WorldWideScience

Sample records for hydroxyapatite nano-coating implants

  1. MRI of orbital hydroxyapatite implants

    International Nuclear Information System (INIS)

    Flanders, A.E.; De Potter P.; Rao, V.M.; Tom, B.M.; Shields, C.L.; Shields, J.A.

    1996-01-01

    Our aim was to use MRI for the postsurgical assessment of a new form of integrated orbital implant composed of a porous calcium phosphate hydroxyapatite substrate. We studied ten patients 24-74 years of age who underwent enucleation and implantation of a hydroxyapatite ball; 5-13 months after surgery, each patient was examined by spin-echo MRI, with fat suppression and gadolinium enhancement. Fibrovascular ingrowth was demonstrated in all ten patients as areas of enhancement at the periphery of the hydroxyapatite sphere that extended to the center to a variable degree. The radiologist should aware of the MRI appearances of the coralline hydroxyapatite orbital implant since it is now widely used following enucleation. MRI is a useful means to determine successful incorporation of the substrate into the orbital tissues. The normal pattern of contrast enhancement should not be mistaken for recurrent tumor or infection. (orig.)

  2. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.

    Science.gov (United States)

    Bostancioglu, R Beklem; Gurbuz, Mevlut; Akyurekli, Ayse Gul; Dogan, Aydin; Koparal, A Savas; Koparal, A Tansu

    2017-07-01

    Accelerated Mesenchymal Stem Cells (MSCs) condensation and robust MSC-matrix and MSC-MSC interactions on nano-surfaces may provide critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. In this study, human adipose tissue derived mesenchymal stem cells (hMSC)', were grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite (HAP) nano-coated surfaces. These metal ions are known to have different chemical and surface properties; therefore we investigated their respective contributions to cell viability, cellular behavior, osteogenic differentiation capacity and substrate-cell interaction. Nano-powders were produced using a wet chemical process. Air spray deposition was used to accumulate the metal ion doped HAP films on a glass substrate. Cell viability was determined by MTT, LDH and DNA quantitation methods Osteogenic differentiation capacity of hMSCs was analyzed with Alizarin Red Staining and Alkaline Phosphatase Specific Activity. Adhesion of the hMSCs and the effect of cell adhesion on biomaterial biocompatibility were explored through cell adhesion assay, immunofluorescence staining for vinculin and f-actin cytoskeleton components, SEM and microarray including 84 known extracellular matrix proteins and cell adhesion pathway genes, since, adhesion is the first step for good biocompability. The results demonstrate that the viability and osteogenic differentiation of the hMSCs (in growth media without osteogenic stimulation) and cell adhesion capability are higher on nanocoated surfaces that include Zn, Ag and/or Cu metal ions than commercial HAP. These results reveal that Zn, Ag and Cu metal ions contribute to the biocompatibility of exogenous material. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Bioactive polyurethane implants with hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Rozhnova, R.; Kebuladze, I.; Galatenko, N. [NAS Ukraine, Kiev (Ukraine). Dept. of Polymers of Medical Appointment

    2001-07-01

    Biologically active polyurethane compositions for plastic of bone defects that contain bioceramic - hydroxyapatite (HAP) and immunomodulator - levamisole (LEV) were designed. The influence of the biologically active fillers in structure polyurethane compositions on their physical and chemical properties in condition in vivo by method of Equilibrium Swelling, method of IR-spectroscopy, roentgen-structural analysis was studied. The introduce in structure of the biodegraded polymeric matrix of HAP is established to promote accumulation of the inorganic component of bone tissue in vivo which is being by basis of the bone formation in regenerating tissue. (orig.)

  4. Hydroxyapatite implants with designed internal architecture.

    Science.gov (United States)

    Chu, T M; Halloran, J W; Hollister, S J; Feinberg, S E

    2001-06-01

    Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 degrees C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 microm and 968 microm in diameter with standard deviations of 50 microm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controlled channel size can be built with the technique developed in this study. Copyright 2001 Kluwer Academic Publishers

  5. Flexible (Polyactive®) versus rigid (hydroxyapatite) dental implants

    NARCIS (Netherlands)

    Meijer, G.J.; Heethaar, J.; Cune, M.S.; de Putter, C.; van Blitterswijk, Clemens

    1997-01-01

    In a beagle dog study, the peri-implant bone changes around flexible (Polyactive®) and rigid hydroxyapatite (HA) implants were investigated radiographically by quantitative digital subtraction analysis and by assessment of marginal bone height, with the aid of a computerized method. A loss of

  6. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  7. Superior sealing effect of hydroxyapatite in porous-coated implants

    DEFF Research Database (Denmark)

    Rahbek, Ole; Kold, Søren; Bendix, Knud

    2005-01-01

    Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect of a por......Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect...

  8. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  9. Chronic Orbital Inflammation Associated to Hydroxyapatite Implants in Anophthalmic Sockets

    Directory of Open Access Journals (Sweden)

    Alicia Galindo-Ferreiro

    2017-12-01

    Full Text Available Purpose: We report 6 patients who received a hydroxyapatite (HA orbital implant in the socket and developed chronic orbital inflammation unresponsive to conventional medical therapy. Case Reports: We assisted 6 cases (4 males, 2 females who received an HA orbital implant in the socket between 2015 and 2016 at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia, and developed chronic orbital inflammation with chronic discharge, redness, and pain (onset from weeks to over 2 decades after surgery. Computed tomography evaluation indicated inflammation in the orbital tissues, and histological examination showed a foreign body granulomatous reaction mainly localized around and blanching the HA implant. The condition was unresponsive to usual medical treatment and was resolved immediately after implant removal. Conclusions: Chronic inflammation can occur decades after placement of an HA implant in the orbit and can be successfully treated with implant removal.

  10. Clinical observation of modified hydroxyapatite implant in scleral shell

    Directory of Open Access Journals (Sweden)

    Qing-Wei Du

    2014-10-01

    Full Text Available AIM: To evaluate the clinical effects of modified hydroxyapatite implant in scleral shell.METHODS:Thirty-four cases were performed eye evisceration, autogenous sclera shell anterior and posterior petaloid shape with posterior sclera fenestration, hydroxyapatite artificial eyeballs were implanted at stage I, and conjunctival wound, orbital activity and other complications were observed after surgery.RESULTS: The follow-up was 6~12mo. There was no patients with implant exposure, sclera dissolution, conjunctival wound dehiscence, conjunctival sac constriction noted. All the patients got good activity of artificial globe, and the active range of side motion of the HA was 10°~15°.The artificial eyes looked symmetrical, and the eyes socket were full.CONCLUSION: The modified hydroxyapatite implant in scleral shell can maintain the normal anatomy of the orbital tissue, and also can get full eyes socket and good activity, It was an easy and simple surgery which could obtain satisfactory clinical effect and less complications.

  11. Three-phase bone scintigraphy of hydroxyapatite ocular implants

    International Nuclear Information System (INIS)

    Leitha, T.; Staudenherz, A.; Scholz, U.

    1995-01-01

    Hydroxyapatite ocular implants are replicas of lamellar bone tissue derived from the exoskeleton of a reef-building coral by a hydrothermal chemical exchange reaction. Attached to the eye muscles, they act as a passive framework for fibrovascular ingrowth and can be drilled to hold the visible part of the artificial eye and allow synchronous eye movement. Fibrovascular ingrowth has to be confirmed by bone scintigraphy before the drilling procedure. This study monitored the vascular ingrowth into the implant in ten patients over 12 months to establish a clinically feasible imaging protocol. Tracer accumulation was monitored visually and quantitatively in dynamic and single-photon emission tomography (SPET) scans after the intravenous administration of 600 MBq of 99m Tc-DPD. The implants showed no tracer accumulation in the arterial or blood pool phase. Accordingly, dynamic scintigraphy can be omitted from the imaging protocol. Delayed tracer accumulation appeared no earlier than 2 and no later than 6 months after surgery. Planar scintigraphy is not recommended as high-resolution SPET is necessary to separate the implant from the surrounding bone. We conclude that imaging can be confined to high-resolution SPET 3 h after tracer injection, no earlier than 3 months after surgery. The vascularized hydroxyapatite orbital implant is an important in vivo model for bone-seeking agents to study their uptake kinetics independently of any soft tissue and bone disease. Our results provide evidence that in normal bones the chemical adsorption of 99m Tc-DPD into the crystalline structure of hydroxyapatite is the only quantitatively relevant uptake mechanism. (orig.)

  12. Three-phase bone scintigraphy of hydroxyapatite ocular implants

    Energy Technology Data Exchange (ETDEWEB)

    Leitha, T. [Univ. Clinic of Nuclear Medicine, Univ. of Vienna (Austria); Staudenherz, A. [Univ. Clinic of Nuclear Medicine, Univ. of Vienna (Austria); Scholz, U. [First Univ. Clinic of Ophthalmology, Univ. of Vienna (Austria)

    1995-04-01

    Hydroxyapatite ocular implants are replicas of lamellar bone tissue derived from the exoskeleton of a reef-building coral by a hydrothermal chemical exchange reaction. Attached to the eye muscles, they act as a passive framework for fibrovascular ingrowth and can be drilled to hold the visible part of the artificial eye and allow synchronous eye movement. Fibrovascular ingrowth has to be confirmed by bone scintigraphy before the drilling procedure. This study monitored the vascular ingrowth into the implant in ten patients over 12 months to establish a clinically feasible imaging protocol. Tracer accumulation was monitored visually and quantitatively in dynamic and single-photon emission tomography (SPET) scans after the intravenous administration of 600 MBq of {sup 99m}Tc-DPD. The implants showed no tracer accumulation in the arterial or blood pool phase. Accordingly, dynamic scintigraphy can be omitted from the imaging protocol. Delayed tracer accumulation appeared no earlier than 2 and no later than 6 months after surgery. Planar scintigraphy is not recommended as high-resolution SPET is necessary to separate the implant from the surrounding bone. We conclude that imaging can be confined to high-resolution SPET 3 h after tracer injection, no earlier than 3 months after surgery. The vascularized hydroxyapatite orbital implant is an important in vivo model for bone-seeking agents to study their uptake kinetics independently of any soft tissue and bone disease. Our results provide evidence that in normal bones the chemical adsorption of {sup 99m}Tc-DPD into the crystalline structure of hydroxyapatite is the only quantitatively relevant uptake mechanism. (orig.)

  13. Surgical pitfalls with custom-made porous hydroxyapatite cranial implants

    Directory of Open Access Journals (Sweden)

    Bruno Zanotti

    2015-03-01

    Full Text Available Aim: Cranioplasty implants are used primarily in cases of surgical cranial decompression following pathological elevations of intracranial pressure. Available bone substitutes include porous hydroxyapatite (HA and polymethylmethacrylate. Whichever material is used, however, prosthetic cranial implants are susceptible to intra- and postsurgical complications and even failure. The aim of this study was to investigate such occurrences in HA cranioplasty implants, seeking not only to determine the likely causes (whether correlated or not with the device itself but also, where possible, to suggest countermeasures. Methods: We analyzed information regarding failures or complications reported in postmarketing surveillance and clinical studies of patients treated worldwide with custom-made HA cranial implants (Custom Bone Service Fin-Ceramica Faenza, Italy in the period 1997-2013. Results: The two most common complications were implant fractures (84 cases, 2.9% of the total fitted and infections (51 cases, 1.77%. Conclusion: Although cranioplasties are superficial and not difficult types of surgery, and use of custom-made implants are often considered the "easy" option from a surgical perspective, these procedures are nonetheless plagued by potential pitfalls. If performed well they yield more than satisfactory results from the points of view of both the patient and surgeon, but lack of appropriate care can open the door to numerous potential sources of failure, which can compromise-even irreparably-the ability to heal.

  14. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  15. Mechanical, dielectric and surface analysis of hydroxyapatite doped anions for implantations

    Science.gov (United States)

    Helen, S.; Kumar, A. Ruban

    2018-04-01

    Calcium Phosphate has broad applications in field of medicine and in tissue engineering. In that hydroxyapatite is one of the calcium phosphate similar to bone and teeth mineral phase. The aim of this paper is to improve mechanical property of hydroxyapatite which has less mechanical strength by doping of ions. The ions increase its strength which can be used in various medical applications. Surface property of hydroxyapatite and electrical property of ion doped hydroxyapatite analyzed and shown that it can be used in implantations, coatings.

  16. IMPLANTATION OF AN IRANIAN MADE HYDROXYAPATITE IN RABIT"S ORBIT: DOES IT WORK EFFECTIVELY?

    Directory of Open Access Journals (Sweden)

    H FESHARAKI

    2001-06-01

    Full Text Available Introduction. Good results of foreign made Hydroxyapatite in human orbit, expensive American and Europian made hydroxyapatites, the possibility to make this material from coral by hydrothermal method and good source of coral in Persian Gulf made us start this study. Methods. The left eye of 21 male rabits weighing 200-270 grams were enucleated and implanted by 14mm coralline spheres being covered by preserved rabits sclera (11 with pure coral and 10 with Iranian made hydroxyapatite. The implants were removed for pathologic study after an average time of 79.4 days of clinical evaluation. The type of coral was acropora and the hydrothermal Ion exchange form carbonate to phosphate was performed in chemistry department of Isfahan University. Results. No evidence of extrusion was seen in implants. Exposure phenomena was seen 55 and 12 percent in coralline and hydroxyapatite implantation, respectively (P < 0.05. Tissue inflammation was detect 89 and 25 percent of coralline and hydroxyapatite implantation, respectively (P < 0.05. Discussion. The tissue tolerance of rabits orbit to Iranian made hydroxyapatite was almost fair and it"s use in human"s orbit could probably be tried safely. Orbital implantation of natural coral in rabits" orbit is accompanied by moderate to sever tissue inflammatory response and tissue necrosis, creating more clinical complications.

  17. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  18. Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants

    Science.gov (United States)

    Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy

    2018-02-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.

  19. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    Science.gov (United States)

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Macroporous hydroxyapatite bioceramics by solid freeform fabrication: towards custom implants

    CSIR Research Space (South Africa)

    Richter, PW

    1999-08-01

    Full Text Available structure that would be impossible to make by conventional manufacturing methods. Application of this technology to the manufacture of macro porous hydroxyapatite bio ceramics for bone substitute applications is discussed. A new design is described...

  1. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants

    DEFF Research Database (Denmark)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A

    2003-01-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability...... a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included...

  2. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Durham, John W. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Allen, Matthew J. [Department of Veterinary Medicine, University of Cambridge, Cambridge (United Kingdom); Rabiei, Afsaneh, E-mail: arabiei@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  3. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    International Nuclear Information System (INIS)

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  4. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  5. Dental implants coated with laser deposited hydroxyapatite films - physical properties and in-vivo study

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Himmlová, L.; Grivas, Ch.; Fotakis, C.

    2002-01-01

    Roč. 374, - (2002), s. 599-604 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * thin films * implants * hydroxyapatite * in-vivo tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  6. Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience.

    Science.gov (United States)

    Zaccaria, Laura; Tharakan, Sasha Job; Altermatt, Stefan

    2017-02-01

    The use of hydroxyapatite ceramic (HAC) implants for the treatment of skull defects in pediatric patients started 2010 at our institution. Ceramic implants facilitate osteoblast migration and therefore optimize osteointegration with the host bone. The purpose of this study is to report a single-center experience with this treatment modality. A retrospective review of all patients from July 2010 through June 2014 undergoing a cranioplasty using hydroxyapatite ceramic implant and managed at a single institution was performed. Indication for cranioplasty, the hospital course, and follow-up were reviewed. Bone density was measured in Hounsfield Units (HU) and osteointegration was calculated using Mimics Software® (Mimics Innovation Suite v17.0 Medical, Materialize, Leuven, Belgium). Over the 4-year period, six patients met criteria for the study. Five patients had an osteointegration of nearly 100%. One patient had an incomplete osteointegration with a total bone-implant contact area of 69%. The mean bone density was 2800 HU (2300-3000 HU). Bone density alone is estimated to have a Hounsfield value between 400 and 2000 HU depending on the body region and bone quality. There were no major complications, and the patients were highly satisfied with the esthetical result. Hydroxyapatite ceramic implants for cranioplasty in pediatric patients are a good choice for different indications. The implants show excellent osteointegration and esthetical results.

  7. Peculiarities of hydroxyapatite/nanodiamond composites as novel implants

    International Nuclear Information System (INIS)

    Pramatarova, L; Dimitrova, R; Pecheva, E; Spassov, T; Dimitrova, M

    2007-01-01

    Hydroxyapatite/detonation nanodiamond composites are created on silica glass and cover glass by simple soaking process in an open deposition type set-up. The supersaturated solution (simulated body fluid, SBF) is prepared in a way to resemble the composition of human blood plasma. The composite growth is carried out through the addition of detonation nanodiamond particles to the SBF. Scanning electron microscopy, X-ray diffraction and FTIR spectroscopy are used to determine the surface morphology and the structure of the hydroxyapatite /detonation nanodiamond composite layers. The applied methods provide evidence that the nanodiamond surface functional groups interact strongly with the biological solution. The detonation nanodiamond surface is chemically multifunctional (surface OH, C-O-H, C = C, C-O-C and C = O groups exist), so that the hydroxyapatite is grown both by physical adsorption and chemical interaction. The OH - groups are regarded to play an important role in the hydroxyapatite growth on a diamond's surface from SBF, as they charge it negatively and attract Ca 2+ ions, which in turn attract PO 4 3- ions, thus forming apatite nuclei

  8. Peculiarities of hydroxyapatite/nanodiamond composites as novel implants

    Energy Technology Data Exchange (ETDEWEB)

    Pramatarova, L [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria); Dimitrova, R [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Pecheva, E [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria); Spassov, T [Sofia University, Faculty of Chemistry (Bulgaria); Dimitrova, M [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria)

    2007-12-15

    Hydroxyapatite/detonation nanodiamond composites are created on silica glass and cover glass by simple soaking process in an open deposition type set-up. The supersaturated solution (simulated body fluid, SBF) is prepared in a way to resemble the composition of human blood plasma. The composite growth is carried out through the addition of detonation nanodiamond particles to the SBF. Scanning electron microscopy, X-ray diffraction and FTIR spectroscopy are used to determine the surface morphology and the structure of the hydroxyapatite /detonation nanodiamond composite layers. The applied methods provide evidence that the nanodiamond surface functional groups interact strongly with the biological solution. The detonation nanodiamond surface is chemically multifunctional (surface OH, C-O-H, C = C, C-O-C and C = O groups exist), so that the hydroxyapatite is grown both by physical adsorption and chemical interaction. The OH{sup -} groups are regarded to play an important role in the hydroxyapatite growth on a diamond's surface from SBF, as they charge it negatively and attract Ca{sup 2+} ions, which in turn attract PO{sub 4}{sup 3-} ions, thus forming apatite nuclei.

  9. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The development and the spectral research of unique coating as crystalline nanoparticles of IR photosensitizers were performed for the creation of hydroxyapatite implants with photobactericidal properties. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immunocompetent cells, photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic. Thus, the developed coating based on crystalline photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of the local prevention of inflammatory and autoimmune reactions in the area of implantation. The results of the study suggest a promising this technology in order to create implants with photobactericidal properties.

  10. Functional outcome of vocal fold medialization thyroplasty with a hydroxyapatite implant.

    Science.gov (United States)

    Storck, Claudio; Brockmann, Meike; Schnellmann, Elvira; Stoeckli, Sandro J; Schmid, Stephan

    2007-06-01

    Unilateral vocal fold paralysis can cause a persistent incomplete glottal closure during phonation, resulting in impaired voice function. The aim of this study was to evaluate functional results of medialization thyroplasty using a hydroxyapatite implant (VoCoM). Prospective observational cohort study. Between 1999 and 2003, a total of 26 patients (19 men, 7 women) undergoing medialization thyroplasty using a hydroxyapatite implant because of unilateral vocal fold paralysis were enrolled in the study. To evaluate voice function, the following parameters were measured preoperatively and postoperatively: mean fundamental frequency, mean sound pressure level, frequency and amplitude range (voice range profile), and maximum phonation time. A perceptual assessment of hoarseness was conducted using the Roughness, Breathiness, Hoarseness scale. Furthermore, the magnitude of voice related impairment of the patient's communication skills was rated on a 7-point scale. A combined parameter called the Voice Dysfunction Index (VDI) was used to rate vocal performance. All patients showed a statistically significant improvement in the VDI, in perceptual voice analysis, in maximum phonation time, and in the dynamic range of voice. One patient experienced a postoperative wound hemorrhage as a minor complication. No further complications or implant extrusions were observed. Medialization thyroplasty using a hydroxyapatite implant is a secure and efficient phonosurgical procedure. Voice quality and patient satisfaction improve significantly after treatment.

  11. Radiographic Bone Density around Dental Implants with Surface Modification by Laser Ablation followed by Hydroxyapatite Coating: A Study in Rabbit Tibiae

    DEFF Research Database (Denmark)

    Cazelato, Tiago; Spin-Neto, Rubens; Morais, J

    followed by hydroxyapatite coating with a surface that was oxide-blasted followed by acid etching. On this study twenty-four rabbits received two implants in each tibia, an oxide-blasted + acid-etched (ATS) and a hydroxyapatite-coated (HAP) implant. Radiographs of the implants were recorded after 4, 8...

  12. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo.

    Science.gov (United States)

    Thorfve, A; Lindahl, C; Xia, W; Igawa, K; Lindahl, A; Thomsen, P; Palmquist, A; Tengvall, P

    2014-03-01

    Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li(+)). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li(+) content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li(+). Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm(-2) released Li(+). Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm(-2) released Li(+), but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li(+), is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Natural History of Bone Response to Hydroxyapatite-Coated Hip Prostheses Implanted in Humans

    OpenAIRE

    Frayssinet, P.; Hardy, D.; Hanker, J. S.; Giammara, B. L.

    1995-01-01

    A series of 15 autopsied femurs containing hydroxyapatite- coated (HA-coated) prostheses was analysed histologically. Their implantation time ranged from 5 days up to 3 years. The coating thickness of some prostheses and the percentage of the coating in contact with bone at different levels were evaluated using an image analysis device. After the newly formed bone tissue had became mature, several bone morphotypes were identified at the coating contact. From the proximal to the distal part of...

  14. The psychosocial benefits of secondary hydroxyapatite orbital implant insertion and prosthesis wearing for patients with anophthalmia.

    Science.gov (United States)

    Wang, Junming; Zhang, Hong; Chen, Wei; Li, Guigang

    2012-01-01

    Anophthalmia is associated with a range of psychosocial difficulties and hydroxyapatite orbital implant insertion and prosthesis wearing is the predominant rehabilitation therapy for anophthalmia. However, few articles have compared preoperative and postoperative psychosocial outcomes using standardized questionnaires. This study aimed to investigate the psychosocial benefits of hydroxyapatite orbital implant insertion and prosthesis wearing in this patient population. In all, 36 participants were tested preoperatively and 6-months postoperatively using standardized measures of anxiety and depression (Hospital Anxiety and Depression Scale), social anxiety and social avoidance (Derriford Appearance Scale-Short Form), and quality of life (World Health Organization Quality of Life Scale-Short Form). Before treatment, levels of depression were comparable with population norms; however, levels of general anxiety were slightly raised, levels of social anxiety, social avoidance, and quality of life were significantly poorer than population norms. Treatment resulted in significant improvement in psychosocial adjustment with improvements in all study variables for the participant group as a whole. Hydroxyapatite orbital implant insertion and prosthesis wearing offers significant improvements in psychological and physical functioning for patients with anophthalmia.

  15. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  16. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  17. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...

  18. Implant Stability of Biological Hydroxyapatites Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Maria Piedad Ramírez Fernández

    2017-06-01

    Full Text Available The aim of the present study was to monitor implant stability after sinus floor elevation with two biomaterials during the first six months of healing by resonance frequency analysis (RFA, and how physico-chemical properties affect the implant stability quotient (ISQ at the placement and healing sites. Bilateral maxillary sinus augmentation was performed in 10 patients in a split-mouth design using a bobine HA (BBM as a control and porcine HA (PBM. Six months after sinus lifting, 60 implants were placed in the posterior maxilla. The ISQ was recorded on the day of surgery from RFA at T1 (baseline, T2 (three months, and T3 (six months. Statistically significant differences were found in the ISQ values during the evaluation period. The ISQ (baseline was 63.8 ± 2.97 for BBM and 62.6 ± 2.11 for PBM. The ISQ (T2 was ~73.5 ± 4.21 and 67 ± 4.99, respectively. The ISQ (T3 was ~74.65 ± 2.93 and 72.9 ± 2.63, respectively. All of the used HAs provide osseointegration and statistical increases in the ISQ at baseline, T2 and T3 (follow-up, respectively. The BBM, sintered at high temperature with high crystallinity and low porosity, presented higher stability, which demonstrates that variations in the physico-chemical properties of a bone substitute material clearly influence implant stability.

