WorldWideScience

Sample records for hydrothermal utilization power

  1. Powering hydrothermal activity on Enceladus

    Science.gov (United States)

    Tobie, Gabriel; Choblet, Gael; Sotin, Christophe; Behounkova, Marie; Cadek, Ondrej; Postberg, Frank; Soucek, Ondrej

    2017-04-01

    A series of evidence gathered by the Cassini spacecraft indicates that the intense activity at the South Pole of Saturn's moon Enceladus is related to a subsurface salty water reservoir associated with seafloor hydrothermal activity (Hsu et al. 2015, Waite et al. 2017). The observation of an elevated libration implies that this reservoir is global with a thin ice shell (20-25 km in average (Thomas et al. 2016) and 90 °C) mostly in the polar regions, explaining strongly localized ice shell thinning. Owing to strong dissipation in Saturn (Lainey et al. 2017), we show that circulation of hot waters in the core may last at least 20-25 million years and that 10 to 100% of the oceanic volume may be processed in the core at temperature higher than 90°C on this timescale. Whether this has been sufficient for the emergence of life can be explored by future spacecraft missions (Mitri et al., this meeting; Lunine et al. 2017).

  2. Efficiencies of Power Plants Using Hydrothermal Oxidation

    Science.gov (United States)

    Hirosaka, Kazuma; Yuvamitra, Korakot; Ishikawa, Akira; Hasegawa, Tatsuya

    Wet biomass is hard to handle as a fuel for power plants because it contains high moisture and its drying process needs more energy input than it produces. Hydrothermal oxidation could be one of the promising technologies to overcome this problem because this process does not need drying process at all. We focus on recovery of thermal energy produced by hydrothermal oxidation of wet biomass. Two kinds of power plant are investigated, a direct type and an indirect type. In the direct type power plant, reactant is oxidized in a reactor and directly flowed into a turbine. In the indirect type power plant, reactant is oxidized in a reactor and the reaction heat is conveyed to the main water, which is flowed into a turbine. The amount of electric power and the energy conversion efficiency are calculated by using ethanol, glucose and peat solutions as reactants. In both type of power plant, one steam turbine is employed for generating electricity with the maximum turbine inlet temperature of 650 °C. As ethanol concentration increased, the amount of electric power and the energy conversion efficiency become higher. The maximum efficiency for the direct type power plant using ethanol solution is about 26.4 % for 17.6 wt% at the reactor pressure of 10 MPa. The efficiency of the indirect type power plant is much lower than that of the direct type, but by pressurizing main water up to 4 MPa, the efficiency becomes higher up to 20.9 %. For glucose solution, the maximum efficiency for the direct type is about 25.5 % for 34.5 wt% at the reactor pressure of 5 MPa. The maximum efficiency of the indirect type at the main water pressure of 4 MPa is about 21.1 % for 40.7 wt%. For peat solution, only the indirect type is investigated. The maximum efficiency at the main water pressure of 4 MPa is about 20.8 % for 36.8 wt%.

  3. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    Low Efficiency a two-stage turbine wherein the wind impinging on the concave side is circulated through the Figure 4.14. Savonius rotor. center of...torque on the rotor. This type of wind turbine has been used for water pumping, ship propulsion, and building ventilation. The Savonius rotor type of... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on

  4. Utilities:Power:Power-Related Utilities at Pipe Spring National Monument, Arizona (Utilities.gdb:Power:utilpnt_power)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents power-related utilities at Pipe Spring National Monument, Arizona. The utilities were collected using Trimble Global Positioning System...

  5. Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

    1992-11-01

    This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

  6. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  7. Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-10

    The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

  8. Utility applications of power electronics in Japan

    OpenAIRE

    Akagi, Hirofumi

    1997-01-01

    Since the late 1950s, power electronics has been developing by leaps and bounds without saturation into the key technology essential to modern society and human life, as well as to electrical engineering. This paper is focused on utility applications of power electronics technology in Japan, and on the state of the art of power semiconductor devices for high power applications. For instance, attention is paid to a ±500 kV, 2.8 GW high-voltage DC transmission system under construction, and to ...

  9. Utility interconnection issues for wind power generation

    Science.gov (United States)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  10. Mid-long Term Optimal Dispatching Method of Hydro-thermal Power System Considering Scheduled Maintenance

    Institute of Scientific and Technical Information of China (English)

    GE Xiaolin; SHU Jun; ZHANG Lizi

    2012-01-01

    Mid-long term hydro-thermal optimal dispatching plays an important role in mid-long term electric power and energy balance, and it also can bring significant economic benefits. This topic has been discussed in many literatures and some progress has been achieved, but there are still two problems that need to be solved. First, the modeling approach needs to be improved. When a multi-scenario model is adopted in hydro-thermal optimal dispatching, the existing modeling approaches will probably suffer from the dimensionality problem. Second, the construction of the mathematical model is not comprehensive. Generally, the existing model only considers the power balance;

  11. Shadow price in the power utility case

    OpenAIRE

    Attila Herczegh; Vilmos Prokaj

    2011-01-01

    We consider the problem of maximizing expected power utility from consumption over an infinite horizon in the Black–Scholes model with proportional transaction costs, as studied in Shreve and Soner [ Ann. Appl. Probab. 4 (1994) 609–692]. ¶ Similar to Kallsen and Muhle-Karbe [ Ann. Appl. Probab. 20 (2010) 1341–1358], we derive a shadow price, that is, a frictionless price process with values in the bid-ask spread which leads to the same optimal policy.

  12. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  13. REMEDIATION OF POLLUTED SOILS BY UTILIZING HYDROTHERMALLY TREATED CALCAREOUS FLY ASHES

    Institute of Scientific and Technical Information of China (English)

    A. Moutsatsou; V. Protonotarios

    2006-01-01

    This paper investigates a treated fly ash to act as a synthetic zeolite to remediate soils polluted with heavy metals and metalloids (As, Pb, Cu, Zn, Fe, Cd and Mn). Four types of such 'zeolites' were synthesized by hydrothermal treatment of a calcareous fly ash derived from Greek lignite-fired power plants: two with excess of sodium hydroxide in a a former mining site at Lavrion, Greece. Mobilization and transfer of metals to the retention agents was effected by using HCl aq 1M, with satisfactory results with respect to As, Pb, Cu, Mn and Cd. The great variety of metal complexes in soil was found to be of major importance for the effectiveness of the overall process. The final products were solidified either on their own, or by using additives such as lime and cement.

  14. Utilizing MATPOWER in optimal power flow

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Tarjei

    2003-07-01

    This paper shows how MATPOWER, a MATLAB Power System Simulation Package can be used for optimal power flow (OPF) simulations. MATPOWER is a package of MATLAB files for solving power flow and optimal power flow problems. It is a simulation tool for researchers and educators which is easy to use and modify. An OPF simulation gives the active/reactive power generated and purchased at each bus and the nodal prices. The nodal prices are of special interest because they reflect the marginal generation and load at each bus (node). These prices are also called locational prices and are found to be the optimal prices, maximizing social welfare and taking transmission constraints into account. They can provide the right incentives to market players and to society. When transmission congestion is present this creates market inefficiency since cheap distant generation may be replaced with more expensive local generation. We are especially interested in OPF as utilized by a centralized dispatcher and we also describe the features relevant for the Norwegian and Nordic markets. We optimize three cases and analyze the economic consequences of different network topologies and transmission congestion. (Author)

  15. Utilizing MATPOWER in Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Tarjei Kristiansen

    2003-01-01

    Full Text Available This paper shows how MATPOWER, a MATLAB Power System Simulation Package can be used for optimal power flow (OPF simulations. MATPOWER is a package of MATLAB files for solving power flow and optimal power flow problems. It is a simulation tool for researchers and educators which is easy to use and modify. An OPF simulation gives the active/reactive power generated and purchased at each bus and the nodal prices. The nodal prices are of special interest because they reflect the marginal generation and load at each bus (node. These prices are also called locational prices and are found to be the optimal prices, maximizing social welfare and taking transmission constraints into account. They can provide the right incentives to market players and to society. When transmission congestion is present this creates market inefficiency, since cheap distant generation may be replaced with more expensive local generation. We are especially interested in OPF as utilized by a centralized dispatcher, and we also describe the features relevant for the Norwegian and Nordic markets. We optimize three cases and analyze the economic consequences of different network topologies and transmission congestion.

  16. Market Power in Mixed Hydro-Thermal Electric Systems

    OpenAIRE

    M. Soledad Arellano

    2004-01-01

    This paper shows that, unlike what has been found in other papers, a hydro reservoir is an effective tool to exercise market power. Its appealing as a tool is enhanced by the fact that there is no need to constrain total hydro production - a practice too easy to detect -; it suffices to distort the intertemporal allocation of hydro production over time. A hydro-producer may increase his profits by exploiting differences in price elasticity of demand across periods, allocating too little suppl...

  17. Future Photovoltaic Power Generation for Space-Based Power Utilities

    Science.gov (United States)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  18. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  19. A new method on hydrothermal scheduling optimization in electric power market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrothermal scheduling in the electric power market becomes difficult because of introducing competition and considering sorts of constraints. An augmented Lagrangian approach is adopted to solve the problem, which adds to the standard Lagrangian function a quadratic penalty term without changing its dual property, and reduces the oscillation in iterations. According to the theory of large system coordination and decomposition, the problem is divided into hydro sub-problem and thermal sub-problem, which are coordinated by updating the Lagrangian multipliers, then the optimal solution is obtained. Our results for a test system show that the augmented Lagrangian approach can make the problem converge into the optimal solution quickly.

  20. Utility Incentives for Combined Heat and Power

    Science.gov (United States)

    This report describes the results of EPA's research and analysis into utility incentives for CHP. It provides information about utility-initiated policies, programs, and incentives for CHP systems, and includes case studies and tools and resources.

  1. Utilizing MATPOWER in Optimal Power Flow

    OpenAIRE

    Tarjei Kristiansen

    2003-01-01

    This paper shows how MATPOWER, a MATLAB Power System Simulation Package can be used for optimal power flow (OPF) simulations. MATPOWER is a package of MATLAB files for solving power flow and optimal power flow problems. It is a simulation tool for researchers and educators which is easy to use and modify. An OPF simulation gives the active/reactive power generated and purchased at each bus and the nodal prices. The nodal prices are of special interest because they reflect the marginal generat...

  2. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  3. Solar Panel Maximum Power Point Tracker for Power Utilities

    Directory of Open Access Journals (Sweden)

    Sandeep Banik,

    2014-01-01

    Full Text Available ―Solar Panel Maximum Power Point Tracker For power utilities‖ As the name implied, it is a photovoltaic system that uses the photovoltaic array as a source of electrical power supply and since every photovoltaic (PV array has an optimum operating point, called the maximum power point, which varies depending on the insolation level and array voltage. A maximum power point tracker (MPPT is needed to operate the PV array at its maximum power point. The objective of this thesis project is to build a photovoltaic (PV array Of 121.6V DC Voltage(6 cell each 20V, 100watt And convert the DC voltage to Single phase 120v,50Hz AC voltage by switch mode power converter‘s and inverter‘s.

  4. Potential utilization of riverbed sediments by hydrothermal solidification and its hardening mechanism.

    Science.gov (United States)

    Jing, Zhenzi; Jin, Fangming; Yamasaki, Nakamichi; Maeda, Hirotaka; Ishida, Emile H

    2009-04-01

    Hydrothermal solidification of riverbed sediments (silt) has been carried out in a Teflon (PTFE) lined stainless steel hydrothermal apparatus, under saturated steam pressure at 343-473 K for 2-24 h by calcium hydrate introduction. Tobermorite was shown to be the most important strength-producing constituent of the solidified silt. A longer curing time or a higher curing temperature was shown to be favorable to the tobermorite formation, thus promoting strength development; however, overlong curing time (24 h) seemed to affect the strength development negatively. The hardening mechanism consisted of the crystal growth/morphology evolution during the hydrothermal process. The species dissolved from the silt were precipitated first as fine particles, and then some of the particles seemed to build up the rudimental morphology of calcium silicate hydrate (CSH) gel. The CSH gel, with precipitated particles, appeared to cause some reorganization within the matrix, which made the matrix denser and thus gave an initial strength development. Tobermorite, transformed inevitably from the CSH gel, reinforced the matrix with its interlocked structure, and thus further promoted the strength development.

  5. Stochastic Dynamic Programming Applied to Hydrothermal Power Systems Operation Planning Based on the Convex Hull Algorithm

    Directory of Open Access Journals (Sweden)

    Bruno H. Dias

    2010-01-01

    Full Text Available This paper presents a new approach for the expected cost-to-go functions modeling used in the stochastic dynamic programming (SDP algorithm. The SDP technique is applied to the long-term operation planning of electrical power systems. Using state space discretization, the Convex Hull algorithm is used for constructing a series of hyperplanes that composes a convex set. These planes represent a piecewise linear approximation for the expected cost-to-go functions. The mean operational costs for using the proposed methodology were compared with those from the deterministic dual dynamic problem in a case study, considering a single inflow scenario. This sensitivity analysis shows the convergence of both methods and is used to determine the minimum discretization level. Additionally, the applicability of the proposed methodology for two hydroplants in a cascade is demonstrated. With proper adaptations, this work can be extended to a complete hydrothermal system.

  6. PROJECT SCHEDULING OPTIMIZATION IN ELECTRICAL POWER UTILITIES

    Directory of Open Access Journals (Sweden)

    Cleber Mira

    2015-08-01

    Full Text Available The problem of choosing from a set of projects which ones should be executed and whenthey should start, depending on several restrictions involving project costs, risks, limited resources, dependencies among projects, and aiming at different, even conflicting, goals is known as the project portfolio selection (PPS problem. We study a particular version of the PPS problem stemming from the operation of a real power generation company. It includes distinct categories of resources, intricate dependencies between projects, which are especially important for the management of power plants, and the prevention of risks. We present an algorithm based on the GRASP meta-heuristic for finding better results thanmanual solutions produced by specialists. The algorithm yielded solutions that decreased the risk by 47%, as measured by the company's standard methodology.

  7. Analysis on Resources Utilization of Thermal Power Industry

    Institute of Scientific and Technical Information of China (English)

    Mi Jianhua

    2005-01-01

    Based on the analysis and comparison of coal, oil and water consumptions in thermal power plants, thispaper introduces the present state of resources utilization in thermal power industry, and points out that the poten-tial of resources saving lies mainly in cutting down coal consumption and increasing the ratio of large-sized thermalunits. Measures and suggestions for upgrading resources utilization are put forward, such as to optimize coal-firedthermal power structure, develop cogeneration, clean coal combustion techniques and gas-steam combined cycletechniques. The existing thermal power plants shall execute technical retrofits and popularize water saving techniques.

  8. Utilities:Power:Underground Powerline Nodes at Pipe Spring National Monument, Arizona (Utilities.gdb:Power:powerln)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents the powerline nodes (power line poles) at Pipe Spring National Monument, Arizona. The utility powerline nodes were collected by a...

  9. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    Science.gov (United States)

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  10. Electrolysis: Information and Opportunities for Electric Power Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  11. Sustainable Modernization of the Russian Power Utilities Industry

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2015-08-01

    Full Text Available Our paper analyzes the issue of managing structural and technological modernization of the Russian power utilities industry based on the basic criteria of sustainable development. We have chosen coal-fired generation and its defining technologies as the main subject for our analysis. Key points of the Russian power utilities development strategy that has been drawn up to 2030 are compared against the basic principles of sustainable development. Moreover, a mathematical economic model is proposed to justify the choice of coal-fired power plant technology from the standpoint of economic, social, and environmental efficiency.

  12. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis.

