds studied.

  13. Caffeic acid derivative from Clinopodium umbrosum

    Directory of Open Access Journals (Sweden)

    M. Esfahanizadeh

    2017-11-01

    Full Text Available Background and objectives: Plants of genus Clinopodium have been used in different cultures as traditional medicines.Due to theimportance of medicinal properties of the genus Clinopodium, C. umbrosum was selected for phytochemical analysis along with evaluation of its antioxidant property. Methods: The aerial parts of C. umbrosum were extracted with petroleum ether, chloroform, and methanol. Later, the methanol extract was fractionated via solid phase extraction and reversed phase high performance liquid chromatography. Consequently, structure of the isolated compound was analyzed through spectral analysis of 1D and 2D NMR data. Besides, the essential oil of C. umbrosum achieved through hydrodistillation was analyzed via gas chromatography-mass spectrometry (GC-MS. Additionally, the antioxidant property of C. umbrosum methanol extracttogether with its phenolics and flavonoids content were assessed. Results: Structure elucidation of the purified compound revealed presence of a caffeic acid derivative in C. umbrosum methanol extract. GC-MS analysis of the essential oil showed limonene, acetophenone, palmitic acid and phytol as the most frequent components of the essential oil. Moreover, the RC50 value for free radical scavenging activity of  the methanol extract was determined as 38.52 µg/mL and values for the total phenolics and flavonoids contact were calculated as 5.14 g gallic acid equivalent and 4.25 g quercetin equivalent per 100 g of dried plant material, respectively.  Conclusion: Overall, the present study was the first report on the phytochemical analysis of C. umbrosum whichrevealed presence of rosmarinic acid as the main component of the methanol extract with prominent antioxidant activity.

  14. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  15. Synthesis of azido derivatives of mucobromic acid | D. Jumbam ...

    African Journals Online (AJOL)

    Mucobromic acid is a highly reactive multicentered molecule. It was converted to its corresponding but unstable diazido derivative by reaction with two equivalents of sodium azide. The resultant 3,4-diazido-5-hydroxyfuran-2(5H)-one was obtained in moderate yield (42%) but decomposed readily even at low temperatures.

  16. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  17. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    Science.gov (United States)

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  18. Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells

    International Nuclear Information System (INIS)

    Shetty, Dinesh; Jeong, Jae Min; Ju, Chang Hwan; Lee, Yun-Sang; Jeong, Seo Young; Choi, Jae Yeon; Yang, Bo Yeun

    2010-01-01

    Objectives: We developed amino acid derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A) that can be labeled with 68 Ga, and we investigated their basic biological properties. Materials and methods: Alanine derivatives of DO2A and DO3A were synthesized by regiospecific nucleophilic attack of DO2tBu and DO3tBu on the β-position of Boc-L-serine-β-lactone, followed by acid hydrolysis. Also, homoalanine derivatives were synthesized by reacting with the protected bromo derivative of homoalanine, which was synthesized from N-Cbz-L-homoserine lactone. Further catalytic reduction and acid cleavage of protected groups resulted in the required products. All derivatives were labeled with 68 Ga. Cell uptake assays were carried out in Hep3B (human hepatoma) and U87MG (human glioma) cell lines at 37 o C. Positron emission tomography (PET) imaging studies were performed using balb/c mice xenografted with CT-26 (mouse colon cancer). Results: All compounds were labeled with >97% efficiency. According to in vitro studies, the labeled amino acid derivatives showed significantly greater uptakes than the control ( 68 Ga 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in cancer cells. Small animal PET images for labeled compounds showed high tumor uptake, as well as kidney and bladder uptakes, at 30 min postinjection. 68 Ga-DO3A-homoalanine showed the highest standardized uptake value ratio (3.9±0.3), followed by 68 Ga-DO2A-alanine (3.1±0.2), 68 Ga-DO3A-alanine (2.8±0.2) and 68 Ga-DO2A-homoalanine (2.3±0.2). Conclusion: These derivatives were found to have high labeling efficiencies, high stabilities, high tumor cell uptakes, high tumor/nontumor xenograft uptakes and low nonspecific uptake in normal organs, except for the kidneys. However, the uptake mechanism of these derivatives remains unclear, and uptake via specific amino acid transporters needs to be demonstrated.

  19. Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chong, Esther Swee Lan; McGhie, Tony K; Heyes, Julian A; Stowell, Kathryn M

    2013-12-01

    Potatoes contain a diverse range of phytochemicals which have been suggested to have health benefits. Metabolite profiling and quantification were conducted on plant extracts made from a white potato cultivar and 'Urenika', a purple potato cultivar traditionally consumed by New Zealand Maori. There is limited published information regarding the metabolite profile of Solanum tuberosum cultivar 'Urenika'. Using ultra-high- performance liquid chromatography-mass spectrometry (UHPLC-MS), a total of 31 compounds were identified and quantified in the potato extracts. The majority of the compounds were identified for the first time in 'Urenika'. These compounds include several types of anthocyanins, hydroxycinnamic acid (HCA) derivatives, and hydroxycinnamic amides (HCAA). Six classes of compounds, namely organic acids, amino acids, HCA, HCAA, flavonols and glycoalkaloids, were present in both extracts but quantities varied between the two extracts. The unknown plant metabolites in both potato extracts were assigned with molecular formulae and identified with high confidence. Quantification of the metabolites was achieved using a number of appropriate standards. High-resolution mass spectrometry data critical for accurate identification of unknown phytochemicals were achieved and could be added to potato or plant metabolomic database. © 2013 Society of Chemical Industry.

  20. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  1. Synthesis and pharmacology of N-alkylated derivatives of the excitotoxin ibotenic acid

    DEFF Research Database (Denmark)

    Madsen, U; Dumpis, M A; Bräuner-Osborne, Hans

    1998-01-01

    Three amino-alkylated derivatives of the naturally occurring excitatory amino acid (EAA) receptor agonist ibotenic acid (Ibo) have been synthesized and tested pharmacologically. N-Methyl-Ibo (1a) and N-ethyl-Ibo (1b) were shown to be agonists at NMDA receptors (EC50 = 140 and 320 micro......-c and the potent NMDA agonist 2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA) in order to elucidate the observed structure-activity data....

  2. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  3. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    Science.gov (United States)

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  4. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    Science.gov (United States)

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  5. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    Science.gov (United States)

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Assessment of antitumoral and antimicrobial effects of a maslinic acid derivative

    Directory of Open Access Journals (Sweden)

    Ioana Z. Pavel

    2016-12-01

    Full Text Available INTRODUCTION Maslinic acid, a naturally occurring triterpene, has been reported to possess several therapeutic effects including antioxidant, anti-inflammatory and antiparasitic properties. Structural changes of the compound led to the development of new derivatives in order to expand the spectrum of activities. OBJECTIVES AND BACKGROUND The present study was purposed to assess the in vitro antitumoral and antibacterial effects of a maslinic acid derivative, namely benzyl (2α, 3β 2,3-diacetoxy-olean-12- en-28-amide (EM2. MATERIALS AND METHODS Four compound concentrations (12.5, 25, 50 and 100 µM were evaluated for their cytotoxic effect on A375 human melanoma and B164A5 murine melanoma cell lines using the MTT assay. Furthermore, EM2 was tested on ten bacterial strains by means of agar disk diffusion method with the assessment of the inhibition zone diameters at 24h period of time. RESULTS EM2 elicited a dose-dependent cytotoxic effect on both melanoma cell lines. Regarding the antibacterial activity, EM2 determined a significant growth inhibition on Streptococcus pyogenes (20 ± 0.26 mm and Staphylococcus aureus (13 ± 0.19 mm. CONCLUSIONS The tested maslinic acid derivative is a promising antitumoral agent against skin cancer and antimicrobial agent against cocci bacteria. Graphical abstract: EM2 in vitro effects

  7. Synthesis of α,ω-polyfluorinated α-amino acid derivatives and δ,δ-difluoronorvaline.

    Science.gov (United States)

    Ulbrich, Dirk; Daniliuc, Constantin G; Haufe, Günter

    2016-03-07

    Intending to synthesize ω,ω-difluoroalkyl amino acid derivatives by oxidative desulfurization-fluorination reactions of suitable arylthio-2-phthalimido butanoates and pentanoates, in addition to small amounts of the target products, mainly α,ω-polyfluorinated amino acid derivatives were formed by additional sulfur-assisted α-fluorination. This novel structural motif was verified spectroscopically as well as by X-ray analysis. A plausible mechanism of formation is suggested. Using a different approach, δ,δ-difluoronorvaline hydrochloride was synthesized with at least 36% enantiomeric excess via deoxofluorination of the corresponding aldehyde.

  8. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Science.gov (United States)

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical Coupling of Biomass-Derived Acids: New C8 Platforms for Renewable Polymers and Fuels.

    Science.gov (United States)

    Wu, Linglin; Mascal, Mark; Farmer, Thomas J; Arnaud, Sacha Pérocheau; Wong Chang, Maria-Angelica

    2017-01-10

    Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C 6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    Science.gov (United States)

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  11. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica]. E-mail: gracito@ufpi.br; Oliveira, E.H. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Microbiologia e Parasitologia; Reis, F.A.M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Quimica

    2008-07-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by {sup 1}H and {sup 13}C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  12. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    International Nuclear Information System (INIS)

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L.; Oliveira, E.H.; Reis, F.A.M.

    2008-01-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by 1 H and 13 C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  13. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  14. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail: minsoosong00@gmail.com; Lee, Eun-Jung; Shin, Ueon Sang, E-mail: usshin12@dankook.ac.kr

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  15. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  16. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  17. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  18. Humic acid batteries derived from vermicomposts at different C/N ratios

    Science.gov (United States)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  19. Synthesis of novel {sup 68}Ga-labeled amino acid derivatives for positron emission tomography of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Dinesh [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Ju, Chang Hwan [Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul (Korea, Republic of); Lee, Yun-Sang [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Jeong, Seo Young [Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul (Korea, Republic of); Choi, Jae Yeon; Yang, Bo Yeun [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2010-11-15

    Objectives: We developed amino acid derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A) that can be labeled with {sup 68}Ga, and we investigated their basic biological properties. Materials and methods: Alanine derivatives of DO2A and DO3A were synthesized by regiospecific nucleophilic attack of DO2tBu and DO3tBu on the {beta}-position of Boc-L-serine-{beta}-lactone, followed by acid hydrolysis. Also, homoalanine derivatives were synthesized by reacting with the protected bromo derivative of homoalanine, which was synthesized from N-Cbz-L-homoserine lactone. Further catalytic reduction and acid cleavage of protected groups resulted in the required products. All derivatives were labeled with {sup 68}Ga. Cell uptake assays were carried out in Hep3B (human hepatoma) and U87MG (human glioma) cell lines at 37{sup o}C. Positron emission tomography (PET) imaging studies were performed using balb/c mice xenografted with CT-26 (mouse colon cancer). Results: All compounds were labeled with >97% efficiency. According to in vitro studies, the labeled amino acid derivatives showed significantly greater uptakes than the control ({sup 68}Ga 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in cancer cells. Small animal PET images for labeled compounds showed high tumor uptake, as well as kidney and bladder uptakes, at 30 min postinjection. {sup 68}Ga-DO3A-homoalanine showed the highest standardized uptake value ratio (3.9{+-}0.3), followed by {sup 68}Ga-DO2A-alanine (3.1{+-}0.2), {sup 68}Ga-DO3A-alanine (2.8{+-}0.2) and {sup 68}Ga-DO2A-homoalanine (2.3{+-}0.2). Conclusion: These derivatives were found to have high labeling efficiencies, high stabilities, high tumor cell uptakes, high tumor/nontumor xenograft uptakes and low nonspecific uptake in normal organs, except for the kidneys. However, the uptake mechanism of these derivatives remains unclear, and uptake via specific amino acid

  20. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    Science.gov (United States)

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (pacids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemical study of a green propolis sample of Passa Quatro, Minas Gerais, Brazil; Estudo quimico de uma amostra de propolis verde de Passa Quatro, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Leonardo Carvalho; Lemos, Telma Leda Gomes de; Arriaga, Angela Martha Campos, E-mail: angelamcarriaga@yahoo.com.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Santiago, Gilvandete Maria Pinheiro [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Braz Filho, Raimundo [Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The phytochemical investigation of a sample of propolis from Passa Quatro-Minas Gerais State, Brazil, where nine constituents were isolated: a mixture of {alpha}- and {beta}-amyrin, lupeol, a mixture of flavonols ramnocitrin and eupalitin, acacetin, 3-prenyl-4-hydroxycinnamic acid, 3,5-diprenyl-4-hydroxycinnamic acid the new compound, the (E)-3-[4-(3-phenylpropanoiloxy)]-3,5-diprenyl-cinnamic acid. The structures of the isolated compounds were characterized by 1D- and 2D-NMR experiments, MS and IR spectrometry, and comparison with data described in the literature. (author)

  2. Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce.

    Science.gov (United States)

    Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu

    2013-04-10

    An investigation using the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from a raw Japanese soy sauce and the heated soy sauce revealed 40 key aroma compounds including 7 newly identified compounds. Among them, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone and 3-hydroxy-4,5-dimethyl-2(5H)-furanone exhibited the highest flavor dilution (FD) factor of 2048, followed by 3-(methylthio)propanal, 4-ethyl-2-methoxyphenol, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone having FD factors from 128 to 512 in the raw soy sauce. Furthermore, comparative AEDAs, a quantitative analysis, and a sensory analysis demonstrated that whereas most of the key aroma compounds in the raw soy sauce were common in the heated soy sauce, some of the Strecker aldehydes and 4-vinylphenols contributed less to the raw soy sauce aroma. The model decarboxylation reactions of the phenolic acids during heating of the raw soy sauce revealed that although all reactions resulted in low yields, the hydroxycinnamic acid derivatives were much more reactive than the hydroxybenzoic acid derivatives due to the stable reaction intermediates. Besides the quantitative analyses of the soy sauces, the estimation of the reaction yields of the phenolic compounds in the heated soy sauce revealed that although only the 4-vinylphenols increased during heating of the raw soy sauce, they might not mainly be formed as decarboxylation products from the corresponding hydroxycinnamic acids but from the other proposed precursors, such as lignin, shakuchirin, and esters with arabinoxylan.

  3. Enzymatic Synthesis of Fatty Hydroxamic Acid Derivatives Based on Palm Kernel Oil

    Directory of Open Access Journals (Sweden)

    Sidik Silong

    2011-08-01

    Full Text Available Fatty hydroxamic acid derivatives were synthesized using Lipozyme TL IM catalyst at biphasic medium as the palm kernel oil was dissolved in hexane and hydroxylamine derivatives were dissolved in water: (1 N-methyl fatty hydroxamic acids (MFHAs; (2 N-isopropyl fatty hydroxamic acids (IPFHAs and (3 N-benzyl fatty hydroxamic acids (BFHAs were synthesized by reaction of palm kernel oil and N-methyl hydroxylamine (N-MHA, N-isopropyl hydroxylamine (N-IPHA and N-benzyl hydroxylamine (N-BHA, respectively. Finally, after separation the products were characterized by color testing, elemental analysis, FT-IR and 1H-NMR spectroscopy. For achieving the highest conversion percentage of product the optimum molar ratio of reactants was obtained by changing the ratio of reactants while other reaction parameters were kept constant. For synthesis of MFHAs the optimum mol ratio of N-MHA/palm kernel oil = 6/1 and the highest conversion was 77.8%, for synthesis of IPFHAs the optimum mol ratio of N-IPHA/palm kernel oil = 7/1 and the highest conversion was 65.4% and for synthesis of BFHAs the optimum mol ratio of N-BHA/palm kernel oil = 7/1 and the highest conversion was 61.7%.

  4. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    Science.gov (United States)

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  6. Natural derivatives of diphenolic acid as substitutes for bisphenol-A

    Science.gov (United States)

    Ertl, Johanna; Cerri, Elisa; Rizzuto, Matteo; Caretti, Daniele

    2014-05-01

    Diphenolic acid had been originally used in the first epoxy resins and was later on forgotten as it was substituted by the cheaper bisphenol A. But in the recent years major health concerns have been raised as bisphenol A has a pseudo-hormonal effect on the body, playing the role of estrogen it can cause a severe impact on the organism, especially in males. Moreover it is produced from acetone and phenol, both from fossil, and thus limited resources. On the contrary, diphenolic acid is synthesized from levulinic acid and phenol. Levulinic acid being directly produced by hydrolysis of biomass. By substituting the fossil phenol with natural phenols from lignin or plant extraction we are able to synthesize a fully renewable substitute for bisphenol A. The reactions to yield an epoxy resin have been examined and the reactivity with epichlorohydrin is satisfying. Moreover, some of the derivatives of diphenolic acid have interesting curing properties and preliminary results show excellent properties of the cured resin, including thermal stability and pencil hardness.

  7. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    Science.gov (United States)

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  8. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  9. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Wasikiewicz, J.M.; Mitomo, H.; Nagasawa, N.; Yoshii, F.

    2007-01-01

    This article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carded out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu 2+ , Cd 2+ , and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid. (authors)

  10. Evaluation of preservative effectiveness of gallic acid derivatives in aluminum hydroxide gel-USP

    Directory of Open Access Journals (Sweden)

    Anurag Khatkar

    2013-01-01

    Full Text Available Background: Preservatives are added to most of the pharmaceutical preparations to prevent them from deterioration throughout their shelf life. Literature reveals that the common synthetic preservatives have many limitations, such as development of microbial resistance (in due course of time and several serious side-effects. Aim: The aim of this study is to find out new preservatives synthesized from natural sources, which may have better efficiency than the existing synthetic preservatives. The derivatives of naturally occurring gallic acid were subjected for their preservative efficacy study. Their preservative efficiency was evaluated and compared with the standard parabens. Materials and Methods: The selected amide, anilide and ester derivatives of gallic acid were subjected to preservative efficacy testing in an official antacid preparation, {aluminum hydroxide gel-USP (United States Pharmacopoeia} against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Candida albicans, and Aspergillus niger as representative challenging microorganisms as per USP 2004 guidelines. Results: The selected derivatives were found to be effective against all selected strains and showed preservative efficacy comparable to that of standard and even better in case E. coli, C. albicans and A. niger. The 8-hydroxy quinoline ester derivative showed better preservative efficacy than standard as well as other derivatives. Conclusion: The newly synthesized gallic acid preservatives were found to be effective in the proposed pharmaceutical preparation (Aluminium Hydroxide Gel - USP. Also, the synthesized preservatives have shown comparative and even better efficacy than the existing parabens and hence they have potential for use in pharmaceutical preparations.

  11. CEC enantioseparations of carboxylic acids on silica-based monoliths modified with ergot alkaloid derivative

    Czech Academy of Sciences Publication Activity Database

    Messina, A.; Moroni, S.; Flieger, Miroslav; Sinibaldi, M.; Ursini, O.

    2009-01-01

    Roč. 30, č. 16 (2009), s. 2890-2896 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z50200510 Keywords : 2-Aryloxypropionic acids * chiral separations * dansyl amino acid derivatives Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.077, year: 2009

  12. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD11[OPEN

    Science.gov (United States)

    Laurans, Françoise; Foster, Cliff; Légée, Frédéric

    2017-01-01

    In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S′(8-8)S′ and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose

  13. Brevianamides and Mycophenolic Acid Derivatives from the Deep-Sea-Derived Fungus Penicillium brevicompactum DFFSCS025

    Directory of Open Access Journals (Sweden)

    Xinya Xu

    2017-02-01

    Full Text Available Four new compounds (1–4, including two brevianamides and two mycochromenic acid derivatives along with six known compounds were isolated from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Their structures were elucidated by spectroscopic analysis. Moreover, the absolute configurations of 1 and 2 were determined by quantum chemical calculations of the electronic circular dichroism (ECD spectra. Compound 9 showed moderate cytotoxicity against human colon cancer HCT116 cell line with IC50 value of 15.6 μM. In addition, 3 and 5 had significant antifouling activity against Bugula neritina larval settlement with EC50 values of 13.7 and 22.6 μM, respectively. The NMR data of 6, 8, and 9 were assigned for the first time.

  14. Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative

    OpenAIRE

    Brayden, David J.; Walsh, Edwin

    2014-01-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to t...

  15. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Yuya; Seki, Toshinobu [Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295 (Japan); Takahashi, Shigehiro [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Anzai, Jun-ichi, E-mail: junanzai@mail.pharm.tohoku.ac.jp [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2011-10-10

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH{sup -} ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  16. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    International Nuclear Information System (INIS)

    Egawa, Yuya; Seki, Toshinobu; Takahashi, Shigehiro; Anzai, Jun-ichi

    2011-01-01

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH - ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  17. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  18. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kathleen S. Rein

    2008-05-01

    Full Text Available Okadaic acid (OA and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  19. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    Science.gov (United States)

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  20. Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L. on the Phenolic Compounds Profile of Its Ethanolic Extract

    Directory of Open Access Journals (Sweden)

    Janiak Michał A.

    2017-12-01

    Full Text Available The presented study revealed that there were changes in the phenolic compounds profile of extract of wild thyme (Thymus serpyllum L. after γ-irradiation at the dose of 5 kGy. Ethanolic extracts of irradiated and non-irradiated herb were prepared and their compounds were analyzed by RP-HPLC-DAD technique. Between thirty two detected constituents, twelve phenolic compounds classified as hydroxybenzoic and hydroxycinnamic acids derivatives, flavones and flavanones were identified. Among them, caffeic acid derivatives and flavones predominated with the highest content of rosmarinic acid and luteolin-7-O-glucoside, respectively. Additionally, thymol was recognized in the analyzed extracts. γ-Irradiation slightly affected the quantitative profile of phenolic compounds of a wild thyme ethanolic extract. Only four constituents differed significantly (P<0.05 in terms of their content in the irradiated and non-irradiated samples. The content of phenolic acids (p-coumaric and caffeic acids decreased and that of flavonoid aglycons (luteolin and eriodictyol increased after the γ-ray treatment.

  1. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  2. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  3. Synthesis of new, UV-photoactive dansyl derivatives for flow cytometric studies on bile acid uptake.

    Science.gov (United States)

    Rohacova, Jana; Marin, M Luisa; Martínez-Romero, Alicia; O'Connor, José-Enrique; Gomez-Lechon, M Jose; Donato, M Teresa; Castell, Jose V; Miranda, Miguel A

    2009-12-07

    Four new fluorescent derivatives of cholic acid have been synthesized; they incorporate a dansyl moiety at 3alpha-, 3beta-, 7alpha- or 7beta- positions. These cholic acid analogs are UV photoactive and also exhibit green fluorescence. In addition, they have been demonstrated to be suitable for studying the kinetics of bile acid transport by flow cytometry.

  4. One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis.

    Science.gov (United States)

    Hu, Xun; Jiang, Shengjuan; Wu, Liping; Wang, Shuai; Li, Chun-Zhu

    2017-03-07

    Direct conversion of biomass-derived xylose and furfural into levulinic acid, a platform molecule, via acid-catalysis has been accomplished for the first time in dimethoxymethane/methanol. Dimethoxymethane acted as an electrophile to transform furfural into 5-hydroxymethylfurfural (HMF). Methanol suppressed both the polymerisation of the sugars/furans and the Aldol condensation of levulinic acid/ester.

  5. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  6. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    NARCIS (Netherlands)

    Wisastra, Rosalina; Kok, Petra A. M.; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as

  7. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)]. E-mail: cht12mm@amu.ac.in

    2005-04-11

    Heterogeneous photocatalysed degradation of two selected pesticide derivatives such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, types of TiO{sub 2,} substrate and catalyst concentration, and in the presence of electron acceptor such as hydrogen peroxide (H{sub 2}O{sub 2}) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytics. The pesticide derivative, indole-3-acetic acid was found to degrade slightly faster than indole-3-butyric acid.