  19. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  20. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    Science.gov (United States)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  1. Accelerator based synthesis of hydroxyapatite by MeV ion implantation

    International Nuclear Information System (INIS)

    Rautray, Tapash R.; Narayanan, R.; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-01-01

    Accelerator based MeV ion implantation of Ca 2+ and P 2+ into the titanium substrate to form hydroxyapatite (HA) has been carried out. Calcium hydroxide was formed after heating the calcium implanted titanium in air at 80 o C for 3 h. Upon subsequent annealing for 5 min at 600 o C HA was formed on the surface. Penetration depth of the HA layer in this method is much higher as compared to keV ion implantation. By elemental analysis, Ca/P ratio of the HA was found to be 1.76 which is higher than the ideal 1.67. This higher Ca/P ratio is attributed to the higher penetration depth of the MeV technique used.

  2. Development of implant/interconnected porous hydroxyapatite complex as new concept graft material.

    Directory of Open Access Journals (Sweden)

    Kazuya Doi

    Full Text Available BACKGROUND: Dental implant has been successfully used to replace missing teeth. However, in some clinical situations, implant placement may be difficult because of a large bone defect. We designed novel complex biomaterial to simultaneously restore bone and place implant. This complex was incorporated implant into interconnected porous calcium hydroxyapatite (IP-CHA. We then tested this Implant/IP-CHA complex and evaluated its effect on subsequent bone regeneration and implant stability in vivo. METHODOLOGY/PRINCIPAL FINDINGS: A cylinder-type IP-CHA was used in this study. After forming inside of the cylinder, an implant was placed inside to fabricate the Implant/IP-CHA complex. This complex was then placed into the prepared bone socket in the femur of four beagle-Labrador hybrid dogs. As a control, implants were placed directly into the femur without any bone substrate. Bone sockets were allowed to heal for 2, 3 and 6 months and implant stability quotients (ISQ were measured. Finally, tissue blocks containing the Implant/IP-CHA complexes were harvested. Specimens were processed for histology and stained with toluidine blue and bone implant contact (BIC was measured. The ISQs of complex groups was 77.8±2.9 in the 6-month, 72.0±5.7 in the 3-month and 47.4±11.0 in the 2-month. There was no significant difference between the 3- or 6-month complex groups and implant control groups. In the 2-month group, connective tissue, including capillary angiogenesis, was predominant around the implants, although newly formed bone could also be observed. While, in the 3 and 6-month groups, newly formed bone could be seen in contact to most of the implant surface. The BICs of complex groups was 2.18±3.77 in the 2-month, 44.03±29.58 in the 3-month, and 51.23±8.25 in the 6-month. Significant difference was detected between the 2 and 6-month. CONCLUSIONS/SIGNIFICANCE: Within the results of this study, the IP-CHA/implant complex might be able to achieve both

  3. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Mukherjee, Jayanta [Institute of Animal Health and Veterinary Biologicals, Kolkata (India); Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-04-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations.

  4. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    International Nuclear Information System (INIS)

    Nandi, Samit K.; Kundu, Biswanath; Mukherjee, Jayanta; Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna

    2015-01-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations

  5. Biodegradable Ceramics Consisting of Hydroxyapatite for Orthopaedic Implants

    Directory of Open Access Journals (Sweden)

    Thomas K. Monsees

    2017-11-01

    Full Text Available This study aims to analyze hydroxyapatite (HAP coatings enriched with Mg and Ti prepared by a magnetron sputtering technique on Ti6Al4V substrate. For preparation of the coatings, three magnetron targets (HAP, MgO and TiO2 were simultaneously co-worked. The concentration of Mg added was varied by modifying the power applied to the MgO target. In all coatings, the Ti concentration was maintained constant by keeping the same cathode power fed during the whole deposition. The influence of different Mg dopant contents on the formation of phase, microstructure and morphology of the obtained Ti-doped HAP coatings were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the effects of Mg addition upon corrosion, mechanical and biological properties were also investigated. Mg- and Ti-doped HAP coating obtained at low radio-frequency (RF power fed to the MgO target provided material with high corrosion resistance compared to other coatings and bare alloy. A slight decrease in hardness of the coatings was found after the Mg addition, from 8.8 to 5.7 GPa. Also, the values of elastic modulus were decreased from 87 to 53 GPa, this being an advantage for biomedical applications. The coatings with low Mg concentration proved to have good deformation to yielding and higher plastic properties. Biological test results showed that the novel surfaces exhibited excellent properties for the adhesion and growth of bone cells. Moreover, early adherent vital cell numbers were significantly higher on both coatings compared to Ti6Al4V, suggesting that Mg ions may accelerate initial osteoblast adhesion and proliferation.

  6. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    Science.gov (United States)

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study

    DEFF Research Database (Denmark)

    Nimb, L; Gotfredsen, K; Steen Jensen, J

    1993-01-01

    Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make a histolog......Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make...

  8. Histomorphometric Assessment of Implant Coating with A Mixture of Strontium Chloride and Hydroxyapatite at Different Concentration

    Directory of Open Access Journals (Sweden)

    Jani Ghasak H

    2018-01-01

    Full Text Available Background/purpose: Surface properties are one of the major keys of successful implant osseointegration in addition to mechanical strength and excellent biocompatibility of implant material. The purpose of this study is to make histological and histomorphometric analysis of an implant coated with strontium chloride (SrCl2 mixed with hydroxyapatite (HA at different concentrations, in rabbit tibia at 2 and 6 weeks of implantation time. Method: 48 commercially pure titanium screw shaped implants were placed in 24 healthy adult New Zeeland rabbits, each rabbit received 2 implants; one coated with mixture 1 (25% HA and 75% SrCl2 and the other coated with mixture 2 (75% HA and 25% SrCl2. Twelve rabbits were sacrificed at 2 weeks of healing and other twelve after 6 weeks. The new bone area and number of cells (osteoblast and osteoclast were assessed by light microscope. Result: Statistical analysis showed significant differences in new bone formation ratio after 2 weeks of healing and non-significant differences after 6 weeks of healing. Data also suggested that osteoblast was increased, and osteoclast was decreased in mixture 2 (75% HA and 25% SrCl2 more than mixture 1 (25% HA and 75% SrCl2. Conclusion: There was a significantly higher new bone formation ratio of mix 2 (25%Sr-75%HA coated Cp-Ti implants than mix 1 (75% Sr- 25% HA coated Cp-Ti implant at 2 weeks healing period, also there was an increase in new bone formation ratio with time for both coated materials (SrCl2 implants.

  9. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    International Nuclear Information System (INIS)

    Nishimura, Ichiro; Huang Yuhong; Butz, Frank; Ogawa, Takahiro; Lin, Audrey; Wang, Chiachien Jake

    2007-01-01

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO 2 . The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths

  10. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ichiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Huang Yuhong [Chemat Technology, Incorporated, Northridge, CA (United States); Butz, Frank [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Ogawa, Takahiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Lin, Audrey [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Wang, Chiachien Jake [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States)

    2007-06-20

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO{sub 2}. The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths.

  11. The influence of radiation therapy on subperiosteal hydroxyapatite implants in rabbits

    International Nuclear Information System (INIS)

    Khateery, S.; Waite, P.D.; Lemons, J.E.

    1991-01-01

    Granular hydroxyapatite (HA) was implanted into subperiosteal pockets along both the right and left proximal tibias of 12 adult New Zealand white rabbits. The left extremities of 10 rabbits served as controls, whereas the right sides were irradiated with 2,250 rad in three doses over 5 days. The animals were killed at 1-week intervals starting at 2 weeks postirradiation. One half of each site was evaluated using standard histologic techniques while the other half was examined as a nondecalcified section. The quantity and the quality of new bone formation was determined using a rating scale and histomorphometric digitization. The results of this 4-month study showed that the amount of new bone formation around the HA granules was significantly greater in the irradiated sites. The irradiation produced no deleterious effects on the implant or the surrounding tissue areas

  12. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Baskar, K. [Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu (India); Anusuya, T. [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India); Devanand Venkatasubbu, G., E-mail: gdevanandvenkatasubbu@gmail.com [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India)

    2017-04-01

    The use of atomic scale inorganic nanoparticles (NPs) to fight against pathogenic microorganisms is a recent trend in biomedical area which overcomes the limitations of organic compounds in terms of stability, shelf life and bioactivity. One such Calcium phosphate based biomaterial is hydroxyapatite (HA), considered as potential bioactive compound with excellent biocompatibility, osteointegrity and biodegradability. Osteomyelitis, the implant associated infection, is the major problem worldwide responsible for the majority of implant failure cases. Since HA is used as a coating material of implants, only few reports were available on its antimicrobial activity and cytotoxicity whereas no reports on its possible antimicrobial mechanism. In this present study, the HA-NPs were synthesized by wet chemical precipitation and were characterized using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The synthesized HA-NPs were evaluated for antimicrobial activity against implant associated bacterial pathogens. The study also explores the mechanistic action of HA-NPs in killing of bacteria by determining the reactive oxygen species (ROS) generation, DNA fragmentation, Lactate dehydrogenase (LDH) leakage and cellular interaction. In addition the cytotoxicity of HA-NPs was determined by MTT assay and Fluorescence Microscopic analysis. The results revealed that, the synthesized HA-NPs showed good antibacterial activity for tested bacterial species and the possible antibacterial mechanism were due to the lack of membrane integrity and cytotoxic studies shows the concentration dependent changes in cell viability. - Highlights: • Antibacterial activity against Gram − ve bacterium • Mechanism of antibacterial activity is analyzed. • DNA fragmentation, growth curve, LDH, ROS are analyzed. • The mechanism is by damaging cell membrane. • Hydroxyapatite is biocompatible.

  13. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  14. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. An experimental study in monkeys

    DEFF Research Database (Denmark)

    Gotfredsen, K; Warrer, K; Hjørting-Hansen

    1991-01-01

    The purpose of the present study was to examine the effect of treating bony craters around titanium dental implant with polytetrafluoroethylene membranes (PTFE), with and without grafting of hydroxyapatite (HA), and with HA alone. 4 standardized bone defects were prepared in the alveolar ridge...

  15. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  16. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants.

    Science.gov (United States)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2003-06-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.

  17. Assessment of vascularization within hydroxyapatite ocular implant by bone scintigraphy: compartive analysis of planar and SPECT imaging

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee; Park, Soon Ah

    1999-01-01

    Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Seventeen patients (M:F=12:5, mean age: 50.4±17.5 years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: 197±81 days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake. The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization (1.96±9.87 vs 1.17±0.08 , p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization (8.44±5.45 vs 2.20±0.87, p<0.05). In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy

  18. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  19. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  20. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    Science.gov (United States)

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks. (c) 2008 Wiley Periodicals, Inc.

  1. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    Science.gov (United States)

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  2. A three-dimensional finite element study on the effect of hydroxyapatite coating thickness on the stress distribution of the surrounding dental implant-bone interface

    Directory of Open Access Journals (Sweden)

    Hadi Asgharzadeh Shirazi

    2014-06-01

    Full Text Available   Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method.   Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studied using finite element method in the range between 0 to 200 microns. A 3D model including one section of mandible bone was modeled by a thick layer of cortical surrounding dense cancellous and a Nobel Biocare commercial brand dental implant was simulated and analyzed under static load in the Abaqus software.   Results The diagram of maximum von Mises stress versus coating thickness was plotted for the cancellous and cortical bones in the range between 0 to 200 microns. The obtained results showed that the magnitude of maximum von Mises stress of bone decreased as the hydroxyapatite coating thickness increased. Also, the thickness of coating exhibited smoother stress distribution and milder variations of maximum von Mises stress in a range between 60 to 120 microns.   Conclusion: In present study, the stress was decreased in the mandible bone where hydroxyapatite coating was used. This stress reduction leads to a faster stabilization and fixation of implant in the mandible bone. Using hydroxyapatite coating as a biocompatible and bioactive material could play an important role in bone formation of implant- bone interface.

  3. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  4. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  5. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  6. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  8. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  11. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    Science.gov (United States)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  12. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    Science.gov (United States)

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  14. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  15. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.

    Science.gov (United States)

    Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki

    2015-09-01

    Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Hydroxyapatite-lignin composite as a metallic implant-bone tissue osseointegration improver: experimental study in dogs

    Directory of Open Access Journals (Sweden)

    Fabrício Luciani Valente

    2015-01-01

    Full Text Available The study aimed to evaluate biocompatibility, osteoconduction and osseointegration of a pasty composite of hydroxyapatite (20% and lignin (80% as a promoter of metal implant and bone tissue integration. An intramedullary Schanz pin was implanted in both tibias of fifteen bitches. In the left tibia, the pin was coated with the biomaterial at the time of surgery. Marrow cavity was also filled with the biomaterial. Right limb did not receive the biomaterial, then constituting the control group. Tibias were harvested from five animals at 8, 60 and 150 days after surgery; three of them were analyzed by histological and biomechanical assessment and the two remaining tibias by X-ray diffraction. Results showed that the biomaterial is biocompatible, with osteoconductivity and osseointegration properties. Histological analysis and diffractograms showed the presence of hydroxyapatite in samples in all periods, although the presence of organic material of low crystallinity was variable. There was no statistical difference in the forces required for removal of the biocompatibility, osteoconductivity and osseointegration, it was not able to promote a better intramedullary pin anchorage.

  17. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  18. Application of interconnected porous hydroxyapatite ceramic block for onlay block bone grafting in implant treatment: A case report.

    Science.gov (United States)

    Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki

    2017-12-01

    Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.

  19. Influence of the zinc and manganese doping on the kinetics of resorption of a hydroxyapatite implant and study on matrix effects in the used P.I.X.E. nuclear method

    International Nuclear Information System (INIS)

    Jallot, E.

    1997-01-01

    In this work we study hydroxyapatite, hydroxyapatite doped with zinc or manganese and the compound of 75% hydroxyapatite, 25% tricalcic phosphate. The ceramics were implanted in the cortical femur of sheep. The global evolution of mineral concentrations in the implants with the time after implantation was studied by neutronic radioactivation. We studied matrix effects in P.I.X.E. (Particles Induced X-rays Emission) with Alpha parameter method. By measurements at two different energies, we determine a correction factor of the slowing down of incident protons and of the X rays absorption in matrix. So, the P.I.X.E. analysis allow us a scanning of mineral concentrations at the bone-implant interface at different time after implantation. The transformation of the hydroxyapatite matrix has been studied by X-rays by X-rays diffraction. (author)

  20. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  1. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  2. Influence of the zinc and manganese doping on the kinetics of resorption of a hydroxyapatite implant and study on matrix effects in the used P.I.X.E. nuclear method; Influence du dopage en zinc et en manganese sur la cinetique de resorption d`un implant d`hydroxyapatite et etude des effets de matrice dans la methode nucleaire P.I.X.E. utilisee

    Energy Technology Data Exchange (ETDEWEB)

    Jallot, E.

    1997-01-16

    In this work we study hydroxyapatite, hydroxyapatite doped with zinc or manganese and the compound of 75% hydroxyapatite, 25% tricalcic phosphate. The ceramics were implanted in the cortical femur of sheep. The global evolution of mineral concentrations in the implants with the time after implantation was studied by neutronic radioactivation. We studied matrix effects in P.I.X.E. (Particles Induced X-rays Emission) with Alpha parameter method. By measurements at two different energies, we determine a correction factor of the slowing down of incident protons and of the X rays absorption in matrix. So, the P.I.X.E. analysis allow us a scanning of mineral concentrations at the bone-implant interface at different time after implantation. The transformation of the hydroxyapatite matrix has been studied by X-rays by X-rays diffraction. (author).

  3. Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications

    International Nuclear Information System (INIS)

    Furko, M.; Havasi, V.; Kónya, Z.; Grünewald, D.; Detsch, R.; Boccaccini, A.R.; Balázsi, C.

    2018-01-01

    Multi-element modified bioactive hydroxyapatite bioceramic (mHAp) coatings were successfully developed onto surgical grade titanium alloy material (Ti6Al4V). The coatings were prepared by pulse current deposition from electrolyte containing adequate amounts of calcium nitrate and ammonium dihydrogen phosphate at 70C. The pure HAp layer was doped and co-deposited with Ag, Zn, Mg, Sr ions. The biocompatible properties of layers were investigated by seeding osteoblast-like MG-63 cells onto the samples’ surface. The biocompatible measurements revealed enhanced bioactivity of modified HAp compared to uncoated implant materials and pure bioceramic coating. The morphology and structure of coatings and cells were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) as well as FT-IR and XRD measurements. The biodegradable properties of samples were investigated by electrochemical potentiodynamic measurements. [es

  4. Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage

    Science.gov (United States)

    Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.

    2018-04-01

    Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.

  5. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  6. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  7. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  8. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  9. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; Andronie, A.; Stamatin, I.; Moga, S.; Ducu, C.

    2010-01-01

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm 2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm -1 amide II, 1654 cm -1 amide I, 1243 cm -1 amide III, while the peak from 1027 cm -1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  10. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  11. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    International Nuclear Information System (INIS)

    Pilmane, M; Salms, G; Salma, I; Skagers, A; Locs, J; Loca, D; Berzina-Cimdina, L

    2011-01-01

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNFα), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  12. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pilmane, M [Riga Stradins University, Institute of Anatomy and Anthropology, Dzirciema 16, LV-1007, Riga (Latvia); Salms, G; Salma, I; Skagers, A [Riga Stradins University, Department of Oral and Maxillofacial Surgery, Dzirciema 20. LV-1007, Riga (Latvia); Locs, J; Loca, D; Berzina-Cimdina, L, E-mail: pilmane@latnet.lv [Riga Technical University, Riga Biomaterials innovation and development centre, Pulka 3/3, LV-1007, Riga (Latvia)

    2011-06-23

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNF{alpha}), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  13. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  14. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials

    Science.gov (United States)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M.; Peterson, Deforest; Stone, Julia M.; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-01

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering.

  15. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials.

    Science.gov (United States)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M; Peterson, Deforest; Stone, Julia M; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-11

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  17. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone

    NARCIS (Netherlands)

    Tami, A.E.; Leitner, M.M.; Baucke, M.G.; Mueller, T.L.; Lenthe, van G.H.; Müller, R.; Ito, K.

    2009-01-01

    In osteoporotic bones, resorption exceeds formation during the remodelling phase of bone turnover. As a consequence, decreased bone volume and bone contact result in the peri-implant region. This may subsequently lead to loss of fixation. In this study we investigated whether the presence of

  19. No effect of hydroxyapatite particles in phagocytosable sizes on implant fixation: an experimental study in dogs

    DEFF Research Database (Denmark)

    Rahbek, O; Kold, S; Bendix, K

    2005-01-01

    particles (n = 8), or (4) hyaluronic acid and PE particles (n = 8). After 4 weeks, the animals were killed. The implant interface was evaluated by pushout testing until failure and by histomorphometry. Both HA and PE particles were found to be phagocytosed by macrophage-like cells in the interfacial tissue...

  20. Ceramic hydroxyapatite coating on titanium implants drives selective bone marrow stromal cell adhesion.

    NARCIS (Netherlands)

    Torensma, R.; Brugge, P.J. ter; Jansen, J.A.; Figdor, C.G.

    2003-01-01

    The aim of this study was to determine the cell characteristics that regulate implant osseointegration. The heterogeneity of bone marrow stromal cells obtained from 11 donors was assessed by measuring the expression of a large panel of adhesion molecules. Large differences in expression of adhesion

  1. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  2. [Enforcing osseointegration of dental implantates spray-coated by bioceramics with the help of hyaluronic acid and hydroxyapatite gel in experimental conditions].

    Science.gov (United States)

    Kulakov, A A; Volozhin, A I; Tkachenko, V M; Doktorov, A A; Salim, Ibrakhim Samir

    2007-01-01

    Influence of HAP-gel (2 g of 2% solution of hyaluronic acid mixed with 0,5 g of hydroxyapatite and 0,1 ml of colloidal silver) upon osseointegration in case of delayed introduction of titanium implantates in dog jaw. By scanning electron microscopy it was shown that solely use either of HAP-gel or of ceramic spraying increased direct contact area between bone and implantates in the 6 and 9 months time period. Combination of spray-coated ceramic with HAP-gel was effective in 3 months after implantation, when solely the HAP-gel or the ceramic spraying were little effective. In the following terms of experiment (6 and 9 months) significant differences between groups 3 and 4 (implantate with ceramic spraying but without HAP-gel in the alveolus and implantate with ceramic spraying and with HAP-gel in the alveolus) were not found. The area of implantate integration with jaw bone (cortical part of it was excluded) was equal to 80% and was maximal for the given conditions of the experiment.

  3. Graft shrinkage and survival rate of implants after sinus floor elevation using a nanocrystalline hydroxyapatite embedded in silica gel matrix: a 1-year prospective study.

    Science.gov (United States)

    El Hage, Marc; Abi Najm, Semaan; Bischof, Mvark; Nedir, Rabah; Carrel, Jean-Pierre; Bernard, Jean-Pierre

    2012-06-01

    The aims of this study were (1) to evaluate the vertical shrinkage percentage of nanocrystalline hydroxyapatite embedded in silica gel used for maxillary sinus floor elevation (SFE) and (2) to determine the survival rate of the implants 1 year after placement in the healed grafted sinuses. Eleven maxillary sinuses were augmented in eight patients with NanoBone. After a healing period averaging 14.42 months, 19 implants were placed and followed up with clinical and radiographic evaluation. Panoramic radiographs were taken immediately after SFE and at 12 months after grafting. Measurements of changes in height were made by a computerized measuring technique using an image editing software. The mean graft height shrinkage percentage at 12 months after surgery was 8.84% (±5.32). One implant was lost before loading. All the 18 remaining osseointegrated implants received the prosthetic rehabilitation and were controlled after 3 months of functional loading. The implant survival rate at the 1-year interval was 94.74%. A 100% NanoBone alloplastic graft used in lateral SFE procedures presented limited height shrinkage. Implants placed in these grafted sinuses showed survival rates similar to those found in published data. These results should be interpreted cautiously considering the study's reduced sample size.

  4. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  5. Characterization and human gingival fibroblasts biocompatibility of hydroxyapatite/PMMA nanocomposites for provisional dental implant restoration

    Science.gov (United States)

    Zhang, Jingchao; Liao, Juan; Mo, Anchun; Li, Yubao; Li, Jidong; Wang, Xuejiang

    2008-11-01

    The aim of this study was to determine nHA/PMMA composites (H/P) in an optimal ratio with improved cytocompatibility as well as valid physical properties for provisional dental implant restoration. 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.% H/P were developed and characterized using XPS, bending strength test and SEM. Human gingival fibroblasts cultured in extracts or directly on sample discs were investigated by fluorescent staining and MTT assay. Chemical integration in nHA/PMMA interface was indicated by XPS. Typical fusiform cells with adhesion spots were detected on H/P discs. MTT results also indicated higher cell viability in 30 wt.% and 40 wt.% H/P discs ( P provisional fixed crowns (PFC) is 0.4:1.

  6. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  7. Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions - Part I. FTIR and Raman spectroscopy study

    Science.gov (United States)

    Pecheva, Emilia V.; Pramatarova, Liliana D.; Maitz, Manfred F.; Pham, Mihn T.; Kondyuirin, Alexey V.

    2004-07-01

    In this work, the kinetics of hydroxyapatite (HA) deposition on solid substrates from liquid precursor (simulated body fluid, SBF) is investigated. The surfaces of stainless steel, silicon and silica glass substrates are modified by sequential implantation of Ca and P ions. Three groups of samples of each material: (i) ion-implanted; (ii) ion-implanted and thermally treated at 873 K in air for 60 min; and (iii) untreated are prepared. To investigate the kinetics of the HA deposition, all three groups of samples are introduced at equal conditions into SBF whose supersaturation is maintained during the whole 6-day period of immersion. The layers are analyzed by FTIR and Raman spectroscopy. Both techniques complement each other and show the formation of HA with incorporated CO 32- and HPO 42- groups. Following the kinetics of the deposition process, it is concluded that the speed of deposition is different on the three materials modified by Ca and P implantation and by oxidation, compared to untreated samples but in order to distinguish clearly the effect of the ion implantation and oxidation the very initial moment of nucleation and layer growth should be more carefully investigated.