    Science.gov (United States)

    Yao, Changhong; Pan, Yanfei; Lu, Hongbin; Wu, Peichun; Meng, Yingying; Cao, Xupeng; Xue, Song

    2016-07-01

    In the context of sustainable cultivation of microalgae, the present study focused on the use of nitrogen from the hot-water extracted biomass residue of Arthrospira platensis by hydrothermal carbonization (HTC) and the sequential cultivation of the same alga with the HTC aqueous phase (AP). Nearly 90% of the nitrogen recovered from HTC into AP was in the organic form. Under nitrogen-limited condition with HTCAP as nitrogen source the yield and content of carbohydrate were enhanced by 21% and 15% respectively compared with that under the same nitrogen level provided by NaNO3, which entitled HTCAP for the substitution of conventional nitrate. In the same way pilot-scale cultivation of A. platensis in raceway ponds outdoors demonstrated that carbohydrate content of 43.8% DW and productivity of 10.3g/m(2)/d was achieved. Notably 54% of organic nitrogen in the HTCAP could be recycled by cultivation of pre-nitrogen starved A. platensis as seeds under nitrogen limitation.

  13. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  14. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    Science.gov (United States)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  15. Utilities:Power:Underground Powerlines at Pipe Spring National Monument, Arizona (Utilities.gdb:Power:powerln)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents the powerlines at Pipe Spring National Monument, Arizona. The utility pipelines were collected by a Trimble GeoXT GPS unit with...

  16. Utility based Power Control with FEC in Hexagonally deployed WSN

    Directory of Open Access Journals (Sweden)

    Rajendran Valli

    2012-03-01

    Full Text Available The fundamental component of resource management in Wireless Sensor Network (WSN is transmitter power control since they are miniature battery powered devices. An efficient power control technique is essential to maintain reliable communication links in WSN and to maintain the battery life of the sensor node and in turn the sensor network. Error control coding (ECC schemes can improve the system performance and has an impact on energy consumption. This paper analyses a game theoretic model with pricing for power control in a sensor network considering ECC for random, square, triangular and hexagonal deployment schemes. The performance of the proposed power control scheme with RS and MIDRS code for WSN is evaluated in terms of utility, and energy consumption. Simulation results show that, for hexagonal deployment scheme, with the inclusion of ECC, the transmitting power of the nodes is reduced thereby saving energy and increasing the network lifetime

  17. Impacts and Utilization of Electric Vehicles Integration Into Power Systems

    Institute of Scientific and Technical Information of China (English)

    HUZechun; SONG Yonghua; XU Zhiwei; LUO Zhuowei; ZHAN Kaiqiao; JIA Long

    2012-01-01

    With the increasing of electric vehicles (EVs) penetration in power grids, the charging of EVs will have significant impacts on power system planning and operation. It is necessary to note that the majority of EVs are not in use in most of the time in a day. Therefore, the onboard batteries can be utilized as energy storage devices. This article reviews and discusses the current related research in the following areas.

  18. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  19. Uses and Applications of Climate Forecasts for Power Utilities.

    Science.gov (United States)

    Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.

  20. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    Science.gov (United States)

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  1. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kun Ren

    2014-01-01

    Full Text Available Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  2. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-05-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  3. Power Switches Utilizing Superconducting Material for Accelerator Magnets

    CERN Document Server

    March, S A; Yang, Y

    2009-01-01

    Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

  4. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  5. Controls on the microbial utilization of carbon monoxide and formic acid in Acidic Hydrothermal Springs in Yellowstone National Park

    Science.gov (United States)

    Urschel, M.; Kubo, M. W.; Hoehler, T. M.; Boyd, E. S.; Peters, J.

    2012-12-01

    In hydrothermal systems, dissolved carbon dioxide (CO2) in the presence of reduced iron-bearing minerals, such as those found in basalt, can be reduced to form formic acid (HCOOH). HCOOH can then be dehydrated in a side reaction, resulting in the generation of carbon monoxide (CO), which forms an equilibrium with HCOOH. HCOOH can also be further reduced to methane, and longer chain hydrocarbons. Geochemical measurements have demonstrated the presence of elevated concentrations of HCOOH, dissolved CO, and dissolved inorganic carbon (CO2, H2CO3), in high temperature, low pH springs in Yellowstone National Park (YNP). Likewise, a number of compounds that could potentially serve as electron acceptors (e.g. S0, SO42-, NO3-, Fe3+) in the oxidation of CO or formic acid have been detected in many of these systems. We hypothesized that the utilization of CO and HCOOH as carbon and/or energy sources is a broadly-distributed metabolic strategy in high temperature, low pH springs in YNP. To test this hypothesis, radiolabeled CO (14CO) and HCOOH (H14COOH) were used to determine rates of CO and formate oxidation activity in three hot springs in YNP ranging in temperature from 53 °C to 89 °C and pH from 2.5 to 5.3. In parallel, 16S rRNA gene sequencing and enrichment isolation techniques were employed to identify the microorganisms responsible for these activities. Our results indicate that CO and HCOOH are important sources of carbon and/or energy in high temperature, low pH hydrothermal springs in Yellowstone National Park. Rates of CO oxidation appear to be orders of magnitude lower than those of HCOOH oxidation. One possible explanation for this result is that HCOOH is preferentially utilized, consistent with thermodynamic calculations indicating that HCOOH liberates approximately 215 kJ/mol more Gibbs energy (under standard conditions) than CO when oxidized with oxygen (O2) as the electron acceptor. Redox couples of HCOOH oxidation with other electron acceptors (e.g. SO4

  6. Towards the Design of Power Switches Utilizing HTS Material

    CERN Document Server

    March, S A; Beduz, C; Mess, K H; Yang, Y

    2008-01-01

    Conventional superconducting switches for power applications, which operate at liquid helium temperature, generally utilize Nb-Ti superconductor in a cupro-nickel matrix. For superconducting circuits based on High Temperature Superconductors (HTS) that work at higher temperatures, the associated superconducting switches must also be based on HTS. This paper addresses the issues concerning the requirements and the appropriate design of HTS switches, including approaches to fast triggering.

  7. Processing the Visonta lignite for utilization in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gimpl, E.

    1985-01-01

    To utilize the Visonta lignite in power plants, laboratory, semi-industrial and industrial experiments were carried out. In the enrichment process, the parameters of the mensual quality fluctuations, the expected grain size distribution of the lignite, and the average ash content are to be known. Different enrichment processes as well as their results are discussed. In harmony with the obtained results the optimal lignite processing technology is described.

  8. The economic value of accurate wind power forecasting to utilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.J. [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Giebel, G.; Joensen, A. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    With increasing penetrations of wind power, the need for accurate forecasting is becoming ever more important. Wind power is by its very nature intermittent. For utility schedulers this presents its own problems particularly when the penetration of wind power capacity in a grid reaches a significant level (>20%). However, using accurate forecasts of wind power at wind farm sites, schedulers are able to plan the operation of conventional power capacity to accommodate the fluctuating demands of consumers and wind farm output. The results of a study to assess the value of forecasting at several potential wind farm sites in the UK and in the US state of Iowa using the Reading University/Rutherford Appleton Laboratory National Grid Model (NGM) are presented. The results are assessed for different types of wind power forecasting, namely: persistence, optimised numerical weather prediction or perfect forecasting. In particular, it will shown how the NGM has been used to assess the value of numerical weather prediction forecasts from the Danish Meteorological Institute model, HIRLAM, and the US Nested Grid Model, which have been `site tailored` by the use of the linearized flow model WA{sup s}P and by various Model output Statistics (MOS) and autoregressive techniques. (au)

  9. Efficient energy utilization and environmental issues applied to power planning

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Hector, E-mail: hcampbellr@gmail.com [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Montero, Gisela; Perez, Carlos [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Lambert, Alejandro [Facultad de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C. (Mexico)

    2011-06-15

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO{sub 2} to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO{sub 2}. The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO{sub 2}. - Highlights: > We contrast power planning methods for supply electricity for economy development. > Importance of policies for electricity savings and efficient use in power planning. > Systemic planning facilitates decision-making process for electricity optimization. > Supply-side planning will cause climb in prices and loss of energy self-sufficiency. > Power planning should be immersed in an environment of appropriate energy policies.

  10. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    Energy Technology Data Exchange (ETDEWEB)

    Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  11. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  12. Utility interface requirements for a solar power system

    Energy Technology Data Exchange (ETDEWEB)

    Donalek, P.J.; Whysong, J.L.

    1978-09-01

    This study specifies that the southern tier of the US (south of the 36th parallel) should be examined to see what problems might develop with the installation of a Satellite Power System (SPS) in the year 2000. One or more 5-GW SPS units could be installed in the utility systems of the southern states in the year 2000. The 345- and 500-kV transmission systems that will probably exist at that time could be readily extended to accommodate the SPS units. The operation of the units will present the utilities with new and difficult problems in system stability and frequency control. The problems will arise because a somewhat variable 5-GW output will be produced by a generator having no mechanical inertia. The unavoidable time lag in controlling the position of the energy beam at the receiving station may have a very critical effect on the stability of the utility systems. The maintenance problems associated with the energy-receiving device, a continuous structure covering more than 40 mi/sup 2/, must be given careful consideration. Repair of lightning damage while maintaining SPS operation may be the most critical requirement. Acquisition and preparation of the 90 mi/sup 2/ land required for the receiving antenna (rectenna) will create many new and difficult environmental problems.

  13. Conceptual study of the coupling of a biorefinery process for hydrothermal liquefaction of microalgae with a concentrating solar power plant

    Science.gov (United States)

    Giaconia, Alberto; Turchetti, Luca; Ienna, Antonio; Mazzei, Domenico; Schiavo, Benedetto; Scialdone, Onofrio; Caputo, Giampaolo; Galia, Alessandro

    2017-06-01

    A conceptual analysis of the coupling of a concentrating solar power plant with a chemical process for hydrothermal liquefaction (HTL) of microalgae to biocrude was performed. The two plants were considered coupled by molten salt recirculation that granted energetic supply to the chemical process. Preliminary estimations have been done considering a solar field constituted by 3 linear parabolic solar collectors rows, each 200 m long, using a ternary molten salts mixture as heat transfer fluid, and a chemical plant sized to process 10 kT/y of microalgae. Under adopted conditions, we have estimated a minimum selling prize of the biocrude that is similar to that achieved in non-solar HTL processes.

  14. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never

  15. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  16. Contribution to the operating energy planning of hydrothermal power systems; Contribuicao ao planejamento da operacao energetica de sistemas hidrotermicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Adriano Alber de Franca Mendes

    1991-08-01

    This work treats of the problem of the planning of the energy operation of hydrothermal power systems, gone back to those with predominance of hydraulic generation, as it is the case of the Brazilian system. The work makes an analysis of the problem of the planning of the energy operation of systems hydrothermal leaving of the concepts and nature of this problem. Their inherent difficulties are shown and they come the main approaches in operation in countries with predominance of hydroelectric generation. It still introduces the methodology in energy planning in Brazil being pointed their main limitations. Finally an alternative model for the planning of the energy operation of the system brazilian hydrothermal, based on the made studies is also presented.

  17. Evolving natural gas markets: LNG possibilities for a hydrothermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Tiago B.; Resende, Joao P.; Costa, Agnes M. [Brazilian Ministry of Mines and Energy, Brasilia, DF (Brazil)

    2008-07-01

    The latest advancements in the natural gas - NG industry have brought new opportunities for the resource's application, especially in the power industry. On the one hand, rapid growth in demand and falling costs of transportation over long distances, particularly as liquefied natural gas - LNG, should lead to a more integrated NG world market. On the other, the deregulation of electricity markets and the growth of independent power producers - IPPs using NG as a fuel for generating peak load power have increased the demand for more flexible NG supply contracts. These factors have allowed a shift in the timing of investment and contract negotiation in NG market. Traditionally, firms searched for trading partners and signed long-term contracts before investing in infrastructure. In the evolving LNG market, producers invest in infrastructure before they have buyers for all their expected outputs, while buyers undertake investment before having firm contracts for all their expected NG needs. These technological and market changes may foster greater participation of a fully flexible NG power plants in the Brazilian electricity market. Nowadays, thermal power long-term capacity contracts customized and negotiated in the local electricity pool (ACR) require power producer to award guarantees of NG firm supply, substantially increasing their cost. A combination of flexible LNG supply contracts and electricity pool contracts may present a solution to the lack of competitiveness of NG power plants in the Brazilian power industry. (author)

  18. 75 FR 3985 - Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home...

    Science.gov (United States)

    2010-01-26

    ... receive information useful to their purchasing decision, or, at worst, could be deceived by certain power... CFR Part 432 Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home... Rule Relating to Power Output Claims for Amplifiers Utilized in Home Entertainment Products...

  19. Mortality monitoring design for utility-scale solar power facilities

    Science.gov (United States)

    Huso, Manuela; Dietsch, Thomas; Nicolai, Chris

    2016-05-27

    unique conditions encountered at solar facilities. In particular, unlike at wind-power facilities, the unimpeded access to almost all areas within the facilities, the typically flat terrain, and general absence of thick vegetation allow distance-sampling techniques (Buckland and others, 2001, 2004) to be exploited to advantage at industrial solar sites. These protocols build on the work of Nicolai and others (2011), and as our understanding and techniques for monitoring improve, the methods may be further modified to incorporate improvements in the future. We present case studies based on monitoring methods currently implemented at different utility-scale solar facilities to illustrate how distance-sampling techniques may improve overall detectability without substantially increasing costs. Every facility is unique, and the protocols presented may be adapted based on specific monitoring objectives and conditions at each site.We provide guidance for designing monitoring programs whose objective it is to estimate the total number of bird and bat fatalities occurring at a facility over an extended period of time. We address spatial variation in causes of mortality, as well as potential sources of imperfect detection, for example, animals falling in or moving to unsearched areas, carcasses removed by predators, and carcasses missed by searchers. We suggest methods to estimate and account for each source of imperfect detection. This document focuses on monitoring design only and does not discuss approaches for estimating mortality from collected data. The development of statistically sound estimators relevant to the solar context is a current topic of research, although there are already strong foundations for estimation with distance-sampling methods in similar open, arid environments (Anderson and others, 2001; Freilich and others, 2005). Nonetheless, if protocols described in this document are followed, the resulting data will be adequate and sufficient for estimating

  20. Utilities Power Change: Engaging Commercial Customers in Workplace Charging

    Energy Technology Data Exchange (ETDEWEB)

    Lommele, Stephen; Dafoe, Wendy

    2016-06-01

    As stewards of an electric grid that is available almost anywhere people park, utilities that support workplace charging are uniquely positioned to help their commercial customers be a part of the rapidly expanding network of charging infrastructure. Utilities understand the distinctive challenges of their customers, have access to technical information about electrical infrastructure, and have deep experience modeling and managing demand for electricity. This case study highlights the experiences of two utilities with workplace charging programs.

  1. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    Science.gov (United States)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  2. Utilization of graph theory in security analysis of power grid

    Directory of Open Access Journals (Sweden)

    Dalibor Válek

    2014-12-01

    Full Text Available This paper describes way how to use graph theory in security analysis. As an environment is used network of power lines and devices which are included here. Power grid is considered as a system of nodes which make together graph (network. On the simple example is applied Fiedler´s theory which is able to select the most important power lines of whole network. Components related to these lines are logicly ordered and considered by author´s modified analysis. This method has been improved and optimalized for risks related with illegal acts. Each power grid component has been connected with possible kind of attack and every of this device was gradually evaluated by five coefficients which takes values from 1 to 10. On the coefficient basis was assessed the level of risk. In the last phase the most risky power grid components have been selected. On the selected devices have been proposed security measures.

  3. Power Utility Maximization in an Exponential Lévy Model Without a Risk-free Asset

    Institute of Scientific and Technical Information of China (English)

    Qing Zhou

    2005-01-01

    We consider the problem of maximizing the expected power utility from terminal wealth in a market where logarithmic securities prices follow a Levy process. By Girsanov's theorem, we give explicit solutions for power utility of undiscounted terminal wealth in terms of the Levy-Khintchine triplet.