  8. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  9. Semi-Empirical Predictions on the Structure and Properties of ent-Kaurenoic Acid and Derivatives

    Directory of Open Access Journals (Sweden)

    Jose Isagani B. Janairo

    2011-01-01

    Full Text Available The physicochemical properties of ent- kaurenoic acid model derivatives, which possibly influence its therapeutic application, were calculated. Results revealed that the molecule possess favourable attributes which renders it possible to be considered as a drug lead only that its very hydrophobic nature can result to poor bioavailabilty, low absorption and poor systemic circulation. In silico simulations revealed that this setback can be overcome by introduction of hydroxyl group to the tertiary carbon of ent-kaurenoic acid employing m-CPBA catalyzed hydroxylation, thus, unleashing its full drug potency. Moreover, molecular similarity analyses derived from semi-empirical calculations between ent-kaurenoic acid and a set of kaurane diterpenoids showed differences in hydrophobic complementarity, size and electronic properties despite possessing nearly identical molecular frameworks, thus, arriving in a generalization for their observed mechanistic differences on acting on different targets.

  10. Enhancing the Bioconversion of Azelaic Acid to Its Derivatives by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Nurshafira Khairudin

    2018-02-01

    Full Text Available Azelaic acid (AzA and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435 is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R2 of 0.9732.The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3 was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.

  11. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    Science.gov (United States)

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  12. Antioxidant and metabolite profiling of North American and neotropical blueberries using LC-TOF-MS and multivariate analyses.

    Science.gov (United States)

    Ma, Chunhui; Dastmalchi, Keyvan; Flores, Gema; Wu, Shi-Biao; Pedraza-Peñalosa, Paola; Long, Chunlin; Kennelly, Edward J

    2013-04-10

    There are many neotropical blueberries, and recent studies have shown that some have even stronger antioxidant activity than the well-known edible North American blueberries. Antioxidant marker compounds were predicted by applying multivariate statistics to data from LC-TOF-MS analysis and antioxidant assays of 3 North American blueberry species (Vaccinium corymbosum, Vaccinium angustifolium, and a defined mixture of Vaccinium virgatum with V. corymbosum) and 12 neotropical blueberry species (Anthopterus wardii, Cavendishia grandifolia, Cavendishia isernii, Ceratostema silvicola, Disterigma rimbachii, Macleania coccoloboides, Macleania cordifolia, Macleania rupestris, Satyria boliviana, Sphyrospermum buxifolium, Sphyrospermum cordifolium, and Sphyrospermum ellipticum). Fourteen antioxidant markers were detected, and 12 of these, including 7 anthocyanins, 3 flavonols, 1 hydroxycinnamic acid, and 1 iridoid glycoside, were identified. This application of multivariate analysis to bioactivity and mass data can be used for identification of pharmacologically active natural products and may help to determine which neotropical blueberry species will be prioritized for agricultural development. Also, the compositional differences between North American and neotropical blueberries were determined by chemometric analysis, and 44 marker compounds including 16 anthocyanins, 15 flavonoids, 7 hydroxycinnamic acid derivatives, 5 triterpene glycosides, and 1 iridoid glycoside were identified.

  13. Aggregation behavior of cholic acid derivatives in organic solvents and in water

    NARCIS (Netherlands)

    Willemen, H.M.

    2002-01-01

    In this thesis various cholic acid derivatives are reported that display aggregation in water or in organic solvents. Spontaneous aggregation of single molecules into larger, ordered structures occurs at the borderline of solubility. Amphiphilic compounds, or surfactants, which possess a

  14. Selective displacement of the tributylstannyl group to form [125I]phenylboronic acid derivatives

    International Nuclear Information System (INIS)

    Kinsey, B.M.; Kassis, A.I.

    1990-01-01

    Three radioiodinated phenylboronic acid derivatives (1a, 2a, 3a) were prepared at the no-carrier-added level by selective displacement of the corresponding tributylstannyl group. The tributylstannyl compounds 1b, 2b, and 3b were synthesized from the bromo derivatives 1c, 2c and 3c. Radioiodination was accomplished using Na 125 I and either Chloramine-T or peracetic acid to give 1a, 2a and 3a in radiochemical yields of 46, 26, and 67% respectively after HPLC purification. Compounds 1a, 2a and 3a were concentrated in vitro preferentially in HT-29 human colon carcinoma cells compared to V79 Chinese hamster lung fibroblasts, with 3a having the highest uptake

  15. 2-Thiophenecarboxylic acid hydrazide Derivatives: Synthesis and Anti-Tuberculosis Studies

    Science.gov (United States)

    Fahmi, M. R. G.; Khumaidah, L.; Ilmiah, T. K.; Fadlan, A.; Santoso, M.

    2018-04-01

    One of the most frequent and widespread infectious diseases especially in developing countries is tuberculosis (TB). The number of TB drug resistant tend to increase, and there has been no new TB drug introduce since the 1960s. Six 2-Thiophenecarboxylic acid hydrazide derivatives were synthesized in 90-97% yields, and 2-thiophenecarbonylhydrazone-5, 7-dibromoisatin showed the highest activity in inhibiting M. tuberculosis H37Rv.

  16. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  17. New insights into the properties of pubescent surfaces: peach fruit as a model.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; Del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-08-01

    The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.

  18. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  19. Radiopharmacology of iminodiacetic acid N-derivatives analysis in biological models and comparison to human beings

    International Nuclear Information System (INIS)

    Canellas, C.O.; Arguelles, M.G.; Mitta, A.E.A.

    1987-01-01

    It was studied the influence of chemical structures and molecular weight in the distribution of several iminodiacetic acid N-derivatives and to determine the potential use of these radiopharmaceuticals in humans. The study was performed with the following derivatives: N-(2,6 dimetyphenylcarbamoylmethy) iminodiacetic acid, N(2.6 dietylphenyl-carbamoylmethy) iminodiacetic acid, N-(2,6 diisopropylphenylcarbamoylmethy) iminodiacetic acid and the previously unknown N-derivative N-(2,6 diisopropyl, phenylcarbamoylethyl) iminodiacetic aced. These were sinthesized by a modified procedure by MITTA et al. and controlled by NMR, mass spectrometry, elemental composition and also toxicity pirogens, lethal dose and the chelate's radiochemical dose were determined. Liver gallbladder, intestinal and renal kinetics were studied in mice. In order to evaluate the metabolic pathways of the radiopharmaceuticals, the content of gallbladder and the urine were reinjected. Plasma kinetics and the plasmatic half life was determined by extracorporeal circulation in Wistar rats. For the use in human beings, test were carried out in different branches of nuclear medicine, in normal volunteers and carriers of different pathologic disorders. The patients were divided into four groups: acute and chronic cholecystitis, cirrhosis and jaundice. It was obtained the liver/heart activity ratio and estimated the appearance times of the intrahepatic ducts, gallbladder, duodenum and renal persistence. (M.E.L.) [es

  20. Direct quantitation of the preservatives benzoic and sorbic acid in processed foods using derivative spectrophotometry combined with micro dialysis.

    Science.gov (United States)

    Fujiyoshi, Tomoharu; Ikami, Takahito; Kikukawa, Koji; Kobayashi, Masato; Takai, Rina; Kozaki, Daisuke; Yamamoto, Atsushi

    2018-02-01

    The preservatives benzoic acid and sorbic acid are generally quantified with separation techniques, such as HPLC or GC. Here we describe a new method for determining these compounds in processed food samples based on a narrowness of the UV-visible spectral band width with derivative processing. It permits more selective identification and determination of target analytes in matrices. After a sample is purified by micro dialysis, UV spectra of sample solutions were measured and fourth order derivatives of the spectrum were calculated. The amplitude between the maximum and minimum values in a high-order derivative spectrum was used for the determination of benzoic acid and sorbic acid. Benzoic acid and sorbic acid levels in several commercially available processed foods were measured by HPLC and the proposed spectrometry method. The levels obtained by the two methods were highly correlated (r 2 >0.97) for both preservatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  2. Silica-Supported Polyphosphoric Acid in the Synthesis of 4-Substituted Tetrahydroisoquinoline Derivatives

    Directory of Open Access Journals (Sweden)

    Iliyan Ivanov

    2013-02-01

    Full Text Available We report herein an application of an α-amidoalkylation reaction, as an alternative efficient synthesis of 4-aryl- and 4-methyl-1,2,3,4-tetrahydroisoquinoline derivatives. The amides required for this purpose would result from reaction of aminoacetaldehyde dimethylacetal with different substituted benzenes in polyphosphoric acid, followed by acylation of the obtained amines with different acid chlorides or sulfochlorides. We compared the cyclisation step using conventional (milieu of acetic-trifluoracetic acid = 4:1 and solid supported reagents (SiO2/PPA, as recovered, regenerated and reused without loss of its activity catalyst. We found that in comparison to conventional methods, the yields of the reaction are greater and the reaction time is shorter.

  3. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    Science.gov (United States)

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis and radioprotective study of novel amino-alkyl dithiocarbamic acid derivatives against γ-irradiation in mice

    International Nuclear Information System (INIS)

    Hosseinimehr, S. J.; Beiki, D.; Kebriaeezadeh, A.; Khalaj, A.; Pirali Hamedani, M.; Akhlaghpoor, S.; Esmaeili, H.; Barazesh, A. R.

    2009-01-01

    The aim of this study was to evaluate the radioprotective capacity of some novel amino alkylated dithiocarbamic acid potassium salts against γ-irradiation in mice. Materials and Methods: Eight compounds containing 2-aminoethyl-, 3-aminopropyl-, 4-aminobutyl-, 5-aminopentyl-, 6-aminohexyl-, 7-amino heptyl-, 8-amino octyl and 9-amino nonyl of dithiocarbamate derivatives were prepared. Male NMRI mice were injected intraperitoneally with a geometric progression of doses (300 -1000 mg/kg), through the dose response range for lethal toxicity. To evaluate the radioprotective activity, one-half of the toxic LD 50 of each compound were injected intraperitoneally to groups of twenty mice, 30 minutes prior to γ-irradiation. The treated animals were kept for 30 days, and the lethality was recorded each day. Results: Among Eight compounds of alkyl dithiocarbamic acid derivatives, 5-aminopentyl, 7-amino heptyl, 8-amino octyl and 9-amino nonyl dithiocarbamic acid mono potassium salts are new compounds. All evaluated compounds showed a concentration dependent effect on the survival in mice. The LD 50 values were found to be more than 599 mg/kg. The percentages of 30-day survival of mice for 2-aminoethyl, 7-amino heptyl and 8-amino octyl dithiocarbamic acid derivatives were 7%, 40% and 13.5%, respectively, when injected 30 minutes before γ-irradiation. Other compounds had no radioprotective effects. Statistical analysis showed a significant difference between the treated and control groups for the 7-amino heptyl derivative (p<0.05). Conclusion: Among the compounds investigated in this study, 7-amino heptyl dithiocarbamate derivative showed more radioprotective effects in comparison with the others. Although it seems that the radioprotective effects in these derivatives correlate with the size of the alkyl chain, more experiments are required to support this hypothesis.

  5. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient

    Czech Academy of Sciences Publication Activity Database

    Castagna, A.; Csepregi, K.; Neugart, S.; Zipoli, G.; Večeřová, Kristýna; Jakab, G.; Jug, T.; Llorens, L.; Martínez-Abaigar, J.; Martínez-Lüscher, J.; Núñez-Olivera, E.; Ranieri, A.; Schoedl-Hummel, K.; Schreiner, M.; Teszlák, P.; Tittmann, S.; Urban, Otmar; Verdaguer, D.; Jansen, M. A. K.; Hideg, É.

    2017-01-01

    Roč. 40, č. 11 (2017), s. 2790-2805 ISSN 0140-7791 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061 Institutional support: RVO:86652079 Keywords : hydroxycinnamic acid- derivatives * oleracea var. sabellica * uv-b radiation * photosynthetically active radiation * different flavonol glycosides * alpha-tocopherol * arabidopsis-thaliana * phenolic-compounds * ultraviolet-radiation * natural-populations * alpha-tocopherol * carotenoids * climate * global radiation * grapevine * latitude * morphology * phenolic compounds * plasticity * ultraviolet radiation Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 6.173, year: 2016

  6. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    Science.gov (United States)

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions

    International Nuclear Information System (INIS)

    Ye, G.A.; Xiao, S.T.; Yan, T.H.; Lin, R.S.; Zhu, Z.W.

    2013-01-01

    The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uranium can reach more than 10 4 . This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20

  8. Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ye, G.A.; Xiao, S.T.; Yan, T.H.; Lin, R.S.; Zhu, Z.W. [China Institute of Atomic Energy, P.O.Box 275(26), Beijing 102413 (China)

    2013-07-01

    The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uranium can reach more than 10{sup 4}. This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20.

  9. Synthesis and antifungal activity of new salicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wodnicka Alicja

    2017-03-01

    Full Text Available A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yloxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.

  10. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types

    NARCIS (Netherlands)

    Kessler, Jan H.; Mullauer, Franziska B.; de Roo, Guido M.; Medema, Jan Paul

    2007-01-01

    Betulinic acid (BA) is a widely available plant-derived triterpene with reported activity against cancer cells of neuroectodermal origin and leukaemias. Treatment with BA was shown to protect mice against transplanted human melanoma and led to tumor regression. In contrast, cells from healthy

  11. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  12. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  13. Identification of gut-derived metabolites of maslinic acid, a bioactive compound from Olea europaea L.

    Science.gov (United States)

    Lozano-Mena, Glòria; Sánchez-González, Marta; Parra, Andrés; Juan, M Emília; Planas, Joana M

    2016-09-01

    Maslinic acid has been described to exert a chemopreventive activity in colon cancer. Hereby, we determined maslinic acid and its metabolites in the rat intestine previous oral administration as a first step in elucidating whether this triterpene might be used as a nutraceutical. Maslinic acid was orally administered at 1, 2, and 5 mg/kg to male Sprague-Dawley for 2 days. At 24 h after the last administration, the content of the duodenum and jejunum, ileum, cecum, and colon was collected and extracted with methanol 80% prior to LC-APCI-MS analysis. The developed method was validated providing suitable sensitivity (LOQ of 5 nM), good recovery (97.8 ± 3.6%), linear correlation, and appropriate precision (< 9%). Maslinic acid was detected in all the segments with higher concentrations in the distal part of the intestine. LC-APCI-LTQ-ORBITRAP-MS allowed the identification of 11 gut-derived metabolites that were formed by mono-, dihydroxylation, and dehydrogenation reactions. Maslinic acid undergoes phase I reactions resulting in a majority of monohydroxylated metabolites without the presence of phase II derivatives. The high concentration of maslinic acid achieved in the intestine suggests that it could exert a beneficial effect in the prevention of colon cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    Science.gov (United States)

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  15. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    OpenAIRE

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  16. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  17. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    Science.gov (United States)

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  18. Mono-N-acyl-2,6-diaminopimelic acid derivatives: analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity.

    Science.gov (United States)

    Hlaváček, Jan; Vítovcová, Miloslava; Sázelová, Petra; Pícha, Jan; Vaněk, Václav; Buděšínský, Miloš; Jiráček, Jiří; Gillner, Danuta M; Holz, Richard C; Mikšík, Ivan; Kašička, Václav

    2014-12-15

    Thirteen mono-N-acyl derivatives of 2,6-diaminopimelic acid (DAP)-new potential inhibitors of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18)-were analyzed and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and two capillary electromigration methods: capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). Structural features of DAP derivatives were characterized by IR and NMR spectroscopies, whereas CZE and MEKC were applied to evaluate their purity and to investigate their electromigration properties. Effective electrophoretic mobilities of these compounds were determined by CZE in acidic and alkaline background electrolytes (BGEs) and by MEKC in acidic and alkaline BGEs containing a pseudostationary phase of anionic detergent sodium dodecyl sulfate (SDS) or cationic detergent cetyltrimethylammonium bromide (CTAB). The best separation of DAP derivatives, including diastereomers of some of them, was achieved by MEKC in an acidic BGE (500 mM acetic acid [pH 2.54] and 60mM SDS). All DAP derivatives were examined for their ability to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichia coli (EcArgE). None of these DAP derivatives worked as an effective inhibitor of HiDapE, but one derivative-N-fumaryl, Me-ester-DAP-was found to be a moderate inhibitor of EcArgE, thereby providing a promising lead structure for further studies on ArgE inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    National Research Council Canada - National Science Library

    Liu, Yiliang

    2001-01-01

    We have previously identified and characterized a novel tumor growth inhibitor and a fatty acid binding protein in human mammary gland and named it as Mammary derived growth inhibitor Related Gene MRG...

  20. [Studies on chemical constituents from leaves of Vaccinium bracteatum].

    Science.gov (United States)

    Li, Zeng-Liang; Zhang, Lin; Tian, Jing-Kui; Zhou, Wen-Ming

    2008-09-01

    To investigate the chemical constituents from the leaves of Vaccinium bracteatum. Many column chromatographic techniques were used for the isolation and separation of chemical constituents. Their structures were elucidated on the basis of spectral analysis and chemical evidences. Twelve compounds were isolated from the plant, and they were identified as chrysoeriol (1), scopoletin (2), trans-p-hydroxycinnamic acid (3), trans-p-hydroxycinnamic acid ethyl ester (4), cafeic acid ethyl ester (5), beta-sitosterol (6), iuteolin (7), quercetin (8), esculetin (9), cafeic acid (10), isolariciresinol-9-O-beta-D-xyloside (11), 10-O-trans-p-coumaroylsandoside (12). Compounds 4, 5, 11, 12 were isolated from the genus Vaccinium for the first time, and compounds 1, 2, 9, 10 were isolated from this plant for the first time.

  1. Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401).

    Science.gov (United States)

    Figueroa, Mario; Raja, Huzefa; Falkinham, Joseph O; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-06-28

    An extract of the filamentous fungus Bionectria sp. (MSX 47401) showed both promising cytotoxic activity (>90% inhibition of H460 cell growth at 20 μg/mL) and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). A bioactivity-directed fractionation study yielded one new peptaibol (1) and one new tetramic acid derivative (2), and the fungus biosynthesized diverse secondary metabolites with mannose-derived units. Five known compounds were also isolated: clonostachin (3), virgineone (4), virgineone aglycone (5), AGI-7 (6), and 5,6-dihydroxybisabolol (7). Compounds 5 and 7 have not been described previously from natural sources. Compound 1 represents the second member of the peptaibol structural class that contains an ester-linked sugar alcohol (mannitol) instead of an amide-linked amino alcohol, and peptaibols and tetramic acid derivatives have not been isolated previously from the same fungus. The structures of the new compounds were elucidated primarily by high-field NMR (950 and 700 MHz), HRESIMS/MS, and chemical degradations (Marfey's analysis). All compounds (except 6) were examined for antibacterial and antifungal activities. Compounds 2, 4, and 5 showed antimicrobial activity against S. aureus and several MRSA isolates.

  2. In-Vitro Radio protective Role of Ferulic Acid in Cultured Lymphocytes

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Al Fateh, N.M.; Tawfik, S.S.

    2010-01-01

    Ferulic acid (FA), C 10 H 10 O 4 is the most abundant, ubiquitous hydroxycinnamic acid derived from photochemical phenolic compounds. It is a major constituent of fruits and vegetables such as orange, tomato, carrot, sweet corn and rice bran. Gamma rays generate hydroxyl radicals in cells and cellular DNA damage which leads to genotoxicity and chromosome aberrations. To establish most effective protective support, we used two different concentrations of FA (5 and 10 μg/ ml) and 2 Gy dose of gamma-radiation. Cytogenetic analysis was evaluated using the analysis of structural chromosome aberration (CA) and cytokinesis block micronucleus assay (CBMN). The level of lipid peroxidation analyzed as thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), the enzyme activities of lymphocytes defence mechanism: Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GPx) were determined. The result obtained by all endpoints indicates acceptable toxicity profiles of FA in-vitro when compared with normal lymphocytes; irradiation at 2 Gy increased the MN and CA frequencies. Treatment with FA for 30 min before radiation exposure resulted in a significant decline both of MN and CA yields as FA concentration increased. The levels of TBARS and GSH were altered significantly whereas the levels of the enzymatic antioxidants were decreased in gamma-irradiated lymphocytes. Pretreatment with 10 μg/ ml of FA has attenuated the toxic effects of radiation more than FA (5 μg/ ml) by reduction in the TBARS level, restoration GSH contents and prevented the decreases in the radiation-induced SOD, CAT and GPx activities. These results lead us to the conclusion that FA has antimutagenic effect and benefit as a radio protector against oxidative stress involved by gamma-rays exposure

  3. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  4. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  5. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  6. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    Science.gov (United States)

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  7. Synthesis of a metabolically stable modified long-chain fatty acid salt and its photolabile derivative

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, G.H.; Voges, R.; Gerok, W.; Kurz, G. (Institut fuer Organische Chemie and Biochemie, Universitaet Freiburg (Germany))

    1991-05-01

    An analogue of the long-chain fatty acid salt, sodium stearate, was synthesized in which the hydrogen atoms at carbons 2, 3, and 18 were replaced by fluorine. The key step in the synthesis was the addition of 3-iodo-2,2,3,3-tetrafluoropropanoic acid amide to 15,15,15-trifluoro-1-pentadecene. Radioactivity was introduced by catalytic reduction of 2,2,3,3,18,18,18-heptafluoro-4-octadecenoic acid amide with carrier-free tritium gas yielding a product with the specific radioactivity of 2.63 TBq/mmol. The resulting 2,2,3,3,18,18,18-heptafluoro-4-octadecenoic acid has a pKa of about 0.5 and is completely dissociated under normal physiological conditions. The fluorinated fatty acid salt analogue is readily taken up into hepatocytes and proved to be metabolically inert. In an approach to the identification of proteins involved in long-chain fatty acid salt transport across membranes and intracellular compartments, the photolabile derivative 11,11-azo-2,2,3,3,18,18,18-heptafluoro(G-3H)octadecanoic acid sodium salt was synthesized with a specific radioactivity of 2.63 TBq/mmol. Photolysis of the photolabile derivative, using a light source with a maximum emission at 350 nm, occurred with a half-life of 1.5 min. The generated carbene reacted with 14C-labeled methanol and acetonitrile with covalent bond formation of 6-13%. Its efficacy for photoaffinity labeling was demonstrated by incorporation into serum albumin, the extracellular fatty acid salt-binding protein, as well as into the intracellular fatty acid salt-binding protein (FABP) of rat liver with the molecular weight of 14,000.