  8. Biofouling Prevention of Ancient Brick Surfaces by TiO2-Based Nano-Coatings

    Directory of Open Access Journals (Sweden)

    Lorenzo Graziani

    2015-07-01

    Full Text Available Brick constitutes a significant part of the construction materials used in historic buildings around the world. This material was used in Architectural Heritage for structural scope, and even for building envelopes. Thus, components made of clay brick were subjected to weathering for a long time, and this causes their deterioration. One of the most important causes for deterioration is biodeterioration caused by algae and cyanobacteria. It compromises the aesthetical properties, and, at a later stage, the integrity of the elements. In fact, traditional products used for the remediation/prevention of biofouling do not ensure long-term protection, and they need re-application over time. The use of nanotechnology, especially the use of photocatalytic products for the prevention of organic contamination of building façades is increasing. In this study, TiO2-based photocatalytic nano-coatings were applied to ancient brick, and its efficiency towards biofouling was studied. A composed suspension of algae and cyanobacteria was sprinkled on the bricks’ surface for a duration of twelve weeks. Digital Image Analysis and colorimetric measurements were carried out to evaluate algal growth on specimens’ surfaces. Results show that photocatalytic nano-coating was able to inhibit biofouling on bricks’ surfaces. In addition, substrata (their porosity and roughness clearly influences the adhesion of algal cells.

  9. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  10. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz (Germany); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 14, 55128 Mainz (Germany); Thimm, Benjamin W [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland); Booms, Patrick [Leeds Institute of Molecular Medicine, Section of Medicine, Surgery and Anaesthesia, University of Leeds (United Kingdom); Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton, E-mail: ghanaati@uni-mainz.d [Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Theodor-Stein-Kai 7, 60596 Frankfurt am Main (Germany)

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  11. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest (Romania); Research Institute of the University of Bucharest –ICUB, 91-95 Splaiul Independentei, 050095 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Socol, Gabriel [Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Oprea, Alexandra Elena [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Rădulescu, Marius [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • HAp/PLGA thin coatings by Matrix Assisted Pulsed Laser Evaporation. • Anti-adherent coating on medical surfaces against S. aureus and P. aeruginosa colonization. • Coatings with potential applications in implant osseointegration. - Abstract: In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  12. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton

    2010-01-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  13. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  14. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    International Nuclear Information System (INIS)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V.

    2013-01-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid

  15. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2018-04-01

    Full Text Available The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials standard. In addition to that data on the chemical element test like K+, CO3−−, Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166 standardization. Therefore, it can be concluded that both organic (cellulose and starch based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries. Keywords: Nanocellulose, Nanobioplastic, Nanocoating, Biodegradable, Corn leaf

  16. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Science.gov (United States)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  17. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hydroxyapatite-diamondlike carbon nanocomposite films

    International Nuclear Information System (INIS)

    Narayan, Roger J.

    2005-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants

  20. Hydroxyapatite-diamondlike carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu

    2005-05-15

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.

  1. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    Science.gov (United States)

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  2. Implantes de hidroxiapatita em falhas ósseas produzidas no fêmur de ratos submetidos ao tabagismo passivo Hydroxyapatite implants in bone defects produced in rat femurs submitted to passive tobacco exposure

    Directory of Open Access Journals (Sweden)

    Thiago Cerizza Pinheiro

    2008-10-01

    menores quando comparados com os do grupo controle. CONCLUSÃO: A neoformação óssea em defeitos do esqueleto pode ocorrer naturalmente em animais submetidos ao tabagismo passivo, no entanto, de forma mais lenta e em menor proporção.INTRODUCTION: Defects with bone mass loss are frequently treated with bone autografts. Endografts of bones using biomaterials, such as hydroxyapatite (HA also have been used for the same purpose, replacing autografts. However, bone tissue health conditions are basic for osteointegration of the implant. Thus, excessive tobacco consumption, either as an active or as a passive smoker, may harm the process of bone neoformation with a hydroxyapatite implant due to its deleterious effects to bone tissue. OBJECTIVE: To evaluate the nutritional status of the animals and the process of bone neoformation when porous hydroxyapatite granules are implanted in bone defects of the femur of rats submitted to passive tobacco exposure. METHOD: Porous hydroxyapatite granules were implanted in bone defects produced in the left distal femoral epiphysis of rats subjected to prolonged passive tobacco exposure. The animals were followed along the treatment of tobacco exposure during six months, to evaluate their physical conditions. After eight weeks of the bone implant with the biomaterial, the animals were sacrificed and the specimens of the implant region were submitted to routine histological testing, and maintained in paraffin blocks for morphometric histological and radiological analysis. RESULTS: The mass variation of the experimental group was found to be more intense than that of the control group. As to radiological findings, the control group had an apparent more radio lucent and organized image. In the morphological analysis, there was a better closing of the bone defect and osteointegration of hydroxyapatite in the control group. Upon comparing the volume of bone formed in the receiving area of the femur between the control and the experimental group

  3. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    Science.gov (United States)

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process

  4. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF_2 or MgO for implants functionalization

    International Nuclear Information System (INIS)

    Mihailescu, Natalia; Stan, G.E.; Duta, L.; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M.; Luculescu, C.; Oktar, F.N.; Mihailescu, I.N.

    2016-01-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF_2 (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ_F_W_H_M ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF_2 and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  5. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  6. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Directory of Open Access Journals (Sweden)

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  7. Do Bone Graft and Cracking of the Sclerotic Cavity Improve Fixation of Titanium and Hydroxyapatite-coated Revision Implants in an Animal Model?

    Science.gov (United States)

    Elmengaard, Brian; Baas, Joergen; Jakobsen, Thomas; Kold, Soren; Jensen, Thomas B; Bechtold, Joan E; Soballe, Kjeld

    2017-02-01

    We previously introduced a manual surgical technique that makes small perforations (cracks) through the sclerotic bone shell that typically forms during the process of aseptic loosening ("crack" revision technique). Perforating just the shell (without violating the proximal cortex) can maintain overall bone continuity while allowing marrow and vascular elements to access the implant surface. Because many revisions require bone graft to fill defects, we wanted to determine if bone graft could further increase implant fixation beyond what we have experimentally shown with the crack technique alone. Also, because both titanium (Ti6Al4V) and hydroxyapatite (HA) implant surfaces are used in revisions, we also wanted to determine their relative effectiveness in this model. We hypothesized that both (1) allografted plasma-sprayed Ti6Al4V; and (2) allografted plasma-sprayed HA-coated implants inserted with a crack revision technique have better fixation compared with a noncrack revision technique in each case. Under approval from our Institutional Animal Care and Use Committee, a female canine animal model was used to evaluate the uncemented revision technique (crack, noncrack) using paired contralateral implants while implant surface (Ti6Al4V, HA) was qualitatively compared between the two (unpaired) series. All groups received bone allograft tightly packed around the implant. This revision model includes a cylindrical implant pistoning 500 μm in a 0.75-mm gap, with polyethylene particles, for 8 weeks. This engenders a bone and tissue response representative of the metaphyseal cancellous region of an aseptically loosened component. At 8 weeks, the original implants were revised and followed for an additional 4 weeks. Mechanical fixation was assessed by load, stiffness, and energy to failure when loaded in axial pushout. Histomorphometry was used to determine the amount and location of bone and fibrous tissue in the grafted gap. The grafted crack revision improved

  8. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants

    International Nuclear Information System (INIS)

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-01-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37 ± 1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. - Highlights: • Cold rolling markedly increases the hardness of SS 316Ti from 125 to 460 HV10. • Higher deformation degrees lead to lower corrosion resistance. • Application of HA-coating leads to significant improvement of the corrosion resistance

  9. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone

    DEFF Research Database (Denmark)

    Nimb, L; Jensen, J S; Gotfredsen, K

    1995-01-01

    A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared...... analysis. The ultimate shear strength for the HA-coated implants was significantly higher than in the glass-ceramic group. When these values were related to the histomorphometric measurements, the difference could be explained by the tissue-to-implant contact. The glass-ceramic showed direct contact only...... with nonmineralized, osteoid bone. The HA-coated implants, however, were integrated into the bone. The study indicated that porous glass-ceramic containing AlPO4 causes local osteomalacia and might not be suitable for clinical purposes....

  10. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  11. Titania nano-coated quartz wool for the photocatalytic mineralisation of emerging organic contaminants.

    Science.gov (United States)

    Saracino, M; Pretali, L; Capobianco, M L; Emmi, S S; Navacchia, M L; Bezzi, F; Mingazzini, C; Burresi, E; Zanelli, A

    2018-01-01

    Many emerging contaminants pass through conventional wastewater treatment plants, contaminating surface and drinking water. The implementation of advanced oxidation processes in existing plants for emerging contaminant remediation is one of the challenges for the enhancement of water quality in the industrialised countries. This paper reports on the production of a TiO 2 nano-layer on quartz wool in a relevant amount, its characterisation by X-ray diffraction and scanning electron microscopy, and its use as a photocatalyst under ultraviolet radiation for the simultaneous mineralisation of five emerging organic contaminants (benzophenone-3, benzophenone-4, carbamazepine, diclofenac, and triton X-100) dissolved in deionised water and tap water. This treatment was compared with direct ultraviolet photolysis and with photocatalytic degradation on commercial TiO 2 micropearls. The disappearance of every pollutant was measured by high performance liquid chromatography and mineralisation was assessed by the determination of total organic carbon. After 4 hours of treatment with the TiO 2 nano-coated quartz wool, the mineralisation exceeds 90% in deionised water and is about 70% in tap water. This catalyst was reused for seven cycles without significant efficiency loss.

  12. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  13. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  14. Cementless Hydroxyapatite Coated Hip Prostheses

    Science.gov (United States)

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  15. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  16. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  17. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  18. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  19. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  20. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    International Nuclear Information System (INIS)

    Pan, Ying; Pan, Haifeng; Yuan, Bihe; Hong, Ningning; Zhan, Jing; Wang, Bibo; Song, Lei; Hu, Yuan

    2015-01-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam

  1. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan, Haifeng; Yuan, Bihe [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Hong, Ningning; Zhan, Jing; Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China)

    2015-08-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam.

  2. Surface wettability and triple line behavior controlled by nano-coatings: effects on the sessile drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerôme

    2010-11-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop posed on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (SiOx, SiOc and CF), the wettability and the triple line dynamic of a sessile drop under natural phase change. The experiment consists in analyzing simultaneously the kinetics of evaporation, internal thermal motion and heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamic of the evaporative heat flux appears clearly different for a drop evaporating in pinned mode than in receding mode. Moreover, the kinetics of evaporation, the internal flow structure and the evaporative heat flux are drastically influenced by the wettability the substrate.

  3. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  4. Higher dose of palonosetron versus lower dose of palonosetron plus droperidol to prevent postoperative nausea and vomiting after eye enucleation and orbital hydroxyapatite implant surgery: a randomized, double-blind trial

    Directory of Open Access Journals (Sweden)

    Hu X

    2017-05-01

    Full Text Available Xiao Hu, Fang Tan, Lan Gong Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, Shanghai, China Objective: Postoperative nausea and vomiting (PONV is commonly observed after eye enucleation and orbital hydroxyapatite implant surgery. This prospective, randomized, double-blind trial was conducted to investigate the hypothesis that compared with monotherapy using a higher dose of palonosetron, using a lower dose of palonosetron in combination with droperidol could reduce the incidence of PONV and achieve similar prophylaxis against PONV after the aforementioned surgery.Patients and methods: A total of 129 patients who were in the American Society of Anesthesiologists Classes I and II, aged between 18 and 70 years, and scheduled for eye enucleation and orbital hydroxyapatite implant surgery, were enrolled in this study. They were randomized into three groups: Group P2.5 (2.5 µg/kg palonosetron, Group P7.5 (7.5 µg/kg palonosetron, and Group P+D (2.5 µg/kg palonosetron and 15 µg/kg droperidol. Patients received the different antiemetic regimens intravenously 5 min before surgery. The severity of nausea and vomiting and the complete response (CR rate during a 72-h postoperative period were assessed.Results: All patients completed the trial. The nausea score of Group P2.5 was significantly higher than those of the other two groups at 0–4 h and 24–48 h (P<0.05. Vomiting scores among all groups were similar during all intervals (P>0.05. Compared with Group P2.5, the CR rate was significantly improved at all intervals in Group P+D, except at 4–72 h, and was also elevated at 24–72 h in Group P7.5 (P<0.05. Fewer patients in Group P2.5 did not experience any nausea or vomiting throughout the study (49% compared with those in Group P7.5 (67% and Group P+D (81%; P<0.01.Conclusion: Combining low-dose palonosetron with droperidol potentiated prophylaxis

  5. Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite.

    Science.gov (United States)

    Amna, Touseef

    2018-05-09

    At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.

  6. Wear Resistance Performance of Conventional and Non-Conventional Wind Turbine Blades with TiN Nano-Coating

    Directory of Open Access Journals (Sweden)

    Muhammad Hasibul Hasan

    2017-09-01

    Full Text Available Efficiency and durability are critical issues that affect widely-adopted aerofoil-power generator as a sustainable source of electrical power. Even though high wind power density can be achieved; installing wind turbines in desert condition has difficulties including thermal variation, high turbulence and sand storms. Sand blasting on turbine blade surface at high velocities causes erosion resulting turbine efficiency drop. Damage-induced erosion phenomena and aeroelastic performance of the blades needed to be investigated. Suitable coating may prevent erosion to a great extent. A numerical investigation of erosion on NACA 4412 wind turbine blade has been performed using commercial computational fluid dynamics software ANSYS FLUENT 14.5 release. Discrete phase model (DPM has been used for modelling multi-phase flow of air and sand particles over the turbine blade. Governing equations have been solved by finite volume method (FVM. Conventional 30-70% glass fibre resin and non-conventional jute fibre composite have been used as turbine blade material. Sand particles of  diameter have been injected from 20, 30, 45, 60 and 90 degree angles at 500C temperature. Erosion rate, wall shear stress and strain rate have been calculated for different wind velocities and impingement angles. Simulation results for higher velocities deviate from the results observed at lower wind velocities. In simulation, erosion rate is highest for impingement angle at low wind velocities, which has been validated by experiment with a mean absolute error (MAE of 5.56%. Erosion rate and wall shear stress are higher on jute composite fibre than glass fibre resin. Developed shear stress on wind turbine blade surface is highest for  impingement angle at all velocities. On the other hand, exerted pressure on turbine blade surface is found highest for 9  angle of attack. Experimental results, with or without Titanium nitride(TiN nano-coating, also revealed that surface roughness

  7. Histologic analysis of a retrieved hydroxyapatite-coated femoral prosthesis

    DEFF Research Database (Denmark)

    Søballe, K; Gotfredsen, K; Brockstedt-Rasmussen, H

    1991-01-01

    A hydroxyapatite-coated hip hemi-prosthesis was retrieved from a 98-year-old osteoporotic woman 12 weeks after implantation. Histologic analysis revealed bone and fibrous tissue almost evenly distributed around the surface of the implant circumference. Quantitative histologic analysis showed...... that 48% of the hydroxyapatite surface was covered by bone. Fibrous tissue covered 30% of the prosthetic surface, and 20% of the surface had no tissue coverage. Scanning electron microscopy showed direct contact without any clear boundary between the newly formed bone and the hydroxyapatite ceramic....

  8. Can a novel silver nano coating reduce infections and maintain cell viability in vitro?

    Science.gov (United States)

    Qureshi, Ammar T; Landry, Jace P; Dasa, Vinod; Janes, Marlene; Hayes, Daniel J

    2014-03-01

    Herein we report a facile layer-by-layer method for creating an antimicrobial coating composed of silver nanoparticles on medical grade titanium test discs. Nanoscale silver nanoparticle layers are attached to the titanium orthopedic implant material via aminopropyltriethoxy silane crosslinker that reacts with neighboring silane moieties to create an interconnected network. A monolayer of silane, followed by a monolayer of silver nanoparticles would form one self-assembled layer and this process can be repeated serially, resulting in increased silver nanoparticles deposition. The release rate of silver ion increases predictably with increasing numbers of layers and at appropriate thicknesses these coatings demonstrate 3-4 log reduction of viable Escherichia coli and Staphylococcus aureus bacteria. Increasing the thickness of the coatings resulted in reduced bacterial colonization as determined by fluorescent staining and image analysis. Interestingly, the cytotoxicity of murine 3T3 cells as quantified by fluorescent staining and flow cytometry, was minimal and did not vary significantly with the coating thickness. Additionally, these coatings are mechanically stable and resist delamination by orthogonal stress test. This simple layer-by-layer coating technique may provide a cost-effective and biocompatible method for reducing microbial colonization of implantable orthopedic devices.

  9. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  10. A 3-year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentations using a new nanocrystalline hydroxyapatite.

    Science.gov (United States)

    Heinemann, F; Mundt, T; Biffar, R; Gedrange, T; Goetz, W

    2009-12-01

    The aims of this case series was to evaluate the success rate of implants and their restorations, the sinus bone graft resorption, and the marginal bone loss around the implants when nanocristalline HA embedded in a silica matrix was exclusively used as grafting material. In 13 partially edentulous patients of a private practice having missing teeth in the posterior maxilla and a subantral bone height between 3 and 7 mm, 19 sinus augmentations (100% Nanobone, Artoss, Rostock, Germany) by the lateral lift technique were performed. The implants (Tiolox/Tiologic Implants, Dentaurum, Ispringen, Germany) were simultaneously placed. After 6 to 9 months 37 implants were restored with fixed dental prostheses. The clinical evaluation included peri-implant parameters, periotest measurements and the restorations. The radiographic bone heights over time were estimated with linear mixed models. The implant success rate was 100% after three years. The periotest values (between -7 and -6) after implant abutment connection indicated a solid osseointegration. The mean rates of the marginal bone loss over the first year were higher (mesial: -0.55, distal: -0.51 mm) than the annual rates thereafter (mesial: -0.09 mm, distal: -0.08 mm). The mean rates of changes in the total bone height were neglectable (<0.2 mm) and not significant. The prosthodontic and esthetic evaluation revealed a successful outcome. Within the limits of this clinical report it may be concluded that maxillary sinus augmentation using 100% nanocristalline HA embedded in a silica matrix to support implants is a reliable procedure.

  11. Oxygen and sodium plasma-implanted nickel-titanium shape memory alloy: A novel method to promote hydroxyapatite formation and suppress nickel leaching

    International Nuclear Information System (INIS)

    Chan, Y.L.; Yeung, K.W.K.; Lu, W.W.; Ngan, A.H.W.; Luk, K.D.K.; Chan, D.; Wu, S.L.; Liu, X.M.; Chu, Paul K.; Cheung, K.M.C.

    2007-01-01

    This study aims at modifying the surface bioactivity of NiTi by sodium and oxygen plasma immersion ion implantation (PIII). Sodium ions were implanted into oxygen plasma-implanted NiTi and untreated NiTi. X-ray photoelectron spectroscopy (XPS) revealed that more sodium was implanted into the oxygen pre-implanted sample in comparison with the untreated surface. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX) detected calcium and phosphorus rich deposits on both samples after immersion in simulated body fluids for 7 and 21 days. Inductively-coupled plasma mass spectrometry (ICPMS) conducted on the deposits dissolved in diluted hydrochloric acid showed more calcium on the oxygen PIII samples. The improved corrosion resistance of the oxygen PIII NiTi was retained after sodium PIII as evaluated by potentiodynamic polarization tests. Better spreading and proliferation of osteoblasts were also observed on the treated samples

  12. The expression of cytokines and β -defensin 2, - 3, -4 in rabbit bone tissue after hydroxyapatite (HAp), α- Tricalcium phosphate (α-TCP) and polymethylmethacrylate (PMMA) implantation

    International Nuclear Information System (INIS)

    Vamze, J; Pilmane, M; Skagers, A

    2012-01-01

    Bone loss induced by inflammation is one of the complications after biomaterial implantation. There is no much data on expression of cytokines and defensins into the bone tissue around the implants in literature. The aim of this work was to investigate the distribution and appearance of interleukin (IL)-1, IL-6, IL-8, IL-10 and (β - defensin (BD)-2, BD-3, BD-4 after the implantation of different biomaterials. Bone developing zones, signs of bone-implant contact and low expression of pro-inflammatory cytokine IL-1, IL-6 and anti-inflammatory cytokine IL-10 in experimental tissue with pure HAp and unburned HAp implants indicate a potential advantage of this material in terms of its biocompatibility over the other materials used in our study.

  13. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.

    Science.gov (United States)

    Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V

    2016-10-01

    The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  15. Gallium-containing hydroxyapatite for potential use in orthopedics

    International Nuclear Information System (INIS)

    Melnikov, P.; Teixeira, A.R.; Malzac, A.; Coelho, M. de B.

    2009-01-01

    A novel material that may be recommended for grafts and implants stimulating bone growth has been obtained by introducing gallium ions (up to 11.0 mass%) into crystalline lattice of hydroxyapatite. The doping was carried out using gallium nitrate and sodium gallate solutions. In both cases, lattice parameters of gallium-doped hydroxyapatite are identical to those of pure synthetic hydroxyapatite. Gallium does not replace calcium as a result of heterovalent substitution and consequently produces no distortions in the framework of hydroxyapatite matrix. It remains strongly fixed in the form of solid solution of intercalation. According to scanning electron microscopy images gallium insertion does not cause any morphological alterations in hydroxyapatite structure and the product developed meets physico-chemical criteria for biomaterial to be employed in orthopedic practice and local handling of traumatic injuries. Its future usage opens the opportunity to enhance osteosynthesis and calcium retention in loco.

  16. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    International Nuclear Information System (INIS)

    Mallik, P K; Swain, P.K.; Patnaik, S.C

    2016-01-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles. (paper)

  17. A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla, E-mail: abda_55@jbnu.ac.kr [Dept. of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley of University, Qena 83523 (Egypt); Dept. of Computer Science, Faculty of Engineering, Universidad de Cuenca, Cuenca 01.01.168 (Ecuador); Dept. of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hamdy, Abdel Salam [Dept. of Manufacturing Engineering, College of Engineering and Computer Science, University of Texas Pan-American, 1201 West University Dr., Edinburg, TX 78541-2999 (United States); Khalil, Khalil Abdelrazek [Dept. of Mechanical Engineering, College of Engineering King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Department of Mechanical Engineering, Faculty of Energy Engineering, Aswan University, Aswan (Egypt); Lim, Ju Hyun, E-mail: jhlim@gnah.co.kr [Dept. of Urology, Gangneung Asan Hospital, University of Ulsan, College of Medicine, Gangneung (Korea, Republic of)

    2015-04-01

    A biocompatible coating consists of a poly(vinyl acetate)/hydroxyapatite (PVAc/HA) composite nanofiber mat was applied to NaOH-treated titanium metal by means of a novel, facile and efficient air jet spinning (AJS) approach. Results showed that HA nanoparticles (NPs) strongly embedded onto the AJS single fiber surface resulting in a strong chemical interfacial bonding between the two phases due to the difference in kinetic energies. It was proven that AJS membrane coatings can provide significant improvement in the corrosion resistance of titanium substrate. Interestingly, the biocompatibility using MC3T3-E1 osteoblast to the PVAc/HA fiber composite layer coated on Ti was significantly higher than pure titanium-substrates. - Highlights: • A novel PVAc/HA composite nanofiber mat layer has been fabricated. • PVAc/HA nanocomposites coated on Ti substrates by means of air jet spinning • AJS method enabled the formation of well-adherent and uniform coatings. • Coatings of PVAc/HA on Ti surfaces definitely favored cell proliferation.

  18. Substituted Hydroxyapatites with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Joanna Kolmas

    2014-01-01

    Full Text Available Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.

  19. Substituted Hydroxyapatites with Antibacterial Properties

    Science.gov (United States)

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  20. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone)/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig.

    Science.gov (United States)

    Hsieh, Yi-Ho; Shen, Bo-Yuan; Wang, Yao-Horng; Lin, Bojain; Lee, Hung-Maan; Hsieh, Ming-Fa

    2018-04-09

    Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM) layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-β1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT). The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-β1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.

  1. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig

    Directory of Open Access Journals (Sweden)

    Yi-Ho Hsieh

    2018-04-01

    Full Text Available Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol-block-poly(ε-caprolactone (mPEG-PCL and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-β1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT. The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-β1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.

  2. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  3. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...

  4. Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva.