  4. The case against investor-owned utilities and the need for municipal power systems

    Science.gov (United States)

    Kontos, Paul

    2002-09-01

    The problem addressed in this dissertation is whether private enterprise is more effective than government when it comes to the provision of public goods and services. Although contemporary free market ideologists claim that privately owned organizations are inherently more effective and efficient than government or public organizations, the research findings reported in this dissertation indicate that at least in the case of the provision of electric power, public power utilities provide greater benefits to the communities they serve than private, investor-owned utilities. As the recent power crisis in California has revealed, private power utilities seek to maximize profit for their shareholders often at the expense of the consumers and the communities they are supposed to serve; whereas public power utilities tend to provide electrical power at lower rates and with greater regard for the protection of the economic stability and environment of the communities they serve. This study provides a historical case study of how a private power company, Pacific Gas and Electric, gained control over the electric power generated by the City and County of San Francisco's own hydroelectric facility in Hetch Hetchy Valley. The federal legislation that gave the city the land for this facility was supposed to provide cheap public power to the city. However, the case study reveals how this company has prevented the city from establishing its own municipal power distribution system, and how it has maintained a highly profitable monopoly over the distribution of electric power within the city for more than seventy-five years. This study also examines the history of private versus public power in the United States and analyzes the political as well as legal tactics that have been used by the private power industry to prevent competition from public power utilities. It also reveals that municipal power utilities, on the whole, have provided cheaper and cleaner power to the public

  5. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: building a small microrover that employs energy generated by a bacterial source Objective: investigate the usability of a microbial fuel cell to power a...

  6. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    Science.gov (United States)

    Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza

    2012-03-01

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm2/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia.

  7. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    Energy Technology Data Exchange (ETDEWEB)

    Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sadeghi-Aliabadi, Hojjat [School of Pharmacy, Isfahan Pharmaceutical Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain); Mozaffari, Morteza [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-03-15

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  8. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  9. Anti-Jamming with Adaptive Arrays Utilizing Power Inversion Algorithm

    Institute of Scientific and Technical Information of China (English)

    MENG Dawei; FENG Zhenming; LU Mingquan

    2008-01-01

    The convergence rate of the power inversion (PI) algorithm is quite sensitive to the power of the interference with the used fixed parameters in the PI algorithm leading to degradation of its ability to handle interference. This paper presents a normalized PI algorithm that traces the stochastic characteristics of the interference. The algorithm adaptively adjusts the recursive step size to determine the constrained optimized parameters for the Iowpass filter. Simulations show that the normalized PI algorithm achieves faster con-vergence and produces deeper nulls. The algorithm makes GPS receivers more robust in environments with large variations in the interference strength.

  10. UTILIZATION OF WIND POWER IN RWANDA : Design and Production Option

    OpenAIRE

    Eric, MANIRAGUHA

    2013-01-01

    This Master Thesis is the research done in the country of Rwanda. The project leads to study the climate of this country in order to establish whether this climate could be used to produce energy from air and to implement the first wind turbine for serving the nation.   After an introduction about the historical background of wind power, the thesis work deals with assessment of wind energy potential of Rwanda in focusing of the most suitable place for wind power plants. The best location with...

  11. Smart Heat and Power: Utilizing the Flexibility of Micro Cogeneration

    NARCIS (Netherlands)

    Houwing, M.

    2010-01-01

    Distributed generation (DG) contributes to a more sustainable electricity supply. Large-scale adoption of DG will bring radical changes to the traditional model of generation and supply as well as to the business model of the power industry. Furthermore, with innovations in information and

  12. Economic analysis of municipal wastewater utilization for thermoelectric power production

    Energy Technology Data Exchange (ETDEWEB)

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Theregowda, R.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents the development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.

  13. Smart Heat and Power: Utilizing the Flexibility of Micro Cogeneration

    NARCIS (Netherlands)

    Houwing, M.

    2010-01-01

    Distributed generation (DG) contributes to a more sustainable electricity supply. Large-scale adoption of DG will bring radical changes to the traditional model of generation and supply as well as to the business model of the power industry. Furthermore, with innovations in information and communica

  14. Study of Efficient Utilization of Power using green Computing

    OpenAIRE

    Ms .Dheera Jadhwani, Mr.Mayur Agrawal, Mr.Hemant Mande

    2012-01-01

    Green computing or green IT, basically concerns toenvironmentally sustainable computing or IT. Thefield of green computing is defined as "theknowledge and practice of designing,manufacturing, using, and disposing of computers,servers, and associated subsystems—which includeprinters, monitors, and networking, storage devicesand communications systems—efficiently andeffectively with minimal or no impact on theenvironment. this computing is similar to greenchemistry that is minimum utilization o...

  15. Utility-Marketing Partnerships: An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Brown, E. S.

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility?s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  16. Hypermodular Self-Assembling Space Solar Power -- Design Option for Mid-Term GEO Utility-Scale Power Plants

    CERN Document Server

    Leitgab, Martin

    2013-01-01

    This paper presents a design for scaleable space solar power systems based on free-flying reflectors and module self-assembly. Lower system cost of utility-scale space solar power is achieved by design independence of yet-to-be-built in-space assembly or transportation infrastructure. Using current and expected near-term technology, this study describe a design for mid-term utility-scale power plants in geosynchronous orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  17. Study of Efficient Utilization of Power using green Computing

    Directory of Open Access Journals (Sweden)

    Ms .Dheera Jadhwani, Mr.Mayur Agrawal, Mr.Hemant Mande

    2012-12-01

    Full Text Available Green computing or green IT, basically concerns toenvironmentally sustainable computing or IT. Thefield of green computing is defined as "theknowledge and practice of designing,manufacturing, using, and disposing of computers,servers, and associated subsystems—which includeprinters, monitors, and networking, storage devicesand communications systems—efficiently andeffectively with minimal or no impact on theenvironment. this computing is similar to greenchemistry that is minimum utilization of hazardousmaterials and , maximizing energy efficiencyduring the product's lifetime, and also promote therecyclability or biodegradability of defunct productsand factory waste .

  18. Aspiration toward geothermal energy utilization in regional development plan. Part 6. ; Hydrothermal fluid utilization business in Matsuo-mura of Iwate prefecture. Chiiki keikaku ni okeru 'chinetsu riyo' eno hofu. 6. ; Iwateken Matsuomura no chinetsu nessui riyo jigyo

    Energy Technology Data Exchange (ETDEWEB)

    Otobe, Y.; Furutate, E.

    1992-10-31

    Twenty six years have passed since the first geothermal power station was constructed in Matsuo-mura of Iwate Prefecture, Japan. This paper describes the history, the present situation and the future conception of the geothermal energy utilization in this village. This village includes Hachimantai of a vantage ground in the center and has the gross area of 233.8km[sup 2], the annual average temperature of 8.3 centigrade and the continuous snow cover period of about 100 days. The hot water leading facility was cooperatively constructed by Japan Metals and Chemicals, Hachimantai Hot Spring Development and Matsuo-mura. The total working expense is 539.3 million yen. Hot water sources are the condensate from the condenser of geothermal power plant and hot spring. This mixed hot water of 4.3 t/min is led to respective facilities. The hot water supplying channel has the length of 12.8km from the power station through the Hachimantai hot spring resort, Kamiyogi to Takaishino. Respective total areas of greenhouses using hydrothermal fluid in both districts are 1,075ha and the inlet temperature of hot water is 60 centigrade and kinds of crop are 5 like green pepper and others. Takaishino agricultural park has selected flower and ornamental plant culture such as poppy anemone, stock and statice which are suitable for this district of low temperature and insufficient sunshine. The planted area is 10,700m[sup 2]. 2 refs., 9 figs., 4 tabs.

  19. A novel utility function for energy-efficient power control game in cognitive radio networks.

    Science.gov (United States)

    Al-Gumaei, Yousef Ali; Noordin, Kamarul Ariffin; Reza, Ahmed Wasif; Dimyati, Kaharudin

    2015-01-01

    Spectrum scarcity is a major challenge in wireless communications systems requiring efficient usage and utilization. Cognitive radio network (CRN) is found as a promising technique to solve this problem of spectrum scarcity. It allows licensed and unlicensed users to share the same licensed spectrum band. Interference resulting from cognitive radios (CRs) has undesirable effects on quality of service (QoS) of both licensed and unlicensed systems where it causes degradation in received signal-to-noise ratio (SIR) of users. Power control is one of the most important techniques that can be used to mitigate interference and guarantee QoS in both systems. In this paper, we develop a new approach of a distributed power control for CRN based on utility and pricing. QoS of CR user is presented as a utility function via pricing and a distributed power control as a non-cooperative game in which users maximize their net utility (utility-price). We define the price as a real function of transmit power to increase pricing charge of the farthest CR users. We prove that the power control game proposed in this study has Nash Equilibrium as well as it is unique. The obtained results show that the proposed power control algorithm based on a new utility function has a significant reduction in transmit power consumption and high improvement in speed of convergence.

  20. Planning of the power hydrothermal system operation - alternatives for the modelling and uncertainties treatment; Planejamento da operacao de sistemas hidrotermicos de potencia - alternativas de modelagem e o tratamento das incertezas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Andre Flavio Soares; Bajay, Sergio Valdir [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mails: apereira@fem.unicamp.br; bajay@fem.unicamp.br; Barbosa, Paulo Sergio Franco [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: franco@fec.unicamp.br

    2006-07-01

    The complexity of the operation scheduling of hydrothermal power systems lies, among other factors, in the interconnection between the operation decision in a certain stage and the future consequences of such decision. The operation of a hydrothermal power system comprises from the supervision and real time control of the generation and transport of electricity, to aspects as the modelling of the uncertainties concerning the future stream flows and the optimised management of the hydro power plant reservoirs. This work addresses a general formulation of the operation scheduling problem of hydrothermal power systems; a brief presentation of the various optimization techniques which can be used in its solution; and a discussion about the main alternatives that has been adopted to model the problem and to deal with its main uncertainties. (author)

  1. AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources

    Directory of Open Access Journals (Sweden)

    Takashi Hikihara

    2011-04-01

    Full Text Available To help reduce consumption of fossil fuels, renewable, natural and distributed power sources are being adopted. These alternative energy sources inevitably show fluctuations in the amount of output power, frequency, and voltage. The suppression of such fluctuations is a key issue to avoid disturbances in power grids. A similar situation arises as far as the regulation of in-home power flow is concerned. We focus on the quality of supplied and demanded power in particular. In this paper, an in-home power distribution system based on information of power is proposed. The system is developed in order to integrate power dispatch and communication. The experimental results show the feasibility of new flexible and efficient power management approaches.

  2. Efficient Power Utilization Techniques for Wireless Sensor Networks – A Survey

    Directory of Open Access Journals (Sweden)

    Mr. Sharad Saxena,

    2011-02-01

    Full Text Available Micro-sensor networks are widely deployed sensor network in typical geographical areas where human intervention is almost impossible. A WSN is a collection of several small energy limited sensors. These devices are autonomous devices performs the job of data collection and forwarding it to the central node called sink node. The observed data can travel through multiple paths to reach sink node. Sink nodeperforms the task of data fusion to determine a meaningful output. The micro sensors use battery power supply to achieve this goal. The considerable part here is to utilize that limited power supply for a longer time period. Although latest developments in the area of electronics has enabled the development of lowcost and low power sensor networks, still researchers are developing protocols by ifferent approaches to optimize power utilization for such tiny micro-sensors. This paper studies various approaches used by researchers to enhance power utilization.

  3. BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.

    Science.gov (United States)

    Ma, Rong-Hua; Chen, Yu-Chia

    2012-01-01

    A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.

  4. BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Yu-Chia Chen

    2011-12-01

    Full Text Available A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV panel and an all-solid-state electrochromic (EC stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO3/Ta2O5/ITO and one stack comprising ITO/WO3/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO3/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V. The experimental results show that the smart window incorporating an ITO/WO3/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750–1,500 Lux under typical summertime conditions in Taiwan.

  5. Comprehensive Evaluation of Methanol Synthesis and Utilization System for Making Use of Remote Wind Power Energy

    Science.gov (United States)

    Morimoto, Shin'Ichiro; Pak, Pyong Sik; Liu, Wei; Kosugi, Takanobu

    For the purpose of mitigating carbon dioxide emissions, three renewable energy transportation systems are proposed in which methanol is synthesized by use of wind power generation energy at an oversea and is transported to Japan to be used for a power generation. The proposed systems are the following three systems: (1) wind energy and captured CO2 utilization system, (2) wind energy and coal utilization system, and (3) wind energy and biomass utilization system. The characteristic and cost of the proposed systems’ components such as a wind power generation and a methanol synthesis plants are investigated, and so are the energy and carbon flows of the systems, assuming that the wind power generation plant is constructed at the eastern coast of Russia. Major indicators such as energy efficiency, methanol cost, CO2 reduction cost, etc., of the proposed systems are evaluated together with those of a similar CO2 recycling system utilizing hydraulic power. On the basis of the evaluation results, the wind energy and biomass utilization system is shown to be the most excellent among the evaluated systems from the viewpoints of the CO2 reduction cost. When LNG cost is increased, its estimated CO2 reduction cost islower than that of a CO2 recovery system adopted to a conventional LNG-fired power plant. Consequently, the proposed system is expected to be a feasible option for CO2 reduction in the near future when the wind power generation cost is much decreased.

  6. Utilization of municipal wastewater for cooling in thermoelectric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States); Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States); Hsieh, Ming-Kai [Carnegie Mellon Univ., Pittsburgh, PA (United States); Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Wenshi [Univ. of Pittsburgh, PA (United States); Vidic, Radisav D. [Univ. of Pittsburgh, PA (United States); Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-09-01

    A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH3 and CO2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., kNH3 < 4×10-3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., kCO2<4×10-6 m/s).

  7. UTILIZATION OF SECONDARY COMBUSTIBLE POWER RESOURCES FOR PRODUCTION OF MUNICIPAL AND HOUSEHOLD FUEL

    Directory of Open Access Journals (Sweden)

    N. I. Berezovsky

    2005-01-01

    Full Text Available The paper shows an advantage to utilize secondary power resources (lignin, wastes of fine coal with its dressing, sawdust in mixture with local types of fuel (peat in order to fulfill power supply purpose, namely: obtaining hot water in boilers of small capacity and obtaining household fuel.

  8. APPLICATION OF MODIFIED POWER FLOW TRACING METHOD FOR REACTIVE POWER PRICING IN PRACTICAL UTILITY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. SUSITHRA

    2017-01-01

    Full Text Available Competitive trend towards restructuring and unbundling of transmission services has resulted in the need to discover the impact of a particular generator to load. This paper initially presents the analysis of three different reactive power valuation methods namely, Modified Ybus , Virtual flow approach and modified power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best method to trace the reactive power contribution from various reactive power sources to loads, transmission line, etc. Also this proposed method breakdown the total reactive power loss in a transmission line into components to be allocated to individual loads. Secondly, based on this Method a novel allocation method for reactive power service for practical system is proposed. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking WSCC 9 and IEEE 30 bus system as test system.

  9. Utility-Marketer Partnerships. An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brown, E. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility’s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  10. Damping torque analysis of VSC-based system utilizing power synchronization control

    Science.gov (United States)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  11. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa

    2013-10-01

    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  12. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.

    Science.gov (United States)

    Fan, Yun; Zhang, Fu-Shen; Zhu, Jianxin; Liu, Zhengang

    2008-05-01

    The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.

  13. SUPPLIER SELECTION CRITERIA IN A POWER UTILITY IN MALAYSIA: ENGINEERS’ PERCEPTIONS

    Directory of Open Access Journals (Sweden)

    Sivadass Thiruchelvam

    2012-06-01

    Full Text Available Supplier selection of electricity generating, transmitting and distributing systems is part of the problem-solving environment in a power utility because it is a long-term investment for the organisation. Therefore, the decision over supplier selection directly influences the operational and financial position of a power utility. In addition, the supplier selection of a power-related system is a complex multi-criteria decision problem. While some criteria may be common across different industries, there are some criteria unique to the power industry. This research aims to understand what constitutes the suitable supplier selection criteria for a power utility. This study reveals some interesting findings of how engineers perceive the importance of each criterion and suggests strongly that product quality, price and delivery are key determinants in the supplier evaluation process. The eighteen criteria considered for this study were mapped onto their respective cluster, namely: supplier’s organisational system and technology, buyer-supplier relationship and economic value. The findings of this study should assist various groups of stakeholders (e.g., suppliers, buyers and end users to gain a better understanding of social behaviour in making purchase decisions, particularly with regard to power utilities.