  8. Hypolipidaemic and antiplatelet activity of phenoxyacetic acid derivatives related to alpha-asarone.

    Science.gov (United States)

    Pérez-Pastén, Ricardo; García, Rosa Virginia; Garduño, Leticia; Reyes, Elba; Labarrios, Fernando; Tamariz, Joaquín; Chamorro, Germán

    2006-10-01

    The phenoxyacetic acid derivatives 1-6 [2-methoxy-4-(2-propenyl)phenoxyacetic acid (1); 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetic acid (2); methyl 2-methoxy-4-(2-propenyl)phenoxyacetate (3); ethyl 2-methoxy-4-(2-propenyl)phenoxyacetate (4); methyl 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetate (5); ethyl 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetate (6)] related to alpha-asarone have been reported previously as hypolipidaemic agents in diet-induced hyperlipidaemic mice. We have aimed to expand the pharmacological profile of these derivatives by investigating their hypolipidaemic activity in rats and mice under different experimental conditions. The antiplatelet activity was tested also in-vitro from blood derived from consenting healthy volunteers. In normolipidaemic rats, compounds 2, 3 and 5 at oral doses of 40 and 80 mg kg(-1) significantly decreased total cholesterol and LDL-cholesterol levels. Moreover, analogues 3 and 5 administered to hypercholesterolaemic rats at the same doses for seven days also produced a reduction in the content of these same lipoproteins. In neither case were the high-density lipoprotein cholesterol and triglyceride concentrations affected. However, practically all tested compounds were found to be hypocholesterolaemic agents, and were shown to effectively lower low-density lipoprotein cholesterol and triglyceride levels in Triton-induced hyperlipidaemic mice at oral doses of 50 and 100 mg kg(-1). In all tests, all animals appeared to be healthy throughout the experimental period in their therapeutic ranges. Triton-induced hypercholesterolaemic mice appeared to be a desirable model for this class of hypolipidaemic drugs. On the other hand, compounds 1, 2, 4 and 5 significantly inhibited ADP-induced aggregation in-vitro. These findings indicated that all of these compounds appeared to be promising for the treatment of human hyperlipidaemia and thrombotic diseases.

  9. Synthesis and Antiproliferative Activity of Some Novel Triazole Derivatives from Dehydroabietic Acid

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2014-02-01

    Full Text Available Dehydroabietic acid (DHA is a naturally occurring diterpene with different and relevant biological activities. Previous studies have shown that some DHA derivatives display antiproliferative activity. However, the reported compounds did not include triazole derivatives. Starting from DHA (8,11,13-abietatrien-18-oic acid, and its alcohol dehydroabietinol (8,11,13-abietatrien-18-ol, four alkyl esters were prepared. The alkyl terpenes were treated with different aromatic azides to synthesize hybrid compounds using click chemistry. Some 16 new DHA hybrids were thus synthesized and their structures were confirmed by spectroscopic and spectrometric means. The antiproliferative activity of the new compounds was assessed towards human cell lines, namely normal lung fibroblasts (MRC-5, gastric epithelial adenocarcinoma (AGS, lung cancer (SK-MES-1 and bladder carcinoma (J82 cells. Better antiproliferative effect was found for compound 5, with an IC50 of 6.1 μM and selectivity on SK-MES-1 cells. Under the same experimental conditions, the IC50 of etoposide, was 1.83 µM.

  10. Spectrophotometric study of the protonation processes of some indole derivatives in sulfuric acid

    Directory of Open Access Journals (Sweden)

    GORAN M. STOJKOVIC

    1999-12-01

    Full Text Available The protonation of 3-methylindole, D-tryptophan, 3-formylindole, 3-acetylindole and indolyl-2-carboxylic acid in sulfuric acid media was studied by UV spectro-scopy. The measurement of the absorbance at four selected wavelengths enabled the calculation of the corresponding molar absorptivities. The results were used to calculate the pKa value of the protonated form of the indole derivatives by the Hammett Method. The Hammett postulate (the slope of the plot log [c(BH+/c(B] vs. H should be equal to 1 was tested. The dissociation constants and solvent parameter m* were also obtained by applying the Excess Acidity Method. The position of the additional protons in the protonated compounds is discussed.

  11. Lysine and pipecolic acid and some of their derivatives show anticonvulsant activity, and stimulation of benzodiazepine receptor activity

    International Nuclear Information System (INIS)

    Chang, Yung-Feng; Gao, Xue-Min

    1989-01-01

    Benzodiazepines are one of the most widely prescribed drugs in the treatment of anxiety, epilepsy and muscle tension. The natural products lysine and pipecolic acid known to be present in the animal, plant and microorganism, have been shown to be anticonvulsant against pentetrazol (PTZ)-induced seizures in mice. Methyl and ethyl esters of L-lysine and the N-isopropanol derivative of pipecolic acid appear to increase the anticonvulsant potency of the parent compounds, presumably due to their increase in hydrophobicity. Lysine and pipecolic acid showed significant stimulation of specific [ 3 H]flunitrazepam (FZ) binding to mouse brain membranes. This stimulation was enhanced by chloride ions and stereospecific with L-isomer having higher effect. The dose-dependent anticonvulsant activity of lysine and pipecolic acid, and their stimulation of [ 3 H]FZ binding appear to be correlated. The antiepileptic activity lysine, pipecolic acid and their derivatives therefore may be mediated through the γ-aminobutyric acid-benzodiazepine receptor complex

  12. Lanthanide nitrates as Lewis acids in the one-pot synthesis of 1,2,4-oxadiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Juliana A.; Faustino, Wagner M., E-mail: julianadqf@yahoo.com.br [Departamento de Quimica, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil); Zampieri, Davila de S.; Moran, Paulo J.S.; Rodrigues, Jose A.R. [Instituto de Quimica, Universidade Estadual de Campinas, SP (Brazil); Sa, Gilberto F. de [Departamento de Quimica Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE (Brazil)

    2012-08-15

    In this work we report the use of lanthanide nitrates [Ln(NO{sub 3}){sub 3}] acting as catalyst in direct one pot synthesis of 3-benzoyl- and 3-acetyl-1,2,4-oxadiazoles derivatives from ketones, nitriles and nitric acid. This is the first example of one-pot synthesis of benzoyl- and acetyl 1,2,4-oxadiazoles derivatives preparation using acetophenones derivates with electron-donator groups. (author)

  13. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  14. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1.

    Science.gov (United States)

    Van Acker, Rebecca; Déjardin, Annabelle; Desmet, Sandrien; Hoengenaert, Lennart; Vanholme, Ruben; Morreel, Kris; Laurans, Françoise; Kim, Hoon; Santoro, Nicholas; Foster, Cliff; Goeminne, Geert; Légée, Frédéric; Lapierre, Catherine; Pilate, Gilles; Ralph, John; Boerjan, Wout

    2017-11-01

    In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar ( Populus tremula × Populus alba ) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 ( CAD1 ) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1 , coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and

  15. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.

    Science.gov (United States)

    Yao, Ruimiao; Hou, Weiliang; Bao, Jie

    2017-11-01

    Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Radiosynthesis and in vitro evaluation of 99mTc(CO)3-labeled folic acid derivative

    International Nuclear Information System (INIS)

    Drishty Satpati; Archana Mukherjee; Meera Venkatesh; Sharmila Banerjee

    2011-01-01

    The over-expression of folate receptors in variety of neoplastic tissues makes radiolabeled folate conjugates potential agents for imaging and therapy of such cancers. With the aim of preparing an imaging agent for targeting folate receptors, folic acid has been conjugated with homocysteine for complexation with [ 99m Tc(CO) 3 (H 2 O) 3 ] + core. The radiolabeled complex of the homocysteine-folate could be obtained in >95% radiochemical yield as observed by HPLC. Stability of complex in saline was studied and challenge studies with histidine and cysteine revealed kinetic stability of the complex. Lipophilicity of the radiolabeled complex (log P) was found to be 0.45. In vitro uptake of 99m Tc(CO) 3 -labeled folic acid derivative was studied in KB cells and inhibition studies were carried out using 3 H-folic acid and cold homocysteine-folate conjugate. The in vitro studies indicated loss of binding affinity of the derivative towards folate receptors. (author)

  17. Design, docking, synthesis and anticancer activity of some novel 2-(4-methylbenzenesulphonamidopentanedioic acid amide derivatives

    Directory of Open Access Journals (Sweden)

    Satyajit Dutta

    2014-08-01

    Full Text Available In the present work few novel 2-(4-methylbenzenesulphonamidopentanedioic acid amide derivatives and the basic compound 2-(4-methylphenylsulfon-amidopentanedioic acid have been designed, synthesized, characterized and screened for their possible antineoplastic activity both in vitro and in vivo. The modified drugs were docked against the protein histone deacetylase the energy value obtained was o-iodoanilide (-10.370504 and m-iodoanilide (-10.218276 of the titled compound. The in vitro activity was performed against five human cell lines like human breast cancer (MCF-7, leukemia (K-562, ova-rian cancer (OVACAR-3, human colon adenocarcinoma (HT-29 and Human kidney carcinoma (A-498. The in vivo activity was performed in female Swiss albino mice against Ehrlich Ascites Carcinoma (EAC. Among the synthesized compounds, o-iodoanilide, m-iodoanilide and p-iodoanilide derivatives of 2-(4-methyl benzene sulphonyl-pentanedioic acid amides showed encouraging activity in both the in vitro and in vivo compared to other compounds.

  18. Hydrolysis and rearrangement of phthalamic acid derivatives and assessment of their potential as prodrug forms for amines

    DEFF Research Database (Denmark)

    Bundgaard, Hans; Steffansen, Bente

    1990-01-01

    Although it is well-known that N-substituted phthalamic acid derivatives are readily hydrolyzed in acidic aqueous solution due to intramolecular catalysis by the neighbouring carboxy group, sparse information is available on the degradation behaviour in neutral solutions. A recent publication [5]...

  19. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  20. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  1. Synthesis and Biological Activity of 3-[Phenyl(1,3-thiazol-2-yl-amino]propanoic Acids and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Vytautas Mickevičius

    2013-12-01

    Full Text Available New N,N-disubstituted β-amino acids and their derivatives with thiazole, aromatic, and heterocyclic substituents were synthesized from N-phenyl-N-thiocarbamoyl-β-alanine by the Hantzsch method; derivatives with hydrazone fragments were also obtained. Some of the synthesized compounds exhibited discrete antimicrobial activity, and 3-[(4-oxo-4,5-dihydro-1,3-thiazol-2-yl(phenylamino]propanoic acid was found to promote rapeseed growth and to increase seed yield and oil content.

  2. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  3. Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots.

    Science.gov (United States)

    Negrel, Jonathan; Javelle, Francine; Morandi, Dominique; Lucchi, Géraldine

    2016-12-01

    A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K m  = 2 μM) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid isomers), feruloyl esterases substrates (methyl caffeate and methyl ferulate), and even caffeoyl-CoA in vitro but all of them were less active than chlorogenic acid, demonstrating that the esterase is a genuine chlorogenic acid esterase. It was also induced when the bacterial strain was cultured in the presence of hydroxycinnamic acids (caffeic, p-coumaric or ferulic acid) as sole carbon source, but not in the presence of simple phenolics such as catechol or protocatechuic acid, nor in the presence of organic acids such as succinic or quinic acids. The purified esterase was remarkably stable in the presence of methanol, rapid formation of methyl caffeate occurring when its activity was measured in aqueous solutions containing 10-60% methanol. Our results therefore show that this bacterial chlorogenase can catalyse the transesterification reaction previously detected during the methanolic extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Data are presented suggesting that colonisation by Rhizophagus irregularis could increase chlorogenic acid exudation from tomato roots, especially in nutrient-deprived plants, and thus favour the growth of chlorogenate-metabolizing bacteria on the root surface or in the mycorhizosphere. Copyright © 2016 Elsevier Masson SAS. All rights

  4. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.).

    Science.gov (United States)

    Espin, Susana; Gonzalez-Manzano, Susana; Taco, Verónica; Poveda, Cristina; Ayuda-Durán, Begoña; Gonzalez-Paramas, Ana M; Santos-Buelga, Celestino

    2016-03-01

    Tree tomato fruits from the yellow giant, giant purple and New Zealand purple cultivars, cultivated in Ecuador were analysed for their phenolic composition and antioxidant capacity. Twelve hydroxycinnamoyl derivatives and four anthocyanins (in the purple cultivars) were detected and identified. The hydroxycinnamoyl derivatives mostly derived from caffeic acid, being 3-O-caffeoylquinic acid and rosmarinic acid the majority compounds. Furthermore, various rosmarinic acid glucosides, caffeoyl glucoside, feruloyl glucoside and two ferulic acid dehydrodimers were tentatively identified. The presence of rosmarinic acid is particularly relevant as it constituted a majority phenolic compound in the four studied tree tomato cultivars and it had not been reported previously in this fruit. In the purple cultivars main anthocyanins were pelargonidin 3-O-rutinoside and delphinidin 3-O-rutinoside. The New Zealand purple cultivar was by far the richest sample in both hydroxycinnamates (421.6mg/100g dry pulp) and anthocyanins (168.9mg/100g dry pulp). Antioxidant capacity, as determined by FRAP, ABTS and ORAC assays, followed the same pattern as phenolic contents, with the New Zealand purple cultivar being the one with the highest and the yellow giant cultivar with the lowest values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Uptake of acidic and basic sugar derivatives in Lemna gibba G1

    International Nuclear Information System (INIS)

    Sanz, A.; Ullrich, C.I.

    1989-01-01

    The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution induced a small decrease of the membrane potential. After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. ( 14 C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species

  6. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines.

    Science.gov (United States)

    Bjedov, Srđan; Jakimov, Dimitar; Pilipović, Ana; Poša, Mihalj; Sakač, Marija

    2017-04-01

    Bile acid derivatives with modifications in side chain and modifications on steroid skeleton were synthetized and their antitumor activity against five human cancer cell lines was investigated. Modifications in side chain include amid group, formed in reaction with 2-amino-2-methylpropanol, and 4,4-dimethyloxazoline group, obtained after cyclization of amides. In the steroid skeleton oxo groups were introduced in position 7 (2, 2a, 2b) and 7,12 (3, 3a, 3b). Ethylidene groups were introduced regio- and stereoselectively on C-7, and/or without stereoselectivity on C-3 by Wittig reaction. By combination of these modifications, a series of 19 bile acid derivatives were synthesized. Compounds containing both C-7 ethylidene and C-12 carbonyl groups (6, 6a, 6b) shown very good antitumor activity with IC 50 amide or oxazoline group has positive effect on cytotoxicity. Different molecular descriptors were determined in silico and after principal component analysis was found that molecular descriptor BLTF96 can be used for fast assessment of experimental cytotoxicity of bile acid derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation.

    Science.gov (United States)

    Corona, Giulia; Vauzour, David; Hercelin, Justine; Williams, Claire M; Spencer, Jeremy P E

    2013-11-10

    While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex.

  8. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    Directory of Open Access Journals (Sweden)

    M. Fernanda N. N. Carvalho

    2016-04-01

    Full Text Available A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O, reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine to form a compound O2SNC10H13NC10H14NSO2 (2 which was characterized by spectroscopic means (MS and NMR and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states.

  9. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  10. Synthesis and physical-chemical properties of functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid

    Directory of Open Access Journals (Sweden)

    E. K. Mikhal’chenko

    2017-08-01

    Full Text Available Introduction. Synthetic research of new biologically active compounds occupies an important place in modern pharmaceutical science.Thus it is important to develop techniques for the biologically active substances functionalization. Esters and amides take special place among the variety of functional derivatives of organic acids,. These fragments are well-known pharmacophores and could be found in a wide range of drugs. Thus, the nootropic agent pyracetam is 2-oxo-1-pyrolidineacetamide, and is the selective antagonist of β-adrenoreceptores; atenolol is a derivative of benzeneacetamide. Substituted acetamide and ester fragments are also present in the structures of aprofen, spasmolitin, acetylidine and β-lactam cephalosporins and penicillins antibiotics.Aim of our research was the synthetic method development for functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid and the study of their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Chemical shifts were reported in ppm (parts per million values. Infrared (IR spectra were measured on a Bruker Alpha instrument using a potassium bromide (KBr disk, scanning from 400 to 4000 cm-1. Results and discussion. We selected 3-benzyl-8-propylxanthinyl-7-acetic acid as initial compound for our study. For synthesis of hexyl, heptyl, octyl, nonyl, decyl and benzyl esters of 3-benzyl-8-propylxanthinyl-7-acetic acid we used alternative method, that included alkylation of sodium salts of acids with alkyl halogens. Reaction was made at DMF medium by reflux of reagents. Next stage of our research was the synthesis of amides of 3-beznyl-8-propylxanthinyl-7-acetic acid by the reaction of ethyl or propyl esters

  11. Efficient Havinga–Kondepudi resolution of conglomerate amino acid derivatives by slow cooling and abrasive grinding

    NARCIS (Netherlands)

    Leeman, Michel; Noorduin, Wim L.; Millemaggi, Alessia; Vlieg, Elias; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.

    2010-01-01

    The complete resolution of the conglomerate racemates of two amino acid derivatives susceptible to racemization in solution was achieved by slow crystallization from a supersaturated solution accompanied by cooling and abrasive grinding.

  12. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  13. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb.

    Science.gov (United States)

    Novo, Marta; Silvar, Cristina; Merino, Fuencisla; Martínez-Cortés, Teresa; Lu, Fachuang; Ralph, John; Pomar, Federico

    2017-05-01

    Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Five new prenylated p-hydroxybenzoic acid derivatives with antimicrobial and molluscicidal activity from Piper aduncum leaves.

    Science.gov (United States)

    Orjala, J; Erdelmeier, C A; Wright, A D; Rali, T; Sticher, O

    1993-12-01

    Five new prenylated benzoic acid derivatives, methyl 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxybenzoate (1), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-hydroxybenzoate (2), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (3), methyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (4), and 4-hydroxy-3-(3-methyl-2-butenyl)-5-(3-methyl-2-butenyl)-benzoic acid (5) were isolated from the dried leaves of Piper aduncum L. (Piperaceae). Together with the new metabolites, four known prenylated benzoic acid derivatives, 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (6), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (nervogenic acid, 7), methyl 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoate (8), and methyl 4-hydroxy-3-(3-methyl-2-butenyl)-benzoate (9) as well as, dillapiol (10), myristicin, and the three sesquiterpenes humulene, caryophyllene epoxide, and humulene epoxide were isolated. Compounds 7, 8, and 9 are reported as natural products for the first time. The structures of the isolates were elucidated by spectroscopic methods, mainly 1D-and 2D-NMR spectroscopy. Isolates 4-7, 9, and 10 were molluscicidal while 2, 5-7, and 9 displayed significant antibacterial activities.

  15. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts

    DEFF Research Database (Denmark)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine

    2016-01-01

    insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. 3....... To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins...... of amino acids to bacteria, fungi and plants in enchytraeids. 4. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed...

  16. Metallic Langmuir and Langmuir-Blodgett films based on TTF derivatives and fatty acid

    International Nuclear Information System (INIS)

    Ohnuki, H.; Ishizaki, Y.; Suzuki, M.; Desbat, B.; Delhaes, P.; Giffard, M.; Imakubo, T.; Mabon, G.; Izumi, M.

    2002-01-01

    Recent progress in the metallic conducting Langmuir-Blodgett (LB) films built from TTF derivative and fatty acids is reported. A simple LB method of transferring the mixed Langmuir (L) film of BEDO-TTF (BO) and stearic acid (SA) onto substrates provided metallic conducting LB films. A homogeneous L film formation on the water surface observed by Brewster angle microscope (BAM) is an essential factor for the well-ordered LB films. In the L film, the carboxylate group of fatty acid forms anion layer bringing about a spontaneous formation of mixed valence state (MVS) of BO layer. Similar spontaneous formation was also found in the molecular combination of nonoxygen-substituted donor of EDT-TTF and octadecanesulfonic acid (OS). This type of reaction would be useful for obtaining conducting LB films. For the LB films of BEDO-TTF and stearic acid, we found a negative transverse magnetoresistance at low temperature that was interpreted in the weak localization of a two-dimensional (2D) electronic system based on the well-defined conducting layer

  17. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    Science.gov (United States)

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  18. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MS(n).

    Science.gov (United States)

    Schütz, Katrin; Kammerer, Dietmar; Carle, Reinhold; Schieber, Andreas

    2004-06-30

    A method for the identification and quantification of phenolic compounds from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC with diode array and mass spectrometric detection was developed. Among the 22 major compounds, 11 caffeoylquinic acids and 8 flavonoids were detected. Quantification of individual compounds was carried out by external calibration. Apigenin 7-O-glucuronide was found to be the major flavonoid in all samples investigated. 1,5-Di-O-caffeoylquinic acid represented the major hydroxycinnamic acid, with 3890 mg/kg in artichoke heads and 3269 mg/kg in the pomace, whereas in the juice 1,3-di-O-caffeoylquinic acid (cynarin) was predominant, due to the isomerization during processing. Total phenolic contents of approximately 12 g/kg on a dry matter basis revealed that artichoke pomace is a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.

  19. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of Boniger Acid and Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM

    2014-07-01

    Full Text Available Diazonium derivative of calix[4]arene has been synthesized using three different synthetic steps. Initially p-tert-butylcalix[4]arene was synthesized with the condensation reaction of p-tert-butylphenol and formaldehyde in basic conditions. Calix[4]arene was obtained after the debutylation reaction of p-tert-butylcalix[4]arene with AlCl3. Calix[4]arene reacted with diazonium salt of Böniger acid to yield the 5,17-[(Bis(azo-bis(5-hydroxy-2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene which has eight free phenolic hydroxyl group. Reaction steps were shown in Fig.1.2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene The antioxidant activity of the Böniger acid and calix[4]aren derivative were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The two compounds showed strong antioxidant activity. Total antioxidant activity of Böniger acid and calix[4]aren derivative was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 84.00% and 85.60 % respectively. The free radical scavenging activities were determined as 83.05% and 84.69 %. Results show that, two compounds has the antioxidant activity. The calix[4]aren derivaties has more higher activity then Boniger acid because of calix[4]aren derivative has much hydroxl groups.

  20. Gut microbiota–derived short-chain fatty acids and kidney diseases

    Directory of Open Access Journals (Sweden)

    Li L

    2017-12-01

    Full Text Available Lingzhi Li, Liang Ma, Ping Fu Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China Abstract: Gut microbiota and its metabolites play pivotal roles in host physiology and pathology. Short-chain fatty acids (SCFAs, as a group of metabolites, exert positive regulatory effects on energy metabolism, hormone secretion, immune inflammation, hypertension, and cancer. The functions of SCFAs are related to their activation of transmembrane G protein-coupled receptors and their inhibition of histone acetylation. Though controversial, growing evidence suggests that SCFAs, which regulate inflammation, oxidative stress, and fibrosis, have been involved in kidney disease through the activation of the gut–kidney axis; however, the molecular relationship among gut microbiota–derived metabolites, signaling pathways, and kidney disease remains to be elucidated. This review will provide an overview of the physiology and functions of SCFAs in kidney disease. Keywords: gut microbiome, short-chain fatty acids, kidney diseases, gut–kidney axis

  1. Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents.

    Science.gov (United States)

    Apfel, C; Banner, D W; Bur, D; Dietz, M; Hirata, T; Hubschwerlen, C; Locher, H; Page, M G; Pirson, W; Rossé, G; Specklin, J L

    2000-06-15

    Low-molecular-weight beta-sulfonyl- and beta-sulfinylhydroxamic acid derivatives have been synthesized and found to be potent inhibitors of Escherichia coli peptide deformylase (PDF). Most of the compounds synthesized and tested displayed antibacterial activities that cover several pathogens found in respiratory tract infections, including Chlamydia pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. The potential of these compounds as antibacterial agents is discussed with respect to selectivity, intracellular concentrations in bacteria, and potential for resistance development.

  2. Novel self-associative and multiphase nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives

    DEFF Research Database (Denmark)

    Eenschooten, Corinne; Vaccaro, Andrea; Delie, Florence

    2012-01-01

    The purpose of the present study was to investigate the physicochemical properties in aqueous media of amphiphilic hyaluronic acid (HA) derivatives obtained by reaction of HA’s hydroxyl groups with octenyl succinic anhydride (OSA). The self-associative properties of the resulting octenyl succinic...