    Science.gov (United States)

    Cárdenas, Marité; Valle-Delgado, Juan José; Hamit, Jildiz; Rutland, Mark W; Arnebrant, Thomas

    2008-07-15

    Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

  5. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...

  6. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    International Nuclear Information System (INIS)

    Kannan, M Bobby; Orr, Lynnley

    2011-01-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  7. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    Science.gov (United States)

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  8. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M Bobby; Orr, Lynnley, E-mail: bobby.mathan@jcu.edu.au [Discipline of Chemical Engineering, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia)

    2011-08-15

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  9. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    Science.gov (United States)

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  10. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    Science.gov (United States)

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  11. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    Science.gov (United States)

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  12. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites

    NARCIS (Netherlands)

    Geven, Mike Alexander; Barbieri, D.; Yuan, Huipin; de Bruijn, Joost Dick; Grijpma, Dirk W.

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with

  13. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    International Nuclear Information System (INIS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-01-01

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO_3 vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  14. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  15. Preparation and characterization of semi-refined kappa carrageenan-based edible film for nano coating application on minimally processed food

    Science.gov (United States)

    Manuhara, Godras Jati; Praseptiangga, Danar; Muhammad, Dimas Rahadian Aji; Maimuni, Bawani Hindami

    2016-02-01

    Shorter and easier processing of semi-refined kappa carrageenan extracted from Euchema cottonii red seaweed result in cheaper price of the polysaccharide. In this study, edible film was prepared from the semi-refined carrageenan without any salt addition. The effect of the carrageenan concentration (1.0, 1.5, and 2.0% w/v) on physical and mechanical properties of the edible film was studied. Edible film thickness and tensile strength increased but elongation at break and water vapor transmission rate (WVTR) decreased as the concentration increased. Based on the characteristic of the edible film, formulation using 2% carrageenan was recommended. The edible film demonstrated the characteristic as follow: 0.054 mm thickness, 21.14 MPa tensile strength, 12.36% elongation at break, and 9.56 g/m2.hour WVTR. It was also noted the carrageenan-based edible film indicated potential physical and mechanical characteristics for nano coating applications on minimally processed food.

  16. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    Science.gov (United States)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  17. Osseointegração clínica-radiológica do compósito hidroxiapatita-lignina entre implante metálico e tecido ósseo em coelho Clinical-radiographic osseointegration of hydroxyapatite-lignin composite between metallic implant and bone tissue in rabbit

    Directory of Open Access Journals (Sweden)

    M.M. Martinez

    2009-08-01

    Full Text Available Para avaliar o compósito hidroxiapatita-lignina na osseointegração entre implante metálico e o tecido ósseo, foram utilizados 20 coelhos adultos, nos quais foi realizada uma falha óssea na face lateral proximal de ambas as tíbias. Na tíbia esquerda, introduziu-se, no canal medular, um pino intramedular de Schanz revestido com o compósito em sua parte rosqueada, após o preenchimento daquele com 1000mg do compósito. A falha cortical foi preenchida com o compósito. O mesmo foi feito na tíbia direita, porém sem a utilização do compósito, servindo como controle. A avaliação clínica baseou-se na deiscência, claudicação, sensibilidade dolorosa e circunferência tibial. Foram realizadas radiografias imediatamente após a cirurgia e aos oito, 30, 60, 90 e 120 dias do pós-operatório. A maioria dos animais apresentou evolução clínica normal. Nas radiografias do grupo tratado, houve decréscimo da radiopacidade no defeito e no espaço medular até tornar-se semelhante à do osso circunvizinho, quadro inverso ao do grupo-controle. Conclui-se que o compósito hidroxiapatita-lignina não mostrou indícios clínicos de rejeição e que o tecido visualizado na altura da falha óssea e ao redor do pino intramedular tinha radiopacidade semelhante à do osso circunvizinho, o que sugere que o material promoveu a integração com o tecido ósseo.This study evaluated a sinthetic hydroxyapatite-lignin composite for osseoingration between metallic implant and bone tissue. Twenty New Zealand rabbits were used. A defect was made a the proximal region of lateral surfaces of both tibias. An intramedullary pin was inserted in the medullary cavity of the left tibia after filling the cavity with 1,000mg of the composite and covering the thread part of the pin with the composite. The same procedure was made in control tibias without the composite. Clinical evaluation was based on inflammatory reaction, dehiscence, lameness, pain, and tibial

  18. Hydroxyapatite synthesis using EDTA

    Science.gov (United States)

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-01-01

    Bone comprises structure of body and is consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite(Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite, however economical cost and time consuming make the production difficult. In this study we synthesized the hydroxyapatite with Ethyenediamine tetraacetic acid. Freeze Dried Bone Allograft(Hans Biomed) was used to be a control group. Synthesized hydroxyapatite was a rod shape, white powdery type substance with 2 ~ 5 μm length and 0.5 ~ 1 μm width. X-ray diffraction showed the highest sharp peak at 32° and high peaks at 25.8°, 39.8°, 46.8°, 49.5°, and 64.0° indicating a similar substance to the freeze Dried Bone Allograft. 3 days after the cell growth of synthesized hydroxyapatite showed 1.5 fold more than the Bone Allograft. Cellular and media alkaline phosphate activity increased similar to the bone alloagraft. In this study we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also the the product can be manufactured in large quantity. It can be also transformed into scaffold structure which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products. PMID:23714942

  19. Hydroxyapatite synthesis using EDTA.

    Science.gov (United States)

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-05-01

    Bone comprises structure of the body and consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self-healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite (Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite; however, economical cost and being time consuming make the production difficult. In this study, we synthesized hydroxyapatite with EDTA. Freeze-dried bone allograft (Hans Biomed) was used as the control group. Synthesized hydroxyapatite was a rod-shaped, white powdery substance with 2- to 5-μm length and 0.5- to 1-μm width. X-ray diffraction showed the highest sharp peak at 32°C and high peaks at 25.8°C, 39.8°C, 46.8°C, 49.5°C, and 64.0°C, indicating a similar substance to the freeze-dried bone allograft. After 3 days, the cell growth of synthesized hydroxyapatite showed 1.5-fold more than did the bone allograft. Cellular and media alkaline phosphate activity increased similar to the bone allograft. In this study, we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also, the product can be manufactured in large quantity. It can be also transformed into scaffold structure, which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products.

  20. Examination of Sol-Gel Derived Hydroxyapatite Enhanced with Silver Nanoparticles using OCT and Raman Spectroscopy

    OpenAIRE

    Głowacki Maciej J.; Gnyba Marcin; Strąkowska Paulina; Gardas Mateusz; Kraszewski Maciej; Trojanowski Michał; Strąkowski Marcin R.

    2017-01-01

    Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporati...

  1. One-stage explant-implant procedure of exposed porous orbital implants

    DEFF Research Database (Denmark)

    Toft, Peter B; Rasmussen, Marie L Roed; Prause, Jan Ulrik

    2011-01-01

    Purpose:  To investigate the risks of implant exposure after a combined explant-implant procedure in patients with an exposed porous orbital implant. Methods:  Twenty-four consecutive patients who had a combined explant-implant procedure of an exposed hydroxyapatite (21) or porous polyethylene (3...... at the same procedure in sockets without profound signs of infection. The procedure carries a possible risk of poor motility....

  2. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption.

    Science.gov (United States)

    Lasgorceix, M; Costa, A M; Mavropoulos, E; Sader, M; Calasans, M; Tanaka, M N; Rossi, A; Damia, C; Chotard-Ghodsnia, R; Champion, E

    2014-10-01

    This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.

  3. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  4. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  5. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.

    Science.gov (United States)

    Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea

    2017-09-20

    Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.

  6. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    Science.gov (United States)

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Microwave annealing for preparation of crystalline hydroxyapatite thin films

    CSIR Research Space (South Africa)

    Adams, D

    2006-11-01

    Full Text Available Hydroxyapatite (HA) is widely preferred as the bio- material coating of choice in both dental and ortho- paedic implants due to its favourable osteo-conductive and bioactive properties [1]. Sol–gel synthesis of HA offers a viable alternative to the high... viable option because it is performed in air. Microwave heating differs fundamentally from conventional heating in that heat energy is generated from within the material instead of originating from D. Adams (&) Department of Physics, University...

  8. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    Directory of Open Access Journals (Sweden)

    Mohamadreza Etminanfar

    2017-12-01

    Full Text Available In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone–poly(ethylene glycol bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized flakes and the polymer coating is uniformly covered the sublayer. Also, High resolution TEM studies on the hydroxyapatite samples revealed that each flake contains nano-crystalline grains with a diameter of about 15 nm. The hydroxyapatite monolayer coating was rapidly covered by calcium phosphate crystals (Ca/P=1.7 after immersion in simulated body fluid confirming the bioactivity of the nanostructured flakes. However, the flakes were weak against applied external forces because of their ultra-fine thickness. Scratch test was applied on hydroxyapatite/polymer coating to evaluate delamination of the coating from substrate. It was shown that, the polymer coating has a great influence on toughening the hydroxyapatite coating. To assess the degradation effect of the polymer layer on hydroxyapatite coating, samples were immersed in phosphate-buffered saline at 37 ᵒC. SEM studies on the samples revealed that the beneath layer of hydroxyapatite appears after 72 h without any visible change in morphology. It seems that, application of a biodegradable polymer film on the nanostructured hydroxyapatite coating is a good way to support the coating during implantation processes

  9. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  10. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  11. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bolelli, Giovanni, E-mail: giovanni.bolelli@unimore.it [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universität Stuttgart, Allmandring 7b, 70569 Stuttgart (Germany); Altomare, Lina; De Nardo, Luigi [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano (Italy)

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO{sub 2} bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  12. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    Science.gov (United States)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mechanical Properties of Chitosan-Starch Composite Filled Hydroxyapatite Micro- and Nanopowders

    Directory of Open Access Journals (Sweden)

    Jafar Ai

    2011-01-01

    Full Text Available Hydroxyapatite is a biocompatible ceramic and reinforcing material for bone implantations. In this study, Starch-chitosan hydrogel was produced using the oxidation of starch solution and subsequently cross-linked with chitosan via reductive alkylation method (weight ratio (starch/chitosan: 0.38. The hydroxyapatite micropowders and nanopowders synthesized by sol-gel method (10, 20, 30, 40 %W were composited to hydrogels and were investigated by mechanical analysis. The results of SEM images and Zetasizer experiments for synthesized nanopowders showed an average size of 100 nm. The nanoparticles distributed as uniform in the chitosan-starch film. The tensile modulus increased for composites containing hydroxyapatite nano-(size particle: 100 nanometer powders than composites containing micro-(size particle: 100 micrometer powders. The swelling percentage decreased for samples containing hydroxyapatite nanopowder than the micropowders. These nanocomposites could be applied for hard-tissue engineering.

  14. XRD and SEM analysis of hydroxyapatite during immersion in stimulated physiological solutions

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Rosmamuhamadani Ramli; Abd Razak Daud

    2000-01-01

    XRD and SEM techniques were used to analyse the apatite layer developed on the synthetic hydroxyapatite surface following immersion in the simulated body fluid (SBF) that mimics the conditions of material experiences after implantation in the human body. Initially, the new layers formed after 7 day's incubation and increased with immersion time as crystallization of apatite phase. The XRD confirmed that the deposited layer was hydroxyapatite and crystallographically. With time, the crystal growth become more random and the intensity of the peaks decreased. During immersion, hydroxyapatite was precipitated from the SBF and coherently scattered with very small crystal. The SEM observation shows that the new precipitates were increased as well as incubation period increased. Therefore, hydroxyapatite ceramics are suggested to have very good biocompatibility. (Author)

  15. Effect of hydroxyapatite coating on risk of revision after primary total hip arthroplasty in younger patients: findings from the Danish Hip Arthroplasty Registry

    DEFF Research Database (Denmark)

    Paulsen, Aksel; Pedersen, Alma B; Johnsen, Søren P

    2007-01-01

    BACKGROUND: The effect of hydroxyapatite (HA) on implant survival in the medium and long term is uncertain. We studied the effect of HA coating of uncemented implants on the risk of cup and stem revision in primary total hip arthroplasty (THA). PATIENTS AND METHODS: Using the Danish Hip Arthropla......BACKGROUND: The effect of hydroxyapatite (HA) on implant survival in the medium and long term is uncertain. We studied the effect of HA coating of uncemented implants on the risk of cup and stem revision in primary total hip arthroplasty (THA). PATIENTS AND METHODS: Using the Danish Hip...

  16. Reactive hydroxyapatite fillers for pectin biocomposites.

    Science.gov (United States)

    Munarin, Fabiola; Petrini, Paola; Barcellona, Giulia; Roversi, Tommaso; Piazza, Laura; Visai, Livia; Tanzi, Maria Cristina

    2014-12-01

    In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite

    DEFF Research Database (Denmark)

    Bang, L T; Long, B D; Othman, R

    2014-01-01

    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier......(3-)) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap...

  18. Nanoscale hydroxyapatite particles for bone tissue engineering.

    Science.gov (United States)

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Comparative Evaluation of Osseointegration of Dental Endodontic Implants with and without Plasma- Sprayed Hydroxy apatite Coating

    Directory of Open Access Journals (Sweden)

    Moosavi SB

    2001-05-01

    Full Text Available Bone osseointegration around dental implant can cause earlier stabilization and fixation of implant and reduce healing time. Hydroxyapatite coating can affect bone osseointegration and enhance its rates. The aim of this study was comparison of osseointegration between plasma sprayed hydroxyapatite coated and uncoated dental implants in cats. Four endodontic implants including, vitallium and two stainless steel with and without hydroxyapatite coating were prepared and placed in mandibular canines of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, investigation by scanning electron microscopy showed significant difference in ossointegration between coated and uncoated dental implants and average bone osseointegration of coated implants was more than uncoated implants.

  20. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  1. Thermal Diffusivity in Bone and Hydroxyapatite

    Science.gov (United States)

    Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.

    2004-09-01

    We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.

  2. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  3. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  4. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  5. Surface analysis of titanium dental implants with different topographies

    Directory of Open Access Journals (Sweden)

    Silva M.H. Prado da

    2000-01-01

    Full Text Available Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM with Energy Dispersive X-ray Analysis (EDX revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS.

  6. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Rajib, E-mail: rajibju4@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Sengupta, Srijan [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Das, Karabi; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. - Highlights: • Composite coatings of CaHPO{sub 4} and hydroxyapatite for biomedical application through pulsed electro-deposition. • Achieved optimum phase composition in view of crystallinity of both the phases. • Overall coating crystallinity of around 70% in view better bio compatibility. • In cyclic voltammetry it is observed that the deposition reaction is completely irreversible. • The deposited coating consists of nano-crystalline hydroxyapatite similar to human bone; which exhibits better bio-compatibility.

  7. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  8. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process

    International Nuclear Information System (INIS)

    Hu, J.; Russell, J.; Ben-Nissan, B.

    1999-01-01

    Since the 1970s it is well known that if a biocompatible ceramic prosthesis with appropriate interconnected pores is used, growth of hard and soft tissue into the surface pores will be observed. A very strong attachment and hence the resultant mechanical and chemical bond to the existing surrounding tissue will be produced. Current artificial eyes although widely used encounter various problems due to the their motility and fail to deliver natural movement. They also cause sagging of the lids due to unsupported weight of the prosthesis. It is expected that application of a porous bioceramic such as the hydroxyapatite can generate good bonding to the tissue and hence a life-like eye movement. Hydroxyapatite (HAp) and related calcium phosphates have been studied for many years as implant materials, due to their similarity with the mineral phase of bone. From the point of view of biocompatibility, HAp seems to be the most suitable ceramic material for tissue replacement implants. Hydroxyapatite ceramics do not exhibit any cytoxic effects. It shows excellent biocompatibility with hard and soft tissues. Moreover, HAp can directly bond to the bone. Various preparation methods for HAp including the hydrothermal method have been used. The hydrothermal method was first used for hydroxyapatite formation directly from corals in 1974 by Roy and Linnehan. Complete replacement of aragonite by phosphatic material was achieved under 270degC and 103MPa using the hydrothermal process. This process has the disadvantage that the hydrothermal treatment must be carried out at a relatively high temperature under very high pressure. In 1996, HAp derived from Indian coral using hydrothermal process was developed by Sivakumar et al. However, the resultant material was in the form of a powder. Australia has rich variety of corals. Their application for implants have been studied very little. In this study, Australian corals selected were used for hydroxyapatite conversion. A new hydrothermal

  9. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  10. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  11. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  12. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  13. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  14. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  15. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  16. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  17. Tensile properties and microstructural analysis of spheroidized hydroxyapatite-poly (etheretherketone) biocomposites

    International Nuclear Information System (INIS)

    Abu Bakar, M.S.; Cheang, P.; Khor, K.A.

    2003-01-01

    Poly(etheretherketone) or PEEK, is a high performance thermoplastic possessing exceptional mechanical properties, high temperature durability, good chemical and fatigue resistance. These coupled with its ability to withstand sterilization treatment, make it a preferred material for biomedical applications. This study examines the benefit of incorporating hydroxyapatite particulates in poly(etheretherketone) for possible usage as bone analogue materials. Flame spheroidized hydroxyapatite (FSHA) were incorporated into semi-crystalline poly(etheretherketone) polymer through a series of processes comprising melt compounding, granulating and injection molding. Biocomposites with high hydroxyapatite loading of up to 40 vol.% were processed successfully using this technique. Scanning electron microscopy (SEM) revealed fair dispersion and distribution of hydroxyapatite particles within the polymer matrix. The series of composites were characterized in terms of tensile and microhardness properties. Microstructural analysis was also carried out to correlate the structure-property relationship of the composite. The dependency of tensile properties such as modulus, strength and strain to fracture as well as the micro-hardness on the volume percentage of hydroxyapatite were investigated. By varying the amount of hydroxyapatite particles in the composite, a wide range of mechanical properties were obtained. In general, the tensile modulus and microhardness increased, while strength and strain to fracture decreased correspondingly with progressive addition of hydroxyapatite particles. The composite system under investigation also exhibited mechanical properties matching those of human bone. With hydroxyapatite loading beyond 30 vol.%, the modulus were within the bounds of the human cortical bone. Findings from this study suggest that this bioactive composite system have the potential as an alternative implant material for orthopaedic application

  18. Surface modification of implants in long bone.

    Science.gov (United States)

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  19. Histomorphometric analysis of rat alveolar wound healing with hydroxyapatite alone or associated to BMPs

    Directory of Open Access Journals (Sweden)

    Brandão Alexandre C.

    2002-01-01

    Full Text Available Several materials and techniques have been proposed to improve alveolar wound healing and decrease loss of bone height and thickness that normally follow dental extraction. The objective of this research was the histologic analysis of bone morphogenetic proteins implanted into dental alveoli of rats after extraction. A total of 45 adult male Wistar rats were divided into three groups of 15 animals each: control (no treatment, implanted with pure hydroxyapatite (HA, 3 mg and implanted with hydroxyapatite plus bone morphogenetic proteins (HA/BMPs, 3 mg. Five animals from each group were sacrificed at 7, 21 and 42 days after extraction for the histometric analyses of the osteoconductive potential of hydroxyapatite associated or not with BMPs. After dissection, fixation, decalcification and serial microtomy of 6-mm thick sections, the samples were stained with hematoxylin-eosin for histologic and histometric analyses. Both HA and HA/BMPs caused a delay in wound healing compared to control animals, evaluated by the percentage of bone tissue in the alveoli. The treatment with HA/BMPs had the greatest delay at 21 days, even though it produced values similar to the control group at 42 days. The materials did not improve alveolar repair in the normal period of wound healing and the association of HA/BMPs did not have osteoconductive properties with granulated hydroxyapatite as the vehicle.

  20. Effect of thermal decomposition of hydroxyapatite on the thermoluminescent response

    International Nuclear Information System (INIS)

    Sandoval C, K. J.; Zarate M, J.; Lemus R, J.; Rivera M, T.

    2014-08-01

    In this work, a study on the thermoluminescence (Tl) induced by gamma radiation in synthetic hydroxyapatite (Hap) annealed at different temperatures obtained by the precipitation method is presented. Synthesis of hydroxyapatite Hap was carried out starting from inorganic precursors [Ca(NO 3 ) 2 ·4H 2 O and (NH 4 ) 2 HPO 4 ]. The precipitate was filtered, washed, dried and then the powder was calcined at different temperatures until the Hap decomposition. The structural and morphological characterization was carried out using both X-ray diffraction (XRD) and scanning electron microscopy (Sem) techniques. Thermoluminescent (Tl) properties of Hap powders were irradiated at different gamma radiation doses. According to X ray diffraction patterns, the tricalcium diphosphate phase (Tcp) appear when the Hap was calcined at 900 grades C. Tl glow curve showed two peaks located at around 200 and 300 grades C, respectively. Tl response as a function of gamma radiation dose was in a wide range from 25 to 100 Gy. The fading of the Tl response at 134 days after irradiation was measured. Experimental results showed that the synthetic hydroxyapatite obtained by precipitation technique may have dosimetric applications when is annealed at temperature of 900 grades C, where the Tcp phase appears and contributes to Tl response, which opens the possibility of using this biomaterials in the area of dosimetry, as they are generally used for biomedical implants. (author)

  1. Effect of thermal decomposition of hydroxyapatite on the thermoluminescent response

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval C, K. J.; Zarate M, J.; Lemus R, J. [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones Metalurgicas, Ciudad Universitaria, Edificio U, 58060 Morelia, Michoacan (Mexico); Rivera M, T., E-mail: karlasandovalc@gmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2014-08-15

    In this work, a study on the thermoluminescence (Tl) induced by gamma radiation in synthetic hydroxyapatite (Hap) annealed at different temperatures obtained by the precipitation method is presented. Synthesis of hydroxyapatite Hap was carried out starting from inorganic precursors [Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}]. The precipitate was filtered, washed, dried and then the powder was calcined at different temperatures until the Hap decomposition. The structural and morphological characterization was carried out using both X-ray diffraction (XRD) and scanning electron microscopy (Sem) techniques. Thermoluminescent (Tl) properties of Hap powders were irradiated at different gamma radiation doses. According to X ray diffraction patterns, the tricalcium diphosphate phase (Tcp) appear when the Hap was calcined at 900 grades C. Tl glow curve showed two peaks located at around 200 and 300 grades C, respectively. Tl response as a function of gamma radiation dose was in a wide range from 25 to 100 Gy. The fading of the Tl response at 134 days after irradiation was measured. Experimental results showed that the synthetic hydroxyapatite obtained by precipitation technique may have dosimetric applications when is annealed at temperature of 900 grades C, where the Tcp phase appears and contributes to Tl response, which opens the possibility of using this biomaterials in the area of dosimetry, as they are generally used for biomedical implants. (author)

  2. In vitro characterizations of mesoporous hydroxyapatite as a controlled release delivery device for VEGF in orthopedic applications.

    Science.gov (United States)

    Poh, Chye Khoon; Ng, Suxiu; Lim, Tee Yong; Tan, Hark Chuan; Loo, Joachim; Wang, Wilson

    2012-11-01

    Following bone implant surgery, prolonged ischemic conditions at the implant site often result in postsurgical complications like failure of osseointegration at the bone-implant interface which can lead to implant failure. Thus, restoration of the vascular supply is paramount to the proper development of the bone. High surface area mesostructured materials have been shown to be attractive candidates for bone regeneration to enhance cell adhesion and cell proliferation. This study uses hydroxyapatite, a naturally occurring mineral in the bone, fabricated to a range of suitable pore sizes, infused with vascular endothelial growth factor (VEGF), to be progressively released to stimulate revascularization. In this study, several characterizations including nitrogen adsorption analysis, Fourier-transformed infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope, and transmission electron microscope were used to evaluate the synthesized mesoporous hydroxyapatite (MHA). The results showed that MHA can gradually release VEGF for enhancing revascularization, which is beneficial for orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.