  14. Real power regulation for the utility power grid via responsive loads

    Science.gov (United States)

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  15. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  16. Assessment of the potential of solar thermal small power systems in small utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

    1978-11-01

    This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

  17. Monopsony power and the existence of natural monopoly in energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Tschirhart, J. [University of Wyoming, Laramie, WY (United States). Dept. of Economics and Finance

    1995-12-01

    The justification for price and entry regulation of firms hinges on whether the firms are natural monopolies, and empirical tests have been used to determine the natural monopolicy status of public utilities. However, these tests are biased if the utilities possess monopsony power - a likely case. The bias is against finding natural monopoly status, which can lead to improper policies. An alternative method of testing is proposed which eliminates the bias. 20 refs., 1 fig.

  18. QoS-Guaranteed Power Control Mechanism Based on the Frame Utilization for Femtocells

    Directory of Open Access Journals (Sweden)

    Mach Pavel

    2011-01-01

    Full Text Available The paper focuses on a power control mechanism and proposes a novel approach for dynamic adaptation of femtocells' transmitting power. The basic idea is to adapt the transmitting power of femtocells according to current traffic load and signal quality between user equipments and the femtocell in order to fully utilize radio resources allocated to the femtocell. The advantage of the proposed scheme is in provisioning of high quality of service level to the femtocell users, while interference to users attached to macrobase station is minimized. The paper proposes the power adaptation algorithm and evaluates its performance in terms of mobility events, achieved throughput, and FAPs transmitting power. Performed simulations show that the proposed scheme can significantly reduce the number of mobility events caused by passerby users and thus to minimize signaling overhead generated in the network. In addition, our proposal enhances overall throughput for most of the investigated scenarios in comparison to other power control schemes.

  19. Power Quality Issues In Indian Power Distribution Utilities And Feasible Solutions

    Directory of Open Access Journals (Sweden)

    Narasimha Pandit

    2015-08-01

    Full Text Available One important contributing factor to Indias slow pace of development in general and relatively poor industrial growth in particular is the poor quality and reliability of the electrical power. Earlier the consumers of electrical energy were mere acceptors. Interruptions and other voltage disturbances were part of the deal. But today electric power is viewed as a product with certain characteristics which can be measured predicted guaranteed improved etc. which has become an integral part of our life. This paper gives insights on different Power Quality PQ problems experienced by the Indian electricity consumers and the reasons for those problems. This paper proposes feasible solutions to assist in employing or implementing appropriate mitigation techniques with an optimism of an improvement in the field scenario as more and more investments are proposed in Generation Transmission and Distribution Sectors and stringent codes and standards are being imposed for those who do not maintain minimum PQ level in the field.

  20. Utilization Alternatives and Potentiality for FGD Gypsum from Coal-Fired Power Plants

    Institute of Scientific and Technical Information of China (English)

    Tian Hezhong; Hao Jiming; Zhao Zhe; Kong Xiangying; Yang Chao; Lu Guangjie; Liu Hanqiang; Xu Fenggang; Chu Xue

    2006-01-01

    @@ It is estimated that an installed capacity of thermal power units with desulphurization equipment will come up to 40-50 GW by the end of 2020, which affords a good opportunity for opening up and development of the market of the by-product gypsum from thermal power desulphurization. Therefore, it is necessary to research the present situation and restrictive factors in the comprehensive utilization of FGD gypsum.

  1. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  2. Efficient utilization of wind power: Long-distance transmission or local consumption?

    Science.gov (United States)

    Sun, Yuanzhang; Ma, Xiyuan; Xu, Jian; Bao, Yi; Liao, Siyang

    2017-09-01

    Excess wind power produced in wind-intensive areas is normally delivered to remote load centers via long-distance transmission lines. This paper presents a comparison between long-distance transmission, which has gained popularity, and local energy consumption, in which a fraction of the generated wind power can be locally consumed by energy-intensive industries. First, the challenges and solutions to the long-distance transmission and local consumption of wind power are presented. Then, the two approaches to the utilization of wind power are compared in terms of system security, reliability, cost, and capability to utilize wind energy. Finally, the economic feasibility and technical feasibility of the local consumption of wind power are demonstrated by a large and isolated industrial power system, or supermicrogrid, in China. The coal-fired generators together with the short-term interruptible electrolytic aluminum load in the supermicrogrid are able to compensate for the intermittency of wind power. In the long term, the transfer of high-energy-consumption industries to wind-rich areas and their local consumption of the available wind power are beneficial.

  3. 77 FR 26537 - City of Alexandria, LA, Louisiana Energy and Power Authority, Lafayette Utilities System v. Cleco...

    Science.gov (United States)

    2012-05-04

    ... Energy Regulatory Commission City of Alexandria, LA, Louisiana Energy and Power Authority, Lafayette Utilities System v. Cleco Power, LLC; Notice of Complaint Take notice that on April 25, 2012, pursuant to..., City of Alexandria, Louisiana, Louisiana Energy and Power Authority, and Lafayette Utilities...

  4. Utilization of Flexible Demand in a Virtual Power Plant Set-Up

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2014-01-01

    High penetration levels from renewable energy sources in large-scale power systems demand a high degree of flexibility in the transmission and distribution system. This paper presents a method for utilization of flexible demand in the low-voltage distribution system using the thermal mass...... such that the discrete dispatch of power from ten electric space heaters is following the power set point given constraints on the indoor comfort that is defined by the users of the building. The controlling method has been implemented in an intelligent office building and used for demonstration of flexible demand...

  5. Electric utility power system management and telecommunications engineering uses. Netzleit- und Telekommunikationstechnik in der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Berges, M. (Vereinigte Elektrizitaetswerke Westfalen AG, Abt. Informationstechnik, Dortmund (Germany)); Maerz, W. (Vereinigte Elektrizitaetswerke Westfalen AG, Abt. Planung und Betriebsfuehrung, Dortmund (Germany))

    1992-05-15

    Power system management and telecommunications engineering are indispensable to the operation and management of large-scale power transmission systems. Both these fields are undergoing major changes, profiting by the progress of basic technologies such as microelectronics and optical telecommunications, and by improved methods and novel standards. The rapid development which produces ever more efficient techniques at shorter intervals of innovation is expected to continue for an indefinite time. The profitable and efficient use of new technologies, and their further development are a challenge to the electric utilities. The present state and the prospects of the technological development of power system management and telecommunications engineering are described. (orig.).

  6. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    Science.gov (United States)

    Kirsch, Reinhard; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Hese, Fabian; Mathiesen, Anders; Møller Nielsen, Carsten; Nielsen, Lars Henrik; Offermann, Petra; Poulsen, Niels Erik; Rabbel, Wolfgang; Thomsen, Claudia

    2016-04-01

    Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological model was developed and used as structural basis for the set-up of a regional temperature model. In that frame, new reflection seismic data were obtained to close local data gaps in the border region. The analyses and reinterpretation of available relevant data (old and new seismic profiles, core and well-log data, borehole data, literature data) and a new time-depth conversion (new velocity model) allowed correlation of seismic profiles across the border. On this basis, new topologically consistent depth and thickness maps for 12 geological/lithological units were drawn, with special emphasis on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface temperature model. New local surface heat-flow values (range: 72-84 mW/m²) were determined and predicted temperature were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological sections (e.g. Rhaetian/Gassum, Middle Buntsandstein) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. As an example, modelled temperatures for the Middle Buntsandstein geothermal reservoir are shown with temperatures ranging

  7. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  8. Northeast Utilities' participation in the Kaman/NASA wind power program

    Science.gov (United States)

    Lotker, M.

    1975-01-01

    The role of Northeast Utilities in the Kaman/NASA large wind generator study is reviewed. The participation falls into four principal areas: (1) technical assistance; (2) economic analysis; (3) applications; and (4) institutional and legal. A model for the economic viability of wind power is presented.

  9. A relative rate utility based distributed power allocation algorithm for Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Øien, G.E.; Lundheim, L.;

    2012-01-01

    In an underlay Cognitive Radio Network, multiple secondary users coexist geographically and spectrally with multiple primary users under a constraint on the maximum received interference power at the primary receivers. Given such a setting, one may ask "how to achieve maximum utility benefit...

  10. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  11. Matrix Converter Based Unified Power Quality Conditioner (MUPQC for Power Quality Improvement in a Utility

    Directory of Open Access Journals (Sweden)

    G.L. Valsala

    2014-05-01

    Full Text Available This study proposes a new approach of unified power quality conditioner which is made up of a matrix converter without energy storage devices to mitigate the current harmonics, voltage sags and swell. By connecting the matrix converter output terminals to the load side through series transformer and the input side of matrix converter is connected to the supply side with step up transformer. So a matrix converter injects the compensation voltage on the load-side, so it is possible to mitigate the voltage sag/swell problems, resulting in an efficient solution for mitigating voltage and current related power quality problems. Thus, the proposed topology can mitigate the voltage fluctuations and current harmonics without energy storage elements and the total harmonic distortion produced by the system also very low. It also reduced volume and cost, reduced capacitor power losses, together with higher reliability. The Space-Vector Modulation (SVM is used to control the matrix converter. MATLAB/SIMULINK based simulation results are presented to validate the approach.

  12. Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Kazufumi, E-mail: m_fuji@kvj.biglobe.ne.jp [Bank of Tokyo-Mitsubishi UFJ, Ltd., Corporate Risk Management Division (Japan); Nagai, Hideo, E-mail: nagai@sigmath.es.osaka-u.ac.jp [Osaka University, Division of Mathematical Science for Social Systems, Graduate School of Engineering Science (Japan); Runggaldier, Wolfgang J., E-mail: runggal@math.unipd.it [Universita di Padova, Dipartimento di Matematica Pura ed Applicata (Italy)

    2013-02-15

    We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

  13. Simulation analysis of emissions trading impact on a non-utility power plant

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Kashif; Ahmad, Intesar [Department of Electrical Engineering, COMSATS Institute of IT, Lahore (Pakistan); Hassan, Tehzeebul [Department of Electrical Engineering, University of Engineering and Technology (UET), Lahore (Pakistan); Aslam, Muhammad Farooq [Department of Electrical Engineering, University of Management and Technology (UMT), Lahore (Pakistan); Ngan, Hon-Wing [Department of Electrical Engineering, Hong Kong Polytechnic University (China)

    2009-12-15

    Non-utility power plants can competitively participate in open electricity market to reduce operational costs but in the absence of pollution charges or emissions trading such generators are tempted to cause greater pollution for profit maximization. This paper presents a solution that incorporates pollution charges for nitrogen oxides and sulphur dioxide emissions in line with existing national environmental quality standards and a new carbon dioxide emissions trading mechanism. A novel approach has been used for allocation of allowable emissions that favors efficiently fuelled and environmentally friendly operation for maximizing profit. Impact of proposed carbon trading on economical utilization of enormous indigenous coal reserves has been analyzed and determined to be acceptable. Software developed in this paper, harnessing Sequential Quadratic Programming capabilities of Matlab, is shown to be adequate simulation tool for various emissions trading schemes and an useful operational decision making tool for constrained non-linear optimization problem of a non-utility power plant. (author)

  14. Solar thermal power plants in small utilities - An economic impact analysis

    Science.gov (United States)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  15. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  16. Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control

    Science.gov (United States)

    Omole, Adedamola

    Photovoltaic (PV) DGs can be optimized to provide reactive power support to the grid, although this feature is currently rarely utilized as most DG systems are designed to operate with unity power factor and supply real power only to the grid. In this work, the voltage stability of a power system embedded with PV DG is examined in the context of the high reactive power requirement after a voltage sag or fault. A real-time dynamic multi-function power controller that enables renewable source PV DGs to provide the reactive power support necessary to maintain the voltage stability of the microgrid, and consequently, the wider power system is proposed. The loadability limit necessary to maintain the voltage stability of an interconnected microgrid is determined by using bifurcation analysis to test for the singularity of the network Jacobian and load differential equations with and without the contribution of the DG. The maximum and minimum real and reactive power support permissible from the DG is obtained from the loadability limit and used as the limiting factors in controlling the real and reactive power contribution from the PV source. The designed controller regulates the voltage output based on instantaneous power theory at the point-of-common coupling (PCC) while the reactive power supply is controlled by means of the power factor and reactive current droop method. The control method is implemented in a modified IEEE 13-bus test feeder system using PSCADRTM power system analysis software and is applied to the model of a Tampa ElectricRTM PV installation at Lowry Park Zoo in Tampa, FL. This dissertation accomplishes the systematic analysis of the voltage impact of a PV DG-embedded power distribution system. The method employed in this work bases the contribution of the PV resource on the voltage stability margins of the microgrid rather than the commonly used loss-of-load probability (LOLP) and effective load-carrying capability (ELCC) measures. The results of

  17. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; Chen, Yuan

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  18. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  19. Utilization of fly ash from coal-fired power plants in China

    Institute of Scientific and Technical Information of China (English)

    Da-zuo CAO; Eva SELIC; Jan-Dirk HERBELL

    2008-01-01

    The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the advantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Reasonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.

  20. Hydrothermal alteration at the Roosevelt Hot Springs Thermal Area, Utah: modal mineralogy, and geochemistry of sericite, chlorite, and feldspar from altered rocks, Thermal Power Company well Utah State 14-2

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1978-11-01

    Sericites, chlorites, feldspars, biotite and hornblende from hydrothermally altered rocks at several depths in Thermal Power Company well Utah State 14-2, Roosevelt Hot Springs Thermal Area, Utah, have been analyzed using the electron microprobe. Sericites and ferromagnesian minerals have been analyzed for 12 major elements, and feldspars for 3. The results have been used, along with whole rock chemical analyses, to computer calculate modal mineralogy for samples from the drillhole. Calculated modes for hydrothermal minerals are in reasonable agreement with observations from thin sections.

  1. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  2. Financial impacts of nonutility power purchases on investor-owned electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  3. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  4. Exergy and exergoeconomic analysis of a petroleum refinery utilities plant using the condensing to power method

    Energy Technology Data Exchange (ETDEWEB)

    Mendes da Silva, Julio Augusto; Pellegrini, Luiz Felipe; Oliveira Junior, Silvio [Polytechnic School of the University of Sao Paulo, SP (Brazil)], e-mails: jams@usp.br, luiz.pellegrini@usp.br, soj@usp.br; Plaza, Claudio; Rucker, Claudio [Petrobras - Petroleo Brasileiro S.A., Rio de Janeiro, RJ (Brazil)], e-mails: claudioplaza@petrobras.com.br, rucker@petrobras.com.br

    2010-07-01

    In this paper a brief description of the main processes present in a modern high capacity refinery is done. The methodology used to evaluate, through exergy analysis, the performance of the refinery's utilities plant since it is responsible for a very considerable amount of the total exergy destruction in a refinery is presented. The utilities plant products: steam, electricity, shaft power and high pressure water had their exergy unit cost determined using exergoeconomic approach. A simple and effective method called condensing to power was used to define the product of the condensers in exergy basis. Using this method it is possible to define the product of the condenser without the use of negentropy concept nor the aggregation of condensers to the steam turbines. By using this new approach, the costs obtained for the plant's products are exactly the same costs obtained when the condenser is aggregated to the steam turbine but with the advantage that the information about the stream between condenser and the steam turbine is not lost and the condenser can be evaluated singly. The analysis shows that the equipment where attention and resources should be focused are the boilers followed by the gas turbine, that together, are responsible for 80% of total exergy destruction in the utilities plant. The total exergy efficiency found for the utilities plant studied is 35% while more than 280 MW of exergy is destroyed in the utilities processes. (author)

  5. Assessment of the potential of solar thermal small power systems in small utilities

    Science.gov (United States)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  6. Mitigation of Output Power Fluctuations in Utility Grid using Three Phase Distribution Generation

    Directory of Open Access Journals (Sweden)

    K.Sri Chandan,

    2010-12-01

    Full Text Available Renewable electricity generation has never seen the level of investment and incentives that have been put in place by governments around the world during the last decade. However, despite the envisaged environmental and security of supply benefits that the harvesting of indigenous, renewable sources might bring about, their integration into the power system creates significant challenges to both the network operators and developers. The power quality challenges become even greater when large volumes of renewable generation capacity are connected to distribution networks, traditionally designed to be passive circuits with unidirectional power flows. This paper presents two schemes to meet the different power quality challenges in the utility grid due to Distribution Generation. In this first scheme is DSTATCOM and second is three phase Distributed Generation. This work is aimed at demonstrating, from the planning perspective, the benefits that the adoption of the different compensators might bring the system to a ‘fit and forget’ approach.