  3. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition

    NARCIS (Netherlands)

    Dijkman, N.A.; Kromkamp, J.C.

    2006-01-01

    Phospholipid-derived fatty acids (PLFA) are widely used as chemotaxonomic markers in microbial ecology. In this paper we explore the use of PLFA as chemotaxonomic markers for phytoplankton species. The PLFA composition was determined for 23 species relevant to estuarine phytoplankton. The taxonomic

  4. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  5. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Directory of Open Access Journals (Sweden)

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  6. Synthesis and characterization of new chiral ketopinic acid-derived catalysts immobilized on polystyrene-bound imidazole

    Directory of Open Access Journals (Sweden)

    Hassan Yusuf

    2017-02-01

    Full Text Available Four new chiral ketopinic acid-derived catalysts were anchored on a polystyrene-bound imidazole via non-covalent bond. The resulting heterogeneous catalysts were successfully characterized using IR, SEM, and TGA analyses.

  7. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn.

    Science.gov (United States)

    Neves, Nathália de Andrade; Stringheta, Paulo César; Gómez-Alonso, Sergio; Hermosín-Gutiérrez, Isidro

    2018-06-30

    Extracts of jabuticaba peels show complex chromatographic profiles at 360 nm, with some peaks presenting UV-Vis spectra resembling those of flavonol glycosides and others resembling that of ellagic acid. The presence and tentative identification of these phenolic compounds were comprehensively studied in four species of Brazilian jabuticaba fruit - Plinia trunciflora, variety 'jabuticaba de cabinho'; P. caulifora, varieties 'jabuticaba paulista' and 'jabuticaba canaã-açu'; P. jaboticaba, variety 'jabuticaba sabará'; and P. phitrantha, variety 'jabuticaba branca-vinho' - using HPLC-DAD-ESI-MS n . Seventeen flavonols derived from quercetin and three from myricetin and eighteen derivatives of ellagic acid and eleven of methyl ellagic acid were detected. Most of them were newly described and mainly occurred in glycosylated and acylglycosylated forms. Some compounds were missing in one variety, such as the absence of methyl ellagic acid derivatives in 'jabuticaba branca-vinho', and others only appeared in one variety, thus suggesting potential capacity for varietal differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  9. Synthesis and Application of Phenyl Nitrone Derivatives as Acidic and Microbial Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Shijun Chen

    2015-01-01

    Full Text Available Nitrone has drawn great attention due to its wide applications as a 1,3-dipole in heterocyclic compounds synthesis and the bioactivities. With the special structure, nitrone can also be used as ligand in inorganic chemistry. Based on the current research, the nitrones are anticipated to be effective inhibitors against acidic and microbial corrosion. The aim of this work is to investigate the inhibitory action of nitrones. In this work, a series of phenyl nitrone derivatives (PN was synthesized and used as acidic and microbial corrosion inhibitors. The results indicate that several compounds show moderate to high inhibition efficiency (IE in 3% HCl. Accompanied with HMTA or BOZ, the IEs greatly increase, and the highest efficiency of 98.5% was obtained by using PN4 + BOZ. Investigation of the antibacterial activity against oilfield microorganism shows that the nitrone derivatives can inhibit SRB, IB, and TGB with moderate to high efficiency under 1,000 mg/L, which makes them potential to be used as bifunctional oilfield chemicals.

  10. Synthesis and Pharmacological Screening of Several Aroyl and Heteroaroyl Selenylacetic Acid Derivatives as Cytotoxic and Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Carmen Sanmartín

    2009-09-01

    Full Text Available The synthesis and cytotoxic activity of a series of twenty six aroyl and heteroaroyl selenylacetic acid derivatives of general formula Ar-CO-Se-CH2-COOH or Heterar-CO-Se-CH2-COOH are reported. The synthesis was carried out by reaction of acyl chlorides with sodium hydrogen selenide, prepared in situ, and this led to the formation of sodium aroylselenides that subsequently reacted with α-bromoacetic acid to produce the corresponding selenylacetic acid derivatives. All of the compounds were tested against a prostate cancer cell line (PC-3 and some of the more active compounds were assessed against a panel of four human cancer cell lines (CCRF-CEM, HTB-54, HT-29, MCF-7 and one mammary gland-derived non-malignant cell line (184B5. Some of the compounds exhibited remarkable cytotoxic and antiproliferative activities against MCF-7 and PC-3 that were higher than those of the reference compounds doxorubicin and etoposide, respectively. For example, in MCF-7 when Ar = phenyl, 3,5-dimethoxyphenyl or benzyl the TGI values were 3.69, 4.18 and 6.19 μM. On the other hand, in PC-3 these compounds showed values of 6.8, 4.0 and 2.9 μM. Furthermore, benzoylselenylacetic acid did not provoke apoptosis nor did it perturb the cell cycle in MCF-7.

  11. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd. Iljin for the Production of Biomass and Caffeic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Ewa Skała

    2015-01-01

    Full Text Available The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43% was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3 at two different lighting conditions (light or dark were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  12. Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives

    Science.gov (United States)

    Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil

    2015-07-01

    The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.

  13. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.

    Science.gov (United States)

    Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L

    2017-01-01

    In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF 3 /MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and

  14. The comparison of knee osteoarthritis treatment with single-dose bone marrow-derived mononuclear cells vs. hyaluronic acid injections.

    Science.gov (United States)

    Goncars, Valdis; Jakobsons, Eriks; Blums, Kristaps; Briede, Ieva; Patetko, Liene; Erglis, Kristaps; Erglis, Martins; Kalnberzs, Konstantins; Muiznieks, Indrikis; Erglis, Andrejs

    2017-01-01

    The aim of this study was to compare treatment methods of the knee joint degenerative osteoarthritis, using autologous bone marrow-derived mononuclear cells and hyaluronic acid injections and observe prevalence of adverse effects in both groups. A prospective randomized controlled clinical trial was carried out. The analysis of pain and changes in osteoarthritis symptoms after a single intra-articular bone marrow-derived mononuclear cell injection into the knee joint in the Kellgren-Lawrence stage II-III osteoarthritis during the 12-month period were performed. The results were compared with the control group treated routinely by hyaluronic acid injections therapy. A therapy group of patients (n=28) received single bone marrow-derived mononuclear cell intra-articular injections. A control group of patients (n=28) was treated with a total of three sodium hyaluronate intra-articular injections each one performed a week apart. The clinical results were obtained using the Knee Osteoarthritis Outcome Score (KOOS) and the Knee Society Score (KSS) before and 3, 6, and 12 months after injection. A statistically significant improvement was observed in the mononuclear cell group over the starting point in all scores. At the endpoint at month 12, the KOOS score improved significantly (Phyaluronic acid versus the bone marrow-derived mononuclear cells group at time points 6 and 12 months demonstrated a statistically significant (Phyaluronic acid group. In both groups serious adverse effects were not observed. The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed. Copyright © 2017 The Lithuanian University of Health Sciences. Production

  15. Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies.

    NARCIS (Netherlands)

    Garthoff, J.A.; Heemskerk, S.; Hempenius, R.A.; Lina, B.A.; Krul, C.A.; Koeman, J.H.; Speijers, G.J.

    2010-01-01

    Pectin-derived acidic oligosaccharides (pAOS) are non-digestible carbohydrates to be used in infant formulae and medical nutrition. To support its safety, the genotoxic potential of pAOS was evaluated. pAOS was not mutagenic in the Ames test. Positive results were obtained in the chromosome

  16. Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): Genotoxicity and sub-chronic studies

    NARCIS (Netherlands)

    Garthoff, J.A.; Heemskerk, S.; Hempenius, R.A.; Lina, B.A.R.; Krul, C.A.M.; Koeman, J.H.; Speijers, G.J.A.

    2010-01-01

    Pectin-derived acidic oligosaccharides (pAOS) are non-digestible carbohydrates to be used in infant formulae and medical nutrition. To support its safety, the genotoxic potential of pAOS was evaluated. pAOS was not mutagenic in the Ames test. Positive results were obtained in the chromosome

  17. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  18. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives.

    Science.gov (United States)

    Huang, Mei-Yan; Lin, Jing; Lu, Kuo; Xu, Hong-Gui; Geng, Zhi-Zhong; Sun, Ping-Hua; Chen, Wei-Min

    2016-04-13

    Cajaninstilbene acid (CSA) is one of the active components isolated from pigeon pea leaves. In this study, anti-inflammatory effects of CSA and its synthesized derivatives were fully valued with regard to their activities on the production of nitric oxide (NO) and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in vitro cell model, as well as their impacts on the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae model by live image analysis. Furthermore, the anti-inflammatory mechanism of this type of compounds was clarified by western-blot and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CSA, as well as its synthesized derivatives 5c, 5e and 5h, exhibited strong inhibition activity on the release of NO and inflammatory factor TNF-α and IL-6 in lipopolysaccharides (LPS)-stimulated murine macrophages. CSA and 5c greatly inhibited the migration of neutrophils and macrophages in injury zebrafish larvae. CSA and 5c treatment greatly inhibited the phosphorylation of proteins involved in nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 could reverse partly the roles of CSA and 5c, and CSA and 5c treatment greatly resist the decrease of PPARγ mRNA and protein induced by LPS stimulation. Our results identified the promising anti-inflammatory effects of CSA and its derivatives, which may serve as valuable anti-inflammatory lead compound. Additionally, the mechanism studies demonstrated that the anti-inflammatory activity of CSA and its derivative is associated with the inhibition of NF-κB and MAPK pathways, relying partly on resisting the LPS-induced decrease of PPARγ through improving its expression.

  19. Modified method for zirconium or hafnium gravimetric determination with glycolic acid derivatives

    International Nuclear Information System (INIS)

    Barbieri, R.S.; Rocha, J.C.; Terra, V.R.; Marques Neto, A.

    1989-01-01

    The conditions for gravimetric determination of zirconium or hafnium by glicolic acid derivatives were studied by thermogravimetric analysis. The method utilized shown that after precipitation, washing and drying of precipitates at 150 0 C, the resulting solid was weighed in the form of [M{RCH(OH)COO} 4 ] (M = Zr,Hf;R = C 6 H 5 , β-C 10 H 7 ,p-BrC 6 H 4 ). (author) [pt

  20. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    Science.gov (United States)

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  1. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents.

    Science.gov (United States)

    Gupta, Manish K; Mishra, Pradeep; Prathipati, Philip; Saxena, Anil K

    2002-12-01

    Peptide deformylase catalyzes the removal of N-formyl group from the N-formylmethionine of ribosome synthesized polypeptide in eubacteria. Quantitative structure-activity relationship (QSAR) studies have been carried out in a series of beta-sulfonyl and beta-sulfinyl hydroxamic acid derivatives for their PDF enzyme inhibitory and antibacterial activities against Escherichia coli DC2 and Moraxella catarrhalis RA21 which demonstrate that the PDF inhibitory activity in cell free and whole cell system increases with increase in molar refractivity and hydrophobicity. The comparison of the QSARs between the cell free and whole cell system indicate that the active binding sites in PDF isolated from E. coli and in M. catarrhalis RA21 are similar and the whole cell antibacterial activity is mainly due to the inhibition of PDF. Apart from this the QSARs on some matrixmetelloproteins (COL-1, COL-3, MAT and HME) and natural endopeptidase (NEP) indicate the possibilities of introducing selectivity in these hydroxamic acid derivatives for their PDF inhibitory activity.

  2. Synthesis and physical-chemical properties of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives

    Directory of Open Access Journals (Sweden)

    E. K. Mikhalchenko

    2017-04-01

    Full Text Available Introduction. Heterocyclic compounds play an important role in the metabolic processes of human organism. Structures of vitamins, nucleotides, chromoproteins are based on Nitrogen-containing heterocycles (purine, pyrimidine, thiazole etc. Thus, it was obvious to use these organic substances as basic molecules for synthetic research of biologically active compounds which could be used for treatment of different pathological processes. In their research, some scientist pay special attention to xanthine derivatives that are well-known low toxic natural compounds with wide spectrum of pronounced pharmacological properties (antioxidant, diuretic, antibacterial, anti-inflammatory etc. Insertion of carboxyl group in the structure of xanthine molecule is a prospective ability of its synthetic potential increasing. Aim of our research was the development of method of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives synthesis and studying their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian», USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Results and discussion. We selected 3-benzyl-8-propyl xanthine as initial compound for our study. By its interaction with chloroacetic acid, chloroacetamide or propyl chloroacetate in DMF in the presence of calculated amount of NaHCO3 we synthesized 3-benzyl-8-propylxanthinyl-7-acetic acid its ester and amide. At the same time we found that obtaining of xanthinyl-7-acetic acid by hydrolysis of its ester produced with higher yield. On the next stage of our research we synthesized a number of water-soluble salts of 3-benzyl-8-propylxanthinyl-7-acetic acid by reaction of acid with different primary and secondary amines. The structures of all obtained compounds were

  3. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  4. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  5. Syntheses of Azo-Imine Derivatives from Vanillin as an Acid Base Indicator

    Directory of Open Access Journals (Sweden)

    Bambang Purwono

    2013-05-01

    Full Text Available Preparations of azo, imine and azo-imine derivatives from vanillin as an indicator of acid-base titration have been carried out. The azo derivative of 4-hydroxy-3-methoxy-5-(phenylazobenzaldehyde 2 was produced by diazotitation reaction of vanillin in 37.04% yield. The azo product was then refluxed with aniline in ethanol to yield azo-imine derivatives, 2-methoxy-6-(phenylazo-4-((phenyliminomethylphenol 1 in 82.21% yield. The imine derivative, 2-methoxy-4-((phenyliminomethyl-phenol 3 was obtained by refluxing of vanillin and aniline mixture in ethanol solvent and produced 82.17% yield. The imine product was then reacted with benzenediazonium chloride salt. However, the products indicated hydrolyzed product of 4-hydroxy-3-methoxy-5-(phenylazobenzaldehyde 2 in 22.15% yield. The 2-methoxy-4-((phenyliminomethylphenol 2 could be used as an indicator for titration of NaOH by H2C2O4 with maximum concentration of H2C2O4 0.1 M while the target compound 1 could be used as titration indicator for titration of NaOH with H2C2O4 with same result using phenolphthalein indicator.

  6. The oxanorbornene approach to 3-hydroxy, 3,4-dihydroxy and 3,4,5-trihydroxy derivatives of 2-aminocyclohexanecarboxylic acid

    Directory of Open Access Journals (Sweden)

    Howard Judith AK

    2006-05-01

    Full Text Available Abstract The nitro oxanorbornene adduct derived from the Diels-Alder reaction of ethyl (E-3-nitroacrylate and furan provides a versatile template for the stereoselective synthesis of hydroxylated derivatives of 2-aminocyclohexanecarboxylic acid (ACHC.

  7. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  8. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    Science.gov (United States)

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-08

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  9. Effect of Vermicompost Extract and Vermicompost-Derived Humic Acids on Seed Germination and Seedling Growth of Hemp

    Directory of Open Access Journals (Sweden)

    Ievinsh Gederts

    2017-08-01

    Full Text Available Hemp (Cannabis sativa L. cultivars grown for industrial use have recently emerged as a sustainable alternative source of industrial fibre and bioenergy, and is a highly valuable food and animal feed resource. The aim of the present study was to evaluate the effect of vermicompost extract, vermicompost mineral nutrient composition, and vermicompost-derived humic and fulvic acids on seed germination and growth of hemp seedlings. In general, separate application of all vermicompost components stimulated seed germination and hypocotyl and radicle growth, as well as increased chlorophyll concentration in cotyledons. Effective concentration range and the degree of stimulation varied significantly between the treatments. For practical purposes, application of vermicompost and vermicompost-derived extracts for stimulation of hemp growth could be useful at concentrations 5%, 0.05 mg·mL−1 and 1%, for vermicompost extract, humic acids and fulvic acids, respectively.

  10. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  11. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study.

    Science.gov (United States)

    Merad, M; Soufi, W; Ghalem, S; Boukli, F; Baig, M H; Ahmad, K; Kamal, Mohammad A

    2014-04-01

    Alzheimer's disease is a progressive degenerative disease of the brain marked by gradual and irreversible declines in cognitive functions. Acetylcholinesterase (AChE) plays a biological role in the termination of nerve impulse transmissions at cholinergic synapses by rapid hydrolysis of its substrate, "acetylcholine". The deficit level of acetylcholine leads to deprived nerve impulse transmission. Thus the cholinesterase inhibitors would reverse the deficit in acetylcholine level and consequently may reverse the memory impairments, which is characteristic of the Alzheimer's disease. The molecular interactions between AChE and Carnosic acid, a well known antioxidant substance found in the leaves of the rosemary plant has always been an area of interest. Here in this study we have performed in silico approach to identify carnosic acid derivatives having the potential of being a possible drug candidate against AChE. The best candidates were selected on the basis of the results of different scoring functions.

  12. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  13. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  14. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    Science.gov (United States)

    Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  16. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.

    Science.gov (United States)

    Schwarz, Stefan; Lucas, Susana Dias; Sommerwerk, Sven; Csuk, René

    2014-07-01

    The development of remedies against the Alzheimer's disease (AD) is one of the biggest challenges in medicinal chemistry nowadays. Although not completely understood, there are several strategies fighting this disease or at least bringing some relief. During the progress of AD, the level of acetylcholine (ACh) decreases; hence, a therapy using inhibitors should be of some benefit to the patients. Drugs presently used for the treatment of AD inhibit the two ACh controlling enzymes, acetylcholinesterase as well as butyrylcholinesterase; hence, the design of selective inhibitors is called for. Glycyrrhetinic acid seems to be an interesting starting point for the development of selective inhibitors. Although its glycon, glycyrrhetinic acid is known for being an AChE activator, several derivatives, altered in position C-3 and C-30, exhibited remarkable inhibition constants in micro-molar range. Furthermore, five representative compounds were subjected to three more enzyme assays (on carbonic anhydrase II, papain and the lipase from Candida antarctica) to gain information about the selectivity of the compounds in comparison to other enzymes. In addition, photometric sulforhodamine B assays using murine embryonic fibroblasts (NiH 3T3) were performed to study the cytotoxicity of these compounds. Two derivatives, bearing either a 1,3-diaminopropyl or a 1H-benzotriazolyl residue, showed a BChE selective inhibition in the single-digit micro-molar range without being cytotoxic up to 30μM. In silico molecular docking studies on the active sites of AChE and BChE were performed to gain a molecular insight into the mode of action of these compounds and to explain the pronounced selectivity for BChE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation.

    Directory of Open Access Journals (Sweden)

    Laura M Pillay

    Full Text Available Hematopoietic stem cells (HSCs are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.

  18. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    Directory of Open Access Journals (Sweden)

    Msizi I Mhlongo

    Full Text Available Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP molecules, namely lipopolysaccharides (LPS, chitosan (CHT and flagellin-22 (FLG22. Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids, shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA, methyljasmonic acid (MJ and abscisic acid (ABA resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.

  19. Synthesis of Gibberellic Acid Derivatives and Their Effects on Plant Growth

    Directory of Open Access Journals (Sweden)

    Hao Tian

    2017-04-01

    Full Text Available A series of novel C-3-OH substituted gibberellin derivatives bearing an amide group were designed and synthesized from the natural product gibberellic acid (GA3. Their activities on the plant growth regulation of rice and Arabidopsis were evaluated in vivo. Among these compounds, 10d and 10f exhibited appreciable inhibitory activities on rice (48.6% at 100 μmol/L and Arabidopsis (41.4% at 100 μmol/L, respectively. These results provide new insights into the design and synthesis of potential plant growth regulators.

  20. Amino acid linked bromobenzoyl thiourea derivatives: syntheses, characterization and antimicrobial activities

    International Nuclear Information System (INIS)

    Raheel, A.; Din, I.U.; Badshah, A.; Rauf, M.K.; Andleeb, S.

    2016-01-01

    Five new bromobenzoyl thiourea derivatives (1-5) linked with different amino acids were synthesized via the reaction of bromobenzoyl chloride with potassium thiocyanide and the corresponding amines. The synthetic compounds were characterized by single crystal XRD, IR and NMR (/sup 1/H- and /sup 13/C-) spectroscopy in addition to elemental analysis and melting point determinations. These compounds were also preliminary analyzed for antifungal and antibacterial activity against different strains of fungi and bacteria, respectively. The data suggest that the compounds exhibited promising antimicrobial activity and may prove potential lead compounds as antimicrobial agent. (author)

  1. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma.

    Science.gov (United States)

    Cai, Enbo; Guo, Shijie; Yang, Limin; Han, Mei; Xia, Jing; Zhao, Yan; Gao, Xiaorui; Wang, Yu

    2018-02-01

    Arctigenin (ARG) is famous in its abundant pharmacological activity. However, many researches in it entered the bottleneck period because of its poor water solubility. The derivatives of ARG have been synthesised with five amino acids which have t-Butyloxy carbonyl (BOC) as a protective group. We examined the effects of removing BOC. The results showed that the amino acid derivatives without protective group have better water solubility and nitrite-clearing ability than ARG. Based on these results, ARG6' and ARG9' were selected at a dosage of 40 mg/kg to evaluate their antitumour activity. The percentage inhibition rate of ARG6' and ARG9' were 55.87 and 51.40, respectively, which was twice as much as ARG. Furthermore, they could increase liver and kidney indexes and produce less damage in these organs. In brief, this study provides a basis for new drug development.

  2. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams

    Directory of Open Access Journals (Sweden)

    Branka Levaj

    2010-01-01

    Full Text Available This paper reports about the content of polyphenols and volatiles in fresh fruits of two sour cherry cultivars (Marasca and Oblačinska, some berry fruits (strawberry Maya, raspberry Willamette and wild blueberry and the corresponding low sugar jams. Phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, flavan 3-ols and flavonols were determined by high-performance liquid chromatography (HPLC. Those found in the fruits were also found in the jams. Jams contained lower amounts of polyphenols than fresh fuits, but their overall retention in jams was relatively high. Among fruits, sour cherry Marasca had the highest level of polyphenols, while sour cherry Marasca jam and raspberry Willamette jam had the highest level of polyphenols among jams. The major flavonoid in all investigated fruits, except in sour cherry Oblačinska, was (–-epicatechin. Sour cherry Marasca had the highest level of (–-epicatechin (95.75 mg/kg, and it also contained very high amounts of flavonols, derivatives of quercetin and kaempferol. Hydroxybenzoic acids (HBAs were not found in sour cherries Marasca and Oblačinska, but were found in berry fruits and jams. Phenolic compound (+-gallocatechin was found only in Marasca fruit and jam. Ellagic acid was found in the highest concentration in raspberry Willamette fruit and jam. Hydroxycinnamic acids (HCAs were found in all the investigated fruits, with the exception of a derivative of ferulic acid, which was not found in strawberry. Derivatives of caffeic, p-coumaric and chlorogenic acids were found in all the investigated fruits, with chlorogenic acid being the most abundant, especially in sour cherry Marasca. Volatiles were determined by gas chromatography (GC and expressed as the peak area of the identified compounds. All investigated volatiles of fresh fruit were also determined in the related jams with relatively high retention. Sour cherries Marasca and Oblačinska contained the same volatile compounds, but

  3. Supercritical CO2 extraction of raw propolis and its dry ethanolic extract

    Directory of Open Access Journals (Sweden)

    L. C. Paviani

    2012-06-01

    Full Text Available Three types of propolis extract were prepared and analyzed with respect to their global extraction yields and with respect to the concentration of the following markers: 3,5-diprenyl-4-hydroxycinnamic acid; 3-prenyl-4-hydroxycinnamic acid; 4-hydroxycinnamic acid and 4-methoxy-3,5,7-trihydroxyflavone. The extract EEP (ethanolic extract of propolis was obtained by the conventional method from raw propolis using ethanol as solvent. The extracts (SFE were obtained by supercritical solvent extraction from the raw propolis using supercritical carbon dioxide (sc-CO2, with and without the addition of ethanol as a co-solvent. The fractionated supercritical extracts (FSCE were obtained by fractionation (extract and raffinate of the dry EEP with sc-CO2. EEP yields of 39.5% were obtained and maximum global extraction yields were 7.3% for SFE with no co-solvent, 51% for SFE with 15% ethanol and 18% for the FSCE extract fraction. The concentrations of the markers in the different extracts differed as a function of the operational parameters, indicating that the addition of co-solvent and the selectivity of sc-CO2 could be manipulated so as to obtain extracts with the yields and concentrations of interest.