  3. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    Science.gov (United States)

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  4. Characterisation of a new alkoxide sol-gel hydroxyapatite

    International Nuclear Information System (INIS)

    Green, D.D.; Kannangara, G.S.K.; Milev, A.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) coatings have been used to promote bone growth and fixation towards implant surfaces to encourage faster recovery times for the recipient. Current coating processing techniques, capable of producing thin HAp layers are pulsed-laser deposition and sputtering (high-temperature processing). Other technologies are in vitro methods, electrodeposition and sol-gel, due to the fact that these techniques utilise lower processing temperatures they avoid structural instabilities of HAp at elevated temperatures. The term sol-gel encompasses any process of producing ceramic materials (single and mixed oxides, as well as non-oxides e.g. nitrides) from solutions. The sol-gel process was first identified by Ebelman, and has been used to produce ceramic powders, coatings, and bulk materials including glasses. The implementation of a sol-gel methodology enables increased stoichiometry and homogeneity, while having the ability to coat complex shapes. Sol-gel hydroxyapatite reported by Chai et al. employed tri ethyl phosphite [ P(OEt) 3 ] as the staring phosphorus alkoxide precursor, whereby it was established that in order to obtain monophasic hydroxyapatite upon firing there must be a 24 hour ripening period. The ripening period was determined to be an equilibrium step whereby the equilibrium intermediate phase lied in favour of a diethyl phosphite arrangement (species) within the sol. Therefore, the work here under taken was to produce hydroxyapatite using diethyl phosphite [HOP(OEt) 2 ] as a starting alkoxide precursor with a final aim to reduce or eliminate the ageing period as observed by Chai et al in P(OEt) 3 solutions

  5. Evaluation of porous gradient hydroxyapatite/zirconia composites for repair of lumbar vertebra defect in dogs.

    Science.gov (United States)

    Shao, Rong-Xue; Quan, Ren-Fu; Huang, Xiao-Long; Wang, Tuo; Xie, Shang-Ju; Gao, Huan-Huan; Wei, Xi-Cheng; Yang, Di-Sheng

    2016-04-01

    To evaluate the effects of porous gradient composites with hydroxyapatite/zirconia and autologous iliac in repair of lumbar vertebra body defects in dogs. (1) New porous gradient hydroxyapatite/zirconia composites were prepared using foam immersion, gradient compound and high temperature sintering; (2) A total of 18 adult beagle dogs, aged five to eight months and weighted 10-13 kg, were randomly assigned into two subgroups, which were implanted with new porous gradient hydroxyapatite/zirconia composites (subgroup A in 12) or autologous iliac bone (subgroup B in 6); (3) The post-operative data were analyzed and compared between the subgroups to repair the vertebral body defect by roentgenoscopy, morphology and biomechanics. The porosity of new porous gradient hydroxyapatite/zirconia composites is at 25 poles per inch, and the size of pores is at between 150 and 300 µm. The post-operative roentgenoscopy displayed that new-bone formation is increased gradually, and the interface between composites and host-bone becomes became blur, and the new-bone around the composites were integrated into host-bone at 24 weeks postoperatively in subgroup A. As to subgroup B, the resorption and restructure were found at six weeks after the surgery, and the graft-bone and host-bone have been integrated completely without obvious boundary at 24 weeks postoperatively. Histomorphologic study showed that the amount of bone within pores of the porous gradient hydroxyapatite/zirconia composites increased continuously with a prolonged implantation time, and that partial composites were degradated and replaced by new-bone trabeculae. There was no significant difference between subgroups (P > 0.05) in the ultimate compressive strengths. New porous gradient hydroxyapatite/zirconia composites can promote the repair of bony defect, and induce bone tissue to ingrow into the pores, which may be applied widely to the treatment of bony defect in the future. © The Author(s) 2016.

  6. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis.

    Science.gov (United States)

    Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui

    2015-01-28

    There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.

  7. Immobilisation of hydroxyapatite-collagen on polydopamine grafted stainless steel 316L: Coating adhesion and in vitro cells evaluation.

    Science.gov (United States)

    Tapsir, Zafirah; Jamaludin, Farah H; Pingguan-Murphy, Belinda; Saidin, Syafiqah

    2018-02-01

    The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.

  8. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    International Nuclear Information System (INIS)

    Rau, Julietta V.; Fosca, Marco; Cacciotti, Ilaria; Laureti, Sara; Bianco, Alessandra; Teghil, Roberto

    2013-01-01

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications

  9. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Julietta V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Fosca, Marco [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Cacciotti, Ilaria [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Laureti, Sara [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300-00016 Monterotondo Scalo (RM) (Italy); Bianco, Alessandra [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Teghil, Roberto [Università della Basilicata, Dipartimento di Scienze, Via dell' Ateneo Lucano 10-85100, Potenza (Italy)

    2013-09-30

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications.

  10. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  11. Biological and physical properties of pulsed-laser-deposited zirconia/hydroxyapatite on titanium: in vitro study

    Czech Academy of Sciences Publication Activity Database

    Teuberová, Z.; Seydlová, M.; Dostálová, T.; Dvořánková, B.; Smetana, K. Jr.; Jelínek, Miroslav; Mašínová, Petra; Kocourek, Tomáš; Kolářová, K.; Wilson, J.

    2007-01-01

    Roč. 17, č. 1 (2007), s. 45-49 ISSN 1054-660X R&D Projects: GA MZd NR8512 Institutional research plan: CEZ:AV0Z10100522 Keywords : dental implants * hydroxyapatite * titanium * laser deposition * PLD Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.696, year: 2007

  12. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method

    Science.gov (United States)

    Webler, G. D.; Rodrigues, W. C.; Silva, A. E. S.; Silva, A. O. S.; Fonseca, E. J. S.; Degenhardt, M. F. S.; Oliveira, C. L. P.; Otubo, L.; Barros Filho, D. A.

    2018-04-01

    Hydroxyapatite is one of the most important biomaterials whose application mainly extends to implants and drug delivery. This work will discuss the changes in the pore size distribution of hydroxyapatite when there are latex beads present during the synthesis. These changes were monitored using different techniques: small angle X-ray scattering, X-ray diffraction, thermal gravimetrical analysis, N2 adsorption, scanning and transmission electron microscopy. Latex beads and hydroxyapatite form a single nanocomposite with well-distinguished inorganic and organic phases. Latex bead removal in the temperature range of 300-600 °C did not modify the original crystalline structure of hydroxyapatite. However, the latex beads favored an increase in the adsorption capacity of mesopores at temperatures higher than their glassy transition (Tg). The main result of this research work consists on the increase of surface area and pore size distribution obtained after the removal of latex beads template. Latex beads have been used in a different approach changing the porosity of hydroxyapatite scaffolds not only introducing new routes for cell integration but also broadening the pore size distribution which can result in a more high efficiency for drug release in living cells.

  14. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results.

    Science.gov (United States)

    Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto

    2013-08-01

    In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.

  15. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  16. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  17. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  18. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite

    Directory of Open Access Journals (Sweden)

    André Boziki Xavier do Carmo

    2018-01-01

    Full Text Available ABSTRACT Objective: This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA as bone substitute materials. Methods: Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group. After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results: The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05. We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039 in both groups. Conclusion: The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.

  19. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    Science.gov (United States)

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  20. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  1. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation.

    Science.gov (United States)

    Oryan, A; Meimandi Parizi, A; Shafiei-Sarvestani, Z; Bigham, A S

    2012-12-01

    Hydroxyapatite is an osteoconductive material used as a bone graft extender and exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic hydroxyapatite has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. On the other hand, human platelet rich plasma (hPRP) has been used as a source of osteoinductive factor. A combination of hPRP and hydroxyapatite is expected to create a composite with both osteoconductive and osteoinductive properties. This study examined the effect of a combination of hydroxyapatite and hPRP on osteogenesis in vivo, using rabbit model bone healing. A critical size defect of 10 mm long was created in the radial diaphysis of 36 rabbit and either supplied with hydroxyapatite-human PRP or hydroxyapatite or was left empty (control group). Radiographs of each forelimb were taken postoperatively on 1st day and then at the 2nd, 4th, 6th and 8th weeks post injury to evaluate bone formation, union and remodeling of the defect. The operated radiuses of half of the animals in each group were removed on 56th postoperative day and were grossly and histopathologically evaluated. In addition, biomechanical test was conducted on the operated and normal forearms of the other half of the animals of each group. This study demonstrated that hydroxyapatite-humanPRP, could promote bone regeneration in critical size defects with a high regenerative capacity. The results of the present study demonstrated that hydroxyapatite-hPRP could be an attractive alternative for reconstruction of the major diaphyseal defects of the long bones in animal models.

  2. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    Science.gov (United States)

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).

  3. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lingli; Fan Hongsong; Zhang Xingdong [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064 (China); Hanagata, Nobutaka; Ikoma, Toshiyuki [Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Maeda, Megumi; Minowa, Takashi, E-mail: HANAGATA.Nobutaka@nims.go.j [Nanotechnology Innovation Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2009-04-15

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate ({beta}-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in {beta}-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than {beta}-TCP.

  4. No effect of platelet-rich plasma with frozen or processed bone allograft around noncemented implants

    DEFF Research Database (Denmark)

    Jensen, T B; Rahbek, O; Overgaard, S

    2005-01-01

    by isolating the buffy coat from autologous blood samples. Bone allograft was used fresh-frozen or processed by defatting, freeze drying, and irradiation. Cylindrical hydroxyapatite-coated titanium implants were inserted bilaterally in the femoral condyles of eight dogs. Each implant was surrounded by a 2.5-mm...

  5. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating

    NARCIS (Netherlands)

    Newman, S.D.; Lotfibakhshaiesh, N.; O'Donnell, M.; Walboomers, X.F.; Horwood, N.; Jansen, J.A.; Amis, A.A.; Cobb, J.P.; Stevens, M.M.

    2014-01-01

    The use of endosseous implants is firmly established in skeletal reconstructive surgery, with rapid and permanent fixation of prostheses being a highly desirable feature. Implant coatings composed of hydroxyapatite (HA) have become the standard and have been used with some success in prolonging the

  6. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  7. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  8. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  9. Antimicrobial activity of different hydroxyapatites

    International Nuclear Information System (INIS)

    Feitosa, G.T.; Santos, M.V.B.; Barreto, H.M.; Osorio, L.R.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    Among the applications of ceramics in the technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity to the structures of bone and dental tissues. Such features are added to the antimicrobial properties that this brings. This work aimed at the synthesis of hydroxyapatite by two different routes, hydrothermal (HD HAp) and co-precipitation (CP HAp), as well as verification of the antimicrobial properties of these through direct contact of the powders synthesized tests with Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. The materials was characterized by XRD, Raman and TEM, and Antimicrobial tests showed inhibitory efficacy of 97% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp had inhibitory effect of 95% and 0% for EC7 and SA10, respectively. The inhibitory effect on SA10 is based on the hydrophilicity that the material possesses. (author)

  10. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  11. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  12. In situ annealing of hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Johnson, Shevon; Haluska, Michael; Narayan, Roger J.; Snyder, Robert L.

    2006-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Unfortunately, problems with adhesion, poor mechanical integrity, and incomplete bone ingrowth limit the use of many conventional hydroxyapatite surfaces. In this work, we have developed a novel technique to produce crystalline hydroxyapatite thin films involving pulsed laser deposition and postdeposition annealing. Hydroxyapatite films were deposited on Ti-6Al-4V alloy and Si (100) using pulsed laser deposition, and annealed within a high temperature X-ray diffraction system. The transformation from amorphous to crystalline hydroxyapatite was observed at 340 deg. C. Mechanical and adhesive properties were examined using nanoindentation and scratch adhesion testing, respectively. Nanohardness and Young's modulus values of 3.48 and 91.24 GPa were realized in unannealed hydroxyapatite films. Unannealed and 350 deg. C annealed hydroxyapatite films exhibited excellent adhesion to Ti-6Al-4V alloy substrates. We anticipate that the adhesion and biological properties of crystalline hydroxyapatite thin films may be enhanced by further consideration of deposition and annealing parameters

  13. Basic research on maxillofacial implants

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yoshiro [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-11-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  14. Basic research on maxillofacial implants

    International Nuclear Information System (INIS)

    Matsui, Yoshiro

    2001-01-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  15. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farbi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Hannora, A. [Suez Canal University, Faculty of Petroleum and Mining Engineering (Egypt); Mansurov, Z. [Al-Farbi Kazakh National University, Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2012-01-16

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: Black-Right-Pointing-Pointer CNTs have been successfully grown directly on hydroxyapatite using MPECVD. Black-Right-Pointing-Pointer Diameter distribution of the CNTs lies in the range from 30 to 70 nm. Black-Right-Pointing-Pointer The HA surface is partially transformed to {beta}-TCP during the deposition. Black-Right-Pointing-Pointer Grown CNTs have good quality and I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 Degree-Sign C. Raman spectroscopy indicates that the CNTs are of high quality and the I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the {beta}-tricalcium phosphate via dehydroxylation.

  16. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    International Nuclear Information System (INIS)

    Duraia, El-Shazly M.; Hannora, A.; Mansurov, Z.; Beall, Gary W.

    2012-01-01

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: ► CNTs have been successfully grown directly on hydroxyapatite using MPECVD. ► Diameter distribution of the CNTs lies in the range from 30 to 70 nm. ► The HA surface is partially transformed to β-TCP during the deposition. ► Grown CNTs have good quality and I G /I D ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30–70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 °C. Raman spectroscopy indicates that the CNTs are of high quality and the I G /I D ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the β-tricalcium phosphate via dehydroxylation.

  17. Hydroxyapatite synthesis on solid surfaces using a biological approach

    International Nuclear Information System (INIS)

    Wang, A; Mei, J; Tse, Y Y; Jones, I P; Sammons, R L

    2012-01-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  18. Hydroxyapatite synthesis on solid surfaces using a biological approach

    Science.gov (United States)

    Wang, A.; Mei, J.; Tse, Y. Y.; Jones, I. P.; Sammons, R. L.

    2012-12-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  19. Substitution effects of a carbonated hydroxyapatite biomaterial against intoxication chloride nickel-exposed rats.

    Science.gov (United States)

    Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed

    2015-03-01

    This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).

  20. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Byung-Dong, E-mail: cera72@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeong-Nam, 641-010 (Korea, Republic of); Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo [Functional Ceramics Group, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeong-Nam, 641-010 (Korea, Republic of); Kim, Hyoun-Ee [School of Materials Science and Engineering, Seoul National University, San 56-1 Sillim-Dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Yoon, Byung-Ho; Jung, In-Kwon [GENOSS, Gyeonggi R and DB Center, Iui-dong, Yeongtong-gu, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of)

    2013-10-15

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  1. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    International Nuclear Information System (INIS)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-01-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  2. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    Science.gov (United States)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-10-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  3. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    Science.gov (United States)

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  4. Evaluation of hydroxyapatite-putty as a hemostatic agent

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Y.; Miyamoto, Y.; Takechi, M.; Yuasa, T.; Toh, T.; Nagayama, M. [Tokushima Univ. (Japan). First Dept. of Oral and Maxillofacial Surgery; Ishikawa, K.; Suzuki, K. [Okayama Univ. Dental School (Japan). Dept. of Biomaterials

    2001-07-01

    Although bone wax is often used as a hemostatic agent for bone in surgery, some problems in biocompatibility have been pointed out. Therefore, we have evaluated hydroxyapatite-putty (HAP-putty) as a hemostatic agent for bone. Adhesive strength of HAP-putty to bone increased with the amount of sodium alginate, reaching maximum value in case of containing 8% sodium alginate. An actual hemostatic ability of HAP-putty was evaluated using rabbits. Bleeding from bone was arrested within 3 minutes. Thus, HAP-putty showed excellent hemostatic ability. Soft tissue response to HAP-putty was evaluated in rabbit subcutaneous tissue. Histological observation revealed slight inflammatory response around HAP-putty. HAP-putty partially transformed to HAP 24 hours after the implantation. In conclusion, HAP-putty could be a useful hemostatic agent for bone due to its good hemostatic ability and excellent biocompatibility. (orig.)

  5. Hydroxyapatite coatings of fracture fixation plates for orthopedic applications

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Yahya, N.M.; Subuki, I.; Hassan, N.; Mohamad, S.M.

    2007-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to improve their adhesion to bone. The present study investigates the plasma sprayed process of HA on the fracture fixation plates fabricated by metal injection moulding process. The phase and microstructure of the coatings were studied and their microhardness measured. The phase composition of coatings was analyzed by the use of X-ray diffraction method. The homogeneity of the deposit and coating thickness were evaluated using scanning electron microscope (SEM). The results suggest that the nature of the coating morphology, phase and crystallinity changes with respect to the plasma sprayed processing parameters. The XRD revealed the presence of both amorphous and crystalline phases. In addition, the powder particles also melt partially in some region and coating microstructure varied from a porous structure to a smooth glassy structure or a typical lamellar structure. (author)

  6. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Marcos Díaz

    2009-01-01

    Full Text Available A silver-hydroxyapatite nanocomposite has been obtained by a colloidal chemical route and subsequent reduction process in H2/Ar atmosphere at 350∘C. This material has been characterized by TEM, XRD, and UV-Visible spectroscopy, showing the silver nanoparticles (∼65 nm supported onto the HA particles (∼130 nm surface without a high degree of agglomeration. The bactericidal effect against common Gram-positive and Gram-negative bacteria has been also investigated. The results indicated a high antimicrobial activity for Staphylococcus aureus, Pneumococcus and Escherichia coli, so this material can be a promising antimicrobial biomaterial for implant and reconstructive surgery applications.

  7. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    International Nuclear Information System (INIS)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da; Campos, J.B. de

    2016-01-01

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  8. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Campos, J.B. de, E-mail: josericardo@r-crio.com, E-mail: louro@ime.eb.br, E-mail: andrea@r-crio.com, E-mail: brantjose@gmail.com, E-mail: marceloprado@ime.eb.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2016-10-15

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  9. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Directory of Open Access Journals (Sweden)

    J. R. M. Ferreira

    Full Text Available Abstract In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite.

  10. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: Radiographic-biomechanical correlation

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; Holmes, R.E.; Tencer, A.F.; Texas Univ., Dallas; Mooney, V.

    1986-01-01

    Radiographic and biomechanical assessment of a new type of bone graft substitute derived from reef-building sea coral was performed in a canine metaphyseal defect model. Blocks of this material and autogenous iliac crest graft were implanted, respectively, into the right and left proximal tibial metaphyses of eight dogs. Qualitative and quantitative radiographic evaluation was performed in the immediate postoperative period and at 6 months after surgery. Biomechanical testing was carried out on all grafts following harvest at 6 months, as well as on nonimplanted coralline hydroxyapatite and autogenous iliac cancellous bone. In contrast to autografts, incorporation of coralline implants was characterized by predictable osseous growth and apposition with preservation of intrinsic architecture. Greater percent increase in radiography density, higher ultimate compressive strength, and lower stiffness with incorporation were documented advantages of coralline hydroxyapatite over autogenous graft. Densitometric measurements correlated moderately with strength for both types of graft material (r=0.65). These promising results have important implications to the clinical application of coralline hydroxyapatite bone graft substitutes as an alternative to autogenous grafting. (orig.)

  11. Retention of albumin labelled with I-125 in the bio mineral hydroxyapatite

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Bugarin C, A.; Monroy G, F.

    2003-01-01

    The demands of materials for the health in the entire world, especially of the odontological and traumatological sectors make every time to be but studied the hydroxyapatite (HAP) and their biocompatibility with the alive beings. The hydroxyapatite is considered as one of the inorganic exchangers by excellence, for what the fixation of ions and molecules have been widely studied and at the moment it is one of the materials of greater acceptance like implant. The surface of the material of implant is in intimate contact with the live tissue and its biocompatibility is determined in great measure by those surface properties of the bio material, which have a direct effect in the cellular response of the material. After administering the implant, the proteins are immediately adsorbed in the surface of the bio mineral. Specifically, the proteins of the blood are considered as key pieces to determine the acceptance of implants in alive beings. The adsorption of proteins it depends on the physicochemical properties of the material as well as of the environment composition. The surface properties of the HAP are relevant in the adsorption mechanisms of the proteins. In this work, it is reported the adsorption of the labelled with I-125 albumin protein and in function of two important physicochemical parameters: the pH value of the of the solution and the chemical nature of the solution; to see the influence of this last, its were studied three electrolytes NaF, NaCl and NaH 2 PO 4 . The existence of the active sites of hydroxyapatite surface, it is key piece in the interpretation of the fixation of the albumin protein in function also of their acid-base properties. (Author)

  12. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  13. Electrospun Nanocomposite Materials, A Novel Synergy of Polyurethane and Bovine Derived Hydroxyapatite

    Science.gov (United States)

    Bozkurt, Y.; Sahin, A.; Sunulu, A.; Aydogdu, M. O.; Altun, E.; Oktar, F. N.; Ekren, N.; Gunduz, O.

    2017-04-01

    Polyurethane (PU) is a synthetic polymer that is used for construction of scaffold in tissue engineering applications in order to obtain desirable mechanical, physical and chemical properties like elasticity and durability. Bovine derived hydroxyapatite (BHAp) is a ceramic based natural polymer that is used as the most preferred implant material in orthopedics and dentistry due to their chemically and biologically similarity to the mineral phase found in the human bone structure. PU and bovine derived hydroxyapatite (BHAp) solutions with different concentrations were prepared with dissolving polyurethane and BHAp in Dimethylformamide (DMF) and Tetrahydrofuran (THF) solutions. Blended PU-BHAp solutions in different concentrations were used for electrospinning technique to create nanofiber scaffolds and new biocomposite material together. SEM, FTIR and physical analysis such as viscosity, electrical conductivity, density measurement and tensile strength measurement tests were carried out after production process.

  14. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.

    Science.gov (United States)

    Rahimi, F; Maurer, B T; Enzweiler, M G

    1997-01-01

    The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.

  15. Synthesis of nanocrystalline fluorinated hydroxyapatite by ...

    Indian Academy of Sciences (India)

    The biological hydroxyapatite in the human bone and tooth is of nanosize and ... The crystal size and morphology of the nanopowders were examined by X-ray powder diffraction .... tal growth along the c axis of HA crystalline structure. The.

  16. Substituted hydroxyapatites for biomedical applications: A review

    Czech Academy of Sciences Publication Activity Database

    Šupová, Monika

    2015-01-01

    Roč. 41, č. 8 (2015), s. 9203-9231 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : bioapatite * calcium phosphate * hydroxyapatite * substitution Subject RIV: JJ - Other Materials Impact factor: 2.758, year: 2015

  17. Spectral analysis of allogeneic hydroxyapatite powders

    Science.gov (United States)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  18. Spectral analysis of allogeneic hydroxyapatite powders

    International Nuclear Information System (INIS)

    Timchenko, P E; Timchenko, E V; Pisareva, E V; Vlasov, M Yu; Red’kin, N A; Frolov, O O

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm -1 ((PO 4 ) 3- (ν 1 ) vibration) and 1065-1075 cm -1 ((CO 3 ) 2- (ν 1 ) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy. (paper)

  19. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  20. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  1. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone

    International Nuclear Information System (INIS)

    Mao Keya; Hao Libo; Tang Peifu; Wang Zheng; Wen Ning; Du Mingkui; Wang Jifang; Wang Yan; Yang Yun; Li Jiangtao

    2009-01-01

    An ideal bone implant should facilitate the formation of a new bone layer as an osteo-integrated interface between bone and the implanted biomaterials. In the present work, the interface between carbonated hydroxyapatite (CHA) cement and bone was evaluated by interfacial bonding strength measurements and histological characterizations. CHA cement was implanted into a mongrel dog's femoral supracondylar and below the tibial plateau area, and was then tested ex vivo by, respectively, detaching and pullout experiments. Polymethylmethacrylate (PMMA) was used as a control. CHA cement could be directly injected and solidified in situ to repair bone defects. Histology results showed that CHA bonded with bone through gradual remodeling and was replaced by new bone tissue, which is an attribute for excellent biocompatibility. The interfacial bonding strength increased with implantation time. After 16 weeks implantation, the measured detaching force and the pullout force between CHA and bone were 281 ± 16 N and 512.5 ± 14.5 N, respectively. These values were several times higher compared to 5 days implantation. In contrast, the control showed a fibrous microstructure between PMMA and bone, and the detaching force and the pullout force decreased with implantation time. The results strongly suggest that CHA can form a better osteo-integrated interface compared to PMMA, and could be used as an ideal biomaterial for bone defect repair.

  2. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  3. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    Garcia M, F.G.

    2006-01-01

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI 3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  4. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  5. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  6. Quantification of the vascularisation of the orbital implants of coralinehydroxyapatite with 99m Tc-MDP

    International Nuclear Information System (INIS)

    Rodriguez, J.L.; Solano, M.E.; Alvarez, I.; Perez, G.