  7. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  8. Modification of bog vegetation by power utility rights-of-way

    Energy Technology Data Exchange (ETDEWEB)

    Nickerson, N.H.; Thibodeau, F.R.

    1984-10-01

    Wetland modification is strictly controlled by a number of state and federal statutes. This study documents the effects of construction and maintenance of power utility rights-of-way on shrub swamp-bog vegetation at Tewksbury, Massachusetts. While both activities cause at least temporary changes in natural vegetation, neither causes substantial long-term negative impact. Bog vegetation recovers naturally in four growing seasons from the effects of both activites. Such utility rights-of-way do not appear to be in conflict with the intent of wetland protection legislation.

  9. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  10. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater

    Institute of Scientific and Technical Information of China (English)

    Changfu Han; Junxin Liu; Hanwen Liang; Xuesong Guo; Lin Li

    2013-01-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment,which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery.Because the system operates without a storage battery,which can reduce the cost of the PV system,the solar radiation intensity affects the amount of power output from the PV system.To ensure that the power output is sufficient in all different weather conditions,the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study,and a step power output mode was used to utilize the solar energy as well as possible.The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night.Therefore,anaerobic,anoxic and aerobic conditions could periodically appear in the oxidation ditch,which was favorable to nitrogen and phosphate removal from the wastewater.The experimental results showed that the system was efficient,achieving average removal efficiencies of 88% COD,98% NH4+-N,70% TN and 83% TP,under the loading rates of 140 mg COD/(g MLSS·day),32 mg NH4+-N/(g MLSS·day),44 mg TN/(g MLSS·day) and 5mg TP/(g MLSS·day).

  11. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    Science.gov (United States)

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  12. Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

    Energy Technology Data Exchange (ETDEWEB)

    Randy Peden; Sanjiv Shah

    2005-07-26

    This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

  13. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  14. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    Energy Technology Data Exchange (ETDEWEB)

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  15. Utility survey on nuclear power plant siting and nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-06-28

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development.

  16. Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power Utilization with Varying Throughput and Payload Sizes

    Science.gov (United States)

    2015-09-01

    due to the buffer being full. In addition, battery statistics can be captured. While running, the service records the current running time in seconds ...classification does not use significantly more battery life . However, if the runtime during ELIDe classification is much smaller, this indicates that ELIDe...Fig. 2 Power utilization of ELIDe in the presence of nominal network traffic Figure 2 shows the available battery life versus the runtime. As

  17. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel thermodyn......Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel.......Both power production and heat pumps may benefit from the development as both technologies utilize a heat source. This makes it possible to cover the complete temperature range of low temperature sources. The development may contribute to significantly lower energy consumption in Danish industry and shipping...

  18. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  19. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    Science.gov (United States)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  20. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  1. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  2. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    -floor hydrothermal processes involving free circulation of seawater through ocean crust as convection. Heat flow, seafloor fracturing, permeability and fluid composition are the parameters governing the type and extent of mineralization. The chimney like... stream_size 23365 stream_content_type text/plain stream_name Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_78.pdf.txt stream_source_info Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_78.pdf.txt Content-Encoding UTF-8...

  3. MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp

    2013-01-01

    decentralized energy storage in the turbines’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines...... the model contains nonconvex terms. To handle this nonconvexity, we propose a sequential convex optimization method, which typically converges in fewer than 10 iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy storage. These simulations show substantial...... improvements in terms of limiting the power ramp rates (disturbance rejection) at the cost of very little power. This capability is critical to help balance and stabilize the future power grid with a large penetration of intermittent renewable energy sources....

  4. Photovoltaic rural electrification and the electric power utility. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J. M.; Villasenor, F.; Urrutia, M. [eds.] [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This document contains the national and international programs about photovoltaic systems for rural electrification and the electric power utility experiences about PV programs. The IERE Workshop was hold from May 8 to 12, 1995 in Cocoyoc, Mexico. It was organized by the Electrical Research Institute of Mexico (Instituto de Investigaciones Electricas (IIE)) and the U.S. Electric Power Research Institute (EPRI). The Workshop was attended by 38 delegates from 13 countries [Espanol] Este documento contiene los programas nacionales e internacionales sobre electrificacion fotovoltaica rural y las experiencias en programas fotovoltaicos de empresas electricas. El taller de trabajo IERE fue realizado los dias del 8 al 12 de mayo de 1995 en Cocoyoc, Mexico. Fue organizado por el Instituto de Investigaciones Electricas (IIE) y el U.S. Electric Power Research Institute (EPRI) (Instituto de Investigaciones de Energia Electrica de Estados Unidos). A este taller de trabajo asistieron 38 delegados de 13 paises

  5. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  6. Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    ADEPT Project: Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.

  7. Operation of the ELETRONORTE hydrothermal systems: Amazonas, Rondonia and Amapa States and Tucurui Hydroelectric Power Plant, focusing the El Nino phenomenon; Operacao dos sistemas hidrotermicos da ELETRONORTE: Amazonas, Rondonia, Amapa e Usina Hidroeletrica de Tucurui, enfocando o fenomeno El Nino

    Energy Technology Data Exchange (ETDEWEB)

    Costalonga, Isabela dos Reis; Ferreira, Vania Maria [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Brasilia, DF (Brazil)]. E-mail: ceon@eln.gov.br

    1998-07-01

    This work presents an analysis of the ELETRONORTE hydrothermal systems in the States of Amazonas, Rondonia and Amapa and the Tucurui HPP Interconnected System. The analysis ranges from the whole year of 1997 to September 1998, considering the strong influence of the El Nino phenomenon, initiated on April 1997, on the flows affluent to the reservoirs of Balbina, Samuel, Coaracy Nunes and Tucurui Hydroelectric Power Plants.

  8. Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure

    Institute of Scientific and Technical Information of China (English)

    Sajad Khamis Abadi; Mohammad Hasan Khoshgoftar Manesh; Marc A.Rosen; Majid Amidpour; Mohammad Hosein Hamedi

    2014-01-01

    A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve (SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods (STAR® and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.

  9. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  10. Next-Generation Performance-Based Regulation: Emphasizing Utility Performance to Unleash Power Sector Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zinaman, Owen R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Littell, David [Regulatory Assistance Project; Kadoch, Camille [Regulatory Assistance Project; Baker, Phil [Regulatory Assistance Project; Bharvirkar, Ranjit [Regulatory Assistance Project; Dupuy, Max [Regulatory Assistance Project; Hausauer, Brenda [Regulatory Assistance Project; Linvill, Carl [Regulatory Assistance Project; Migden-Ostrander, Janine [Regulatory Assistance Project; Rosenow, Jan [Regulatory Assistance Project; Xuan, Wang [Regulatory Assistance Project

    2017-09-12

    Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributed generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.

  11. Utilizing wind and solar energy as power sources for a hybrid building ventilation device

    Energy Technology Data Exchange (ETDEWEB)

    Shun, Simon; Ahmed, Noor A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney (Australia)

    2008-06-15

    Wind and solar energy are currently used to power many building ventilation devices. Such devices rely exclusively on either solar or wind energy, which limits their usefulness. A low-cost hybrid ventilation device that utilizes both wind and solar energy as power sources was designed to overcome some of the shortcomings of these devices. Wind tunnel testing conducted at the aerodynamics laboratory of the University of New South Wales revealed that the hybrid device had improved operational and performance benefits compared with conventional commercial roof top ventilators, particularly at zero to low wind speeds. This represents a significant step forward and will have an immediate impact in promoting the use of clean energy for the purposes of building ventilation. (author)

  12. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F., E-mail: placco@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAV/DCTA) Sao Jose dos Campos, SP (Brazil); Santos, Rubens S. dos, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  13. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  14. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    Science.gov (United States)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  15. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  16. A control system for improved battery utilization in a PV-powered peak-shaving system

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  17. Making the grid the backup: Utility applications for fuel cell power

    Energy Technology Data Exchange (ETDEWEB)

    Eklof, S.L. [Sacramento Municipal Utility District (SMUD), Sacramento, CA (United States)

    1996-12-31

    Fuel cells are recognized as a versatile power generation option and accepted component of SMUD`s ART Program. SMUD has received wide support and recognition for promoting and implementing fuel cell power plants, as well as other innovative generation, based primarily on technological factors. Current economic and technical realities in the electric generation market highlight other important factors, such as the cost involved to develop a slate of such resources. The goal now is to develop only those select quality resources most likely to become commercially viable in the near future. The challenge becomes the identification of candidate technologies with the greatest potential, and then matching the technologies with the applications that will help to make them successful. Utility participation in this development is critical so as to provide the industry with case examples of advanced technologies that can be applied in a way beneficial to both the utility and its customers. The ART resource acquisitions provide the experience base upon which to guide this selection process, and should bring about the cost reductions and reliability improvements sought.

  18. Development of hydrothermal power generation plant. Development of binary cycle power generation plant (development of 10 MW-class plant); 1995 nendo nessui riyo hatsuden plant nado kaihatsu binary cycle hatsuden plant no kaihatsu. 10MW kyu plant no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    A 10 MW-class binary cycle power generation plant has been developed using a down hole pump (DHP) which exchanges the hydrothermal energy with secondary medium in the heat exchanger. For constructing the plant at Kuju-machi, Oita Prefecture, site preparation works, foundation of cooling tower, reconstruction of roads, and survey on environmental influences were conducted. To investigate installation and removal methods of DHP, a geothermal water pump-up system, current status of the binary cycle power generating system in the USA was surveyed. In this survey, a trailer mounting handling machine was inspected. Based on the survey results, a simple assembled, easy-installation type handling equipment was designed. In addition, the replacement work for motor connector joint of DHP and the strength of coil end were improved. Construction and method allowing reuse of the motor cable were considered by improving the cable and cable end portion. The air tight soundness of incoloy corrugate sheath was confirmed. Finally, a reproduction system for waste oil of DHP bearing oil was investigated. 106 figs., 52 tabs.

  19. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W

    2015-10-21

    Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.

  20. A new power generation method utilizing a low grade heat source

    Institute of Scientific and Technical Information of China (English)

    Wei-feng WU; Kin-ping LONG; Xiao-ling YU; Quan-ke FENG

    2012-01-01

    Energy crisis make the effective use of low grade energy more and more urgent.It is still a worldwide difficult conundrum.To efficiently recover low grade heat,this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source.When the temperature of the low grade heat source exceeds the saturated temperature,it can heat the liquid into steam.If the steam is sealed and cooled in a container,it will lead to a negative pressure condition.The proposed power generation method utilizes the negative pressure condition in the sealed container,called as a condensator.When the condensator is connected to a liquid pool,the liquid will be pumped into it by the negative pressure condition.After the condensator is filled by liquid,the liquid flows back into the pool and drives the turbine to generate electricity.According to our analysis,for water,the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃,and the steam temperature is 105 ℃.Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level,ignoring steam leakage loss.

  1. Affairs of power: Restructuring California's electric utility industry, 1968-1998

    Science.gov (United States)

    Myers, William Allan

    This dissertation studies the process of change in the political economy of electric utilities. Following two decades of continual growth during the nation's post-World War Two economic and population boom, the electric power industry confronted increasing challenges to its traditional operating practices and cultural values, nowhere with greater intensity than in California. Pressure for change came from outside forces who opposed utilities' business practices, assailed their traditional vertically-integrated structure, questioned the political assumptions that sustained their monopoly status, and ultimately wrested away access to the once tightly controlled technology of electric generation and transmission. Because managers of both investor-owned and publicly-owned utilities continued to rely upon long-standing economic and technical assumptions derived from deeply held cultural values sustained by decades of business success, they were rendered unable to comprehend and unwilling to accommodate change. Persistent mistrust between the publicly-owned and privately-owned sectors further weakened the industry's ability to work cooperatively in the face of crucial challenges. Thus encumbered by endemic structural jealousy, technological path dependency, and organizational stasis, the industry did not respond with sufficient innovation to new social values and altering economic conditions, ultimately resulting in the discarding of the old political economy of regulated monopolism. Five precepts of economic history are identified as crucial elements of the process of change. First, the tension between protection and entry, and the related issue of access to technology, contributes to creation and modification of the political economy in which economic institutions function. Second, submission to governmental regulatory powers allows certain industries to control entry, restrict access, and protect themselves from the dynamics of competitive change. Third, an

  2. Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power Utilization by Varying N-gram and Hash Length

    Science.gov (United States)

    2015-09-01

    ARL-TR-7190 ● SEP 2015 US Army Research Laboratory Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power...Army position unless so designated by other authorized documents . Citation of manufacturer’s or trade names does not constitute an official... SEP 2015 US Army Research Laboratory Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power Utilization by Varying N

  3. 75 FR 8322 - Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a Division of MDU...

    Science.gov (United States)

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a... and Order Nos. 2003 and 2003-A,\\1\\ Tatanka Wind Power, LLC (Complainant) filed a formal complaint...

  4. Electric Power Supply of Meat Processing Enterprise through Utilization Heat of Compressor Station Secondary Energy Sources in Main Gasline

    Directory of Open Access Journals (Sweden)

    A. Nesenchuk

    2013-01-01

    Full Text Available The paper considers a structure of power consumption by a meat processing enterprise with indication of specific power consumption norms in accordance with product nomenclature. Schemes for supply of the enterprise with heat and cold through utilization of compressor station secondary energy sources in main gasline have been presented in the paper.

  5. Hydrothermal Biogeochemistry

    Science.gov (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  6. Limit order placement as an utility maximization problem and the origin of power law distribution of limit order prices

    CERN Document Server

    Lillo, F

    2006-01-01

    I consider the problem of the optimal limit order price of a financial asset in the framework of the maximization of the utility function of the investor. The analytical solution of the problem gives insight on the origin of the recently empirically observed power law distribution of limit order prices. In the framework of the model, the most likely proximate cause of this power law is a power law heterogeneity of traders' investment time horizons .

  7. Nuclear power and the market value of the shares of electric utilities

    Science.gov (United States)

    Lyons, Joseph T.

    The most basic principle of security valuation is that market prices are determined by investors' expectations of the firm's performance in the future. These expectations are generally understood to be related to the risk that investors will bear by holding the firm's equity. There is considerable evidence that financial statements prepared in accordance with accrual-based accounting standards consistent with Generally Accepted Accounting Principles (GAAP) have information content relevant to the establishment of market prices. In 2001, the Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standard No. 143, "Accounting for Asset Retirement Obligations," changing the accounting standards that must be used to prepare financial statements. This paper investigates the effect that investment in nuclear power has on the market value of electric utilities and the impact on the securities markets of the significant changes in financial statement presentation mandated by this new standard.