  4. A new p-hydroxybenzoic acid derivative from an endophytic fungus Penicillium sp. of Nerium indicum.

    Science.gov (United States)

    Ma, Yang-Min; Qiao, Ke; Kong, Yang; Guo, Lin-Xin; Li, Meng-Yun; Fan, Chao

    2017-12-01

    A new p-hydroxybenzoic acid derivative named 4-(2'R, 4'-dihydroxybutoxy) benzoic acid (1) was isolated from the fermentation of Penicillium sp. R22 in Nerium indicum. The structure was elucidated by means of spectroscopic (HR-ESI-MS, NMR, IR, UV) and X-ray crystallographic methods. The antibacterial and antifungal activity of compound 1 was tested, and the results showed that compound 1 revealed potent antifungal activity against Colletotrichum gloeosporioides, Alternaria alternata, and Alteranria brassicae with MIC value of 31.2 μg/ml.

  5. Esterification from derivates of styrene by acetic acid using perchloric acid as a catalyzer; Esterificacion de derivados de estireno con acido acetico en presencia de acido perclorico como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de la Cuesta, P.J.; Rus Martinez, E.; Palomino sosa, R.; Palomino Perez, F. I. [Departamento deIngenieria Quimica, Facultad de Ciencias, Universidad de Malaga, Malaga (Spain)

    1995-11-01

    The present work is focused to develop the production of esters from derivatives of styrene by acetic acid using perchloric acid as a catalyst. The kinetics of the reaction was studied and analysis of the variables was carried out. 18 refs.

  6. Derivatives of valproic acid are active against pentetrazol-induced seizures in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana; Hen, N.; Yagen, B.; Bialer, M.

    2013-01-01

    Roč. 106, 1-2 (2013), s. 64-73 ISSN 0920-1211 R&D Projects: GA ČR(CZ) GAP304/10/1274; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : experimental seizures * anticonvulsant action * derivatives of valproic acid * immature rats Subject RIV: FH - Neurology Impact factor: 2.190, year: 2013

  7. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.)

    DEFF Research Database (Denmark)

    Goncalves, B.; Landbo, Anne-Katrine Regel; Knudsen, D.

    2004-01-01

    temperature) and 1-2 degreesC (cool temperature). Neochlorogenic and p-coumaroylquinic acids were the main hydroxycinnamic acid derivatives, but chlorogenic acid was also identified in all cultivars. The 3-glucoside and 3-rutinoside of cyanidin were the major anthocyanins. Peonidin and pelargonidin 3...... [227 mg/100 g of fresh weight (fw)] and cv. Van the lowest (124 mg/100 g of fw). Phenolic acid contents generally decreased with storage at 1-2 degreesC and increased with storage at 15+/-5 degreesC. Anthocyanin levels increased at both storage temperatures. In cv. Van the anthocyanins increased up...... to 5-fold during storage at 15+/-5 degreesC (from 47 to 230 mg/100 g of fw). Flavonol and flavan-3-ol contents remained quite constant. For all cultivars the levels of phenolic acids were higher in 2001 and the anthocyanin levels were higher in 2002, which suggest a significant influence of climatic...

  8. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    Science.gov (United States)

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Reducing Renal Uptake of {sup 177}Lu Labeled CCK Derivative using Basic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung; Lim, Jaecheong; Joh, Eunha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Radiolabeled peptides have been designed to target the relative receptors overespressed in tumor cells, such as integrin αvβ3, gastrin-releasing peptide receptor (GRPR), melanocortin-1 receptor (MC1-R), glucagon-like peptide-a receptor (GLP-1R), and cholecystokinin (CCK) receptor. Most of these peptides are eliminated from the body via the kidney and are partly reabsorbed in the proximal tubular cells. However, the high renal uptake of the radiolabeled peptides may lead to renal toxicity. In this study we investigated various amino acid solutions to reduce the renal uptake of {sup 177}Lu-DOTA-CCK derivative. Renal uptake of {sup 177}Lu-DOTA-CCK derivative is effectively reduced by the administration of positively charged amino acids. The administration of 12 mg of L-lysine was as effective in reducing the renal uptake as 6 mg of lysine and 6 mg of arginine combinations. Further studies will be performed to identify the most potent inhibitor of renal reuptake of radiolabeled peptides and minimize the chance of unwanted side effects.

  10. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives.

    Science.gov (United States)

    Khattab, Sherine Nabil; Haiba, Nesreen Saied; Asal, Ahmed Mosaad; Bekhit, Adnan A; Guemei, Aida A; Amer, Adel; El-Faham, Ayman

    2017-02-15

    A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC 50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC 50 =0.051μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC 50 =7.832μM), and half fold the activity of amphotericin B (IC 50 =0.035μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250mg/kg and parenterally up to 100mg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. HPLC PROFILING OF PHENOLIC ACIDS AND FLAVONOIDS AND EVALUATION OF ANTI-LIPOXYGENASE AND ANTIOXIDANT ACTIVITIES OF AQUATIC VEGETABLE LIMNOCHARIS FLAVA.

    Science.gov (United States)

    Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai

    2015-01-01

    Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.

  12. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    Science.gov (United States)

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  13. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    Science.gov (United States)

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  14. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    Science.gov (United States)

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the

  15. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  16. Production of ethoxylated fatty acids derived from Jatropha non-edible oil as a nonionic fat-liquoring agent.

    Science.gov (United States)

    El-Shattory, Y; Abo-Elwafa, Ghada A; Aly, Saadia M; Nashy, El-Shahat H A

    2012-01-01

    Natural fatty derivatives (oleochemicals) have been used as intermediate materials in several industries replacing the harmful and expensive petrochemicals. Fatty ethoxylates are one of these natural fatty derivatives. In the present work Jatropha fatty acids were derived from the non edible Jatropha oil and used as the fat source precursor. The ethoxylation process was carried out on the derived fatty acids using a conventional cheap catalyst (K₂CO₃) in order to obtain economically and naturally valuable non-ionic surfactants. Ethoxylation reaction was proceeded using ethylene oxide gas in the presence of 1 or 2% K₂CO₃ catalyst at 120 and 145°C for 5, 8 and 12 hours. The prepared products were evaluated for their chemical and physical properties as well as its application as non- ionic fat-liquoring agents in leather industry. The obtained results showed that the number of ethylene oxide groups introduced in the fatty acids as well as their EO% increased as the temperature and time of the reaction increased. The highest ethoxylation number was obtained at 145°C for 8 hr. Also, the prepared ethoxylated products were found to be effective fat-liquors with high HLB values giving stable oil in water emulsions. The fat-liquored leather led to an improvement in its mechanical properties such as tensile strength and elongation at break. In addition, a significant enhancement in the texture of the treated leather by the prepared fat-liquors as indicated from the scanning electron microscope (SEM) images was observed.

  17. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  18. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Durand, Erwann; Laguerre, Mickaël

    2014-01-01

    Caffeic, ferulic, and coumaric acids were lipophilized with saturated fatty alcohols (C1-C20). The antioxidant properties of these hydroxycinnamic acids and their alkyl esters were evaluated in various assays. Furthermore, the antioxidant efficiency of the compounds was evaluated in a simple o/w ...

  19. Eutectic behaviour of binary mixtures composed of two isomeric lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Podoliak, Natalia; Hamplová, Věra; Tomášková, Petra; Havlíček, Jaroslav; Kašpar, Miroslav

    2016-01-01

    Roč. 495, č. 1 (2016), s. 105-115 ISSN 0015-0193 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : ferroelectric smectic phase * binary mixture * lactic acid derivative * isomer * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 0.551, year: 2016

  20. Isolation of Cinnamic Acid Derivatives from the Bulbs of Allium tripedale

    Directory of Open Access Journals (Sweden)

    Zahra Chehri

    2018-01-01

    Full Text Available Background: Allium genus with 750 species is the most diverse genus in the Amaryllidaceae family. Historically, Allium species have been used as medicinal plants, especially for prevention and treatment of cardiovascular diseases and considered as valuable sources of phytonutrients. Phytochemical investigation of Allium tripedale, locally called “Anashq,” which is an edible plant of the “Zagros” region (west of Iran was conducted in the present study. Materials and Methods: Air-dried bulbs of the plant were extracted in a four-step extraction method with increasing polarity using hexane, chloroform, chloroform–methanol (9:1, and methanol. Chloroform-methanol (9:1 extract was fractionated by medium-pressure liquid chromatography on a RP-18 column using a linear gradient solvent system of H2O to MeOH. Phenolic-rich fractions were subjected to the final isolation and purification of the constituents by reversed-phase high-performance liquid chromatography method. Structure elucidation of the compounds was performed through comprehensive methods including 1D-and 2D-NMR and mass spectroscopy. Results: Two cinnamic acid derivatives were isolated from the bulbs of A. tripedale; using spectroscopic methods, their chemical structures were determined as 6,7-dimethoxy N-trans-caffeoyltyramine (1 and N-trans-feruloyltyramine (2. Conclusion: Cinnamic acid derivatives are pharmacologically active phenolic compounds, which have been isolated from different Allium species. Isolation of these compounds from A. tripedale is reported for the first time in this study and could be used as a chemical basis for explanation of the plant biological and pharmacological activities.

  1. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid

    Directory of Open Access Journals (Sweden)

    Umesh P. Tarpada

    2017-05-01

    Full Text Available Polymer supported sulphanilic acid was found to be an effective heterogeneous catalyst for one pot synthesis of various quinoxaline derivatives from the condensation reaction between 1,2-diamines and 1,2-dicarbonyl compounds in ethanol. Synthesis was attempted under reflux as well as at room temperature using ethanol as the solvent to afford excellent yields. Heterogeneity of the catalyst allowed its recycling for five times with almost retention in catalytic activity. Prepared quinoxaline derivatives were also tested for their antioxidant activity by the FRAP assay method.

  2. Amino Acid Conjugated Anthraquinones from the Marine-Derived Fungus Penicillium sp. SCSIO sof101.

    Science.gov (United States)

    Luo, Minghe; Cui, Zhaomeng; Huang, Hongbo; Song, Xianqin; Sun, Aijun; Dang, Yongjun; Lu, Laichun; Ju, Jianhua

    2017-05-26

    Emodacidamides A-H (1-8), natural products featuring anthraquinone-amino acid conjugates, have been isolated from a marine-derived fungus, Penicillium sp. SCSIO sof101, together with known anthraquinones 9 and 10. The planar structures of 1-8 were elucidated using a combination of NMR spectroscopy and mass spectrometry. The absolute configurations of the amino acid residues were confirmed using Marfey's method and chiral-phase HPLC analyses. Additionally, isolates were evaluated for possible immunomodulatory and cytotoxic activities. Emodacidamides A (1), C (3), D (4), and E (5) inhibited interleukin-2 secretion from Jurkat cells with IC 50 values of 4.1, 5.1, 12, and 5.4 μM, respectively.

  3. Ion associates of rare earth elements with salicylic acid derivatives and rhodamine B and their analytical application

    Energy Technology Data Exchange (ETDEWEB)

    Tselik, E I; Poluehktov, N S; Mishchenko, V T [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-10-01

    The determination of rare earth elements by extraction photometry (fluorimetric) technique with the use of salicylic acid derivatives and Rhodamine B is reported. The best results in the determination of REE in the form of ionic associates between their acidocomplexes and Rhodamine B are obtained with the use of 3,5-diiodinesalicylic acid. The ratio between components in the compounds formed and the conditions of extraction are determined.

  4. Radioiodinated phenylalkyl malonic acid derivatives as pH-sensitive SPECT tracers.

    Directory of Open Access Journals (Sweden)

    Matthias Bauwens

    Full Text Available INTRODUCTION: In vivo pH imaging has been a field of interest for molecular imaging for many years. This is especially important for determining tumor acidity, an important driving force of tumor invasion and metastasis formation, but also in the process of apoptosis. METHODS: 2-(4-[(123I]iodophenethyl-2-methylmalonic acid (IPMM, 2-(4-[(123I]iodophenethyl-malonic acid (IPM, 2-(4-[(123I]iodobenzyl-malonic acid (IBMM and 4-[(123I]iodophthalic acid (IP were radiolabeled via the Cu(+ isotopic nucleophilic exchange method. All tracers were tested in vitro in buffer systems to assess pH driven cell uptake. In vivo biodistribution of [(123I]IPMM and [(123I]IPM was determined in healthy mice and the pH targeting efficacy in vivo of [(123I]IPM was evaluated in an anti-Fas monoclonal antibody (mAb apoptosis model. In addition a mouse RIF-1 tumor model was explored in which tumor pH was decreased from 7.0 to 6.5 by means of induction of hyperglycemia in combination with administration of meta-iodobenzylguanidine. RESULTS: Radiosynthesis resulted in 15-20% for iodo-bromo exchange and 50-60% yield for iodo-iodo exchange while in vitro experiments showed a pH-sensitive uptake for all tracers. Shelf-life stability and in vivo stability was excellent for all tracers. [(123I]IPMM and [(123I]IPM showed a moderately fast predominantly biliary clearance while a high retention was observed in blood. The biodistribution profile of [(123I]IPM was found to be most favorable in view of pH-specific imaging. [(123I]IPM showed a clear pH-related uptake pattern in the RIF-1 tumor model. CONCLUSION: Iodine-123 labeled malonic acid derivates such as [(123I]IPM show a clearly pH dependent uptake in tumor cells both in vitro and in vivo which allows to visualize regional acidosis. However, these compounds are not suitable for detection of apoptosis due to a poor acidosis effect.

  5. Energy densification of biomass-derived organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  6. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling.

    Science.gov (United States)

    Trifunović, Jovana; Borčić, Vladan; Vukmirović, Saša; Kon, Svetlana Goločorbin; Mikov, Momir

    2016-09-20

    Information on ADME properties of examined bile acids and their oxo derivatives are scarce, although the interest for bile acids and their use in nanochemistry and macromolecular chemistry is increasing. The purpose of this research was to evaluate the lipophilicity, a crucial physicochemical parameter for describing ADME properties of selected bile acids and their oxo derivatives, and to compare two approaches: experimentally determined hydrophobicity parameters and calculated logP values. Commercially available bile acids - deoxycholic, chenodeoxycholic, hyodeoxycholic and ursodeoxycholic acid were used to synthesize oxo derivatives. Lipophilicity was evaluated in two solvent systems: toluene/ethanol and toluene/butanol. Retention parameters were acquired by normal-phase TLC. The correlations between calculated logP values obtained using five different software and experimentally determined hydrophobicity parameters (RM(0)(tol/eth), RM(0)(tol/but), b(tol/eth) and b(tol/but)) were examined. Correlation analysis confirmed significant dependence between experimental RM(0) values and software calculated parameters. Results suggest satisfactory intestinal absorption after oral administration for all of the examined compounds as well as low volumes of distribution, and high affinity for binding with plasma proteins. Penetration through blood-brain barrier and skin is not satisfactory. All of the examined compounds show high affinity for binding with G-protein coupled receptors and consequently inhibition of ionic channels. Results also suggest possible binding with nuclear receptors. Established lipophilicity testing model of studied compounds showed excellent predictive ability and might represent significant tool in development of relations between chromatographic behavior and ADME properties. Compounds 3α-hydroxy-7,12-dioxo-5β-cholanoic and 12α-hydroxy-3,7-dioxo-5β-cholanoic acid might be the most suitable candidates for further development studies (satisfactory

  7. Conventional, organic and biodynamic farming: differences in polyphenol content and antioxidant activity of Batavia lettuce.

    Science.gov (United States)

    Heimler, Daniela; Vignolini, Pamela; Arfaioli, Paola; Isolani, Laura; Romani, Annalisa

    2012-02-01

    Lactuca sativa L. ssp. acephala L., cv. Batavia red Mohican plants were cultivated under intensive conventional, organic and biodynamic farming and were analyzed for their polyphenol content and antiradical activity in order to demonstrate the influence of farming on yield, polyphenol content and antiradical activity. The yield of plants from conventional farming was the highest (2.89 kg m⁻²), while polyphenol content, measured by spectrophotometry, of these plants was lower at P flavonoid and hydroxycinnamic acid contents. Flavonoid, hydroxycinnamic acid and anthocyan patterns were not affected by the type of cultivation, while quantitative differences were demonstrated and some differences were found between conventional farming and organic or biodynamic farming. The yield of conventionally grown salads was the highest. Copyright © 2011 Society of Chemical Industry.

  8. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.

    Science.gov (United States)

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-02-27

    Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.

  9. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.

    Science.gov (United States)

    Gobis, Katarzyna; Foks, Henryk; Bojanowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka

    2012-01-01

    A series of novel 3-cyclohexylpropanoic acid derivatives and 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds (1-8) have been synthesized and evaluated for tuberculostatic activity. Compounds 1a, 1c, 1e and 1f bearing benzimidazole or benzimidazole-like systems showed the most potent tuberculostatic activity against Mycobacterium tuberculosis strains with MIC values ranging from 1.5 to 12.5μg/mL. More importantly 1a (6-chloro-2-(2-cyclohexylethyl)-4-nitro-1H-benzo[d]imidazole) and 1f (2-(2-cyclohexylethyl)-1H-imidazo[4,5-b]phenazine) appeared selective for M. tuberculosis as compared with eukaryotic cells (human fibroblasts), and other antimicrobial strains. These compounds may thus represent a novel, selective class of antitubercular agents. Additionally compound 1a stimulated type I collagen output by fibroblasts, in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  11. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS.

    Science.gov (United States)

    Abu-Reidah, Ibrahim M; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-12-01

    The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation.

    Directory of Open Access Journals (Sweden)

    Rok Martinčič

    Full Text Available A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds.

  13. Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative.

    Science.gov (United States)

    Wu, Xiaomeng; Wang, Rui; Jiang, Qingqing; Wang, Shue; Yao, Yao; Shao, Lihua

    2014-04-01

    A simple, rapid and accurate high-performance liquid chromatography method with ultraviolet-visible detection was developed for the determination of five amino acid neurotransmitters - aspartate, glutamic acid, glycine, taurine and γ-aminobutyric acid - in rat hippocampi with pre-column derivatization with 4-fluoro-7-nitrobenzofurazan. Several conditions which influenced derivatization and separation, such as pH, temperature, acetonitrile percentage mobile phase and flow rate, were optimized to obtain a suitable protocol for amino acids quantification in samples. The separation of the five neurotransmitter derivatives was performed on a C18 column using a mobile phase consisting of phosphate buffer (0.02 mol/L, pH 6.0)-acetonitrile (84:16, v/v) at a flow rate of 1.0 mL/min with the column temperature at 30°C. The detection wavelength was 472 nm. Without gradient elution, the five neurotransmitter derivatives were completely separated within 15 min. The linear relation was good in the range from 0.50 to 500 µmol/L, and the correlation coefficients were ≥0.999. Intra-day precision was between 1.8 and 3.2%, and inter-day precision was between 2.4 and 4.7%. The limits of detection (signal-to-noise ratio 3) were from 0.02 to 0.15 µmol/L. The established method was used to determine amino acid neurotransmitters in rat hippocampi with satisfactory recoveries varying from 94.9 to 105.2%. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    Science.gov (United States)

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange

    Science.gov (United States)

    Hijaz, Faraj; Manthey, John A.; Van der Merwe, Deon; Killiny, Nabil

    2016-01-01

    ABSTRACT Currently, the global citrus production is declining due to the spread of Huanglongbing (HLB). HLB, otherwise known as citrus greening, is caused by Candidatus Liberibacter asiaticus (CLas) and is transmitted by the Asian citrus psyllids (ACP), Diaphorina citri Kuwayama. ACP transmits CLas bacterium while feeding on the citrus phloem sap. Multiplication of CLas in the phloem of citrus indicates that the sap contains all the essential nutrients needed for CLas. In this study, we investigated the micro- and macro-nutrients, nucleotides, and others secondary metabolites of phloem sap from pineapple sweet orange. The micro- and macro-nutrients were analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Nucleotides and other secondary metabolites analysis was accomplished by reversed phase HPLC coupled with UV, fluorescence detection, or negative mode electrospray ionization mass spectrometry (ESI-MS). Calcium (89 mM) was the highest element followed by potassium (38.8 mM) and phosphorous (24 mM). Magnesium and sulfur were also abundant and their concentrations were 15 and 9 mM, respectively. The rest of the elements were found in low amounts (flavonoids. In addition, several hydroxycinnamates were detected. The results of this study will increase our knowledge about the nature and the chemical composition of citrus phloem sap. PMID:27171979

  16. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  17. Isocyanides Derived from α,α-Disubstituted Amino Acids: Synthesis and Antifouling Activity Assessment.

    Science.gov (United States)

    Inoue, Yuki; Takashima, Shuhei; Nogata, Yasuyuki; Yoshimura, Erina; Chiba, Kazuhiro; Kitano, Yoshikazu

    2018-03-01

    Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α-disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC 50 values of 0.07 - 7.30 μg/mL after 120-h exposure. The lowest EC 50 values were observed for valine-, methionine-, and phenylalanine-derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  18. [Synthesis and physico-chemical characterisation of some new derivatives of rutoside and clofibric acid].

    Science.gov (United States)

    Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh

    2006-01-01

    Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.

  19. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  20. Myrsinoic A acid and its derivative: in vitro inhibitors of photosynthesis

    International Nuclear Information System (INIS)

    Burger, Marcela Carmen de M.; Oliveira, Gracielle S. de; Menezes, Antonio Carlos S.; Vieira, Paulo Cezar; Silva, Maria Fatima das G.F. da; Veiga, Thiago A.M.

    2012-01-01

    Myrsinoic A acid, isolated from Myrsine cuneifolia and its hydrogenated derivative had their effect on photosynthesis tested. The compounds inhibited the electron flow (basal, phosphorylating and uncoupled) from water to methyl viologen; therefore, they act as Hill reaction inhibitors in spinach thylakoids. They inhibited partial reactions of PSII electron flow from water to 2,5-dichloro-1,4-benzoquinone, from water to sodium silicomolybdate, and partially electron flow from diphenylcarbazide to 2,6-dichloroindophenol. Their inhibition sites were at the donor and acceptor sides of PSII, between P 680 and Q A . Chlorophyll α fluorescence measurements confirmed the behavior of the compounds (pool of quinones). (author)

  1. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder.