    1998-01-01

    The use of ocular implants of hydroxyapatite has been increased in the last times owing to that they are well tolerated by the organism and that on the integration they show good mobility on the artificial eye with very few complications. The gammagraphy with 99m Tc-MDP can be used for the evaluation of vascularisation and its relative quantification above on these implants. In this pilot essay 10 normal persons and 37 patients were studied who had an implant of Cuban coraline hydroxyapatite (Coraline HAP-200). Thermography with 99m Tc-MDP was realized between 4 and 18 months after surgery then were obtained plane images in anterior viewing. It was measured the implant vascularisation and it was calculated for each case the relative captivation index (RCI) starting from two regions of ocular interest. As result all patients tolerated the implant without complications. The relation of the activity implant with respect to the contralateral region was 2.31±0.63 (mean ± SD) with a range of 1.17-4.09. The relation between the left intra orbital captivation and the right in the normal persons was 1.01 ±0.66 (mean ± SD). In conclusion, we obtained that the ICR can be very useful in order to measure the integration level of this type of implant.Moreover, it was proved that the implants with Cuban coraline hydroxyapatite showed an acceptable level of integration in all the patients. (Author)

  7. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  8. Study on nano-coating on uranium

    International Nuclear Information System (INIS)

    Zhang Yongbin; Xian Xiaobin; Lu Xuechao; Lang Dingmu; Li Kexue; Tang Kai

    2002-01-01

    The SiO 2 , TiO 2 coatings on uranium have been prepared by sol-gel method under different processes. By evaluating the coating quality with SEM, the optimal process parameters have been determined. Corrosion test shows that the coatings have anticorrosion property

  9. Hierarchical Micro-Nano Coatings by Painting

    Science.gov (United States)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  10. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    Science.gov (United States)

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  11. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    Directory of Open Access Journals (Sweden)

    Widowati Siswomihardjo

    2012-01-01

    . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  12. The Kinetics of Ampicillin Release from Hydroxyapatite for Bones Regeneration

    Directory of Open Access Journals (Sweden)

    Giovanilton Ferreira da Silva

    2009-01-01

    Full Text Available Semisynthetic beta-lactam antibiotics are among the most used pharmaceuticals. Their use in veterinary and human medicine is in continuous expansion. There is a growing need for developing bioactive implants. Advantages of implantable drug delivery tools can include high release efficiency, precise dose control, low toxicity, and allow to overcome disadvantages connected with conventional methods. In this respect, hydroxyapatite (HA is an elective material. It enables to produce architectures similar to those of real bones. Here we studied a kinetic model to describe ampicillin release from HA. In the course of adsorption experiment, ampicillin was dissolved, maintained at 30∘C and shaken at 60 strokes/minute. Samples were withdrawn periodically for analysis and then returned to the mixture. Adsorbed amounts were measured by the difference of the concentration of the antibiotics before and after adsorption using UV adsorption at 225 nm. The aim of this work was to evaluate its application as ampicillin delivery carrier.

  13. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  14. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  15. [Clinical and ossification outcome of custom-made hydroxyapatite prothese for large skull defect].

    Science.gov (United States)

    Hardy, H; Tollard, E; Derrey, S; Delcampe, P; Péron, J-M; Fréger, P; Proust, F

    2012-02-01

    Cranioplasty is an everyday concern in neurosurgery, especially in decompressive craniectomy cases. Our surgical team uses custom-made hydroxyapatite implants for large and/or complex defects. Eight patients had a custom-made prosthesis. Each of them has been reviewed by an independent observer. Each patient described his feeling of satisfaction, using a questionnaire, graduated from "A" (really satisfied) to "D" (unsatisfied). Each of them also underwent a CT-scan (helicoidal acquisition, 0.6mm thick for multiplanar reconstruction) to evaluate qualitatively the ossification graduated from "0" (no ossification) to "5" (continuous ossification). Maximal under-prosthetic bone thickness, intra-prosthetic calcic density were also reported. Supervision delay was 43.7 months [6-99 months], average defect surface was 85.5 cm(2) [27.6-137.6 cm(2)], the craniectomy etiologies were intracranial hypertension (seven patients) and calvarial invasion (one patient). Implant tolerance was reparted in "A" score (50%) and "B" score (50%). Concerning ossification, six patients (75%) had a score of "2" or less and two patients had a score of "3" or "4". Hydroxyapatite custom-made implants for cranioplasty appear to be ideal for good aesthetic and tolerance results, but their ossification is hardly analyzed due to the prosthesis density higher than the bone's density. This is why we recommend them for children and in cases of complex defects such as pterion location. Copyright © 2011. Published by Elsevier Masson SAS.

  16. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B

    2004-06-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells.

  17. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B.

    2004-01-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells

  18. Synthesis, characterization and cell behavior of fluoridated hydroxyapatite

    Science.gov (United States)

    Qu, Haibo

    Fluorine-containing hydroxyapatite (Ca5(PO4) 3(OH)1-xFx FHA), where F- partially replaces OH- in hydroxyapatite (HA), is recognized as a possible biomaterial for bone and tooth implants and gaining attention in the last several years as a possible alternative to HA. In this study, FHA powders were synthesized through a pH-cycling method. It was discovered that fluorine incorporation increased with the fluorine content in the initial solution and the number of pH cycles employed. A relatively low fluorine incorporation efficiency, ˜60%, was attained for most of the FHA samples. The short time of stay at each pH cycle and the limited number of cycles used are believed to be the main reasons of the low fluorine incorporation into the apatite structure. It was also revealed that the FHA particles produced by the pH-cycling method were inhomogeneous. They were a mixture of hydroxyapatite and F-rich apatite (or FA) particles. The mechanisms of incorporation of fluorine ions into hydroxyapatite by a pH cyclicing method were studied using TEM, XRD and fluorine measurement. Instead of forming laminated structures as reported by other research groups, a mixture of nano-sized F-rich apatite (FHA) and hydroxyapatite (HA) particles were obtained using the pH-cyclicing method. After calcination, these FHA particles were homogenized and became single phased FHA. The effect of fluorine content, preparing method, and sintering temperature on both the bulk density and biaxial flexural strength of sintered FHA was studied. Both uniaxially pressed un-milled (UPU) and cold isostatically pressed milled (IPM) FHA discs were sintered at temperatures between 1200˜400°C at an interval of 100°C. It was found that the fluorine content had a significant impact on the sintering behavior, densification, and mechanical properties of FHA discs. A close correlation between the sintered density and biaxial flexural strength of the specimens was revealed, where the biaxial flexural strength

  19. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.

    Science.gov (United States)

    Cordell, Jacqueline M; Vogl, Michelle L; Wagoner Johnson, Amy J

    2009-10-01

    While recognized as a promising bone substitute material, hydroxyapatite (HA) has had limited use in clinical settings because of its inherent brittle behavior. It is well established that macropores ( approximately 100 microm) in a HA implant, or scaffold, are required for bone ingrowth, but recent research has shown that ingrowth is enhanced when scaffolds also contain microporosity. HA is sensitive to synthesis and processing parameters and therefore characterization for specific applications is necessary for transition to the clinic. To that end, the mechanical behavior of bulk microporous HA and HA scaffolds with multi-scale porosity (macropores between rods in the range of 250-350 microm and micropores within the rods with average size of either 5.96 microm or 16.2 microm) was investigated in order to determine how strength and reliability were affected by micropore size (5.96 microm versus 16.2 microm). For the bulk microporous HA, strength increased with decreasing micropore size in both bending (19 MPa to 22 MPa) and compression (71 MPa to 110 MPa). To determine strength reliability, the Weibull moduli for the bulk microporous HA were determined. The Weibull moduli for bending increased (became more reliable) with decreasing pore size (7 to 10) while the Weibull moduli for compression decreased (became less reliable) with decreasing pore size (9 to 6). Furthermore, the elastic properties of the bulk microporous HA (elastic modulus of 30 GPa) and the compressive strengths of the HA scaffolds with multi-scale porosity (8 MPa) did not vary with pore size. The mechanisms responsible for the trends observed were discussed.

  20. Composite synthetic hydroxyapatite 30%, in two physical states, as dermal filler

    Directory of Open Access Journals (Sweden)

    Rodrigo Viana Sepúlveda

    2013-08-01

    Full Text Available The aim of this study was to evaluate the response to the implantation of synthetic hydroxyapatite 30% (HAP-91® in different physical states as dermal filler. Eighteen New Zealand rabbits were used, distributed randomly into two equal groups and then divided into three groups according to the postoperative period at 8, 21 and 49 days. One mL of HAP-91®, fluid and viscous, was implanted in the subcutaneous tissue, 1 cm proximal to the cranial crest of the right scapula. The thickness of the skin was measured before and after implantation and for the following 15 days. Pain sensitivity assessment was conducted, assigning the following scores: 0 - when the animal allowed the touch of the implant area and expressed no signs of pain; 1 - when the animal allowed the touch, but pain reaction occurred, like increase of the respiratory rate or attempt to escape; 2 - when the animal did not allow the touch to the implanted area. At 8, 21 and 49 days, biopsy of the implanted area was performed. No difference was observed between the thickness of the skin (p>0.05 and all animals received a score 0 for soreness. Histological analysis did not reveal any obvious inflammatory process, showing a predominance of mononuclear cells in samples of eight days and tissue organization around the biomaterial with a tendency to encapsulation. The results indicate that HAP-91®, both viscous and fluid, is biocompatible and suitable for dermal filling.

  1. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets

    Science.gov (United States)

    JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA

    2017-01-01

    This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (psocket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860

  2. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  3. Alveolar Ridge Augmentation with Three-Dimensional Printed Hydroxyapatite Devices: A Preclinical Study.

    Science.gov (United States)

    Fiorellini, Joseph P; Norton, Michael R; Luan, Kevin WanXin; Kim, David Minjoon; Wada, Kei; Sarmiento, Hector L

    2018-02-14

    The objective of this study was to evaluate the effectiveness of precise three-dimensional hydroxyapatite printed micro- and macrochannel devices for alveolar ridge augmentation in a canine model. All grafts induced minimal inflammatory and fibrotic reactions. Examination of undecalcified sections revealed that both types of grafts demonstrated bone ingrowth. The majority of the bone growth into the block graft was into the channels, though a portion grew directly into the construct in the form of small bony spicules. In conclusion, bone ingrowth was readily demonstrated in the middle of the implanted printed devices.

  4. Synthesis and chemical and structural characterization of hydroxyapatite obtained from eggshell and tricalcium phosphate

    OpenAIRE

    Arboleda, Alejandro; Franco, Manuel; Caicedo, Julio; Tirado, Liliana; Goyes, Clara

    2016-01-01

    The eggshell is a common residue that is usually discarded without giving any use to it. In this paper the results obtained from a proposed procedure to get hydroxyapatite (HA) from eggshell are shown. The HA is a calcium phosphate which has been widely used as implant material due to the close similarity of its composition with the inorganic phase of natural bone. HA generally has a high cost and it is presented as micro and nanostructured bioceramics; the last one is a promising option for ...

  5. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  6. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  7. Synthesis of Hydroxyapatite using Precipitated Calcium Carbonate (PCC) from Limestones

    Science.gov (United States)

    Wardhani, Sri; Isnaini Azkiya, Noor; Triandi Tjahjanto, Rachmat

    2018-01-01

    Hydroxyapatite (HAp) is a material that widely applied in bone and teeth implant due to its biocompatibility and bioactivity. This material can be prepared from PCC by precipitation method using CaO and H3PO4 in ethanol. In this work, variations of phosphoric acid amount and aging time were investigated. The synthesized HAp was characterized by FT-IR, AAS, UV-Vis Spectrophotometer, PSA, SEM, and powder XRD. The results showed that the high concentration of calcium in PCC gives better yields in which PCC obtained from carbonation method has higher yield than that of caustic soda method. The determination of optimum phosphoric acid addition based on targeted Ca/P ratio (1.67) from HAp was obtained on the addition of 0.1271 mol phosphoric acid with Ca/P ratio of 1.66. The aging time gave significant effect to the particle size of synthesised HAp. The smallest particle size was obtained in aging time for 48 hours as high as 49.25 μm. FTIR spectra of the synthesized HAp show the presence of hydroxyl (-OH) group at 3438.8 cm-1, PO4 3- at 557.39 and 1035.7 cm-1, and CaO at 1413.72 cm-1. The synthesized HAp forms agglomeration solid based on the SEM analysis. The powder XRD data shows three highest peaks at 2θ i.e. 27.8296; 31.1037; and 34.3578 which corresponds to β-TCP (tricalcium phosphate) in accordance with JCPDS no.09-0169. The characteristic 2θ peak of hydroxyapatite with low intensity is observed from the synthesized HAp refer to the JCPDS data no. 09-0432.

  8. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  9. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  10. Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

    Directory of Open Access Journals (Sweden)

    Kroiča Juta

    2016-08-01

    Full Text Available Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

  11. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  12. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  14. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    Science.gov (United States)

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. INTERACTION OF BIOMATERIALS CONTAINING CALCIUM HYDROXYAPATITE/ POLY-L-LACTIDE WITH THE SIMULATED BODY FLUID

    Directory of Open Access Journals (Sweden)

    Marija Petković

    2011-12-01

    Full Text Available The purpose of biomaterials is to replace a part or a function of the body in a safe, physiologically and economically acceptable way. The process of the reconstruction of bone defects has always been a big problem in orthopedics and maxillofacial surgery. Since hydroxyapatite (HAp was detected as a component, the predominant constituent and the integral element of Mammalian bones, the development of the phospate ceramics as potential materials for implantation was enabled. This study investigated whether and in which way biomaterial calcium hydroxyapatite/poly-L-lactide (HAp/PLLA interacts with the ionic composition of the human plasma. The simulated body fluid (SBF is an artificial fluid that has the ionic composition and ionic concentration similar to the human blood plasma. HAp/PLLA was incubated for 1, 2, 3 and 5 weeks in SBF. The surfaces of both treated and untreated materials were analyzed on a scanning electron microscopy (SEM, and were also exposed to the energy dispersive X-ray spectroscopy (EDS, while SBF was submitted to the measuring of pH and electrical conductivity. However, our results indicate that the degradational changes of the material HAp/PLLA in SBF start from the surface of the treated material and that observed changes are the consequence of dissolution of its polymer component and the precipitation of the material similar to hydroxyapatite on its surface. This material shows good characteristics that place it among good candidates for the application in orthopedics and maxillofacial surgery.

  16. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  17. Examination of Sol-Gel Derived Hydroxyapatite Enhanced with Silver Nanoparticles using OCT and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Głowacki Maciej J.

    2017-03-01

    Full Text Available Hydroxyapatite (HAp has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.

  18. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    International Nuclear Information System (INIS)

    Parente, P.; Savoini, B.; Ferrari, B.; Monge, M.A.; Pareja, R.; Sanchez-Herencia, A.J.

    2013-01-01

    The capability of the colloidal method to produce yttria (Y 2 O 3 ) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y 2 O 3 has been applied, and the effect of 10 wt.% Y 2 O 3 addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y 2 O 3 addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y 2 O 3 as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca 2+ with Y 3+ ions appears to promote the formation of OH − vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: ► We reveal the influence of Y 2 O 3 on thermal stability of hydroxyapatite. ► Incorporation of Y 2 O 3 delays decomposition of hydroxyapatite to calcium phosphates. ► Addition of Y 2 O 3 enables sintering conditions more favorable to the densification.

  19. Finite Element Simulation of Diametral Strength Test of Hydroxyapatite

    International Nuclear Information System (INIS)

    Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer

    2011-01-01

    In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.

  20. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    Science.gov (United States)

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Characterization of hydroxyapatite substituted with silicon

    International Nuclear Information System (INIS)

    Silva, H.M. da; Soares, G.A.; Mateescu, M.; Anselme, K.; Palard, M.; Champion, E.

    2009-01-01

    Incorporation of silicon (Si) ions into hydroxyapatite structure (HA) influences on physical, chemical and physiological properties. Some studies reported the improved bioactivity Si substitution, and it also accelerates the biomineralization process. The main objective of this work is to characterize stoichiometric hydroxyapatite and hydroxyapatite substituted with 1.13% in weight of Si (SiHA) using a wet precipitation method followed by a heat treatment. SEM/EDS, AFM, DRX and FTIR analyses were used to characterize the samples. EDS and FTIR results confirmed the presence of Si. Silicon induces small changes on crystal structure of HA, not detected on X-ray diffraction patterns of sintered tablets of SiHA and HA. No secondary phases were observed, that indicates the Si had entered the HA lattice. (author)

  3. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    Objective To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Methods Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. Results HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after

  4. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after implanting n

  5. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  7. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C.; Arruda, Antonio Celso F.

    2009-01-01

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  8. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used...

  9. Quantification of the vascularisation of the orbital implants of coralinehydroxyapatite with {sup 99m} Tc-MDP; Cuantificacion de la vascularizacion de los implantes orbitales dehidroxiapatita coralina con {sup 99m} Tc-MDP

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.L.; Solano, M.E.; Alvarez, I.; Perez, G. [Centro deInvestigaciones Clinicas 34 no.4501 e/45 y 47 Kohly, Playa C. Habana (Cuba)

    1998-12-31

    The use of ocular implants of hydroxyapatite has been increased in the last times owing to that they are well tolerated by the organism and that on the integration they show good mobility on the artificial eye with very few complications. The gammagraphy with {sup 99m} Tc-MDP can be used for the evaluation of vascularisation and its relative quantification above on these implants. In this pilot essay 10 normal persons and 37 patients were studied who had an implant of Cuban coraline hydroxyapatite (Coraline HAP-200). Thermography with {sup 99m} Tc-MDP was realized between 4 and 18 months after surgery then were obtained plane images in anterior viewing. It was measured the implant vascularisation and it was calculated for each case the relative captivation index (RCI) starting from two regions of ocular interest. As result all patients tolerated the implant without complications. The relation of the activity implant with respect to the contralateral region was 2.31{+-}0.63 (mean {+-} SD) with a range of 1.17-4.09. The relation between the left intra orbital captivation and the right in the normal persons was 1.01 {+-}0.66 (mean {+-} SD). In conclusion, we obtained that the ICR can be very useful in order to measure the integration level of this type of implant.Moreover, it was proved that the implants with Cuban coraline hydroxyapatite showed an acceptable level of integration in all the patients. (Author)

  10. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Fahami, Abbas; Beall, Gary W.; Betancourt, Tania

    2016-01-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl"− and F"− substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  11. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Fahami, Abbas, E-mail: fahami@txstate.edu [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Beall, Gary W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Betancourt, Tania [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl{sup −} and F{sup −} substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  12. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    International Nuclear Information System (INIS)

    Song Wei; Shi Tong; Ren Weiping; Markel, David C; Wang Sunxi; Mao Guangzhao

    2012-01-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol–collagen–hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic–organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications. (paper)

  13. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    Science.gov (United States)

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability. © The Author(s) 2015.

  15. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  16. Dosimetric measurement of scattered radiation from dental implants in simulated head and neck radiotherapy.

    Science.gov (United States)

    Wang, R; Pillai, K; Jones, P K

    1998-01-01

    The purpose of this study was to examine the dose enhancement at bone-implant interfaces from scattered radiation during simulated head and neck radiotherapy. Three cylindric implant systems with different compositions (pure titanium, titanium-aluminum-vanadium alloy, titanium coated with hydroxyapatite) and a high gold content transmandibular implant system (gold-copper-silver alloy) were studied. Extruded lithium fluoride single crystal chips were used as thermoluminescent material to measure radiation dose enhancement at 0, 1, and 2 mm from the bone-implant interface. The relative doses in buccal, lingual, mesial, and distal directions were also recorded and compared. The results indicated that the highest dose enhancement occurred at a distance of 0 mm from the bone-implant interface for all the implant systems studied. The transmandibular implants had higher scattered radiation than other groups at 0 mm and at 1 mm from the bone-implant interface. There was no significant difference of dose enhancement between buccal, lingual, mesial, and distal directions. Titanium implants coated with hydroxyapatite demonstrated the best results under the simulated irradiation.

  17. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application

    Energy Technology Data Exchange (ETDEWEB)

    Yanovska, A., E-mail: biophy@yandex.ru [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Kuznetsov, V. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Stanislavov, A. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Husak, E. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine); Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Pogorielov, M. [Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Starikov, V. [National Technical University ”Kharkov Polytechnic Institute”, 21 Frunze Str., 61002, Kharkov (Ukraine); Bolshanina, S. [Sumy State University, Ministry of Education and Science of Ukraine, 2 R. Korsakova Str., 40007, Sumy (Ukraine); Danilchenko, S. [Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., 40000, Sumy (Ukraine)

    2016-11-01

    The composite materials based on hydroxyapatite (HA) and gelatine (Gel) with addition of silver and zirconium oxide were obtained. The study investigates a combination of low powered ultrasonic irradiation and low concentration of gelatine in the co-precipitation synthesis. These composites have different weight ratios of organic/inorganic components and may be synthesized in two ways: simple mixing and co-precipitation. Both of which were compared. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the IR-analysis were provided. Hydroxyapatite was the main crystalline phase in obtained composites. While around powdered HA-Gel composite the connective tissue capsule is formed without bone tissue formation, HA-Gel-Ag porous composite implantation leads to formation of new bone tissue and activation of cell proliferation. Addition of silver ions into composite material allows decreasing inflammation on the first stage of implantation and has positive effect on bone tissue formation. Some of the obtained composite materials containing silver or ZrO{sub 2} are biocompatible. bio-resorbable and osteoconductive with high level of porosity (75–85%). - Highlights: • Hydroxyapatite-gelatine composites with addition of Ag{sup +} and ZrO{sub 2} were obtained. • Composites were synthesized in two ways: simple mixing and co-precipitation. • Co-precipitation synthesis combined ultrasonic treatment and low concentration of gelatine. • Obtained composites have different weight ratios of organic/inorganic components. • Some composites are osteoconductive and all of them have high level of porosity (75–85%).

  18. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    International Nuclear Information System (INIS)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-01-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO 4 2− ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite

  19. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  20. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application

    International Nuclear Information System (INIS)

    Yanovska, A.; Kuznetsov, V.; Stanislavov, A.; Husak, E.; Pogorielov, M.; Starikov, V.; Bolshanina, S.; Danilchenko, S.

    2016-01-01

    The composite materials based on hydroxyapatite (HA) and gelatine (Gel) with addition of silver and zirconium oxide were obtained. The study investigates a combination of low powered ultrasonic irradiation and low concentration of gelatine in the co-precipitation synthesis. These composites have different weight ratios of organic/inorganic components and may be synthesized in two ways: simple mixing and co-precipitation. Both of which were compared. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the IR-analysis were provided. Hydroxyapatite was the main crystalline phase in obtained composites. While around powdered HA-Gel composite the connective tissue capsule is formed without bone tissue formation, HA-Gel-Ag porous composite implantation leads to formation of new bone tissue and activation of cell proliferation. Addition of silver ions into composite material allows decreasing inflammation on the first stage of implantation and has positive effect on bone tissue formation. Some of the obtained composite materials containing silver or ZrO_2 are biocompatible. bio-resorbable and osteoconductive with high level of porosity (75–85%). - Highlights: • Hydroxyapatite-gelatine composites with addition of Ag"+ and ZrO_2 were obtained. • Composites were synthesized in two ways: simple mixing and co-precipitation. • Co-precipitation synthesis combined ultrasonic treatment and low concentration of gelatine. • Obtained composites have different weight ratios of organic/inorganic components. • Some composites are osteoconductive and all of them have high level of porosity (75–85%).

  1. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  2. Microstructures, hardness and bioactivity of hydroxyapatite coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-10-01

    Full Text Available Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal...