  8. Analysis and design of modular three-phase power factor correction schemes for utility interface

    Science.gov (United States)

    Hahn, Jae-Hong

    The extensive use of non-linear and electronically switched loads in power system has lead to higher incidences of harmonic distortion of the voltage and current waveforms. Harmonic currents degrade power quality and are considered the main source of many system malfunctions. Technical guidelines and standards regarding suppressions of system harmonic contents have been enacted. This dissertation proposes several new three-phase power factor correction (PFC) schemes using single-phase PFC modules. An integrated single-switch approach is first proposed. This is essentially an add-on solution to standard ASD's. This approach is based on circulating third harmonic current between neutral and DC mid-point by utilizing a lossless resistor. Single-phase PFC emulates this resistor to control the amplitude of the current, which is implemented by the dynamic breaking chopper available in standard adjustable speed drives (ASD's). This approach is also capable of reducing harmonic distortion in multiple drives. Analysis, design and simulations are conducted to determine the performance of the proposed scheme with different line impedances and with and without dc-link inductance in the ASD. Experimental results are presented using commercial ASD retrofitted with the proposed approach. Second scheme proposes a three-phase PFC using two standard single-phase PFC modules. In this approach, three-phase input is transformed into two-phase by means of 0.14 pu autotransformer. Two standard single-phase PFC modules are employed to process two-phase power to do output. Split inductors and diodes are employed to limit the interaction between the two phases. A method to eliminate the interaction between phases is also described. Due to cascade operation of two PFC stages, low frequency (120Hz) ripple in dc-link is cancelled. An active interphase transformer (IPT) scheme is proposed to draw sinusoidal input line currents, in the third study. This scheme utilizes a unique combination of a

  9. Organic Rankine-cycle turbine power plant utilizing low temperature heat sources

    Science.gov (United States)

    Maizza, V.

    1980-03-01

    Utilizing and converting of existing low temperature and waste heat sources by the use of a high efficiency bottoming cycle is attractive and should be possible for many locations. This paper presents a theoretical study on possible combination of an organic Rankine-cycle turbine power plate with the heat pump supplied by waste energy sources. Energy requirements and system performances are analyzed using realistic design operating condition for a middle town. Some conversion systems employing working fluids other than water are being studied for the purpose of proposed application. Thermodynamic efficiencies, with respect to available resource, have been calculated by varying some system operating parameters at various reference temperature. With reference to proposed application equations and graphs are presented which interrelate the turbine operational parameters for some possible working fluids with computation results.

  10. Utilization direction of industrial raw products built-up in power station ash dumps

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2017-01-01

    Full Text Available Nowadays hundreds million tons of ash and slag waste (ASW is produced in Russia yearly. Large territories are needed in order to store such a big waste volume. Besides, it is necessary to conduct special engineering and ecological work at the design and usage stages of this structure. The goal of the research is to outline acceptable ASW utilization methods accumulated in coal burning power station ash dumps and to determine the order of activities to solve the problem. The research methods: experimental where Kansk-Achinsk and Kuznetsk coals are the object of the research. Besides, review of relevant to the problem literature and normative documentation was done to determine activities order, possible ways and limitations of the problem solving. We elucidated that ASW transportation to depleted coal quarries to restore them is essential to arrange in order to solve the problem of ASW utilization. As to new produced ASW, they should be divided into groups according to application field (mostly in construction. The groups correspond to boiler unit load operation. After coal combustion ash is stored in special places (reservoirs, silos. Therefore modern boiler unit might be seen as a production complex of steam and ash and slag material of an adequate quality.

  11. Utilization of power plant bottom-ash particles as stabilizer in aluminum foams

    Energy Technology Data Exchange (ETDEWEB)

    Asavavisithchai, Seksak; Prapajaraswong, Attanadol [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2013-07-01

    Aluminum foams, produced via powder metallurgical (PM) process, normally require the addition of ceramic particles in compaction stage, in order to increase both foamability of precursors and mechanical properties of the final foam products. Bottom ash particles are a by-product waste obtained from thermoelectric power plants which are commonly found to be used in landfill facilities. The major chemical constituent, approximately between 30 wt.-% and 60 wt.-%, of bottom ash particles is SiO{sub 2}, depending on chemical composition in coal, sintering condition and environment, and other process parameters. In this study, we explore the feasibility of utilizing bottom ash particles of thermoelectric power plant wastes as stabilizer in aluminum foams. A small amount of two-size bottom ash particles (mean size of 78 {mu}m and 186 {mu}m), between 1 wt.-% and 5 wt.-%, have been added to aluminum foams. Foam expansion, macro- and microstructures as well as mechanical properties, such as compressive strength and microhardness, were investigated. The results from the present study suggest that bottom ash particles can be used as a stabilizing material which can improve both cellular structure and mechanical properties of aluminum foams. (orig.)

  12. Conserving water in and applying solar power to haemodialysis: 'green dialysis' through wiser resource utilization.

    Science.gov (United States)

    Agar, John W M

    2010-06-01

    Natural resources are under worldwide pressure, water and sustainable energy being the paramount issues. Haemodialysis, a water-voracious and energy-hungry healthcare procedure, thoughtlessly wastes water and leaves a heavy carbon footprint. In our service, 100 000 L/week of previously discarded reverse osmosis reject water--water which satisfies all World Health Organisation criteria for potable (drinking) water--no longer drains to waste but is captured for reuse. Reject water from the hospital-based dialysis unit provides autoclave steam for instrument sterilization, ward toilet flushing, janitor stations and garden maintenance. Satellite centre reject water is tanker-trucked to community sporting fields, schools and aged-care gardens. Home-based nocturnal dialysis patient reuse reject water for home domestic utilities, gardens and animal watering. Although these and other potential water reuse practices should be mandated through legislation for all dialysis services, this is yet to occur. In addition, we now are piloting the use of solar power for the reverse osmosis plant and the dialysis machines in our home dialysis training service. If previously attempted, these have yet to be reported. After measuring the power requirements of both dialytic processes and modelling the projected costs, a programme has begun to solar power all dialysis-related equipment in a three-station home haemodialysis training unit. Income-generation with the national electricity grid via a grid-share and reimbursement arrangement predicts a revenue stream back to the dialysis service. Dialysis services must no longer ignore the non-medical aspects of their programmes but plan, trial, implement and embrace 'green dialysis' resource management practices.

  13. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Daye, Tony [Green Power Labs (GPL), San Diego, CA (United States)

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  15. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))

    2008-07-15

    It is expected, that demand for the traditional biomass resources wood and straw will increase over the next years. In other projects a number of agro industrial waste products has been tested and characterized as fuels for power plants. The annual production in Denmark of these fuels is estimated at roughly 400.000 tons of Dry Matter per year, so the potential is substantial. The agro industrial biomass products include: Grain screening waste, pea shells, soy waste, cocoa waste, sugar beet waste, sunflower waste, shea waste, coffee waste, olive waste, rice shell waste, potato waste, pectin waste, carrageen waste, tobacco waste, rape seed waste and mash from breweries. In the PSO project 5075, 5 different types of fuel pellets was produced, which were rendered suitable for combustion in power plants. In this project, ash is produced from the above mentioned 5 mixtures together with another 2 mixtures produced especially for this project. From the 5 mixtures from PSO 5075, ash is produced at Danish Technological Institute's slag analyzer. These ash products are rendered comparable to ash from grate fired boilers at power plants. The ash/slag from the combustion in the slag analyzer was then grinded - thus resulting in a total of 5 ash products. At DTU CHEC's Entrained Flow Reactor, ash products from the 5+2 mixtures were produced. These ash products are rendered comparable to ash produced form suspension fired boilers at power plants. For each of the 7 mixtures, bottom-, cyclone and filter ash was taken out separately resulting in a total of 21 ash samples. The produced ashes have been evaluated for their properties as directly applied fertilizer. Furthermore, scenarios have been set up to assess the feasibility in producing artificial fertilizer from the ash products, based on known processes. In the main components the content of Na, S, Cl and K is significantly higher in filter ashes, whereas the content of Mg, Al, Si and Ca is significantly lower. The

  16. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  17. Electricity generation from hydrothermal vents

    Science.gov (United States)

    Aryadi, Y.; Rizal, I. S.; Fadhli, M. N.

    2016-09-01

    Hydrothermal vent is a kind of manifestation of geothermal energy on seabed. It produces high temperature fluid through a hole which has a diameter in various range between several inches to tens of meters. Hydrothermal vent is mostly found over ocean ridges. There are some 67000 km of ocean ridges, 13000 of them have been already studied discovering more than 280 sites with geothermal vents. Some of them have a thermal power of up to 60 MWt. These big potential resources of energy, which are located over subsea, have a constraint related to environmental impact to the biotas live around when it becomes an object of exploitation. Organic Rankine Cycle (ORC) is a method of exploiting heat energy to become electricity using organic fluid. This paper presents a model of exploitation technology of hydrothermal vent using ORC method. With conservative calculation, it can give result of 15 MWe by exploiting a middle range diameter of hydrothermal vent in deep of 2000 meters below sea level. The technology provided here really has small impact to the environment. With an output energy as huge as mentioned before, the price of constructing this technology is low considering the empty of cost for drilling as what it should be in conventional exploitation. This paper also presents the comparison in several equipment which is more suitable to be installed over subsea.

  18. Locations and attributes of utility-scale solar power facilities in Colorado and New Mexico, 2011

    Science.gov (United States)

    Ignizio, Drew A.; Carr, Natasha B.

    2012-01-01

    The data series consists of polygonal boundaries for utility-scale solar power facilities (both photovoltaic and concentrating solar power) located within Colorado and New Mexico as of December 2011. Attributes captured for each facility include the following: facility name, size/production capacity (in MW), type of solar technology employed, location, state, operational status, year the facility came online, and source identification information. Facility locations and perimeters were derived from 1-meter true-color aerial photographs (2011) produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters (accessed from the NAIP GIS service: http://gis.apfo.usda.gov/arcgis/services). Solar facility perimeters represent the full extent of each solar facility site, unless otherwise noted. When visible, linear features such as fences or road lines were used to delineate the full extent of the solar facility. All related equipment including buildings, power substations, and other associated infrastructure were included within the solar facility. If solar infrastructure was indistinguishable from adjacent infrastructure, or if solar panels were installed on existing building tops, only the solar collecting equipment was digitized. The "Polygon" field indicates whether the "equipment footprint" or the full "site outline" was digitized. The spatial accuracy of features that represent site perimeters or an equipment footprint is estimated at +/- 10 meters. Facilities under construction or not fully visible in the NAIP imagery at the time of digitization (December 2011) are represented by an approximate site outline based on the best available information and documenting materials. The spatial accuracy of these facilities cannot be estimated without more up-to-date imagery – users are advised to consult more recent imagery as it becomes available. The "Status" field provides information about the operational

  19. Region-specific study of the electric utility industry: financial history and future power requirements for the VACAR region

    Energy Technology Data Exchange (ETDEWEB)

    Pochan, M.J.

    1985-07-01

    Financial data for the period 1966 to 1981 are presented for the four investor-owned electric utilities in the VACAR (Virginia-Carolinas) region. This region was selected as representative for the purpose of assessing the availability, reliability, and cost of electric power for the future in the United States. The estimated demand for power and planned additions to generating capacity for the region through the year 2000 are also given.

  20. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  1. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    Science.gov (United States)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  2. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cory, Karlynn S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair G. [Applied Materials, Santa Clara, CA (United States)

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  3. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  4. Impact of power purchases from nonutilities on the utility cost of capital

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.; Stoft, S.; Belden, T. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1994-03-01

    This report studies the debt-equivalence debate empirically. The topics of the study include a review of the literature on the cost of equity capital for regulated utilities, a formulation of the debate on NUGs and the utility`s cost of capital, a review of variable definitions and data sources, and a discussion of statistical issues and results.

  5. Efficient fiber-laser-pumped Ho:YLF oscillator and amplifier utilizing the transmitted pump power of the oscillator

    CSIR Research Space (South Africa)

    Strauss, HJ

    2009-06-01

    Full Text Available In this paper, researchers have demonstrated that a Ho:YLF oscillator and amplifier system can be designed in a compact setup where the pump power from an unpolarized fibre laser utilized efficiently. The system produced more than 20 mJ energy per...

  6. Study Analysis of Flue Gas Utilization as Alternative Power Generation in Cement Plant Using Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Rahmat Ranggonang Anwar

    2017-01-01

    Full Text Available Abstract—Cement plant produce large amount of heat source in cement making process, due to inefficiency of system there still waste heat available in form of flue gas that can be utilize. Flue gas  in cement plant can be utilized as alternative power generation. With the 200-300oC temperature output range of flue gas from suspension preheater and air quenching cooler (AQC in cement plant, organic rankine cycle (ORC can be suitable option for alternative power generation. ORC is development of rankine cycle, the different is the working fluid in ORC using refrigerant. In cement plant that produce 8466 TPD kiln production, used flue gas from suspension preheater to dry raw material and produce 163888 m3/h flue gas from AQC that still not utilized. Flue gas with 235oC temperature from AQC can utilized for power generation purpose using ORC system. Waste heat recovery calculation carried out to know the potential recovery. Operating condition of the ORC system will determine power produced that can be generated and ORC components calculated and selected according to the operating condition of the system. Using R141b as working fluid with 8 bar pressure and 110oC temperature inlet to turbine, power produced by turbine is 666 kW. For the components, evaporator and condenser use shell and tube heat exchanger, with evaporator heat transfer area is 676.49 m2 while condenser has 510 m2 of heat transfer area. And for working fluid pump it needs 16.235 Kw power to pump R141b back to evaporator.

  7. Hydrothermal organic synthesis experiments

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  8. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  9. 21st Century Power Partnership Fellowship Program: Supporting Next-generation Planning Modeling Practices at South Africa's Power Utility Eskom

    Energy Technology Data Exchange (ETDEWEB)

    Zinaman, Owen

    2016-10-01

    This presentation details the 21st Century Power Partnership's fellowship program accomplishments from 2016. This fellowship brought two fellows from South Africa's power utility, Eskom, to the U.S. Department of Energy's National Renewable Energy Laboratory. The fellows spent two weeks working to improve the fidelity of Eskom's PLEXOS long-term and short-term models, which are used in long-term generation planning exercises and capacity adequacy assessments. The fellows returned to Eksom equipped with a new suite of tools and skills to enhance Eksom's PLEXOS modeling capabilities.

  10. Soft power geopolitics: how does the diminishing utility of military power affect the Russia – West confrontation over the “Common Neighbourhood”

    Directory of Open Access Journals (Sweden)

    Vasif HUSEYNOV

    2016-12-01

    Full Text Available This paper is based on the fact that a number of factors, but particularly the restricting utility of military force between great powers, increase the significance of soft power as a tool both for legitimization and expansion in international relations in general, and in the West – Russia confrontation over the “common (or shared neighbourhood” in particular. It explores how this fact affects the policies of the Western powers and Russia within the frame of the confrontation they are in. The paper narrows down its analytical focus on the efforts of the Kremlin to affect the public opinion in its neighbourhood and to counter Western soft power. It is argued that the Ukraine crisis has affected Russia’s perception of soft power, re-constructed its counter-revolutionary agenda, and increased the profile of propaganda in its foreign policy. The paper concludes that the soft power competition between Russia and West and the policies of the two powers to win over the hearts and minds of people in the shared neighbourhood re-define the character of geopolitical games in the Former Soviet Union.

  11. On the Dynamics and Statics of Power System Operation: Optimal Utilization of FACTS Devices and Management of Wind Power Uncertainty

    NARCIS (Netherlands)

    Nasri, A.

    2014-01-01

    Nowadays, power systems are dealing with some new challenges raised by the major changes that have been taken place since 80’s, e.g., deregulation in electricity markets, significant increase of electricity demands and more recently large-scale integration of renewable energy resources such as wind

  12. A complete data and power telemetry system utilizing BPSK and LSK signaling for biomedical implants.

    Science.gov (United States)

    Sonkusale, Sameer; Luo, Zhenying

    2008-01-01

    In this paper, a prototype of a telemetry system for battery-less biological implant is implemented, which demonstrates both wireless power delivery and duplex wireless data communication. BPSK (Binary Phase Shift Keying) modulation is used for the data transmission from the external controller to the implant and LSK (Load Shift Keying) modulation is used for the reverse data transmission from the implant to the external controller. Power is being delivered wirelessly to the implant through the energy contained in the incoming BPSK data signal. This implant system contains a novel single chip realization of low power BPSK demodulator architecture, which provides considerable power savings compared to prior art. The demodulator occupies 0.1mm(2) area and consumes 5mW power from a 3.3V power supply. A sensitive board level LSK receiver for data transmitted from implant to the external reader has been proposed. External BPSK transmitter consists of a class-E power amplifier that serves the dual purpose of a data transmitter and wireless power delivery. In summary, a very low power bidirectional power and data telemetry system for biological implants based on BPSK and LSK signaling is proposed.