    Science.gov (United States)

    Zhao, Jianping; Khan, Shabana I; Wang, Mei; Vasquez, Yelkaira; Yang, Min Hye; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Smillie, Troy J; Khan, Ikhlas A

    2014-03-28

    Six new octulosonic acid derivatives (1-6) were isolated from the flower heads of Roman chamomile (Chamaemelum nobile). Their structures were elucidated by means of spectroscopic interpretation. The biological activity of the isolated compounds was evaluated toward multiple targets related to inflammation and metabolic disorder such as NAG-1, NF-κB, iNOS, ROS, PPARα, PPARγ, and LXR. Similar to the action of NSAIDs, all the six compounds (1-6) increased NAG-1 activity 2-3-fold. They also decreased cellular oxidative stress by inhibiting ROS generation. Compounds 3, 5, and 6 activated PPARγ 1.6-2.1-fold, while PPARα was activated 1.4-fold by compounds 5 and 6 only. None of the compounds showed significant activity against iNOS or NF-κB. This is the first report of biological activity of octulosonic acid derivatives toward multiple pathways related to inflammation and metabolic disorder. The reported anti-inflammatory, hypoglycemic, antiedemic, and antioxidant activities of Roman chamomile could be partly explained as due to the presence of these constituents.

  2. Biological activity of some novel synthesized 2-(4-methylbenzenesulphonamidopentanedioic acid bis amide derivatives: In vitro and in vivo antineoplastic activity

    Directory of Open Access Journals (Sweden)

    Satyajit Dutta

    2014-12-01

    Full Text Available In the present work few novel 2-(4-methylbenzenesulphonamidopentanedioic acid bis amide derivatives and the basic compound 2-(4-methylphenylsulfonamidopentanedioic acid have been synthesized, characterized and screened for their possible antineoplastic activity both in vitro and in vivo. The in vitro activity was performed against five human cell lines like human breast cancer (MCF-7, leukemia (K-562, ovarian cancer (OVACAR-3, human colon adenocarcinoma (HT-29 and Human kidney carcinoma (A-498. The in vivo activity was performed in female swiss albino mice against Ehrlich ascites carcinoma (EAC. Among the synthesized compounds, ureide, anilide, p-nitoanilide and o-bromoanilide derivatives of 2-(4-methyl benzene sulphonyl-pentanedioic acid bis amides showed encouraging activity in both the in vitro and in vivo compared to other compounds.

  3. Regioselective dimerization of ferulic acid in a micellar solution

    DEFF Research Database (Denmark)

    Larsen, E; Andreasen, Mette Findal; Christensen, L P

    2001-01-01

    Dehydrodimers of hydroxycinnamates play an important role in the cross-linking of plant cell walls. An aqueous solution of quaternary ammonium salts with a long aliphatic chain is known to spontaneously organize itself into micelles with the ionic part at the outer sphere. It is shown...

  4. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    Science.gov (United States)

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1

    DEFF Research Database (Denmark)

    Rist, Oystein; Grimstrup, Marie; Receveur, Jean-Marie

    2009-01-01

    Structure-activity relationships of three related series of 4-phenylthiazol-5-ylacetic acids, derived from two hits emanating from a focused library obtained by in silico screening, have been explored as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists....... Several compounds with double digit nanomolar binding affinity and full antagonistic efficacy for human CRTH2 receptor were obtained in all subclasses. The most potent compound was [2-(4-chloro-benzyl)-4-(4-phenoxy-phenyl)-thiazol-5-yl]acetic acid having an binding affinity of 3.7nM and functional...

  6. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-04-01

    Full Text Available The radical-scavenging activities of two thiols, eight (thiobarbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN and monitored by differential scanning calorimetry (DSC. The induction period (IP for the thiols 2-mercaptoethanol (ME and 2-mercapto-1-methylimidazole (MMI was about half that for phenolic antioxidants. Except for the potent inhibitor 5,5-dimethyl-2-thiobarbituric acid (3, the IP for thiobarbituric acid derivatives was about one tenth of that for phenolic antioxidants. The IP for 1,3,5-trimethyl-2-thiobarbituric acid (1 and 5-allyl-1, 3-dimethyl-2-thiobarbituric acid (7 was less than that of the control, possibly due to inhibition by a small amount of atmospheric oxygen in the DSC container. The ratio of the chain inhibition to that of chain propagation (CI/CP for the thiols and thiobarbituric acid compounds except for 1, 3 and 7 was about 10 times greater or greater than that for phenolic compounds. A kinetic chain length (KCL about 10% greater than that of the control was observed for 1, suggesting that 1 had chain transfer reactivity in the polymerization of MMA. The average molecular weight of polymers formed from thiobarbituric acid derivatives is discussed.

  7. Identification of new derivatives of 2-S-glutathionylcaftaric acid in aged white wines by HPLC-DAD-ESI-MS(n).

    Science.gov (United States)

    Cejudo-Bastante, María Jesús; Pérez-Coello, María Soledad; Hermosín-Gutiérrez, Isidro

    2010-11-10

    Glutathione, a natural occurring antioxidant, is a thiol-containing peptide present in grape must and wine. It is able to regenerate the o-diphenol group of enzymatically oxidized trans-caftaric acid, giving rise to 2-S-glutathionyl-trans-caftaric acid (also known as grape reaction product, GRP) and thus inhibiting the browning of wine. The amount of GRP present in a wine provides information on the oxidation history of the wine over its elaboration and aging. GRP has been proved to suffer hydrolysis in model solutions and wines. To know the actual content of glutathione involved in white wine browning inhibition as GRP, the GRP-derived products have been studied in 1-year-aged white wines by HPLC-DAD-ESI-MS(n). Online UV-vis spectra and pseudomolecular ions [(M + H)(+)] obtained by LC-MS supported the formation of some of the expected GRP hydrolysis products, mainly 2-S-glutathionyl-trans-caffeic acid (trans-GSCf), together with minor 2-S-(cysteinylglycyl)-trans-caftaric acid, 2-S-(γ-glutamylcysteinyl)-trans-caftaric acid, and 2-S-cysteinyl-trans-caftaric acid. On the basis of UV-vis and LC-MS(2) spectra, new GRP derivatives in aged white wines have been tentatively characterized for the first time as three monoethyl esters of GRP (GRP-Et) and also the cis isomers of GRP, GSCf, and some of the GRP-Et.

  8. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride-modified hyaluronic acid derivatives

    DEFF Research Database (Denmark)

    Eenschooten, Corinne Diane; Guillaumie, Fanny; Kontogeorgis, Georgios

    2010-01-01

    and structurally characterised by Fourier transform-infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (1H NMR). The influence of four reaction parameters on the DS of the derivatives was studied by means of an experimental design. The results showed that the OSA/HA molar ratio, the buffer......The purpose of the present study was to prepare amphiphilic hyaluronic acid (HA) derivatives and to study the influence of a selection of reaction parameters on the degree of substitution (DS) of the derivatives. Octenyl succinic anhydride (OSA)–modified HA (OSA–HA) derivatives were prepared...... (NaHCO3) concentration and their interaction had the largest influence while the HA concentration and the reaction time only had a negligible effect. According to 1H NMR the maximum DS achieved within the experimental conditions tested was 43% per disaccharide unit. Moreover optimal reaction...

  9. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    Science.gov (United States)

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  10. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  11. Phenolics content and antioxidant capacity of commercial red fruit juices

    Directory of Open Access Journals (Sweden)

    Mitić Milan N.

    2011-01-01

    Full Text Available The content of phenolics: total phenols (TP, flavonoids (TF, anthocyanins (TA and hydroxicinnamic acid as well as the total antioxidant capacity (TAC in nine commercial red fruit juices (sour cherry, black currant, red grape produced in Serbia were evaluated. The total compounds content was measured by spectrophotometric methods, TAC was determined using DPPH assays, and individual anthocyanins and hydroxycinnamic acids was determined using HPLC-DAD methods. Among the examined fruit juices, the black currant juices contained the highest amounts of all groups of the phenolics and exhibited strong antioxidant capacity. The amount of anthocyanins determined by HPLC method ranged from 92.36 to 512.73 mg/L in red grape and black currant juices, respectively. The anthocyanins present in the investigated red fruit juices were derivatives of cyanidin, delphinidin, petunidin, peonidin and malvidin. The predominant phenolic acid was neoclorogenic acid in sour cherry, caffeic acid in black currant, and p-coumaric acid in black grape juices. Generally, the red fruit juices produced in the Serbia are a rich source of the phenolic, which show evident antioxidant capacity.

  12. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G

    Directory of Open Access Journals (Sweden)

    Andreas Koeberle

    2018-02-01

    Full Text Available Age-related diseases, such as osteoarthritis, Alzheimer’s disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO pathway. Boswellic acids (BAs are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  13. Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G.

    Science.gov (United States)

    Koeberle, Andreas; Henkel, Arne; Verhoff, Moritz; Tausch, Lars; König, Stefanie; Fischer, Dagmar; Kather, Nicole; Seitz, Stefanie; Paul, Michael; Jauch, Johann; Werz, Oliver

    2018-02-24

    Age-related diseases, such as osteoarthritis, Alzheimer's disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.

  14. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis.

    Science.gov (United States)

    Sun, Lin; Li, Bin; Su, Xiaohui; Chen, Ge; Li, Yaqin; Yu, Linqian; Li, Li; Wei, Wanguo

    2017-08-10

    Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.

  15. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    Science.gov (United States)

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  16. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  17. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    Science.gov (United States)

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  18. Determination and confirmation of nicotinic acid and its analogues and derivates in pear and apple blossoms using high-performance liquid chromatography-diode array-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Paternoster, Thomas; Vrhovsek, Urska; Pertot, Ilaria; Duffy, Brion; Gessler, Cesare; Mattivi, Fulvio

    2009-11-11

    Erwinia amylovora causes fire blight, a serious disease of apple and pear. The bacterial pathogen colonizes the flower stigma and hypanthium, where it multiplies and then invades through natural openings (nectarthodes). E. amylovora requires nicotinic acid as growth factor, and competition for nicotinic acid is being explored as a novel biocontrol strategy. The ability of E. amylovora to substitute nicotinic acid with analogues or derivates as growth factors has not been investigated yet. Furthermore, the presence and/or variable concentration of nicotinic acid and its analogues/derivates in the hypanthium could be associated with the different susceptibilities to fire blight of hosts and nonhosts and with the differential sensitivity to the disease among apple and pear varieties. Currently, no methods to specifically quantify nicotinic acid and nicotinic acid analogues/derivates in the hypanthium of apple and pear blossoms are available. This study demonstrates that E. amylovora can grow using nicotinamide and 6-hydroxynicotinic acid as alternative growth factors to nicotinic acid, but not using 2-hydroxynicotinic acid. A novel HPLC/ES-MS method was developed for the detection and quantification of nicotinic acid and its analogues/derivates directly in the hypanthium of apple and pear blossoms. Analyses established the presence of nicotinic acid and nicotinamide, whereas no detectable amounts of 6-hydroxynicotinic acid and 2-hydroxynicotinic acid were observed. Mean nicotinic acid content in the pear hypanthium was found to be approximately 2 orders of magnitude higher than in the apple hypanthium, which may contribute to the differential susceptibility of these two host species to fire blight. Contents of nicotinamide were in contrast similar. Nicotinic acid can therefore be considered a relevant factor in the pathogen establishment in pear blossoms, whereas nicotinamide could cover a primary role in apple blossoms.

  19. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  20. Influence of the temperature and oxygen exposure in red Port wine: A kinetic approach.

    Science.gov (United States)

    Oliveira, Carla Maria; Barros, António S; Silva Ferreira, António César; Silva, Artur M S

    2015-09-01

    Although phenolics are recognized to be related with health benefits by limiting lipid oxidation, in wine, they are the primary substrates for oxidation resulting in the quinone by-products with the participation of transition metal ions. Nevertheless, high quality Port wines require a period of aging in either bottle or barrels. During this time, a modification of sensory properties of wines such as the decrease of astringency or the stabilization of color is recognized to phenolic compounds, mainly attributed to anthocyanins and derived pigments. The present work aims to illustrate the oxidation of red Port wine based on its phenolic composition by the effect of both thermal and oxygen exposures. A kinetic approach toanthocyanins degradation was also achieved. For this purpose a forced red Port wine aging protocol was performed at four different storage temperatures, respectively, 20, 30, 35 and 40°C, and two adjusted oxygen saturation levels, no oxygen addition (treatment I), and oxygen addition (treatment II). Three hydroxycinnamic esters, three hydroxycinnamic acids, three hydroxybenzoic acids, two flavan-3-ols, and six anthocyanins were quantitated weekly during 63days, along with oxygen consumption. The most relevant phenolic oxidation markers were anthocyanins and catechin-type flavonoids, which had the highest decreases during the thermal and oxidative red Port wine process. Both temperature and oxygen treatments affected the rate of phenolic degradation. In addition, temperature seems to influence mostly the phenolics kinetic degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. OxymaPure/DIC: An Efficient Reagent for the Synthesis of a Novel Series of 4-[2-(2-Acetylaminophenyl-2-oxo-acetylamino] Benzoyl Amino Acid Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Ayman El-Faham

    2013-11-01

    Full Text Available OxymaPure (ethyl 2-cyano-2-(hydroxyiminoacetate was tested as an additive for use in the carbodiimide (DIC approach for the synthesis of a novel series of α-ketoamide derivatives (4-[2-(2-acetylaminophenyl-2-oxo-acetylamino]benzoyl amino acid ester derivatives. OxymaPure showed clear superiority to HOBt/DIC or carbodiimide alone in terms of purity and yield. The title compounds were synthesized via the ring opening of N-acylisatin. First, N-acetylisatin was reacted with 4-aminobenzoic acid under conventional heating as well as microwave irradiation to afford 4-(2-(2-acetamidophenyl-2-oxoacetamidobenzoic acid. This α-ketoamide was coupled to different amino acid esters using OxymaPure/DIC as a coupling reagent to afford 4-[2-(2-acetylaminophenyl-2-oxo-acetylamino]benzoyl amino acid ester derivatives in excellent yield and purity. The synthesized compounds were characterized using FT-IR, NMR, and elemental analysis.

  2. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.).

    Science.gov (United States)

    Zheng, Zhenjia; Wang, Xiao; Liu, Pengli; Li, Meng; Dong, Hongjing; Qiao, Xuguang

    2018-02-15

    Burdock roots are healthy dietary supplements and a kind of famous traditional Chinese medicine, which contains large amounts of caffeoylquinic acid derivatives. However, little research has been reported on the preparative separation of these compounds from burdock roots. In the present study, a combinative method of HSCCC and semi-preparative HPLC was developed for the semi-preparative separation of caffeoylquinic acid derivatives from the burdock roots. The ethyl acetate extract of burdock roots was first fractionated by MCI macroporous resin chromatography and give three fractions (Fr. 1-3) from the elution of 40% methanol. Then, these three fractions (120 mg) were separately subjected to HSCCC for purification with the solvent system composed of petroleum ether-ethyl acetate-methanol-water at different volume ratios, and the mixtures were further purified by semi-preparative HPLC. As a result, a total of eight known caffeoylquinic acid derivatives including 3- O -caffeoylquinic acid (32.7 mg, 95.7%), 1,5- O - dicaffeoylquinic acid (4.3 mg, 97.2%), 3- O -caffeoylquinic acid methyl ester (12.1 mg, 93.2%), 1,3- O -dicaffeoylquinic acid (42.9 mg, 91.1%), 1,5- O -dicaffeoyl-3- O -(4-maloyl)-quinic acid (4.3 mg, 84.5%), 4,5- O -dicaffeoylquinic acid (5.3 mg, 95.5%), 1,5- O -dicaffeoyl-3- O -succinylquinic acid (8.7 mg, 93.4%), and 1,5- O -dicaffeoyl-4- O -succinylquinic acid (1.7 mg, 91.8%), and two new compounds were obtained. The new compounds were 1,4- O -dicaffeoyl-3-succinyl methyl ester quinic acid (14.6 mg, 96.1%) and 1,5- O -dicaffeoyl-3- O -succinyl methyl ester quinic acid (3.1 mg, 92.6%), respectively. The research indicated that the combination of HSCCC and semi-preparative HPLC is a highly efficient approach for preparative separation of the instability and bioactive caffeoylquinic acid derivatives from natural products.

  3. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells.

    Science.gov (United States)

    Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2010-08-01

    In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.

  4. Modulation of neurotrophic signaling pathways by polyphenols

    Directory of Open Access Journals (Sweden)

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  5. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Mitomo, H.; Yoshii, F.

    2006-01-01

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu 2

  6. Characterization and antioxidant activity of gallic acid derivative

    Science.gov (United States)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  7. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    Science.gov (United States)

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Design and Synthesis of Bis-amide and Hydrazide-containing Derivatives of Malonic Acid as Potential HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nouri Neamati

    2008-10-01

    Full Text Available HIV-1 integrase (IN is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site.

  9. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; Keiser, James R.

    2018-01-01

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.

  10. A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices.

    Science.gov (United States)

    Ferreira, Paula Scanavez; Victorelli, Francesca Damiani; Fonseca-Santos, Bruno; Chorilli, Marlus

    2018-05-14

    p-Coumaric acid (p-CA), also known as 4-hydroxycinnamic acid, is a phenolic acid, which has been widely studied due to its beneficial effects against several diseases and its wide distribution in the plant kingdom. This phenolic compound can be found in the free form or conjugated with other molecules; therefore, its bioavailability and the pathways via which it is metabolized change according to its chemical structure. p-CA has potential pharmacological effects because it has high free radical scavenging, anti-inflammatory, antineoplastic, and antimicrobial activities, among other biological properties. It is therefore essential to choose the most appropriate and effective analytical method for qualitative and quantitative determination of p-CA in different matrices, such as plasma, urine, plant extracts, and drug delivery systems. The most-reported analytical method for this purpose is high-performance liquid chromatography, which is mostly coupled with some type of detectors, such as UV/Vis detector. However, other analytical techniques are also used to evaluate this compound. This review presents a summary of p-CA in terms of its chemical and pharmacokinetic properties, pharmacological effects, drug delivery systems, and the analytical methods described in the literature that are suitable for its quantification.

  11. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum Crude Seeds by HPLC–DAD–ESI/MS Analysis

    Directory of Open Access Journals (Sweden)

    Zakia Benayad

    2014-11-01

    Full Text Available Fenugreek (Trigonella foenum-graecum is a medicinal plant which is widely used for its pharmacological properties. In this study the phenolic composition of fenugreek crude seeds originating from Morocco has been investigated. Extraction was performed from defatted seeds by a hydromethanolic solution using an Accelerated Solvent Extractor. HPLC technique coupled to negative ion electrospray ionization mass spectrometry and diode array detection was employed to identify the polyphenol in the obtained extract. The obtained results allowed the detection of 32 phenolic compounds among which various flavonoid glycosides and phenolic acids have been tentatively identified on the basis of their UV and MS spectra, and comparisons with standards when available, as well as with literature data. A systematic study of the obtained MS spectra and the observed fragmentation showed that most of the identified compounds were acylated and non-acylated flavonoids with apigenin, luteolin and kaempferol as aglycons. Hydroxycinnamic acids mostly dominated by caffeic acid derivatives were also detected. The quantitative analysis of the identified compounds showed that the phenolic composition of the studied crude fenugreek seeds was predominantly acylated and non-acylated flavone derivatives with apigenin as the main aglycon.

  12. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Crude Seeds by HPLC–DAD–ESI/MS Analysis

    Science.gov (United States)

    Benayad, Zakia; Gómez-Cordovés, Carmen; Es-Safi, Nour Eddine

    2014-01-01

    Fenugreek (Trigonella foenum-graecum) is a medicinal plant which is widely used for its pharmacological properties. In this study the phenolic composition of fenugreek crude seeds originating from Morocco has been investigated. Extraction was performed from defatted seeds by a hydromethanolic solution using an Accelerated Solvent Extractor. HPLC technique coupled to negative ion electrospray ionization mass spectrometry and diode array detection was employed to identify the polyphenol in the obtained extract. The obtained results allowed the detection of 32 phenolic compounds among which various flavonoid glycosides and phenolic acids have been tentatively identified on the basis of their UV and MS spectra, and comparisons with standards when available, as well as with literature data. A systematic study of the obtained MS spectra and the observed fragmentation showed that most of the identified compounds were acylated and non-acylated flavonoids with apigenin, luteolin and kaempferol as aglycons. Hydroxycinnamic acids mostly dominated by caffeic acid derivatives were also detected. The quantitative analysis of the identified compounds showed that the phenolic composition of the studied crude fenugreek seeds was predominantly acylated and non-acylated flavone derivatives with apigenin as the main aglycon. PMID:25393509

  13. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    Science.gov (United States)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  14. Synthesis of new oxovanadium (IV) complexes of potential insulinmimetic activity with coumarin-3-carboxylic acid ligands and substituted derivatives

    International Nuclear Information System (INIS)

    Salas Fernandez, Paloma; Alvino de la Sota, Nora; Galli Rigo-Righi, Carla

    2013-01-01

    This work comprises the design and synthesis of four new oxovanadium (IV) complexes, a metal which possesses insulin-mimetic action. Coumarin-3-carboxylic acid and three of its 6 -and 6,8- derivatives were used as ligands. Coumarins are of interest due to their well-known biological properties and pharmacological applications; these include the insulino-sensibilizing effect of certain alcoxy-hydroxy-derivatives which might lead to the eventual existence of a synergetic effect with the active metal center. The synthesis of the vanadyl complexes was preceded by the synthesis of the coumarin-3-carboxylic acid and its 6-bromo- derivative, as well as the syntheses of three derivatives not previously reported: 6-bromo-8-metoxi-, 6-bromo-8-nitro-, and 6-bromo-8-hydroxy-, which were prepared by a Knoevenagel condensation reaction. The complexes, on their part, were prepared by a metathesis reaction between VOSO 4 and the corresponding ligands, on the basis of methods reported for other vanadyl complexes and under strict pH control. The coumarin-3-carboxylic ligands and the derivatives were characterized by 1 H-NMR-, FTIR- and UV-Vis-spectroscopy. In the case of the complexes, their paramagnetic character did not allow for NMR characterization, being thus identified by FT-IR-spectroscopy and by the quantitative determination of their vanadium contents. (author)

  15. An evaluation of the physiological activity of 9-amine-9-fluorenephosphonic acid derivatives

    Directory of Open Access Journals (Sweden)

    Henryk Skrabka

    2013-12-01

    Full Text Available The physiological activity of eleven 9-amine-9-fluorenephosphonic acid derivatives, synthesized at the Wrocław Polytechnic, was examined. The test plant was Spirodela oligorrhiza. The effect of these compounds on the increase of the dry matter of this plant was tested in eight-day experiments. The activity of the compounds was varied. The most toxic were nos. 2, 4, 9, 8, 5 and 6 which were lethal in low concentrations. Somewhat less toxic were nos. 7, 10 and 11; nos. 1 and 3 were the least toxic.

  16. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis

    Science.gov (United States)

    Plakortide F acid (PFA) is a marine-derived polyketide endoperoxide exhibiting strong inhibitory activity against several clinically important fungal pathogens. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Sacch...

  17. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins.

    Science.gov (United States)

    Taheri, Rod; Connolly, Bryan A; Brand, Mark H; Bolling, Bradley W

    2013-09-11

    Polyphenols from underutilized black, purple, and red aronia (Aronia melanocarpa, Aronia prunifolia, and Aronia arbutifolia) and 'Viking' (Aronia mitschurinii) berries were characterized. Anthocyanin and nonanthocyanin flavonoids were quantitated by UHPLC-DAD-MS and proanthocyanidins by normal-phase HPLC. On a dry weight basis, anthocyanins were mainly cyanidin-3-galactoside, highest in black aronia (3.4-14.8 mg/g) and lowest in red aronia (0.5-0.8 mg/g) as cyandin-3-galactoside equivalents. Berries from 'Viking' and the red accession UC021 had substantially more proanthocyanidins than the other accessions, with 3.3 and 3.8 mg catechin equiv/g, respectively. Chlorogenic acids and quercetin glycosides were most abundant in purple UC047 berries, at 17.3 and 1.3 mg/g, respectively. In contrast to anthocyanin content, total phenol values were highest in berries from red and purple accessions and attributed to phenolic acid and proanthocyanin content. Thus, red, purple, and black aronia berries are rich sources of polyphenols with various levels of polyphenol classes.