  3. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  5. Microwave assisted synthesis of hydroxyapatite nano strips

    Energy Technology Data Exchange (ETDEWEB)

    Ruban Kumar, A.; Kalainathan, S.; Saral, A.M. [School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India)

    2010-07-15

    Synthesis of hydroxyapatite (HAP) nano strips was carried out by chemical precipitation method followed by microwave irradiation. The microwave assisted reactions proceed at fast rates. It is found that the presence of the complex reagent EDTA plays an important role in the morphological changes of nanostructure hydroxyapatite. EDTA acts as a hexadentate unit by wrapping itself around the Ca{sup 2+} metal ion with, four oxygen and two nitrogen atoms and forms several five member chelate rings. The relative specific surface energies associated with the facets of the crystal determines the shape of the crystal. Scanning electron microscopy revealed the presence of hydroxyapatite nano strips with the range 50-100 nm in EDTA influenced HAP powders. Fourier transform-infrared spectroscopy (FT-IR) result combined with the X-ray diffraction (XRD) indicates the presence of amorphous hydroxyapatite (HAP) in the as-prepared material. X-ray patterns collected on the powder after heat-treatment at 1100 C for 2 h in air exhibits single phase of HAP. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Coating of the orthopaedic titanium alloys with sol-gel derived hydroxyapatite

    International Nuclear Information System (INIS)

    Milev, A.; Green, D.; Chai, C.S.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) is known to be both biocompatible and bioactive material, however, due to its poor mechanical properties and design limitations is not suitable for applying as a load bearing implant. This could be overcome by using appropriate metallic substrates covered with HAp, derived via different techniques. These coatings allow improved adhesion strength of the load bearing substrate to the bone, resulting in shorter healing periods as well as predictable behaviour of the implant for longer periods of time. There are different techniques of producing HAp appropriate for coating purposes. Due to the small particle size of the grains derived, sol-gel route is preferable where lower sintering temperatures are of primary importance. For better adhesion between substrate and hydroxyapatite coating, the surface of titanium substrate, in this study, was converted to titanium nitride and/or oxynitride. Sintering temperatures of 900 deg C have been used for producing crystalline HAp coatings. The control of sol-gel solutions and the analysis of the coatings were carried out using XRD, SEM and DTA techniques. Results obtained indicate high quality HAp coatings can be produced on titanium substrates especially with complex shapes that benefits over the other coating methods

  7. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    Science.gov (United States)

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  8. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  9. Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Pivarciova, L.; Rajec, P.; Caplovicova, M.

    2013-01-01

    The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15-30 min of the contact time for initial Ni 2+ concentration of 1 x 10 -4 mol dm -3 . The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g -1 , respectively. The sorption of Ni 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co 2+ and Fe 2+ towards Ni 2+ sorption was stronger than that of Ca 2+ ions. NH 4 + ions have no apparent effect on nickel sorption. (author)

  10. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  11. Elders with implant overdentures: a 22-year clinical report.

    Science.gov (United States)

    Alsabeeha, Nabeel H M

    2012-09-01

    To report on the long-term survival and prosthodontic maintenance of two edentulous adults with mandibular overdentures supported by hydroxyapatite (HA)-coated implants. Mandibular implant overdentures are a successful treatment option with positive impact on the quality of life of elderly edentulous adults. Long-term survival of the implants requires continued rigorous prosthodontic maintenance. Two elderly edentulous adults with mandibular overdentures supported by 2 HA-coated implants were presented for prosthodontic rehabilitation after 22 years of placement. The implants were osseo-integrated and surviving at presentation based on accepted criteria. The mandibular implant overdentures suffered recurrent loss of retention and stability. Prosthodontic treatment involving the replacement of defective attachment systems and construction of new sets of mandibular implant overdentures opposing complete maxillary dentures is presented. The long-term survival of mandibular 2-implant overdentures requires continued prosthodontic maintenance. A conservative approach in the rehabilitation of two older edentulous adults with mandibular 2-implant overdentures was described including proper selection of attachment systems. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  12. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  13. The synthesis of hydroxyapatite through the precipitation method

    International Nuclear Information System (INIS)

    Shah Rizal, K.; Fahmi, M.N.; Mat Akil, H.; Zainal Arifin, A.

    2004-01-01

    Hydroxyapatite (HA) has been earmarked as suitable for implantation within the human body due to the similarity of its chemical makeup to human bone, In this paper, HA powders were synthesized via the precipitation method where phosphoric acid (H 3 PO 4 ) was titrated into calcium hydroxide solution [Ca(OH) 2 ]. Two parameters such as temperature and stirring rate were identified as factors that influenced the amount and purity of HA powder, Phase identification of the synthesized powder was done using X-Ray Diffraction (XRD). The results show that HA phase can be synthesized from this titration process of Ca(OH) 2 and H 3 PO 4 with yield amount of HA powder around 45-61 grams but with less than hundred percent purity. In order to study the effect of heat treatment to RA crystals structure, HA powder was calcined at 850 degree C for 2 hours. Its found that the degree of crystallinity increases after calcination because of lattice expansion when the materials were heated at higher temperature. (Author)

  14. The synthesis of hydroxyapatite through the precipitation method.

    Science.gov (United States)

    Shah, Rizal K; Fahmi, M N; Mat, Akil H; Zainal, Arifin A

    2004-05-01

    Hydroxyapatite (HA) has been earmarked as suitable for implantation within the human of its chemical makeup to human bone. In this paper, HA powders were synthesized via the precipitation method where phosphoric acid (H3PO4) was titrated into calcium hydroxide solution [Ca(OH)2]. Two parameters such as temperature and stirring rate were identified as factors that influenced the amount and purity of HA powder. Phase identification of the synthesized powder was done using X-Ray Diffraction (XRD). The results show that HA phase can be synthesized from this titration process of Ca(OH)2 and H3PO4 with yield amount of HA powder around 45 - 61 grams but with less than hundred percent purity. In order to study the effect of heat treatment to HA crystals structure, HA powder was calcined at 850 degrees C for 2 hours. It's found that the degree of crystallinity increases after calcination because of lattice expansion when the materials were heated at higher temperature

  15. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    International Nuclear Information System (INIS)

    Tang Xiaojun; Gui Lai; Lue Xiaoying

    2008-01-01

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  16. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  17. Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering.

    Science.gov (United States)

    Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Geçimli, Zeynep Nur; Aydoğdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, Oguzhan

    2016-07-07

    We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 °C, reveal about 700 % increase in the microhardness (~100 and 775 HV, respectively). Composites prepared at 1300 °C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.

  18. Cytotoxicity and genotoxicity property of hydroxyapatite-mullite eluates.

    Science.gov (United States)

    Kalmodia, Sushma; Sharma, Vyom; Pandey, Alok K; Dhawan, Alok; Basu, Bikramjit

    2011-02-01

    Long-term biomedical applications of implant materials may cause osteolysis, aseptic losing and toxicity. Therefore, we investigated the cytotoxic and genotoxic potential of hydroxyapatite (HA) mullite eluates in L929 mouse fibroblast cells. The spark plasma sintered HA-20% mullite biocomposite (HA20M) were ground using mortar and pestle as well as ball milling. The cells were exposed for 6 h to varying concentrations (10, 25, 50, 75 and 100%) of the eluates of HA-20% mullite (87 nm), HA (171 nm) and mullite (154 nm). The scanning electron microscopy and MTT assay revealed the concentration dependent toxicity of H20M eluate at and above 50%. The analysis of the DNA damaging potential of HA, mullite and HA20M eluates using Comet assay demonstrated a significant DNA damage by HA20M which was largely related to the presence of mullite. The results collectively demonstrate the cytotoxic and genotoxic potential of HA20M eluate in L929 cells is dependent on particle size, concentration and composition.

  19. Hydroxyapatite screen-printed thick films: optical and electrical properties

    International Nuclear Information System (INIS)

    Silva, C.C.; Rocha, H.H.B.; Freire, F.N.A.; Santos, M.R.P.; Saboia, K.D.A.; Goes, J.C.; Sombra, A.S.B.

    2005-01-01

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al 2 O 3 substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials

  20. Hydroxyapatite screen-printed thick films: optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Rocha, H.H.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Freire, F.N.A. [Departamento de Quimica Orga-circumflex nica e Inorga-circumflex nica-UFC, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Santos, M.R.P. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Saboia, K.D.A. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Goes, J.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Sombra, A.S.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil)]. E-mail: sombra@fisica.ufc.br

    2005-07-15

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al{sub 2}O{sub 3} substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials.

  1. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    Science.gov (United States)

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  2. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xiaojun; Gui Lai [Department of Cranio-maxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China)], E-mail: laiguiplastic@tom.com, E-mail: luxy@seu.edu.cn

    2008-12-15

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  3. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  4. Carmustine Implant

    Science.gov (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  5. Cochlear Implants

    Science.gov (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  6. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    International Nuclear Information System (INIS)

    Vasilescu, C.; Drob, P.; Vasilescu, E.; Demetrescu, I.; Ionita, D.; Prodana, M.; Drob, S.I.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. → For covered alloy the equivalent circuit contains two time constants. → Resistances of films increased in time revealing the improvement of the alloy protection capacity. → Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  7. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, C.; Drob, P. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Vasilescu, E., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Demetrescu, I.; Ionita, D.; Prodana, M. [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, Str. Polizu 1-7, 011061 Bucharest (Romania); Drob, S.I. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania)

    2011-03-15

    Graphical abstract: Display Omitted Research highlights: {yields} EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. {yields} For covered alloy the equivalent circuit contains two time constants. {yields} Resistances of films increased in time revealing the improvement of the alloy protection capacity. {yields} Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  8. Study of sorption processes of strontium on the synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Rajec, P.

    2011-01-01

    The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr 2+ and Ca 2+ ions in solution with concentration above 1 x 10 -3 mol dm -3 . The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83-96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes. (author)

  9. The Role of Bioceramics Coating in Dental Implant Reliability and Success

    Directory of Open Access Journals (Sweden)

    Mortazavi V

    2000-05-01

    Full Text Available Characterization of bioceramics coating and evaluation of the influence of kind of coating on"nthe implantation has been developed in recent years."nDifferent bioceramics coating like calcium phosphate, hydroxyapatite, fluorapatite and bioglass were"ncoated on dental and orthopedic implants. In-vitro and in-vivo experiments were done for evolution of"nimplant success and reliability and study of factors, which may influence the results."nResearches indicate that different bioceramic coating may affect the bone bonding mechanism."nBiodegredable calcium phosphate coating can be resorbed and be replaced with bone tissues."nHydroxyapatite cause earlier stabilization of dental implant in surrounding bone (biological fixation and"nreduce healing time. Bioglass can protect substrate and provide interfacial attachment to bone.

  10. Study of wettability and cell viability of H implanted stainless steel

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  11. Better early osteogenesis of electroconductive hydroxyapatite-calcium titanate composites in a rabbit animal model.

    Science.gov (United States)

    Mallik, Prafulla Kumar; Basu, Bikramjit

    2014-03-01

    In view of the fact that bone healing can be enhanced due to external electric field application, it is important to assess the influence of the implant conductivity on the bone regeneration in vivo. To address this issue, this study reports the in vivo biocompatibility property of multistage spark plasma sintered hydroxyapatite (HA)-80 wt % calcium titanate (CaTiO3 ) composites and monolithic HA, which have widely different conductivity property (14 orders of magnitude difference). The ability of bone regeneration was assessed by implantation in cylindrical femoral bone defects of rabbit animal model for varying time period of 1, 4, and 12 weeks. The overall assessment of the histology results suggests that the progressive healing of bone defects around HA-80 wt % CaTiO3 is associated with a better efficacy with respect to (w.r.t) early stage neobone formation, which is histomorphometrically around 140% higher than monolithic HA. Overall, this study demonstrates that the in vivo biocompatibility property of HA-80 wt % CaTiO3 with respect to local effects after 12 weeks of implantation is not compromised both qualitatively and quantitatively, and a comparison with control implant (HA) points toward the critical role of electrical conductivity on better early stage bone regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  12. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    Science.gov (United States)

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N

  13. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite.

    Science.gov (United States)

    Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi

    2017-12-01

    is an important factor to achieve high adhesive strength of hydroxyapatite layer to the PEEK substrate. This material is expected to be a candidate for next-generation implant materials with high bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  15. Hydroxyapatite Fibers: A Review of Synthesis Methods

    Science.gov (United States)

    Qi, Mei-Li; He, Kun; Huang, Zhen-Nan; Shahbazian-Yassar, Reza; Xiao, Gui-Yong; Lu, Yu-Peng; Shokuhfar, Tolou

    2017-08-01

    Hydroxyapatite (HA) exhibits excellent biocompatibility, bioactivity, osteoconductivity, non-toxicity and so on, making it a perfect candidate for biomedical applications. However, HA is not qualified to be used in load-bearing sites due to its poor flexural strength and fracture toughness. Design, synthesis and application of fibrous HA is a promising strategy to overcome the inherent brittleness. This review provides a brief description of HA and hydroxyapatite fiber (HAF), then introduces different synthesis methods of HAF and highlights the inherent merits and drawbacks involved in each method. Finally, the future perspectives in this active research area are given. The purpose of this review is to acquaint the reader with this promising new field of biomaterials research and with emphasis on recent techniques to obtain continuous, uniform and long HAF.

  16. FIBROUS SILICA-HYDROXYAPATITE COMPOSITE BY ELECTROSPINNING

    OpenAIRE

    Jesús Alberto Garibay-Alvarado; León Francisco Espinosa-Cristóbal; Simón Yobanny Reyes-López

    2017-01-01

    New nanocomposite membrane was fabricated by electrospinning. The nanocomposite combines a glass and hydroxyapatite (HA). This research proposed the incorporation of glass to counteract the brittleness of HA in a composite formed by coaxial fibers which will be used for bone replacement. Calcium phosphate ceramics are used widely for dental and orthopedic reasons, because they can join tightly through chemical bonds and promote bone regeneration. Precursors HA and SiO2 were synthetized throug...

  17. Fracture of a HTR-PMI cranioplastic implant after severe TBI.

    Science.gov (United States)

    López González, Antonio; Pérez Borredá, Pedro; Conde Sardón, Rebeca

    2015-02-01

    A 13-year-old girl with a large left fronto-parietal hard-tissue replacement patient-matched implant (HTR®-PMI) cranioplasty-since she suffered from a traumatic brain injury (TBI) 6 years ago-had a new severe TBI that detached and fractured the implant as well as caused a left subdural hematoma and a large frontal contusion. The hematoma and contusion were removed and the implant was substituted by a provisional titanium mesh. To the best of our knowledge, this is the first case reported about an HTR®-PMI fracture. It is theorized that the bone ingrowth into the macroporous implants, like those of hydroxyapatite, gives strength and resistance to the implant. But in the case we describe, no macroscopic bone ingrowth was detected 6 years after implantation and the traumatic force that impacted over the cranioplasty exceeded its properties.

  18. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  19. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  20. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: m.s.sadjad@gmail.com [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ebrahimi, H.R. [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, University of Shahid Beheshti, Eveen Tehran (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. {yields} Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. {yields} Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  1. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    International Nuclear Information System (INIS)

    Sadjadi, M.S.; Ebrahimi, H.R.; Meskinfam, M.; Zare, K.

    2011-01-01

    Highlights: → We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. → Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. → Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  2. The coprecipitation of strontium with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1975-01-01

    The distribution behavior of the strontium ion between hydroxyapatite and the parent solution was investigated. The hydroxyapatite was formed by the extremely slow addition of diammonium hydrogenphosphate to solutions of calcium and strontium nitrate buffered with ethylenediamine at 80 0 C. The precipitate yielded a typical X-ray diffraction pattern of hydroxyapatite and had a composition in which the Ca/P molar ratio was 1.67 at pH 6.80. The strontium ion was coprecipitated in the apatite, obeying the Doerner and Hoskins logarithnmic distribution law. The distribution coefficient was scarcely affected by the strontium concentration on the pH value in the parent solution, and had a value of 0.26+-0.02 at 80 0 C. On the other hand, the apparent distribution coefficient was a little affected by such organic anions as acetate, citrate, lactate, glycinate, and glutamate ions. The lattice constants of the precipitates prepared in the research were measured in order to confirm the formation of the solid solutions. (auth.)

  3. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  4. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  5. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L.; Mihailescu, N.; Popescu, A.C.; Luculescu, C.R. [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Çetin, G.; Gunduz, O. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Department of Medical Imaging Techniques, Vocational School of Health Services, Marmara University, 34668 Istanbul (Turkey); Nanotechnology and Biomaterials Application & Research Centre, Marmara University, 34722 Istanbul (Turkey); Popa, A.C. [National Institute of Materials Physics, 077125 Magurele (Romania); Army Centre for Medical Research, 010195 Bucharest (Romania); Kuncser, A.; Besleaga, C. [National Institute of Materials Physics, 077125 Magurele (Romania); Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, 077125 Magurele (Romania)

    2017-08-15

    Highlights: • Pulsed laser deposition of Ti doped hydroxyapatite films of biological origin. • Downgrade of films’ crystallinity and increase of roughness induced by Ti doping. • Bonding strength values superior to minimum value imposed by ISO standards. • Excellent biocompatibility in hMSC cultures of Ti doped structures. • Ti doped hydroxyapatite films as feasible materials for implantology applications. - Abstract: We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  6. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Mihailescu, N.; Popescu, A.C.; Luculescu, C.R.; Mihailescu, I.N.; Çetin, G.; Gunduz, O.; Oktar, F.N.; Popa, A.C.; Kuncser, A.; Besleaga, C.; Stan, G.E.

    2017-01-01

    Highlights: • Pulsed laser deposition of Ti doped hydroxyapatite films of biological origin. • Downgrade of films’ crystallinity and increase of roughness induced by Ti doping. • Bonding strength values superior to minimum value imposed by ISO standards. • Excellent biocompatibility in hMSC cultures of Ti doped structures. • Ti doped hydroxyapatite films as feasible materials for implantology applications. - Abstract: We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  7. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.

    Science.gov (United States)

    Lovati, A B; Lopa, S; Recordati, C; Talò, G; Turrisi, C; Bottagisio, M; Losa, M; Scanziani, E; Moretti, M

    2016-08-01

    Large bone defects still represent a major burden in orthopedics, requiring bone-graft implantation to promote the bone repair. Along with autografts that currently represent the gold standard for complicated fracture repair, the bone tissue engineering offers a promising alternative strategy combining bone-graft substitutes with osteoprogenitor cells able to support the bone tissue ingrowth within the implant. Hence, the optimization of cell loading and distribution within osteoconductive scaffolds is mandatory to support a successful bone formation within the scaffold pores. With this purpose, we engineered constructs by seeding and culturing autologous, osteodifferentiated bone marrow mesenchymal stem cells within hydroxyapatite (HA)-based grafts by means of a perfusion bioreactor to enhance the in vivo implant-bone osseointegration in an ovine model. Specifically, we compared the engineered constructs in two different anatomical bone sites, tibia, and femur, compared with cell-free or static cell-loaded scaffolds. After 2 and 4 months, the bone formation and the scaffold osseointegration were assessed by micro-CT and histological analyses. The results demonstrated the capability of the acellular HA-based grafts to determine an implant-bone osseointegration similar to that of statically or dynamically cultured grafts. Our study demonstrated that the tibia is characterized by a lower bone repair capability compared to femur, in which the contribution of transplanted cells is not crucial to enhance the bone-implant osseointegration. Indeed, only in tibia, the dynamic cell-loaded implants performed slightly better than the cell-free or static cell-loaded grafts, indicating that this is a valid approach to sustain the bone deposition and osseointegration in disadvantaged anatomical sites.

  8. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    Science.gov (United States)

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  9. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  10. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  11. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Science.gov (United States)

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  12. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  13. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    OpenAIRE

    Seyed Rahim Kiahosseini; Abdollah Afshar; Majid Mojtahedzadeh Larijani; Mardali Yousefpour

    2015-01-01

    Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA) coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion...

  14. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  15. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Hu, Wei; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2012-01-01

    The fine structure of zinc substituted hydroxyapatite was studied using experimental analysis and first-principles calculations. The synthetic hydroxyapatite nanoparticles containing low Zn concentration show rod-like morphology. The crystallite sizes and unit-cell volumes tended to decrease with the increased Zn concentration according to X-ray diffraction patterns. The Zn K-edge X-ray absorption spectra and fitting results suggest that the hydroxyapatite doped with 0.1 mole% zinc is different in the zinc coordination environments compared with that containing more zinc. The density function theory calculations were performed on zinc substituted hydroxyapatite. Two mechanisms included replacing calcium by zinc and inserting zinc along the hydroxyl column and were investigated, and the related substitution energies were calculated separately. It is found that the substitution energies are negative and lowest for inserting zinc between the two oxygen atoms along the hydroxyl column (c-axis). Combined with the spectral analysis, it is suggested that the inserting mechanism is favored for low concentration zinc substituted hydroxyapatite. Highlights: ► We investigate the fine structure of hydroxyapatite with low content of Zn. ► XANES spectra are similar but a little different at low zinc content. ► Zinc ions influence hydroxyapatite crystal formation and lattice parameters. ► Formation energies are calculated according to plane-wave density function theory. ► Low content of zinc prefers to locate at hydroxyl column in hydroxyapatite lattice.

  16. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  17. Hydroxyapatite does not improve the outcome of a bipolar hemiarthroplasty.

    NARCIS (Netherlands)

    Meijerink, H.J.; Gardeniers, J.W.M.; Buma, P.; Lemmens, J.A.M.; Schreurs, B.W.

    2004-01-01

    In a one-surgeon study the clinical and radiographic results of 30 cementless bipolar hip prostheses in 24 patients younger than 55 years were evaluated. Eleven noncoated prostheses (Noncoated Group) and 19 hydroxyapatite-coated prostheses (Hydroxyapatite Group) were compared after a mean followup

  18. Development of hydroxyapatite bone cement for controlled drug ...

    Indian Academy of Sciences (India)

    The purpose of this work was to study the preparation and characterization of drug–hydroxyapatite cement. The hydroxyapatite (HA) cement has been synthesized by using tricalcium phosphate, calcium carbonate and dicalcium phosphate anhydrous with sodium hydrogen phosphate as liquid phase. The effect of added ...

  19. In-situ deposition of hydroxyapatite on graphene nanosheets

    OpenAIRE

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, trans...

  20. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    Science.gov (United States)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  1. Biomechanical Evaluation of Rat Skull Defects, 1, 3, and 6 Months after Implantation with Osteopromotive Substances

    DEFF Research Database (Denmark)

    Jones, Leigh Robert; Thomsen, Jesper Skovhus; Mosekilde, Lis

    2007-01-01

    as unfilled controls. The repaired defects were evaluated biomechanically using a modified punch out test 1, 3, or 6 months postoperatively. Results: The maximum load carried in the DBM group was significantly higher than in the bone chips, hydroxyapatite, and control groups after one month of healing......Purpose: To compare the mechanical strength of surgically created and healed rat calvarial defects having been filled with three different osteopromotive substances: hydroxyapatite, intramembraneous demineralised bone matrix (DBM), and autogenous bone chips. Material: Sixty adult male Wistar rats...... were divided into three groups of 20 animals, each group representing healing times of one, three, or six months. Methods: Identical 5 mm bilateral critical size defects were trephined into the parietal bones and hydroxyapatite, DBM, or autogenous bone chips were implanted into the defects, or left...

  2. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Wennerberg, A; Johansson, C

    1995-01-01

    The purpose of this study was to evaluate the histometrical and biomechanical anchorage of TiO2-blasted implants and TiO2-blasted implants coated with hydroxyapatite. The control implants were machined. Twenty-six rabbits had a total of 156 implants placed in the proximal part of the tibia. Each...... rabbit had a machined, a TiO2-blasted, and a TiO2-blasted, HA-coated implant placed in each tibia. After a healing period of 3 and 12 weeks, respectively, the implants placed in the right tibia were used for removal torque test, and the implants placed in the left tibia were used for histomorphometrical...

  3. Study on carbonated hydroxyapatite as a thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Shafaei, M.; Sardari, D.; Ziaie, F.; Larijani, M.M.

    2015-01-01

    In this study, carbonated hydroxyapatite nanoparticles were used for thermoluminescence dosimetry. The nano-structure carbonated hydroxyapatite synthesized via hydrolysis of CaHPO 4 and CaCO 3 . The obtained nano powders were characterized by XRD technique and FTIR spectroscopy system. The carbonated hydroxyapatite samples were irradiated at different doses using 60 Co gamma rays, and were subjected to thermoluminescence measurement system, consequently. The TL glow curve exhibited two distinguishable peaks centered at around of 165 C and 310 C. The TL response of carbonated hydroxyapatite samples as a function of absorbed dose was linear in the range of 25-1000 Gy. Other dosimetric features of the carbonated hydroxyapatite nanoparticles including fading and reproducibility were also investigated.

  4. Synthesis of nanocrystalline hydroxyapatite by using precipitation method

    International Nuclear Information System (INIS)

    Mobasherpour, I.; Heshajin, M. Soulati; Kazemzadeh, A.; Zakeri, M.