  13. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

  14. PowerBuilder开发WEB应用%Utilizing PB to Develop Web Application

    Institute of Scientific and Technical Information of China (English)

    聂丹

    2005-01-01

    PowerBuilder中有开发WEB应用的模块.在Web.PB之上,可用PowerBuilder的强大功能开发复杂的WEB应用.PowerBuilder开发WEB应用的方法易于实现,分析其原理和结构,并给出了用WEB.PB开发简单的网上应用实例.

  15. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    Science.gov (United States)

    2012-12-01

    portable devices where system size and efficiency are the primary design factors. Size and efficiency also govern the use of multiple MPPTs at the sub... mechanisms responsible for the energy losses in a switch-mode converter are the same. They include the components responsible for conduction, capacitor...designed to directly power a load as done in this test. The SPV-1020 may require an appropriate battery charger such as the STEVAL SEA05 battery

  16. Prototype of a Desk-top WiTricity System for Powering House-hold Utility Equipments

    OpenAIRE

    Hema Ramachandran; G.R. Bindu

    2012-01-01

    Magnetic resonant coupling systems have been in vogue for some years after it was demonstrated for mid-range power transfer in 2007. This paper proposes a prototype desk-top Witricity system for powering house-hold utility equipments. The system uses the phenomena of near-field resonance coupling achieved at 400 kHz using a transmission coil wound around rim of a table and a receiver coil wound around the base of a white-LED lit table lamp. The parasitic capacitance of coils are calculated an...

  17. Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan

    Science.gov (United States)

    Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.

    2017-01-01

    The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.

  18. Prototype of a Desk-top WiTricity System for Powering House-hold Utility Equipments

    Directory of Open Access Journals (Sweden)

    Hema Ramachandran

    2012-01-01

    Full Text Available Magnetic resonant coupling systems have been in vogue for some years after it was demonstrated for mid-range power transfer in 2007. This paper proposes a prototype desk-top Witricity system for powering house-hold utility equipments. The system uses the phenomena of near-field resonance coupling achieved at 400 kHz using a transmission coil wound around rim of a table and a receiver coil wound around the base of a white-LED lit table lamp. The parasitic capacitance of coils are calculated and augmented with external capacitance to achieve resonance. Distance does not come into play in this system while the system is of great practical use for household utility equipments such as table lamps mobile phones etc.

  19. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A fully differential rail-to-rail Operational Transconductance Amplifier (OTA) with improved DC-gain and reduced power consumption is proposed in this paper. By using the adaptive biasing circuit and two differential inputs, a low stand-by current can be obtained together with reduced power consu...

  20. Utilization of PowerPoint Presentation Software in Library Instruction of Subject Specific Reference Sources.

    Science.gov (United States)

    Bushong, Sara

    This paper reports on a study conducted to determine if PowerPoint presentation is the most effective medium to explain two reference books: "The Storyteller's Sourcebook" and "A Guide to Folktales in the English Language." A secondary purpose was to see if the students who saw the PowerPoint presentation received higher…

  1. Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing

    Science.gov (United States)

    Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.

    2016-04-01

    Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.

  2. Nonlinear Power Flow Control Design Utilizing Exergy, Entropy, Static and Dynamic Stability, and Lyapunov Analysis

    CERN Document Server

    Robinett III, Rush D

    2011-01-01

    Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between compe...

  3. IS JOB SATISFACTION MEDIATING THE RELATIONSHIP BETWEEN COMPENSATION STRUCTURE AND ORGANISATIONAL COMMITMENT? A STUDY IN THE MALAYSIAN POWER UTILITY

    OpenAIRE

    Ida Irdawaty Ibrahim; Ali Boerhaneoddin

    2010-01-01

    The study examines job satisfaction to mediate the relationship between compensation structure and organisational commitment on 62 respondents, working across job positions and classifications in a power utility-based organisation, in the Peninsula Malaysia. Previous studies in the field of organisational psychology has shown the importance of compensation as one of the main organisational factor that affect organisational effectiveness, but studies have also shown that there were no direct l...

  4. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A fully differential rail-to-rail Operational Transconductance Amplifier (OTA) with improved DC-gain and reduced power consumption is proposed in this paper. By using the adaptive biasing circuit and two differential inputs, a low stand-by current can be obtained together with reduced power...... consumption. The DC-gain of the proposed OTA is improved by adding a partial feedback loop. A Common-Mode Feedback (CMFB) circuit is required for fully differential rail-to-rail operation. Simulations show that the OTA topology has a low stand-by power consumption of 96μW and a high FoM of 3.84 [(V...

  5. Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility

    Science.gov (United States)

    Beach, Raymond F. (Inventor); Brush, Andy (Inventor)

    1997-01-01

    The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.

  6. Sharing product data of nuclear power plants across their lifecycles by utilizing a neutral model

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan [WIG Craft Research Division, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)], E-mail: dhmun@moeri.re.kr; Hwang, Jinsang [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: mars@icad.kaist.ac.kr; Han, Soonhung [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: shhan@kaist.ac.kr; Seki, Hiroshi [Hitachi Research Laboratory, Hitachi, Ltd. (Japan)], E-mail: hiroshi.seki.mf@hitachi.com; Yang, Jeongsam [Industrial and Information Systems Engineering, Ajou University (Korea, Republic of)], E-mail: jyang@ajou.ac.kr

    2008-02-15

    Many public and private Korean organizations are involved during the lifecycle of a domestic nuclear power plant. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in Korea, Doosan Heavy Industry and Construction Co. manufactures the main equipment, and a construction company constructs the plant. Even though each organization has its own digital data management system and obtains a certain level of automation, data sharing among organizations is poor. KHNP obtains drawings and technical specifications from KOPEC in the form of paper. This results in manual re-work of definitions, and errors can potentially occur in the process. In order to establish an information bridge between design and operation and maintenance (O and M) phases, a generic product model (GPM), a data model from Hitachi, is extended for constructing a neutral data warehouse and the Korean Nuclear Power Plant Information Sharing System (KNPISS) is implemented.

  7. The utilization of LANDSAT imagery in nuclear power plant siting. [in Pakistan, South Carolina, and Spain

    Science.gov (United States)

    Eggenberger, A. J.; Rowlands, D.; Rizzo, P. C.

    1975-01-01

    LANDSAT imagery was used primarily to map geologic features such as lineaments, linears, faults, and other major geologic structures which affect site selection for a nuclear power plant. Areas studied include Pakistan, the South Carolina Piedmont, and Huelva, Spain.

  8. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  9. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.

  10. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  11. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  12. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  13. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  14. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  15. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Marcelo G.; Mercado, Pedro E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan (Argentina); Watanabe, Edson H. [COPPE, Grupo de Eletronica de Potencia, Universidade Federal do Rio de Janeiro (Brazil)

    2007-08-15

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB {sup trademark}, and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale

  16. A Design of High-Power Beam Combiner at Millimeter Wavelengths Utilizing Wire Grids

    Science.gov (United States)

    Lin, Mei; Yu, Yanzhong

    2009-05-01

    A beam combiner, which can combine multiple Gaussian beams into a single one, has many important applications, such as high-power radar and weapon. In this paper, we propose a new scheme of the design of high-power beam combiner at millimeter wavelengths by using wire grids. The design tool is to combine a genetic algorithm (GA) for global optimization and an Ansoft HFSS for rigorous electromagnetic computation. The design method is described in detail and the optimized results are presented. Finally, a brief summary is given.

  17. Possibilities of Utilization the Risk – Based Techniques in the Field of Offshore Wind Power Plants

    Directory of Open Access Journals (Sweden)

    Przemysław Kacprzak

    2014-09-01

    Full Text Available In the article the risk-based concept that may be applicable to offshore wind power plants has been presented. The aim of the concept is to aid designers in the early design and retrofit phases of the project in case of lack or insufficient information in relevant international standards. Moreover the initial classification of components within main system parts of offshore wind power plant has been performed. Such classification is essential in order to apply risk-based concept. However further scientific researches need to be performed in that field to develop detailed concept useful for future practical applications.

  18. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  19. Utility-based joint Power and Rate Control Game with Interference Threshold Elasticity for Cooperative Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Tian Shen

    2014-06-01

    Full Text Available In cognitive networks, the cognitive radio users can share spectrum resource with the primary user while ensuring the normal communication of primary user. In addition, next generation wireless systems needs to provide flexible transmission rate to each terminal. In this paper, a utility-based game-theoretic model is proposed to study the joint power and rate control problem in spectrum underlay fashion in cognitive networks. We adopt a novel utility function based on cognitive network which focuses on social optimal resource allocation through pricing. Further, we show an interference threshold elasticity perspective, which is the key for primary network to maximize its utility by increasing its transmitted power to adjust the tolerable interference constraint. And also, the cognitive network can increase its total throughput capacity. In Stackelberg game, the primary user and the cognitive radio users interact with each other by adjusting their own actions. The cooperative cognitive networks model follows the “best-effort” principle as well as the win-win perspective of primary-cognitive user. Numerical simulations are conducted to demonstrate the performance of the model. The results show that the PU network can get more profit and also the CRU network can increase its total throughput capacity by the adjustment of the interference threshold.

  20. Renewable energy utilization and CO2 mitigation in the power sector: A case study in selected GMS countries

    Directory of Open Access Journals (Sweden)

    Kong Pagnarith

    2011-06-01

    Full Text Available Renewable energy is an alternative resource to substitute fossil fuels. Currently, the share of renewable energy inpower generation is very low. The selected Greater Mekong Sub-region (GMS, namely, Cambodia, Laos, Thailand andVietnam is a region having abundant of renewable energy resources. Though these countries have a high potential of renewableenergy utilization, they are still highly dependent on the imported fossil fuels for electricity generation. The less contributionof renewable energy in the power sector in the region is due to the high cost of technologies. Renewable energytechnology cannot compete with the conventional power plant. However, in order to promote renewable energy utilizationand reduce dependency on imported fossil fuel as well as to mitigate CO2 emissions from the power sector, this study introducesfour renewable energy technologies, namely, biomass, wind, solar PV, and geothermal power, for substitution of conventionaltechnologies. To make the renewable energy competitive to the fossil fuels, incentives in terms of carbon credit of20$/ton-ne CO2 are taken into account. Results are analyzed by using the Long-Range Energy Alternative Planning System(LEAP modeling. Results of analyses reveal that in the renewable energy (RE scenario the biomass power, wind, solarphotovoltaics, and geothermal would contribute in electricity supply for 5.47 GW in the region, accounted for 3.5% in 2030.The RE scenario with carbon credits could mitigate CO2 emissions at about 36.0 million tonne at lower system cost whencompared to the business-as-usual scenario.

  1. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  2. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    Energy Technology Data Exchange (ETDEWEB)

    Kaupp, A. [Energetica International Inc., Suva (Fiji)

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  3. Students’Perceptions of the Utilization of PowerPoint in English Teaching Class

    Institute of Scientific and Technical Information of China (English)

    杨艺

    2014-01-01

    This study is a qualitative research about students’ perceptions of PowerPoint in English teaching class. It is based on the interviews with two students. The results illustrate that they support PPT that is clear and brief despite some defects of it. However, teachers should make an appropriate combination of words and pictures, of PPT and board-writing.

  4. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    Science.gov (United States)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  5. Utilization of reducing power in light-limited cultures of Chromatium vinosum DSM 185

    NARCIS (Netherlands)

    Sanchez, O; Van Gemerden, H; Mas, J

    1998-01-01

    This study describes how the phototrophic organism Chromatium vinosum, when grown under different degrees of light limitation, distributes the reducing power initially present in the medium as hydrogen sulfide. Under all the conditions of illumination tested, sulfur was the major store of reducing p

  6. Utilization of Wind Turbines for Up-regulation of Power Grids

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Bendtsen, Jan Dimon; Wisniewski, Rafal

    2013-01-01

    This work considers the use of wind turbines for aiding up-regulation of an electrical grid, by employing temporary overproduction with respect to available power. We present a simple model describing a turbine, and show how the possible period of overproduction can be maximized by solving a series...

  7. The role of the existing utilities (continuing dominance of coal in Indian power industry)

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, R.V. [BSES Ltd. (India)

    1997-12-31

    The consumption of coal for power generation in India has increased from 10 million tonnes in 1960-61 to 200 million tonnes in 1996-97. The increased demand has been met largely through an increase in surface mining. However, the Gross Calorific Value of the coal has declined from 5900 kcal/kg in 1960-61 to an estimated 3500 kcal/kg in 1995-96. Indian power stations have to use coal with ash contents of 30% to 40% and even up to 45%. There is a need for additional coal washeries. Coal India Ltd and the Ministry of Coal have been identifying agencies to beneficiate coal. BSES with assistance from USAID under the PACER programme, is building a coal washery at its 500 MW power plant at Dahanu which will both wash coal for the power plant and act as a test facility to investigate different levels of beneficiation. The plant should be operational in September 1998. The problems Indian Railways have with the volume of coal transported and possible solutions (eg increased maritime transportation or coal slurry pipelines) are also discussed. Beneficiation prior to transport may overcome some of these problems. The management of ash disposal is also discussed.

  8. Evaluation of a Trapezoidal Predictive Controller for a Four-Wire Active Power Filter for Utility Equipment of Metro Railway, Power-Land Substations

    Directory of Open Access Journals (Sweden)

    Sergio Salas-Duarte

    2016-01-01

    Full Text Available The realization of an improved predictive current controller based on a trapezoidal model is described, and the impact of this technique is assessed on the performance of a 2 kW, 21.6 kHz, four-wire, Active Power Filter for utility equipment of Metro Railway, Power-Land Substations. The operation of the trapezoidal predictive current controller is contrasted with that of a typical predictive control technique, based on a single Euler approximation, which has demonstrated generation of high-quality line currents, each using a 400 V DC link to improve the power quality of an unbalanced nonlinear load of Metro Railway. The results show that the supply current waveforms become virtually sinusoidal waves, reducing the current ripple by 50% and improving its power factor from 0.8 to 0.989 when the active filter is operated with a 1.6 kW load. The principle of operation of the trapezoidal predictive controller is analysed together with a description of its practical development, showing experimental results obtained with a 2 kW prototype.

  9. Hydrothermally reduced graphene oxide as a supercapacitor

    Science.gov (United States)

    Johra, Fatima Tuz; Jung, Woo-Gwang

    2015-12-01

    The supercapacitance behavior of hydrothermally reduced graphene oxide (RGO) was investigated for the first time. The capacitive behavior of RGO was characterized by using cyclic voltammetry and galvanostatic charge-discharge methods. The specific capacitance of hydrothermally reduced RGO at 1 A/g was 367 F/g in 1 M H2SO4 electrolyte, which was higher than that of RGO synthesized via the hydrazine reduction method. The RGO-modified glassy carbon electrode showed excellent stability. After 1000 cycles, the supercapacitance was 107.7% of that achieved in the 1st cycle, which suggests that RGO has excellent electrochemical stability as a supercapacitor electrode material. The energy density of hydrothermal RGO reached 44.4 W h/kg at a power density of 40 kW/kg.