  18. α-Amino Acid Derived Benzimidazole-Linked Rhodamines: A Case of Substitution Effect at the Amino Acid Site toward Spiro Ring Opening for Selective Sensing of Al3+ Ions.

    Science.gov (United States)

    Majumdar, Anupam; Mondal, Subhendu; Daniliuc, Constantin G; Sahu, Debashis; Ganguly, Bishwajit; Ghosh, Sourav; Ghosh, Utpal; Ghosh, Kumaresh

    2017-08-07

    α-Amino acid derived benzimidazole-linked rhodamines have been synthesized, and their metal ion sensing properties have been evaluated. Experimentally, l-valine- and l-phenylglycine-derived benzimidazole-based rhodamines 1 and 2 selectively recognize Al 3+ ion in aqueous CH 3 CN (CH 3 CN/H 2 O 4/1 v/v, 10 mM tris HCl buffer, pH 7.0) over the other cations by exhibiting color and "turn-on" emission changes. In contrast, glycine-derived benzimidazole 3 remains silent in the recognition event and emphasizes the role of α-substitution of amino acid undertaken in the design. The fact has been addressed on the basis of the single-crystal X-ray structures and theoretical calculations. Moreover, pink 1·Al 3+ and 2·Al 3+ ensembles selectively sensed F - ions over other halides through a discharge of color. Importantly, compounds 1 and 2 are cell permeable and have been used as imaging reagents for the detection of Al 3+ uptake in human lung carcinoma cell line A549.

  19. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  20. Synthesis of antipodal β-trisubstituted meso-tetraphenylporphyrins ...

    Indian Academy of Sciences (India)

    hydroxycinnamic acid as the matrix under positive ion mode condition. Elemen- tal analysis of the samples was performed on a Perkin. Elmer CHNO/S analyzer model 2400 series. Single crystal X-ray diffraction data collection was performed.

  1. On complex compounds of molybdenum(5) with nicotinic amide, isonicotinic acid hydrazide and some of its derivatives

    International Nuclear Information System (INIS)

    Azizov, M.M.; Kushakbaev, A.; Parpiev, N.A.

    1977-01-01

    Oxychloride complexes of molybdenum (5) with polyfunctional ligands (L), namely with nicotinamide (NA), isonicotinic acid hydrazide (INH) and its derivatives (ftivazide, saluzide and larusan) have been synthesized and investigated. In ethanol all the ligands independently of their molar ratio form with MoCl 5 a non-electrolite compound MoOCl 3 xL 2 . Infrared spectra of the complexes suggest that in Mo(5) complexeS with NA and INH the central atom is bound through the pyridine nitrogen, whereas in the complexes with INH derivatives it is bound throught the carbonyl group oxygen

  2. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    Science.gov (United States)

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties.

    Science.gov (United States)

    Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo

    2016-12-01

    Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Abscisic acid and the accumulation, biological activity and metabolism of four derivatives of [3H] gibberellin A1 in barley aleurone layers

    International Nuclear Information System (INIS)

    Stolp, C.F.; Nadeau, R.; Rappaport, L.

    1977-01-01

    Tritiated GA 1 and four of its synthetic derivatives were studied in relation to their biological activity, uptake and metabolism by barley alcurone layers. Incubation was done in the presence and absence of abscisic acid (ABA). Tentative identification of some of the metabolites was made by TLC and GLC radiocounting of the metabolite and its acid hydrolyzed derivative. Only GA 1 promoted α-amylase synthesis. Uptake ranged from 20 to 42%, varying with the derivative. ABA enhanced uptake of [ 3 H] GA 1 and [ 3 H] pseudoGA 1 and inhibited uptake of [ 3 H] ketoGA 1 , the Wagner-Meerwein rearrangement product of [ 3 H]GA 1 . Uptake of [ 3 H] GA 1 methyl ester ([ 3 H] GA 1 -Me) and [ 3 H] dihydroGA 1 was unaffected by ABA. [ 3 H] GA 1 was converted to an amphoteric GA 1 derivative [ 3 H] amphoGA 1 ) and [ 3 H] GA 1 -glycosyl ester. GA 1 -Me was metabolized to four products, all of them GA 1 derivatives including an apparent amphoteric GA 1 derivative. DihydroGA 1 was quite stable; only one metabolite was produced in sufficient yield to analyze. This product did not cochromatograph with either of the expected acid hydrolyzed epimers of [ 3 H] - dihydroGA 1 . [ 3 H] ketoGA 1 was readily metabolized to one product, probably the glycoside. [ 3 H] pseudoGA 1 remained essentially unmetabolized. Metabolism of all compounds tested was not dramatically affected by ABA. Surprisingly, no metabolites from hydroxylation at the 2-position were found. (auth.)

  6. Sesquiterpenes, flavonoids, shikimic acid derivatives and pyrrolizidine alkaloids from Senecio kingii Hook.

    Science.gov (United States)

    Ruiz-Vásquez, Liliana; Reina, Matías; López-Rodríguez, M; Giménez, Cristina; Cabrera, Raimundo; Cuadra, Pedro; Fajardo, Víctor; González-Coloma, Azucena

    2015-09-01

    Twenty-four compounds including eleven eremophilanolides (1-11), one eremophilane (13), five shikimic acid derivatives (14-18), six flavonoids (19-24), and the macrocyclic unsaturated pyrrolizidine alkaloid integerrimine (25) were isolated from Senecio kingii, an endemic species from the Magallanes Region (Chile). Compounds 3, 5, 6, 8-11 and 13-18 have not been previously reported as natural products. Their molecular structures were determined by NMR spectroscopic analysis and comparison with published NMR data. An X-ray-analysis of compound 3 has been performed. Their insecticidal and antifungal activities were tested, being compound 3 the strongest insect antifeedant. Compounds 6, 9 and 18 were moderate antifungals. Published by Elsevier Ltd.

  7. Dehydroabietic Acid Derivative QC4 Induces Gastric Cancer Cell Death via Oncosis and Apoptosis

    Directory of Open Access Journals (Sweden)

    Dongjun Luo

    2016-01-01

    Full Text Available Aim. QC4 is the derivative of rosin’s main components dehydroabietic acid (DHA. We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death. Methods. The cytotoxic effect of QC4 on gastric cancer cells was evaluated by CCK-8 assay and flow cytometry. The underlying mechanisms were tested by administration of cell death related inhibitors and detection of apoptotic and oncosis related proteins. Cytomembrane integrity and organelles damage were confirmed by lactate dehydrogenase (LDH leakage assay, mitochondrial function test, and cytosolic free Ca2+ concentration detection. Results. QC4 inhibited cell proliferation dose- and time-dependently and destroyed cell membrane integrity, activated calpain-1 autolysis, and induced apoptotic protein cleavage in gastric cancer cells. The detection of decreased ATP and mitochondrial membrane potential, ROS accumulation, and cytosolic free Ca2+ elevation confirmed organelles damage in QC4-treated gastric cancer cells. Conclusions. DHA derivative QC4 induced the damage of cytomembrane and organelles which finally lead to oncosis and apoptosis in gastric cancer cells. Therefore, as a derivative of plant derived small molecule DHA, QC4 might become a promising agent in gastric cancer therapy.

  8. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities.

    Science.gov (United States)

    Carvalho, Ana Rita; Costa, Gustavo; Figueirinha, Artur; Liberal, Joana; Prior, João A V; Lopes, Maria Celeste; Cruz, Maria Teresa; Batista, Maria Teresa

    2017-09-01

    Urtica dioica and other less studied Urtica species (Urticaceae) are often used as a food ingredient. Fifteen hydroxycinnamic acid derivatives and sixteen flavonoids, flavone and flavonol-type glycosides were identified in hydroalcoholic extracts from aerial parts of Urtica dioica L., Urtica urens L. and Urtica membranacea using HPLC-PDA-ESI/MS n . Among them, the 4-caffeoyl-5-p-coumaroylquinic acid and three statin-like 3-hydroxy-3-methylglutaroyl flavone derivatives were identified for the first time in Urtica urens and U. membranacea respectively. Urtica membranacea showed the higher content of flavonoids, mainly luteolin and apigenin C-glycosides, which are almost absent in the other species studied. In vitro, Urtica dioica exhibited greater antioxidant activity but Urtica urens exhibited stronger anti-inflammatory potential. Interestingly, statin-like compounds detected in Urtica membranacea have been associated with hypocholesterolemic activity making this plant interesting for future investigations. None of the extracts were cytotoxic to macrophages and hepatocytes in bioactive concentrations (200 and 350μg/mL), suggesting their safety use in food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phenolic Profiling of the South American “Baylahuen” Tea (Haplopappus spp., Asteraceae by HPLC-DAD-ESI-MS

    Directory of Open Access Journals (Sweden)

    Guillermo Schmeda-Hirschmann

    2015-01-01

    Full Text Available The aerial parts of several Haplopappus species (Asteraceae, known under the common name “baylahuen”, are used as herbal teas in Chile and Argentina. In Chile, “baylahuen” comprises H. multifolius, H. taeda, H. baylahuen and H. rigidus. Little is known about the chemical identity of the infusion constituents in spite of widespread consumption. The aim of the present work was the characterization of phenolics occurring in the infusions and methanol extracts of “baylahuen” by HPLC-DAD-ESI-MS. A simple HPLC-DAD-ESI-MS method was developed for the fast identification and differentiation of Haplopappus spp. used as a tea source, based on the phenolics from the tea and methanol extracts. Some 27 phenolics were tentatively identified in the infusions and methanol extract, including 10 caffeoyl quinic and feruloyl quinic acid derivatives and 17 flavonoids. The HPLC patterns of the Haplopappus tea and methanol extract allow a clear differentiation at the species level. The occurrence of hydroxycinnamic acid derivatives and flavonoids can explain the reputed nutraceutical and health beneficial properties of this herbal tea.

  10. Self-assembling properties of lactic acid derivative with several ester linkages in the molecular core

    Czech Academy of Sciences Publication Activity Database

    Pramanik, A.; Das, M.K.; Das, B.; Hamplová, Věra; Kašpar, Miroslav; Bubnov, Alexej

    2015-01-01

    Roč. 88, č. 7 (2015), s. 745-757 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007 Grant - others:AVČR(CZ) M100101204; AV ČR(CZ) M100101211 Institutional support: RVO:68378271 Keywords : lactic acid derivative * ferroelectric liquid crystal * self-assembling * spontaneous polarization * birefringence * phase transition Subject RIV: JJ - Other Materials Impact factor: 0.858, year: 2015

  11. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.

    Directory of Open Access Journals (Sweden)

    Zhenjia Zheng

    2018-02-01

    Full Text Available Burdock roots are healthy dietary supplements and a kind of famous traditional Chinese medicine, which contains large amounts of caffeoylquinic acid derivatives. However, little research has been reported on the preparative separation of these compounds from burdock roots. In the present study, a combinative method of HSCCC and semi-preparative HPLC was developed for the semi-preparative separation of caffeoylquinic acid derivatives from the burdock roots. The ethyl acetate extract of burdock roots was first fractionated by MCI macroporous resin chromatography and give three fractions (Fr. 1–3 from the elution of 40% methanol. Then, these three fractions (120 mg were separately subjected to HSCCC for purification with the solvent system composed of petroleum ether-ethyl acetate-methanol-water at different volume ratios, and the mixtures were further purified by semi-preparative HPLC. As a result, a total of eight known caffeoylquinic acid derivatives including 3-O-caffeoylquinic acid (32.7 mg, 95.7%, 1,5-O- dicaffeoylquinic acid (4.3 mg, 97.2%, 3-O-caffeoylquinic acid methyl ester (12.1 mg, 93.2%, 1,3-O-dicaffeoylquinic acid (42.9 mg, 91.1%, 1,5-O-dicaffeoyl-3-O-(4-maloyl-quinic acid (4.3 mg, 84.5%, 4,5-O-dicaffeoylquinic acid (5.3 mg, 95.5%, 1,5-O-dicaffeoyl-3-O-succinylquinic acid (8.7 mg, 93.4%, and 1,5-O-dicaffeoyl-4-O-succinylquinic acid (1.7 mg, 91.8%, and two new compounds were obtained. The new compounds were 1,4-O-dicaffeoyl-3-succinyl methyl ester quinic acid (14.6 mg, 96.1% and 1,5-O-dicaffeoyl-3-O-succinyl methyl ester quinic acid (3.1 mg, 92.6%, respectively. The research indicated that the combination of HSCCC and semi-preparative HPLC is a highly efficient approach for preparative separation of the instability and bioactive caffeoylquinic acid derivatives from natural products.

  12. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    Science.gov (United States)

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  13. Photo-cross-linked poly(thioether-co-carbonate) networks derived from the natural product quinic acid.

    Science.gov (United States)

    Link, Lauren A; Lonnecker, Alexander T; Hearon, Keith; Maher, Cameron A; Raymond, Jeffery E; Wooley, Karen L

    2014-10-22

    Polycarbonate networks derived from the natural product quinic acid that can potentially return to their natural building blocks upon hydrolytic degradation are described herein. Solvent-free thiol-ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid and a variety of multifunctional thiol monomers to obtain poly(thioether-co-carbonate) networks with a wide range of achievable thermomechanical properties including glass transition temperatures from -18 to +65 °C and rubbery moduli from 3.8 to 20 MPa. The network containing 1,2-ethanedithiol expressed an average toughness at 25 and 63 °C of 1.08 and 2.35 MJ/m(3), respectively, and an order-of-magnitude increase in the average toughness at 37 °C of 15.56 MJ/m(3).

  14. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  15. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a multifactorial age-related disease associated with oxidative stress (OS and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative, and AntiOxBEN2 (pyrogallol derivative and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively, while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively. Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y and human hepatocarcinoma (HepG2 cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  16. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  17. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  18. Association between abnormal myocardial fatty acid metabolism and cardiac-derived death among patients undergoing hemodialysis: results from a cohort study in Japan.

    Science.gov (United States)

    Moroi, Masao; Tamaki, Nagara; Nishimura, Masato; Haze, Kazuo; Nishimura, Tsunehiko; Kusano, Eiji; Akiba, Takashi; Sugimoto, Tokuichiro; Hase, Hiroki; Hara, Kazuhiro; Nakata, Tomoaki; Kumita, Shinichiro; Nagai, Yoji; Hashimoto, Akiyoshi; Momose, Mitsuru; Miyakoda, Keiko; Hasebe, Naoyuki; Kikuchi, Kenjiro

    2013-03-01

    Detecting myocardial ischemia in hemodialysis patients is crucial given the high incidence of silent ischemia and the high cardiovascular mortality rates. Abnormal myocardial fatty acid metabolism as determined by imaging with (123)I-labeled BMIPP (β-methyl iodophenyl-pentadecanoic acid) might be associated with cardiac-derived death in hemodialysis patients. Prospective observational study. Asymptomatic hemodialysis patients with one or more cardiovascular risk factors, but without known coronary artery disease, were followed up for 3 years at 48 Japanese hospitals (406 men, 271 women; mean age, 64 years). Baseline BMIPP summed scores semiquantified using a 17-segment 5-point system (normal, 0; absent, 4). Cardiac-derived death, including cardiac and sudden death. HRs were estimated using a Cox model for associations between BMIPP summed scores and cardiac-derived death, adjusting for potential confounders of age, sex, body mass index, dialysis duration, and cardiovascular risk factors. Rates of all-cause mortality and cardiac-derived death were 18.5% and 6.8%, respectively. Cardiac-derived death (acute myocardial infarction [n = 10], congestive heart failure [n = 13], arrhythmia [n = 2], valvular heart disease [n = 1], and sudden death [n = 20]) accounted for 36.8% of all-cause deaths. Cardiac-derived death (n = 46) was associated with age, history of heart failure, and BMIPP summed scores of 4 or higher (HR, 2.9; P death-free survival rates were 95.7%, 90.6%, and 78.8% when BMIPP summed scores were 3 or lower, 4-8, and 9 or higher, respectively. BMIPP summed score also was a predictor of all-cause death (HR, 1.6; P = 0.009). Sudden death of unknown cause was considered to have been cardiac derived, although a coronary origin was not confirmed. Abnormal myocardial fatty acid metabolism is associated with cardiac-derived death in hemodialysis patients. BMIPP single-proton emission computed tomography appears clinically useful for predicting cardiac-derived death

  19. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  20. Syntheses and structure characterization of ten acid-base hybrid crystals based on imidazole derivatives and mineral acids

    Science.gov (United States)

    Hu, Kaikai; Deng, Bowen; Jin, Shouwen; Ding, Aihua; Jin, Shide; Zhu, Jin; Zhang, Huan; Wang, Daqi

    2018-04-01

    Cocrystallization of the imidazole derivatives with a series of mineral acids gave a total of ten hybrid salts with the compositions: [(H2bzm)(Cl)2·3H2O] (1), [(H2bzm)(ClO4)2] (2), [(H2bze)(Cl)2·2H2O] (3), [(H2bze)(Br)2·2H2O] (4), [(H2bzp)(Cl)2·4H2O] (5), [(H2bzp)(Br)2·4H2O] (6), (2-(imidazol-1-yl)-1-phenylethanone): (phosphoric acid) [(Himpeta)+(H2PO4)-] (7), [(H2impd)(Br)2] (8), [(H2impd)(ClO4)2] (9), and [(Hbzml)(Cl)] (10). The ten salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N atoms of the imidazole are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical H-bonds between the NH+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different set of additional CHsbnd O, CH2sbnd O, CHsbnd Cl, CH2sbnd Cl, CHsbnd N, CHsbnd Br, CH2sbnd Br, Osbnd O, O-π, Br-π, CH-π, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R21(7), R22(7), R22(8), and R42(8), usually observed in the organic solids, were again shown to be involved in constructing some of these H-bonding networks.

  1. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    Science.gov (United States)

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older men after a day of bed rest, the application of NMES prior to presleep protein feeding stimulates the use of

  2. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    Science.gov (United States)

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  3. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  4. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  5. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation.

    Science.gov (United States)

    Moreno, A; Martínez, A; Olmedillas, S; Bello, S; de Miguel, F

    2015-01-01

    To evaluate the in vitro effects of hyaluronic acid (HA) on adipose-derived stem cells (ASC) in order to consider the possibility of their combined used in the treatment of knee arthrosis. The ASC cells were grown both in the presence and absence of AH, and several studies were carried out: proliferation (WST8) and cell viability studies (Alamar Blue® and Trypan Blue), possible chondrogenic differentiation (collagen type 2 expression) by RT-PCR, AH receptor expression (CD44) by flow cytometry and RT-QPCR, and expression of inflammatory and anti-inflammatory factors (IL-6, TGFß, IL-10) by RT-QPCR. The number of ASC significantly increased after 7 days with HA (158±39%, p <0.05). Additionally, the cell viability of the ASC treated with HA after 1, 3, 5 and 7 days was similar to that of the control cells, being considered non-toxic. There were no changes observed in the expression of CD44 and chondrogenic differentiation. TGFß expression was not modified after AH treatment, but there was a 4-fold decrease in IL-6 expression and IL-10 expression increased up to 2-fold compared to control cells. Hyaluronic acid favours ASC proliferation without causing cellular toxicity, and inducing an anti-inflammatory profile in these cells. Hyaluronic acid appears to be a suitable vehicle for the intra-articular administration of mesenchymal stem cells. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  6. High-performance functional ecopolymers based on flora and fauna.

    Science.gov (United States)

    Kaneko, Tatsuo

    2007-01-01

    Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.

  7. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  8. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    Science.gov (United States)

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves

    Directory of Open Access Journals (Sweden)

    Toong Long Jeng

    2015-12-01

    Full Text Available Caffeoylquinic acid (CQA derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight, with the leaves (particularly expanding and first fully expanded leaves containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g, compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern.

  10. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    Science.gov (United States)

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  12. Changes in antioxidant and metabolite profiles during production of tomato paste

    NARCIS (Netherlands)

    Capanoglu, E.; Beekwilder, M.J.; Boyacioglu, D.; Hall, R.D.; Vos, de C.H.

    2008-01-01

    Tomato products and especially concentrated tomato paste are important sources of antioxidants in the Mediterranean diet. Tomato fruit contain well-known antioxidants such as vitamin C, carotenoids, flavonoids, and hydroxycinnamic acids. The industrial processing of this fruit into tomato paste

  13. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  14. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities.

    Science.gov (United States)

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Ko, Wonmin; Kim, Dong-Cheol; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-15

    Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  16. Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition.

    Science.gov (United States)

    Jones, Sara E; Whitehead, Kristi; Saulnier, Delphine; Thomas, Carissa M; Versalovic, James; Britton, Robert A

    2011-01-01

    Although commensal microbes have been shown to modulate host immune responses, many of the bacterial factors that mediate immune regulation remain unidentified. Select strains of human-derived Lactobacillus reuteri synthesize immunomodulins that potently inhibit production of the inflammatory cytokine TNF. In this study, genetic and genomic approaches were used to identify and investigate L. reuteri genes required or human TNF immunomodulatory activity. Analysis of membrane fatty acids from multiple L. reuteri strains cultured in MRS medium showed that only TNF inhibitory strains produced the cyclopropane fatty acid (CFA) lactobacillic acid. The enzyme cyclopropane fatty acid synthase is required for synthesis of CFAs such as lactobacillic acid, therefore the cfa gene was inactivated and supernatants from the cfa mutant strain were assayed for TNF inhibitory activity. We found that supernatants from the wild-type strain, but not the cfa mutant, suppressed TNF production by activated THP-1 human monocytoid cells Although this suggested a direct role for lactobacillic acid in immunomodulation, purified lactobacillic acid did not suppress TNF at physiologically relevant concentrations. We further analyzed TNF inhibitory and TNF non-inhibitory strains under different growth conditions and found that lactobacillic acid production did not correlate with TNF inhibition. These results indicate that cfa indirectly contributed to L. reuter immunomodulatory activity and suggest that other mechanisms, such as decreased membrane fluidity or altered expression of immunomodulins, result in the loss of TNF inhibitory activity. By increasing our understanding of immunomodulation by probiotic species, beneficial microbes can be rationally selected to alleviate intestinal inflammation.

  17. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  18. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  19. Syntheses and spectral studies of novel ciprofloxacin derivatives

    Directory of Open Access Journals (Sweden)

    Pradeep Yadav

    2008-12-01

    Full Text Available Reaction of 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl-1,4-dihydroquinoline-3-carboxylic acid (ciprofloxacin with thiazole/benzothiazole diazonium chloride afforded piperazine substituted ciprofloxacin derivative. The acid part of these derivatives was further condensed with various β-diketones to get 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(thiazol-2-yldiazenylpiperazin-1-yl-1,4-dihydroquinoline-3-carboxylic acid derivatives (5a-e and 7-(4-(benzo[d]thiazol-2-yldiazenylpiperazin-1-yl-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives (5f-j. Structures of these compounds were established on the basis of spectral studies.