    2007-01-01

    In this investigation, hydroxyapatite powder has been synthesized from the calcium nitrate hydrated and di-ammonium hydrogen phosphate solution by precipitation method and heat treatment of hydroxyapatite powders. In order to study the structural evolution, the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and simultaneous thermal analysis (STA) were used. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to estimate the particle size of the powder and observe the morphology and agglomeration state of the powder. Results show that hydroxyapatite nanocrystalline can successfully be produced by precipitation technique from raw materials. Hydroxyapatite grain gradually increased in size when temperature increased from 100 to 1200 o C, and the hydroxyapatite hexagonal-dipyramidal phase was not transformed to the other calcium phosphates phases up to 1200 o C

  5. Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: Characterization and cytotoxicity analysis

    International Nuclear Information System (INIS)

    Li Yan; Nam, C T; Ooi, C P

    2009-01-01

    Calcium hydroxyapatite (HA) is the main inorganic component of natural bones and can bond to bone directly in vivo. Thus HA is widely used as coating material on bone implants due to its good osteoconductivity and osteoinductivity. Metal ions doped HA have been used as catalyst or absorbents since the ion exchange method has introduced new properties in HA which are inherent to the metal ions. For example, Mn 2+ ions have the potential to increase cell adhesion while Fe 3+ ions have magnetic properties. Here, Fe(III) substituted hydroxyapatite (Fe-HA) and Mn(II) substituted hydroxyapatite (Mn-HA) were produced by wet chemical method coupled with ion exchange mechanism. Compared with pure HA, the colour of both Fe-HA and Mn-HA nanoparticles changed from white to brown and pink respectively. The intensity of the colours increased with increasing substitution concentrations. XRD patterns showed that all samples were single phased HA while the FTIR spectra revealed all samples possessed the characteristic phosphate and hydroxyl adsorption bands of HA. However, undesired adsorption bands of carbonate substitution (B-type carbonated HA) and H 2 O were also detected, which was reasonable since the wet chemical method was used in the synthesis of these nanoparticles. FESEM images showed all samples were elongated spheroids with small size distribution and of around 70 nm, regardless of metal ion substitution concentrations. EDX spectra showed the presence of Fe and Mn and ICP-AES results revealed all metal ion substituted HA were non-stoichiometric (Ca/P atomic ratio deviates from 1.67). Fe-HA nanoparticles were paramagnetic and the magnetic susceptibility increased with the increase of Fe content. Based on the extraction assay for cytotoxicity test, both Fe-HA and Mn-HA displayed non-cytotoxicity to osteoblast.

  6. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    International Nuclear Information System (INIS)

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-01-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO 3 ) 2 , NH 4 H 2 PO 4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space

  7. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Shao Ching [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Minimally Invasive Skull Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sect. 4, Taichung, Taiwan (China); Department of Neurosurgery, ChangHua Hospital, Ministry of Health and Welfare, 80 Chung Cheng Road, Sect. 2 Chiu Kuan Village, Changhua 500, Taiwan (China); Wang, Ming-Jia; Pai, Nai-Su [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2015-12-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO{sub 3}){sub 2}, NH{sub 4}H{sub 2}PO{sub 4} and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space.

  8. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P., E-mail: pparente@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Savoini, B. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Ferrari, B. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain)

    2013-03-01

    The capability of the colloidal method to produce yttria (Y{sub 2}O{sub 3}) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y{sub 2}O{sub 3} has been applied, and the effect of 10 wt.% Y{sub 2}O{sub 3} addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y{sub 2}O{sub 3} addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y{sub 2}O{sub 3} as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca{sup 2+} with Y{sup 3+} ions appears to promote the formation of OH{sup -} vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: Black-Right-Pointing-Pointer We reveal the influence of Y{sub 2}O{sub 3} on thermal stability of hydroxyapatite. Black-Right-Pointing-Pointer Incorporation of Y{sub 2}O{sub 3} delays decomposition of hydroxyapatite to calcium phosphates. Black-Right-Pointing-Pointer Addition of Y{sub 2}O{sub 3} enables sintering conditions more favorable to the densification.

  9. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  10. Hydroxyapatite in total hip arthroplasty. Our experience with a plasma spray porous titanium alloy/hydroxyapatite double-coated cementless stem.

    Science.gov (United States)

    Castellini, Iacopo; Andreani, Lorenzo; Parchi, Paolo Domenico; Bonicoli, Enrico; Piolanti, Nicola; Risoli, Francesca; Lisanti, Michele

    2016-01-01

    Total hip arthroplasty could fail due to many factors and one of the most common is the aseptic loosening. In order to achieve an effective osseointegration and reduce risk of lossening, the use of cemented implant, contact porous bearing surface and organic coating were developed. Aim of this study was to evaluate clinical and radiological mid-term outcomes of a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem applied with "plasma spray" technique and to demonstrate the possibility to use this stem in different types of femoral canals. Between January 2008 and December 2012, 240 consecutive primary total hip arthroplasties (THAs) were performed using a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem. 182 patients were examined: 136 were females (74.7%) and 46 males (25.2%); average age was 72 years old (ranging from 26 to 92 years old). For each patient, Harris Hip Scores (HHS) and Womac Scores were collected. All X-ray images were analyzed in order to demonstrate stem survival rate and subsidence. Harris Hip Score was good or excellent in 85% of the cases (average 90%) and mean WOMAC score was 97.5 (ranging from 73.4 to 100). No cases of early/late infection or periprosthetic fracture were noticed, with an excellent implant survival rate (100%) in a mean period of 40 months (ranging from 24 and 84 months). 5 cases presented acute implant dislocation, 2 due to wrong cup positioning in a dysplastic acetabulum and 3 after ground level fall. Dorr classification of femoral geometry was uses and the results were: 51 type A bone, 53 type B bone and 78 type C bone. Stem subsidence over 2 mm was considered as a risk factor of future implant loosening and was evidenced in 3 female patients with type C of Dorr classification. No radiolucencies signs around the proximally coated portion of stem or proximal reabsorption were visible during the radiographic follow-up. Concerning the use of porous

  11. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  12. [Osseontegration of trial implants of carbon fiber reinforced plastics].

    Science.gov (United States)

    Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L

    2000-01-01

    To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.

  13. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  14. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  15. Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering.

    Science.gov (United States)

    Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H

    2017-07-01

    Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    Science.gov (United States)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  17. Effect of Zinc Oxide Addition on Antibacterial Behavior of Hydroxyapatite-Poly lactic-co-glycolic acid Scaffold for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Narges Abotalebi

    2018-03-01

    Full Text Available Introduction: Infection after the surgery is one of the problems of bone scaffolds implants which is normally treated by systemic administration of antibiotics. But due to the poor blood circulation in bone tissue, large antibiotic doses are needed which lead to further drawbacks to renal and hepatic systems. Material and method: In this study, the effect of zinc oxide addition on antibacterial behavior of hydroxyapatite- Poly lactic-co-glycolic acid scaffold was evaluated. The synthesized composite was characterized by X-ray diffraction, scanning electron microscopy equipped with elemental analysis and Fourier transform infrared spectra. In order to determine the antibacterial activity of the fabricated scaffold, Staphylococcus aureus (ATTC 25922 and Escherichia coli (ATTC 25923 were used as test microorganisms. Results: The results showed that Hydroxyapatite- Poly lactic-co-glycolic acid scaffold did not make inhibition zone in culture medium but the modification of Hydroxyapatite- Poly lactic-co-glycolic acid scaffold’s surface by zinc oxide particles caused Hydroxyapatite- Poly lactic-co-glycolic acid- zinc oxide scaffold to have antibacterial inhibition zone of 12 and 20 mm for Escherichia coli and Staphylococcus aureus, respectively. Discussion and conclusion: This study revealed that the addition of antibacterial agent to applicable bone tissue engineering scaffolds could be considered as an appropriate way to prevent the growth of infection at the scaffold site.

  18. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    Science.gov (United States)

    Duta, L.; Mihailescu, N.; Popescu, A. C.; Luculescu, C. R.; Mihailescu, I. N.; Çetin, G.; Gunduz, O.; Oktar, F. N.; Popa, A. C.; Kuncser, A.; Besleaga, C.; Stan, G. E.

    2017-08-01

    We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  19. Cytotoxicity of nano-hydroxyapatite on human-derived oral epithelium cell line: an in vitro study

    OpenAIRE

    Farid Abassi; Mandana Sattari; Noushin Jalayer Naderi; Marzie Sorooshzadeh

    2016-01-01

    Background: Hydroxyapatite nanoparticles have a more surface contact and solubility than conventional hydroxyapatite. Hydroxynanoparticles enhances the biological and mechanical properties of new regenerated tissues. The hydroxyapatite nanoparticles have received attention as a new and effective osseous graft for using as scaffolds in bone regeneration. The reports on hydroxyapatite nanoparticles biocompatibility are controversial. It has been shown that hydroxyapatite nanoparticles induces i...

  20. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Science.gov (United States)

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  1. Iron inhibits hydroxyapatite crystal growth in vitro.

    Science.gov (United States)

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  2. Fabrication and characterization of porous hydroxyapatite ocular ...

    Indian Academy of Sciences (India)

    Unknown

    risk of life or risk to the other eye of the patient. The lost eye can be ... fibrovascular growth are termed as integrated implants. Porous implants have the .... They were maintained under identical environment, management and standard diet with ...

  3. Optoelectronics and defect levels in hydroxyapatite by first-principles

    Science.gov (United States)

    Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.

    2018-04-01

    Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

  4. Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)

    Science.gov (United States)

    Zhou, Huan

    Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized

  5. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St.C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-01-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells

  6. Synthesis of hydroxyapatite from biogenic wastes

    Directory of Open Access Journals (Sweden)

    Teerawat Laonapakul

    2015-09-01

    Full Text Available Hydroxyapatite (HAp is a major component of human bone, teeth and hard tissue. It is one of only a few bioactive materials. Since HAp is the most widely used ceramic biomaterial, various techniques have been developed to synthesize HAp. In recent years, the use of natural biogenic structures and materials for medical proposes has been motivated by limitations in producing synthetic materials. This article mainly focuses on the use of biogenic wastes to prepare HAp. These include bio-wastes, marine corals, eggshells, seashells and bio-membranes. In the present review, useful information about HAp preparation methodologies has been summarized for further research and development.

  7. Fabricating hydroxyapatite nanorods using a biomacromolecule template

    International Nuclear Information System (INIS)

    Zhu Aiping; Lu Yan; Si Yunfeng; Dai Sheng

    2011-01-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO 4 3- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  8. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    Science.gov (United States)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  9. Biomimetic Growth of Hydroxyapatite on Kenaf Fibers

    Directory of Open Access Journals (Sweden)

    Saiful Izwan Abd Razak

    2016-01-01

    Full Text Available Biomimetic hydroxyapatite (HA growth on mercerized kenaf fiber (KF was achieved by immersion in a simulated body fluid (SBF solution with the addition of a chelating agent. An electron micrograph revealed uniform HA layers on the KF within 14 days of immersion with significant vibrational peaks of HA components. The tensile tests showed no significant drops in the unit break of the modified fibers. This new bone-like apatite coating on KF can be useful in the field of bone tissue engineering. The key motivation for this new approach was that it utilizes the abundantly available kenaf plant resource as the biobased template.

  10. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  11. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Directory of Open Access Journals (Sweden)

    Dai ZY

    2015-10-01

    Full Text Available Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA complex biomaterials with muscle and bone tissue in an in vivo model.Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that

  12. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  13. Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance

    Directory of Open Access Journals (Sweden)

    Kamil Pajor

    2018-04-01

    Full Text Available Hydroxyapatites (HAs, as materials with a similar structure to bone minerals, play a key role in biomaterials engineering. They have been applied as bone substitute materials and as coatings for metallic implants, which facilitates their osseointegration. One of the beneficial characteristics of HA, when used to create biocompatible materials with improved physicochemical or biological properties, is its capacity for ionic substitution. The aim of the study was to present the current state of knowledge about HAs containing selenate ions IV or VI. The enrichment of HAs with selenium aims to create a material with advantageous effects on bone tissue metabolism, as well as having anticancer and antibacterial activity. The work is devoted to both methods of obtaining Se-HA and an evaluation of its chemical structure and physicochemical properties. In addition, the biological activity of such materials in vitro and in vivo is discussed.

  14. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  15. Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method

    International Nuclear Information System (INIS)

    Gopi, D.; Shinyjoy, E.; Sekar, M.; Surendiran, M.; Kavitha, L.; Sampath Kumar, T.S.

    2013-01-01

    Highlights: •Successful development of CNTs reinforced HAP coating on Ti by electrodeposition. •CNTs as a reinforcing material imparts strength and toughness to HAP. •Incorporating CNTs improves crystallinity, morphology, biological properties of HAP. •CNTs–HAP coating on Ti is bioresistive, better candidate for implant applications. -- Abstract: Carbon nanotubes (CNTs) are outstanding reinforcement material for imparting strength and toughness to brittle hydroxyapatite (HAP). This work reports the electrodeposition of CNTs reinforced HAP on titanium substrate at −1.4 V vs. SCE during 30 min with the functionalised CNTs concentration ranging from 0 to 2 wt.%. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HRTEM), mechanical and biological studies were used to characterise the coatings. Also, the corrosion resistance of the coatings was evaluated by electrochemical techniques in simulated body fluid (SBF) solution

  16. Preliminary assessment of hydroxyapatite and tricalcium phosphate: in-vitro and in-vivo studies

    International Nuclear Information System (INIS)

    Annuar, B.O.; Muhammad Hasib, A.; Noor Rabihah, A.; Sharifah Anum, Z.; Yaakob, T.A.; Inayat Hussain, S.H.; Rajab, N.F.; Saadiah, S.; Hing, H.L.; Sahidan, S.

    2004-01-01

    Full text: Eight extracts of hydroxyapatite (HA) and tricalcium phosphate (TCP) were evaluated for potential in vitro cytotoxicity, and for dermal irritation and sensitization in vivo. The samples were assessed to determine their viability in L929 murine fibroblast cultures by neutral red (NR) assay, and were evaluated for skin irritation and sensitization in rabbits and guinea pigs, respectively. Results of the NR assay indicate that a majority of extract produced no adverse reaction m L929 cells with cell viability levels exceeding 800/6. However, there was a slight decrease in viability with two HA samples producing a cytotoxicity score of 1. In the animal study, all eight extracts did not promote any dermal irritation and sensitization reactions both in the rabbits and guinea pigs. These results establish that the synthesized HA and TCP am promising biocompatible materials for orthopaedic implants. (Author)

  17. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  18. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  19. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    Science.gov (United States)

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  20. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  1. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  2. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Cacciotti, Ilaria; Lombardi, Mariangela; Montanaro, Laura

    2009-01-01

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO 3 ) 2 .4H 2 O and (b) titration of Ca(OH) 2 . The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N 2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m 2 /g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO 3 ) 2 .4H 2 O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH) 2 were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH) 2

  3. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  4. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    Science.gov (United States)

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  5. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite.

    Science.gov (United States)

    Mondal, Sudip; Dorozhkin, Sergy V; Pal, Umapada

    2018-07-01

    Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale. © 2017 Wiley Periodicals, Inc.

  6. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane

    Directory of Open Access Journals (Sweden)

    Yili Qu

    2010-06-01

    Full Text Available Yili Qu1,3, Ping Wang1,3, Yi Man1, Yubao Li2, Yi Zuo2, Jidong Li21State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China; 2Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China; 3These authors contributed equally to this workAbstract: Nano-hydroxyapatite/polyamide 66 (nHA/PA66 composite with good bioactivity and osteoconductivity was employed to develop a novel porous membrane with asymmetric structure for guided bone regeneration (GBR. In order to test material cytotoxicity and to investigate surface-dependent responses of bone-forming cells, the morphology, proliferation, and cell cycle of bone marrow stromal cells (BMSCs of rats cultured on the prepared membrane were determined. The polygonal and fusiform shape of BMSCs was observed by scanning electronic microscopy (SEM. The proliferation of BMSCs cultured on nHA/PA66 membrane tested by the MTT method (MTT: [3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazoliumbromide] was higher than that of negative control groups for 1 and 4 days’ incubation and had no significant difference for 7 and 11 days’ culture. The results of cell cycle also suggested that the membrane has no negative influence on cell division. The nHA/PA66 membranes were then implanted into subcutaneous sites of nine Sprague Dawley rats. The wounds and implant sites were free from suppuration and necrosis in all periods. All nHA/PA66 membranes were surrounded by a fibrous capsule with decreasing thickness 1 to 8 weeks postoperatively. In conclusion, the results of the in vitro and in vivo studies reveal that nHA/PA66 membrane has excellent biocompatibility and indicate its use in guided tissue regeneration (GTR or GBR.Keywords: hydroxyapatite/polyamide, barrier membrane, biocompatibility, guided bone regeneration

  7. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  8. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  9. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  10. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    International Nuclear Information System (INIS)

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-01

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  11. Recycled hydroxyapatite coatings on 316L stainless steel substrates

    International Nuclear Information System (INIS)

    Mendes Filho, Antonio Alves; Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva; Sousa, Camila Mateus de

    2010-01-01

    In this work were evaluated recycled hydroxyapatite coatings on 316L stainless steel substrates by plasma thermal aspersion. The hydroxyapatite used was obtained from bovine bone by the hydrothermal method. The samples of hydroxyapatite powders were divided according to their particle size distribution. The adhesion of the powders coating to the substrate was evaluated by assay scratch. The X-ray diffraction techniques and scanning electron microscopy were also used. The results of scratch resistance were between 46N and 63N. Analysis by scanning electron microscopy and x-ray diffraction showed no cracks coatings, single-phase and with few fused particles. (author)

  12. Surface bioactivity modification of titanium by CO 2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies

    Science.gov (United States)

    Hu, Xixue; Shen, Hong; Shuai, Kegang; Zhang, Enwei; Bai, Yanjie; Cheng, Yan; Xiong, Xiaoling; Wang, Shenguo; Fang, Jing; Wei, Shicheng

    2011-01-01

    Since metallic biomaterials used for orthopedic and dental implants possess a paucity of reactive functional groups, bioactivity modification of these materials is challenging. In the present work, the titanium discs and rods were treated with carbon dioxide plasma and then incubated in a modified simulated body fluid 1.5SBF to obtain a hydroxyapatite layer. Surface hydrophilicity of samples, changes of surface chemistry, surface morphologies of samples, and structural analysis of formed hydroxyapatite were investigated by contact angle to water, X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The results demonstrated that hydrophilicity of titanium surface was improved and hydroxyl groups increased after modification with carbon dioxide plasma treatment. The hydroxyl groups on the surface of titanium were the richest after carbon dioxide plasma treatment under the condition of 20 W for less than 30 s. The hydroxyapatite formability of titanium surface was enhanced by carbon dioxide plasma pretreatment, which was attributed to the surface chemistry. MC3T3-E1 cell as a model cell was cultured on the Ti, CPT-Ti and CPT/SBF-Ti discs in vitro, and the results of the morphology and differentiation of the cell showed that CPT/SBF-Ti was the highest bioactive. The relative parameters of the new bone around the Ti and CPT/SBF-Ti rods including bone mineral density (BMD), a ratio of bone volume to total volume (BV/TV), trabecular thickness (Tb.Th.) and trabecular number (Tb.N.) were analyzed by a micro-computed tomography (micro-CT) after 4-, 8- and 12-week implantation periods in vivo. The results indicated that the CPT/SBF-Ti was more advantageous for new bone formation.

  13. Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp)

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Guzman, J.; Piña-Barba, M.C.; Azorin, J.

    2014-01-01

    This paper presents the experimental results of the thermoluminescent (TL) characteristics of synthetic hydroxyapatite (SHAp) obtained by the sol–gel method. For preparation of the SHAp powders, phosphorus pentoxide (P 2 O 5 ) and calcium nitrate tetrahydrated (Ca(NO 3 ) 2 –4H 2 O) were used. The powders obtained were submitted at different temperatures. The structural and morphological characterization were carried out using X-ray diffraction (XRD) and scanning electron microscopy techniques. TL glow curve exhibited two peaks centered at around 200 °C and 300 °C. TL response of SHAp as a function of gamma absorbed dose was linear over a wide dose range. Fading of the storage information in the samples irradiated was also studied. The experimental results show that the synthetic hydroxyapatite obtained by the sol–gel method may have used in gamma radiation dosimetry applications. - highlights: • Dosimetric characteristics of SHAp under gamma irradiation effect were analyzed • SHAp powders were obtained by Sol–Gel method • Fading anomalous of HAp was performed showing 15% during 90 days • SHAp showed good dosimetric characteristics. • Dosimetric characteristics of SHAp have not been reported yet in the literature before this paper

  14. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  15. Fluoride removal performance of glass derived hydroxyapatite

    International Nuclear Information System (INIS)

    Liang, Wen; Zhan, Lei; Piao, Longhua; Russel, Christian

    2011-01-01

    Research highlights: → Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. → Micro-G-HAP adsorbs F - ions in solutions more effectively than commercial nano-HAP. → The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K 2 HPO 4 solution by the ratio of 50 g L -1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g -1 if 5 g L -1 , - in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F - could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F - from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  16. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit

    Directory of Open Access Journals (Sweden)

    Amir Sotoudeh

    2013-05-01

    Full Text Available PURPOSE: Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS: In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II. Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS: In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION: The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.

  17. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  18. Retention of albumin labelled with I-125 in the bio mineral hydroxyapatite; Retencion de albumina marcada con I-125 en el biomineral hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V.E.; Bugarin C, A. [UAZ, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The demands of materials for the health in the entire world, especially of the odontological and traumatological sectors make every time to be but studied the hydroxyapatite (HAP) and their biocompatibility with the alive beings. The hydroxyapatite is considered as one of the inorganic exchangers by excellence, for what the fixation of ions and molecules have been widely studied and at the moment it is one of the materials of greater acceptance like implant. The surface of the material of implant is in intimate contact with the live tissue and its biocompatibility is determined in great measure by those surface properties of the bio material, which have a direct effect in the cellular response of the material. After administering the implant, the proteins are immediately adsorbed in the surface of the bio mineral. Specifically, the proteins of the blood are considered as key pieces to determine the acceptance of implants in alive beings. The adsorption of proteins it depends on the physicochemical properties of the material as well as of the environment composition. The surface properties of the HAP are relevant in the adsorption mechanisms of the proteins. In this work, it is reported the adsorption of the labelled with I-125 albumin protein and in function of two important physicochemical parameters: the pH value of the of the solution and the chemical nature of the solution; to see the influence of this last, its were studied three electrolytes NaF, NaCl and NaH{sub 2}PO{sub 4}. The existence of the active sites of hydroxyapatite surface, it is key piece in the interpretation of the fixation of the albumin protein in function also of their acid-base properties. (Author)

  19. Mechanical and Spectroscopic Analysis of Retrieved/Failed Dental Implants

    Directory of Open Access Journals (Sweden)

    Umer Daood

    2017-11-01

    Full Text Available The purpose of this study was to examine surface alterations and bone formation on the surface of failed dental implants (Straumann [ST] and TiUnite [TiUn] removed due to any biological reason. In addition, failure analysis was performed to test mechanical properties. Dental implants (n = 38 from two manufacturers were collected and subjected to chemical cleaning. The presence of newly formed hydroxyapatite bone around failed implants was evaluated using micro-Raman spectroscopy. Scanning electron microscopy was used to identify surface defects. Mechanical testing was performed using a Minneapolis servo-hydraulic system (MTS along with indentation using a universal testing machine and average values were recorded. A statistical analysis of mechanical properties was done using an unpaired t test, and correlation between observed defects was evaluated using Chi-square (p = 0.05. Apatite-formation was evident in both implants, but was found qualitatively more in the ST group. No significant difference was found in indentation between the two groups (p > 0.05. The percentage of “no defects” was significantly lower in the ST group (71%. Crack-like and full-crack defects were observed in 49% and 39% of TiUn. The ST group showed 11,061 cycles to failure as compared with 10,021 cycles in the TiUnite group. Implant failure mechanisms are complex with a combination of mechanical and biological reasons and these factors are variable with different implant systems.

  20. Effect of Zn2+, Fe3+ and Cr3+ addition to hydroxyapatite for its application as an active constituent of sunscreens

    Science.gov (United States)

    de Araujo, T. S.; de Souza, S. O.; de Sousa, E. M. B.

    2010-11-01

    Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr3+, Zn2+ and Fe3+ doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm (±1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.

  1. Effect of Zn{sup 2+}, Fe{sup 3+} and Cr{sup 3+} addition to hydroxyapatite for its application as an active constituent of sunscreens

    Energy Technology Data Exchange (ETDEWEB)

    De Araujo, T S; De Souza, S O; De Sousa, E M B, E-mail: tatiana.araujo@cefetse.edu.b

    2010-11-01

    Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr{sup 3+}, Zn{sup 2+} and Fe{sup 3+} doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm ({+-}1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.

  2. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    International Nuclear Information System (INIS)