  20. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum, sp. nov

    DEFF Research Database (Denmark)

    Laessøe, Thomas; Srikitikulchai, Prasert; Fournier, Jacques

    2010-01-01

    , specific profiles of H. aeruginosum were observed by high performance liquid chromatography, coupled with diode array detection and mass spectrometry (hplc-DAD/MS). By comparison with an authentic standard, lepraric acid and several yet unidentified metabolites with similar hplc-DAD/MS characteristics were...... detected in the stromata of the type material and other specimens of this species. Interestingly, lepraric acid was hitherto only known from lichenised ascomycetes. Hypoxylon aeruginosum, which is here reported first from Africa and Asia, contained none of the metabolites that were previously detected...... in other Xylariaceae, except for stromata growing hyperparasitically on other Hypoxylon species. A different lepraric acid derivative was also detected in the type specimen of Chlorostroma subcubisporum, which differs from H. aeruginosum by having a green stromatal surface, cuboid ascospores...

  2. Chiral gels derived from secondary ammonium salts of (1R,3S-(+-camphoric acid

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Adalder

    2010-09-01

    Full Text Available In order to have access to chiral gels, a series of salts derived from (1R,3S-(+-camphoric acid and various secondary amines were prepared based on supramolecular synthon rationale. Out of seven salts prepared, two showed moderate gelation abilities. The gels were characterized by differential scanning calorimetry, table top rheology, scanning electron microscopy, single crystal and powder X-ray diffraction. Structure property correlation based on X-ray diffraction techniques remain inconclusive indicating that some of the integrated part associated with the gelation phenomena requires a better understanding.

  3. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    Science.gov (United States)

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNiacid octaester porphyrins and their metal complexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves.

    Science.gov (United States)

    Jeng, Toong Long; Lai, Chia Chi; Liao, Ting Chen; Lin, Su Yue; Sung, Jih Min

    2015-12-01

    Caffeoylquinic acid (CQA) derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C) on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight), with the leaves (particularly expanding and first fully expanded leaves) containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g) and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g), compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern. Copyright © 2014. Published by Elsevier B.V.

  5. Bioactive phenolic acids from Scorzonera radiata Fisch.

    Directory of Open Access Journals (Sweden)

    N Tsevegsuren

    2014-09-01

    Full Text Available Chromatographic separation of the crude extract obtained from the aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded five new dihydrostilbenes [4], two new flavonoids, one new quinic acid derivative, as well as twenty known compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple benzoic acids, and one monoterpene glycoside. We present here results on isolation and structural identification some active phenolic compounds from the Scorzonera radiata - eight quinic acid derivatives (quinic acid, 4,5-dicaffeoylquinic acid, 4,5-dicaffeoyl-epi-quinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoyl-epi-quinic acid, chlorogenic acid, 5-p-coumaroylquinic acid (trans, 5-p-coumaroylquinic acid (cis. Quinic acid derivatives exhibited antioxidative activity.DOI: http://dx.doi.org/10.5564/mjc.v12i0.177 Mongolian Journal of Chemistry Vol.12 2011: 78-84

  6. Location effects on the polyphenolic and polysaccharidic profiles and colour of Carignan grape variety wines from the Chilean Maule region.

    Science.gov (United States)

    Cejudo-Bastante, María Jesús; Del Barrio-Galán, Rubén; Heredia, Francisco J; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2018-04-01

    This paper reports on a study of chemical characterization and colour parameters of cv. Carignan red wines from six locations and two production years of the Chilean Maule valley. The chemical study was performed on polyphenolic composition (benzoic acids, hydroxycinnamic acid derivatives, stilbenes, flavan-3-ols, flavonols and anthocyanins) and several fractions of proanthocyanidins and polysaccharides. Results revealed that although significantly (p < 0.05) different content of anthocyanins were observed according to the production year, it could be possible to establish fingerprints of the different locations of the Maule valley wines. Thus, wines from zones closer to the Andes Mountains had higher content of procyanidin B3 (Caliboro), polysaccharides and cis-resveratrol-glucoside (Loncomilla and Melozal), whereas the proximity to the Pacific Ocean provoked a unifying effect in chemical and colorimetric terms (Cauquenes, Sauzal and Huerta del Maule). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  8. Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

    DEFF Research Database (Denmark)

    Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui

    2017-01-01

    hydroxycinnamic acids. BCD liquors were tested for microbial growth using seven aromatic-catabolizing bacteria and two yeasts. Three organisms (Pseudomonas putida KT2440, Rhodotorula mucilaginosa, and Corynebacterium glutamicum) tolerate high BCD liquor concentrations (up to 90% v/v) and rapidly consume the main...

  9. Alpha-Glucosidase Inhibitory and Antioxidant Activity of Solvent ...

    African Journals Online (AJOL)

    regression analysis. Phytochemical contents and correlation with bioactivities. Total phenolic (TP), total proanthocyanidin. (TPro), and total hydroxycinnamic acid ..... An advantage of competitive inhibitors is that their inhibitory action is reversible, thus allowing undesirable effects to be readily mitigated by decreasing the ...

  10. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    Science.gov (United States)

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  11. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  12. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase.

    Science.gov (United States)

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-02-01

    Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  13. Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Aleksandra Wojciechowska

    2017-01-01

    Full Text Available Bionic acids are bioactive compounds demonstrating numerous interesting properties. They are widely produced by chemical or enzymatic oxidation of disaccharides. This paper focuses on the galactosyl derivative of gluconic acid as a result of a new method of bionic acid synthesis which utilises the transglycosylation properties of β-galactosidase and introduces lactose as a substrate. Products obtained in such a process are characterised by different structures (and, potentially, properties than those resulting from traditional oxidation of disaccharides. The aim of this study is to determine the effect of selected parameters (concentration and ratio of substrates, dose of the enzyme, time, pH, presence of salts on the course of the reaction carried out with the enzymatic preparation Lactozym, containing β-galactosidase from Kluyveromyces lactis. Research has shown that increased dry matter content in the baseline solution (up to 50 %, by mass per volume and an addition of NaCl contribute to higher yield. On the other hand, reduced content of the derivative is a result of increased pH from 7.0 to 9.0 and an addition of magnesium and manganese salts. Moreover, exceeding the β-galactosidase dose over approx. 35 000 U per 100 g of lactose also leads to reduced yield of the process. The most favourable molar ratio of sodium gluconate to lactose is 2.225:0.675. Depending on the conditions of the synthesis, the product concentration ranged between 17.3 and 118.3 g/L of the reaction mixture, which corresponded to the mass fraction of 6.64–23.7 % of dry matter. The data obtained as a result of the present study may be useful for designing an industrial process.

  14. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2017-10-01

    Full Text Available Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19 sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50 was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47% on the trans-sialidase enzyme and a binding model similar to DANA (pattern A.

  15. Binding constants of Southern rice black-streaked dwarf virus Coat Protein with ferulic acid derivatives

    Directory of Open Access Journals (Sweden)

    Longlu Ran

    2018-04-01

    Full Text Available The data present binding constants between ferulic acid derivatives and the Coat Protein (P10 by fluorescence titration in this article, which is hosted in the research article entitled “Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus’’ (Ran et al., 2017 [1]. The data include fluorescence quenching spectrum, Stern–Volmer quenching constants, and binding parameters. In this article, a more comprehensive data interpretation and analysis is explained.

  16. A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity.

    Science.gov (United States)

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2017-07-25

    Extracellular esterase activity was detected in submerged cultures of Rhizoctonia solani grown in the presence of sugar beet pectin or Tween 80. Putative type B feruloyl esterase (FAE) coding sequences found in the genome data of the basidiomycete were heterologously expressed in Pichia pastoris. Recombinant enzyme production on the 5-L bioreactor scale (Rs pCAE: 3245UL -1 ) exceeded the productivity of the wild type strain by a factor of 800. Based on substrate specificity profiling, the purified recombinant Rs pCAE was classified as a p-coumaroyl esterase (pCAE) with a pronounced chlorogenic acid esterase side activity. The Rs pCAE was also active on methyl cinnamate, caffeate and ferulate and on feruloylated saccharides. The unprecedented substrate profile of Rs pCAE together with the lack of sequence similarity to known FAEs or pCAEs suggested that the Rs pCAE represents a new type of enzyme. Hydroxycinnamic acids were released from agro-industrial side-streams, such as destarched wheat bran (DSWB), sugar beet pectin (SBP) and coffee pulp (CP). Overnight incubation of coffee pulp with the Rs pCAE resulted in the efficient release of p-coumaric (100%), caffeic (100%) and ferulic acid (85%) indicating possible applications for the valorization of food processing wastes and for the enhanced degradation of lignified biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Ellagic Acid Derivative and Its Antioxidant Activity of Stem Bark Extracts of Syzygium polycephalum Miq. (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2018-02-01

    Full Text Available The investigation of the Syzygium polycephalum Miq. (Myrtaceae aimed to assess the phytochemical contents and antioxidant activity of the chloroform fraction. In this study, the fraction was obtained from methanol extract of S. polycephalum stem bark partitionated by chloroform. An ellagic acid derivative was successively isolated from the chloroform fraction. The molecular structure of isolated compound was elucidated and established as 3,4,3’-tri-O-methylellagic acid through extensive spectroscopic studies including UV-Vis, FTIR, NMR and LC-MS analyses and by comparison with literature data. The finding of the isolated compound is the first time from the plant, although the isolated compound previously have been found in the other Syzygium species such as S. cumini together with ellagic acid and 3,3’-di-O-methylellagic acid. The chloroform fraction, isolated compound, and vitamin C showed antioxidant activity against 2,2’-diphenyl-1-picrylhydrazyl (DPPH with IC50 value of 163.6, 72.1, and 11.5 μg/mL, respectively.

  18. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    Science.gov (United States)

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  19. PAMAM Dendrimers as Potential Carriers of Gadolinium Complexes of Iminodiacetic Acid Derivatives for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2015-01-01

    Full Text Available This is the first study describing the utilization of PAMAM dendrimers as delivery vehicles of novel magnetic resonance imaging (MRI contrast agents. The purpose of this paper was to establish the potential of G4 PAMAM dendrimers as carriers of gadolinium complexes of iminodiacetic acid derivatives and determine imaging properties of synthesized compounds in in vivo studies. Furthermore, we examined the influence of four synthesized complexes on the process of clot formation, stabilization, and lysis and on amidolytic activity of thrombin. Biodistribution studies have shown that the compounds composed of PAMAM G4 dendrimers and gadolinium complexes of iminodiacetic acid derivatives increase signal intensity preferably in liver in range of 59–116% in MRI studies which corresponds with the greatest accumulation of gadolinium after administration of the compounds. Synthesized compounds affect kinetic parameters of the proces of clot formation, its stabilization, and lysis. However, only one synthesized compound at concentration 10-fold higher than potential plasma concentrations contributed to the increase of general parameters such as the overall potential of clot formation and lysis (↑CLAUC and total time of the process (↑T. Results of described studies provide additional insight into delivery properties of PAMAM dendrimers but simultaneously underscore the necessity for further research.

  20. Impact of canning and storage on apricot carotenoids and polyphenols.

    Science.gov (United States)

    Le Bourvellec, Carine; Gouble, Barbara; Bureau, Sylvie; Reling, Patrice; Bott, Romain; Ribas-Agusti, Albert; Audergon, Jean-Marc; Renard, Catherine M G C

    2018-02-01

    Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-β-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives and their nootropic action in alloxan diabetes].

    Science.gov (United States)

    Volchegorskiĭ, I A; Rassokhina, L M; Miroshnichenko, I Iu

    2011-01-01

    Relationship between the antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives (emoxipine, reamberin and mexidol) and their effect on conditional learning, glycemia, and lipidemia was studied in rats with alloxan-induced diabetes. In parallel, the analogous relationship was investigated for alpha-lipoic acid that is regarded as a "gold standard" in treatment of diabetic neuropathy. It was established that single administration of emoxipine and mexidol in mice in doses equivalent to therapeutic-range doses in humans produces antihypoxic effect manifested by increased resistance to acute hypoxic hypoxia in test animals. Alpha-lipoic acid is inferior to emoxipin and mexidol in the degree of antihypoxic action. Reamberin does not exhibit this effect. The introduction of emoxipin, reamberin, mexidol, and alpha-lipoic acid in rats with alloxan diabetes during 7 or 14 days in doses equivalent to therapeutic-range doses in humans corrects conditional learning disorders in direct relationship with the antihypoxic activity of these drugs. The development of the nootropic effect of emoxipin, mexidol, and alpha-lipoic acid is related to a decrease in hyperglycemia and hyperlipidemia in rats with alloxan diabetes. The nootropic action of reamberin is accompanied by a transient hypoglycemizing effect and aggravation of dyslipidemic disorders. The antihypoxic activity of investigated drugs determines the direction and expression of their lipidemic effect, but is not correlated with the hypoglycemizing action these drugs on test animals with alloxan diabetes.

  2. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides.

    Science.gov (United States)

    Fukuyama, Yuko; Funakoshi, Natsumi; Takeyama, Kohei; Hioki, Yusaku; Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-Ichirou; Iwamoto, Shinichi; Tanaka, Koichi

    2014-02-18

    Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.

  3. Application of l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) in topical cosmetic formulations: stability studies

    International Nuclear Information System (INIS)

    Smaoui, S.; Hilima, H.B.

    2013-01-01

    The present study aimed to formulate and subsequently evaluate a topical skin-care cream (o/w emulsion) from l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) at 2% versus its vehicle (Control). Formulations were developed by entrapping it in the oily phase of o/w emulsion and were stored at 8 degree C, 25 degree C and 40 degree C (in incubator) for a period of four weeks to investigate their stability. In the physical analysis, the evaluation parameters consisted of color, smell, phase separation, centrifugation, and liquefaction. Chemical stability of both derivatives was established by HPLC analysis. In the chemical analysis, the formulation with sodium ascorbyl phosphate was more stable than those with magnesium ascorbyl phosphate and l-ascorbic acid. The microbiological stability of the formulations was also evaluated. The findings indicated that the formulations with l-ascorbic acid and its derivatives were efficient against the proliferation of various spoilage microorganisms, including aerobic plate counts as well as Pseudomonas aeruginosa, Staphylococcus aureus, and yeast and mold counts. The results presented in this work showed good stability throughout the experimental period. Newly formulated emulsion proved to exhibit a number of promising properties and attributes that might open new opportunities for the construction of more efficient, safe, and cost-effective skin-care, cosmetic, and pharmaceutical products. (author)

  4. Microscopical, macroscopical and chemical investigations and their uses in chemotaxonomy of Crataegus pontica C. Koch

    Directory of Open Access Journals (Sweden)

    Nasrollah Ghassemi Dehkordi

    2012-06-01

    Full Text Available The Crataegus genus is widely distributed in Iran. This genus belongs to Rosaceae family and has 17 species in Iran one of which is Crataegus pontica C. Koch. In this paper, we analyzed some microscopic and macroscopic characteristics of this plant, then compared them with other features that were presented previously in previous reports. We analyzed all components in C. pontica, using thin layer chromatography method and then specified the type of flavonoids and hydroxycinnamic acid in C. pontica. Hyproside, rutin and chlorogenic acid were the main flavonoids and hydroxycinnamic occurred acid in this plant. Also, we analyzed its flavonoids quantitatively based on Deutsch Pharmacopoeia method according to hyproside content. Because, to determine the chemosystematic relevancies in some species flavonoids are used, so in this paper we compared C. pontica with 3 other species of its genus such as C. monogyna, C. melanocarpa and C. curvisepala that are found in Iran, and also with the medicinal standard species of Crataegus genus which is called C. oxyacantha. Finally we concluded that hyproside, rutin and chlorogenic acid were the main and common structural components in all species of that genus which were mentioned above.

  5. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats

    DEFF Research Database (Denmark)

    Jimenez-Escrig, A.; Dragsted, Lars Ove; Daneshvar, Bahram

    2003-01-01

    Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2...

  6. Purine derivate content and amino acid profile in larval stages of three edible insects.

    Science.gov (United States)

    Bednářová, Martina; Borkovcová, Marie; Komprda, Tomáš

    2014-01-15

    Considering their high content of protein, insects are a valuable alternative protein source. However, no evaluation of their purine content has so far been done. High content of purine derivates may lead to the exclusion of such food from the diet of people with specific diseases. The aim of this study was to analyse the content of selected purine derivates and amino acid profile in the three insect species most often used for entomophagy in Europe and compare them with the purine content in egg white and chicken breast. The content of individual purine derivates and their total content were significantly dependent on insect species. The purine content in all three species was significantly higher (P < 0.05) than in egg white, but some values were significantly lower (P < 0.05) than in chicken breast. The total protein content was 548.9 g kg(-1) dry matter (DM) in mealworm (Tenebrio molitor), 551.6 g kg(-1) DM in superworm (Zophobas atratus) and 564.9 g kg(-1) DM in cricket (Gryllus assimilis). Larvae of mealworm and superworm are protein-rich and purine-low meat alternatives. In contrast, cricket nymphs are protein-rich and purine-rich and cannot be recommended for people with hyperuricemia or gout. © 2013 Society of Chemical Industry.

  7. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  8. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    Science.gov (United States)

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid

  9. Discovery of a New Class of Sortase A Transpeptidase Inhibitors to Tackle Gram-Positive Pathogens: 2-(2-Phenylhydrazinylidenealkanoic Acids and Related Derivatives

    Directory of Open Access Journals (Sweden)

    Benedetta Maggio

    2016-02-01

    Full Text Available A FRET-based random screening assay was used to generate hit compounds as sortase A inhibitors that allowed us to identify ethyl 3-oxo-2-(2-phenylhydrazinylidenebutanoate as an example of a new class of sortase A inhibitors. Other analogues were generated by changing the ethoxycarbonyl function for a carboxy, cyano or amide group, or introducing substituents in the phenyl ring of the ester and acid derivatives. The most active derivative found was 3-oxo-2-(2-(3,4dichlorophenylhydrazinylidenebutanoic acid (2b, showing an IC50 value of 50 µM. For a preliminary assessment of their antivirulence properties the new derivatives were tested for their antibiofilm activity. The most active compound resulted 2a, which showed inhibition of about 60% against S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538 and S. epidermidis RP62A at a screening concentration of 100 µM.

  10. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    Science.gov (United States)

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  11. Selection of protease for increased solubilization of protein-derived thiols during mashing with limited release of free amino acids in beer

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Lunde, Christina; Lund, Marianne Nissen

    2016-01-01

    Extraction of protein-derived thiols by protease treatment during mashing for improvement of flavor stability in beer has previously been shown to cause concomitant increase in free amino acid concentrations and thereby increased levels of unwanted Maillard reaction products during aging. The pre......Extraction of protein-derived thiols by protease treatment during mashing for improvement of flavor stability in beer has previously been shown to cause concomitant increase in free amino acid concentrations and thereby increased levels of unwanted Maillard reaction products during aging...... of a protease with a higher temperature optimum dosed at only 3 mg of enzyme/kg of malt, it is possible to increase thiol concentrations in wort by 30% and with only a maximum 10% increase in amino acid concentration compared with a control. Pilot brewing showed that beer brewed with addition of protease...... stability during storage could not be evaluated. Overall, similar brewing and sensory characteristics were obtained compared with a control beer brewed without addition of protease. Foam stability was decreased by protease treatment, and formation of haze was reduced by protease treatment....

  12. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    Directory of Open Access Journals (Sweden)

    Nematollah Gheibi

    2015-02-01

    Full Text Available Objective(s:Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50 werecomparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  13. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  14. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  15. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-[3-(1-adamantyl)-4-substituted-5-thioxo-1,2,4-triazolin-1-yl] acetic acids, 2-[3-(1-adamantyl)-4-substituted-5-thioxo-1,2,4-triazolin-1-yl]propionic acids and related derivatives.

    Science.gov (United States)

    Al-Deeb, Omar A; Al-Omar, Mohamed A; El-Brollosy, Nasser R; Habib, Elsayed E; Ibrahim, Tarek M; El-Emam, Ali A

    2006-01-01

    The reaction of 3-(1-adamantyl)-4-substituted-1,2,4-triazoline-5-thiones 3a-g with sodium chloroacetate, in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivatives 4a-g. The interaction of 3a-g with ethyl 2-bromopropionate in acetone, in the presence of potassium carbonate, yielded the corresponding N1-ethyl propionate derivatives 5a-g, which upon hydrolysis with aqueous sodium hydroxide afforded the corresponding propionic acid derivatives 6a-g. Similarly, the reaction of 3-(1-adamantyl)-4-amino-1,2,4-triazoline-5-thione 7 with sodium chloroacetate in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivative 8. On the other hand, the reaction of 2-(1-adamantyl)-1,3,4-oxadiazoline-5-thione 9 with sodium chloroacetate yielded the corresponding S-acetic acid derivative 10. Compounds 4a-g, 5b, 5c, 5g, 6a-g, 8 and 10 were tested for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Several derivatives produced good or moderate activities particularly against Bacillus subtilis. In addition, the in vivo anti-inflammatory activities of these compounds were determined using the carrageenin-induced paw oedema method in rats. Compounds 4a, 4b, 4e, 4f, 6f, 6g and 10 produced good dose-dependent anti-inflammatory activities.

  16. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.co [Faculty of Wood Science and Decoration Technology, Southwest Forestry University, Kunming 650224 (China); Li Xianghong; Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)

    2011-02-15

    Research highlights: Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  17. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Deng Shuduan; Li Xianghong; Fu Hui

    2011-01-01

    Research highlights: → Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. → The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. → For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. → Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  18. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    Science.gov (United States)

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  19. Synthesis, spectroscopy and antimicrobial activity of vanadium(III) and vanadium(IV) complexes involving Schiff bases derived from tranexamic acid and X-ray structure of Zwitter ion of tranexamic acid

    International Nuclear Information System (INIS)

    Shahzadi, S.; Ali, S.; Badshah, A.; Parvez, M.; Ahmed, E.; Malik, A.

    2007-01-01

    The synthesis of six new vanadium complexes of Schiff base derived from Tranexamic acid is reported. All the complexes were characterized by elemental analysis, infrared, electronic spectra, and mass spectrometry. FTIR data reveals that the Schiff base acts as a bidentate and the complexes exhibit the hexa-coordinated geometry in solid state. These complexes were screened for their biological activity against various bacterial and fungal strains. All the ligands show higher activity after complexation. The crystal structure of the Zwitter ion of the Tranexamic acid has been determined by X-ray single crystal diffraction [ru

  20. Synthesis and description of intermolecular interactions in new sulfonamide derivatives of tranexamic acid

    Science.gov (United States)

    Ashfaq, Muhammad; Arshad, Muhammad Nadeem; Danish, Muhammad; Asiri, Abdullah M.; Khatoon, Sadia; Mustafa, Ghulam; Zolotarev, Pavel N.; Butt, Rabia Ayub; Şahin, Onur

    2016-01-01

    Tranexamic acid (4-aminomethyl-cyclohexanecarboxylic acid) was reacted with sulfonyl chlorides to produce structurally related four sulfonamide derivatives using simple and environmental friendly method to check out their three-dimensional behavior and van der Walls interactions. The molecules were crystallized in different possibilities, as it is/after alkylation at its O and N atoms/along with a co-molecule. All molecules were crystallized in monoclinic crystal system with space group P21/n, P21/c and P21/a. X-ray studies reveal that the molecules stabilized themselves by different kinds of hydrogen bonding interactions. The molecules are getting connected through O-H⋯O hydrogen bonds to form inversion dimers which are further connected through N-H⋯O interactions. The molecules in which N and O atoms were alkylated showed non-classical interaction and generated centro-symmetric R22(24) ring motif. The co-crystallized host and guest molecules are connected to each other via O-H⋯O interactions to generate different ring motifs. By means of the ToposPro software an analysis of the topologies of underlying nets that correspond to molecular packings and hydrogen-bonded networks in structures under consideration was carried out.