  10. Power Production Losses Study by Frequency Regulation in Weak-Grid-Connected Utility-Scale Photovoltaic Plants

    Directory of Open Access Journals (Sweden)

    Jesús Muñoz-Cruzado-Alba

    2016-04-01

    Full Text Available Nowadays, an increasing penetration of utility-scale photovoltaic plants (USPVPs leads to a change in dynamic and operational characteristics of the power distribution system. USPVPs must help to maintain the system stability and reliability while implementing minimum technical requirements (MTRs imposed by the utility grid. One of the most significant requirements is about frequency regulation (FR. Overall production of USPVPs is reduced significantly by applying FR curves, especially in weak grids with high rate of frequency faults. The introduction of a battery energy storage system (BESS reduces losses and improves the grid system reliability. Experimental frequency and irradiance data of several weak grids have been used to analyse USPVPs losses related to FR requirements and benefits from the introduction of a BESS. Moreover, its economic viability is showen without the need for any economic incentives.

  11. A novel Modulation Topology for Power Converters utilizing Multiple Carrier Signals

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    Power converters are known to generate spectral components in the range of interest of electromagnetic compatibility measurements. Common approaches to manipulate some selected components in these frequency ranges are shown here. These approaches add components to the input signal of the modulator...... to derive a slightly varied spectrum. To achieve a rectangular output signal, those modulators use a triangular or saw tooth carrier signal. A novel family of modulators is shown here, using more than one carrier signal to obtain a completely changed spectrum while maintaining the rectangular shaped...... waveform at the output. The multiple carriers are fed into multiple comparators and their outputs are intelligently combined by logic gates to get a single signal to drive one power stage of any type of converter. This commutation distinguishes between the four members of the novel family: the first one...

  12. Optimal Scheduling of Industrial Task-Continuous Load Management for Smart Power Utilization

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-03-01

    Full Text Available In the context of climate change and energy crisis around the world, an increasing amount of attention has been paid to developing clean energy and improving energy efficiency. The penetration of distributed generation (DG is increasing rapidly on the user’s side of an increasingly intelligent power system. This paper proposes an optimization method for industrial task-continuous load management in which distributed generation (including photovoltaic systems and wind generation and energy storage devices are both considered. To begin with, a model of distributed generation and an energy storage device are built. Then, subject to various constraints, an operation optimization problem is formulated to maximize user profit, renewable energy efficiency, and the local consumption of distributed generation. Finally, the effectiveness of the method is verified by comparing user profit under different power modes.

  13. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide

    Science.gov (United States)

    Hao, L. Y.; Zhou, X. J.; Yang, Z. B.; Zhang, H. L.; Sun, H. C.; Cao, H. X.; Dai, P. H.; Li, J.; Hatano, T.; Wang, H. B.; Wen, Q. Y.; Wu, P. H.

    2016-12-01

    We report a practical superconducting terahertz (THz) source, comprising a stack of Bi2Sr2CaCu2O8 intrinsic Josephson junctions (IJJs) and a vanadium dioxide (VO2) tunable attenuator with coplanar interdigital contacts. The electrical triggering phase transitions are observed not only at room temperature, but also at low temperatures, which provides a proof of the electrical triggering. Applying this, the VO2 attenuator is implemented for the independent regulations on the emission powers from the IJJ THz emitter, remaining frequencies and temperatures unchanged. The attenuation can be tuned smoothly and continuously within a couple of volts among which the maximum is, respectively, -5.6 dB at 20 K or -4.3 dB at 25 K. Such a power-adjustable radiation source, including the VO2 attenuator, can further expand its practicability in cryogenic THz systems, like superconducting THz spectrometers.

  14. DESIGN OF MCU BASED UNIVERSAL POWER ADAPTER FOR UTILIZING PHOTOVOLTAIC ENERGY

    Directory of Open Access Journals (Sweden)

    MASUDUL HAIDER IMTIAZ,

    2010-12-01

    Full Text Available This paper demonstrates design and implementation of an improved power adapter that can be used with AC main supply as well as photovoltaic power supply by means of DC. This adapter takes input from both ac main supply and dc supply and gives an output of adjustable voltage over a pre-defined range. Whenever the adapteris fed from both the supplies, it makes a decision and takes feed from only one input based on pre-defined preference. The whole system is built around a MCU (Microcontroller Unit, which monitors all the operations and takes decision. The output voltage and system feed status are shown numerically on a display for users.

  15. Enloe power development feasibility assessment report. Public utility district No. 1 of Okanogan County

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    The feasibility of rehabilitating an existing power house at the Enloe Dam in Washington was evaluated with consideration of expected power production, social and environmental impacts, regulatory aspects, technical requirements, financing, costs, and market potential. This assessment showed that rebuilding the existing powerhouse and appurtenant facilities is technically feasible. Rebuilding the existing turbines and generators proved to be the most desirable of three alternatives considered. The following four factors lead to this conclusion: rebuilding the old equipment is less costly than installing new turbines and generators; no major structural changes to the powerhouse would be required; rebuilding the turbines with increased flow capacity made the rebuilding alternative competitive with new equipment from an energy production standpoint; and rebuilding is compatible with the Enloe site's recent addition to the National Register of Historic Places.

  16. Adaptive Data Aggregation and Compression to Improve Energy Utilization in Solar-Powered Wireless Sensor Networks.

    Science.gov (United States)

    Yoon, Ikjune; Kim, Hyeok; Noh, Dong Kun

    2017-05-27

    A node in a solar-powered wireless sensor network (WSN) collects energy when the sun shines and stores it in a battery or capacitor for use when no solar power is available, in particular at night. In our scheme, each tiny node in a WSN periodically determines its energy budget, which takes into account its residual energy, and its likely acquisition and consumption. If it expects to acquire more energy than it can store, the data which has it has sensed is aggregated with data from other nodes, compressed, and transmitted. Otherwise, the node continues to sense data, but turns off its wireless communication to reduce energy consumption. We compared several schemes by simulation. Our scheme reduced the number of nodes forced to black out due to lack of energy so that more data arrives at the sink node.

  17. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  18. Contributions Concerning the Clock Hour Figure Utilization for the Power Transformer Diagnostic

    Directory of Open Access Journals (Sweden)

    Cristina Prodan

    2014-09-01

    Full Text Available The paper is based on a study for the diagnosis of power transformer through the signal configuration that are part of the clock hour figure code for a defect transformer. The investigations made have the purpose to compare the code signal before and after the transformers damage. The comparative analyzes of the signal form, course and polarity are constituted in diagnosis criteria and are formulated the conclusion about the defect location, nature and dimension.

  19. Light Weight Individually Powered Railway Freight Wagons Modified to Utilize Lost Energy during Braking

    OpenAIRE

    Gaurab Bhowmick; Gunjan,

    2013-01-01

    EMU or the Electric Multiple Units are those type of trains consisting of self-propelled carriages using electricity as the motive power. An EMU requires no separate locomotives, as electric traction motors are incorporated within one or a number of carriages. Generally EMUs are used for passenger train but the same technology can be implemented in freight carriages also. These EMU based freight cars will reduce the line congestion mainly in India due to its rapid acceleration and high speeds...

  20. Re-Examining first principles of regulation: NRG power marketing, LLC v. Maine public utilities Commission

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, Mark R.

    2010-03-15

    Maine PUC and Morgan Stanley have resolved some of the key issues facing the energy industry. The Supreme Court has plainly and directly in both cases reaffirmed the central role that private contracts play in the energy industry and set terms to balance the need to secure long-term investment with the public interest that lies at the heart of the Federal Power Act. (author)

  1. Light Weight Individually Powered Railway Freight Wagons Modified to Utilize Lost Energy during Braking

    Directory of Open Access Journals (Sweden)

    Gaurab Bhowmick

    2013-10-01

    Full Text Available EMU or the Electric Multiple Units are those type of trains consisting of self-propelled carriages using electricity as the motive power. An EMU requires no separate locomotives, as electric traction motors are incorporated within one or a number of carriages. Generally EMUs are used for passenger train but the same technology can be implemented in freight carriages also. These EMU based freight cars will reduce the line congestion mainly in India due to its rapid acceleration and high speeds.In this study, the purpose of the carriage is to be self-propelled using highly efficient traction motors powering each carriage made of high strength Aluminum having individual and independent wheel set. Also, the wagon will harness the waste braking energy using regenerative braking technique to power the traction motors partially. This study addresses the problem of severe line congestion, unwanted holding of freight trains to make passageway for passenger trains, light weight wagons, harnessing the wastage braking energy which are generally removed as heat. Therefore, study of the methodologies suggested has to be done in order to determine the feasibility and effectiveness of the methods both in terms of technology and financially. To achieve this detailed analysis is carried out to understand the modification of normal freight wagon to self-propelled EMU type wagon.

  2. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  3. Investigation of a family of power conditioners integrated into a utility grid: final report Category I

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P.; Putkovich, R.P.

    1981-07-01

    A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)

  4. The Effectiveness of Interactive Multimedia in Mathematic Learning: Utilizing Power Points for Students with Learning Disability

    Directory of Open Access Journals (Sweden)

    Widodo Dwi Riyanto

    2017-04-01

    Full Text Available The fact shows that students with learning disability need media of learning mathematics. The purpose of this study was to (1 develop interactive learning multimedia of power point, and (2 examine the effectiveness of power point in mathematics learning. The sample was a group of students in elementary school in Ngawi, East Java, Indonesia, especially those with learning disability. This study was a research and development comprising three stages: preliminary study, product development, and testing the effectiveness of the product. The data were collected through questionnaires, interviews and tests, then analyzed by descriptive qualitative, and t-test was to analize the effect of the product. In the development stage, the result showed that Experts validation is high as indicated by the mean score of 4.50 for the learning material, and the mean score of 4.44 for quality of the multimedia. The trial results showed that the quality of multimedia was very good as indicated by the mean score of 4.32. In term of the effectiveness of the product, the result from the t-test shows an increase of 14.27 (21.88%. This means that the interactive learning multimedia of power point improves the achievement of mathematic learning for students with learning disability in mathematics. Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International License

  5. Investigation of a family of power conditioners integrated into a utility grid: final report Category I

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P.; Putkovich, R.P.

    1981-07-01

    A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)

  6. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Directory of Open Access Journals (Sweden)

    Faisul Arif Ahmad

    2014-01-01

    Full Text Available Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

  7. A Structure for Three-Phase Four-Wire Distribution System Utilizing Unified Power Quality Conditioner (UPQC)

    OpenAIRE

    B. Santhosh Kumar; K. VIJAY KUMAR

    2014-01-01

    This paper presents a novel structure for a three- phase four-wire (3P4W) distribution system utilizing unified power quality conditioner (UPQC). The 3P4W system is realized from a three-phase three-wire system where the neutral of series transformer used in series part UPQC is considered as the fourth wire for the 3P4W system. A new control strategy to balance the unbalanced load currents is also presented in this paper. The neutral current that may flow toward transformer ne...

  8. Uncertainty management in telecommunications uninterruptible power supply systems and on their network by utilizing human reasoning methodology

    Science.gov (United States)

    Suntio, Teuvo

    1992-01-01

    A study to find the essential and important matters which can effect the reliable uninterrupted operation of telecommunications power supply systems and to suggest an optimal uncertainty management scheme is reported. The main goal was to find simple and practical but effective methods on which the uncertainty management and the implementation of its tool can be based. Uncertainty management ensures that there is enough reserve energy and minimizes additional uncertainties. It turned out that an optimal solution can be obtained by means of intelligent supervision, control and alarm facilities by utilizing human reasoning methodology, and minimize-uncertainty principles.

  9. State of the environment in the arrangement area of the enterprises for repairing and utilization of nuclear-powered submarines.

    Science.gov (United States)

    Dovgusha; Bychenkov; Blekher; Belyaev; Krupkin; Kovygin; Puzikov; Ryabchikov; Stepanov; Toropov

    2001-01-01

    The influence of nuclear-powered utilization (disjunction) upon the state of health of the soil, vegetation and atmospheric air was studied. It was stated that the concentration of hazardous metals in the air of an industrial site did not exceed the permissible levels. In the residential area the cases of increased concentrations of manganese and chromium were noted. The major pollutants of vegetation are manganese, titanium, copper and nickel. The authors propose a complex of anthropogenic factors to be the cause of the environmental contamination by hard metals. The volume activity of radioactive aerosols in the studied site is confined to the local hum.

  10. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    Energy Technology Data Exchange (ETDEWEB)

    Harder, J.E.

    1981-04-01

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  11. Modeling and design of light powered biomimicry micropump utilizing transporter proteins

    Science.gov (United States)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2014-11-01

    The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.

  12. Detection of Frauds and Other Non-technical Losses in Power Utilities using Smart Meters: A Review

    Science.gov (United States)

    Ahmad, Tanveer; Ul Hasan, Qadeer

    2016-06-01

    Analysis of losses in power distribution system and techniques to mitigate these are two active areas of research especially in energy scarce countries like Pakistan to increase the availability of power without installing new generation. Since total energy losses account for both technical losses (TL) as well as non-technical losses (NTLs). Utility companies in developing countries are incurring of major financial losses due to non-technical losses. NTLs lead to a series of additional losses, such as damage to the network (infrastructure and the reduction of network reliability) etc. The purpose of this paper is to perform an introductory investigation of non-technical losses in power distribution systems. Additionally, analysis of NTLs using consumer energy consumption data with the help of Linear Regression Analysis has been carried out. This data focuses on the Low Voltage (LV) distribution network, which includes: residential, commercial, agricultural and industrial consumers by using the monthly kWh interval data acquired over a period (one month) of time using smart meters. In this research different prevention techniques are also discussed to prevent illegal use of electricity in the distribution of electrical power system.

  13. Examination of actual utilization status on small scale wind power generation system; Kogata furyoku hatsuden system no riyo jittai chosa

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Matsui, T.; Inaoka, N. [Kansai Electric Power Co., Inc., Osaka (Japan); Miura, R. [Chiyoda Dames and Moore Co. Ltd., Tokyo (Japan)

    1994-12-01

    Although almost all of the wind mills for power generation with a small scale were self-manufactured in the past, since 10 and several years ago they have become to be regularly made as the industrial products. Even nowadays the small scale wind mills remaining in a market, or the small scale wind mills newly come to a market have adopted a contemporary advanced technology, and therefore in the utilization styles peculiar to the wind mills, an unique genre has been built. As for a scale of the wind mills, a system linking could also be considered, a scale of around 10 kw class was set up as a standard. As for total number of 98 units, a power generation scale could be classified into 41 kinds, from only 9 w as a small scale to 20 kw as a large scale. Now in this case 28 units of 1 kw - 5 kw class wind mill were most much collected. Many small scale wind mills actually used in Japan are often for the exhibits and the test/technological development. Also the locations where can not easily use a power from a power company can be frequently seen, however, like the huts and the light houses at a remote place. 4 refs., 9 figs., 2 tabs.

  14. Potential benefits of geothermal electrical production from hydrothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Bloomster, C.H.; Engel, R.L.

    1976-06-01

    The potential national benefits of geothermal electric energy development from the hydrothermal resources in the West are estimated for several different scenarios. The U.S. electrical economy is simulated by computer using a linear programming optimization technique. Under most of the scenarios, benefits are estimated at $2 to $4 billion over the next 50 years on a discounted present value basis. The electricity production from hydrothermal plants reaches 2 to 4 percent of the national total, which will represent 10 to 20 percent of the installed capacity in the West. Installed geothermal capacity in 1990 is estimated to be 9,000 to 17,000 Mw(e). The geothermal capacity should reach 28,000 to 65,000 Mw(e) by year 2015. The ''most likely'' scenario yields the lower values in the above ranges. Under this scenario geothermal development would save the utility industry $11 billion in capital costs (undiscounted); 32 million separative work units; 64,000 tons of U/sub 3/O/sub 8/; and 700 million barrels of oil. The most favorable scenario for geothermal energy occurs when fossil fuel prices are projected to increase at 5 percent/year. The benefits of geothermal energy then exceed $8 billion on a discounted present value basis. Supply curves were developed for hydrothermal resources based on the recent U.S. Geological Survey (USGS) resource assessment, resource characteristics, and projected power conversion technology and costs. Geothermal plants were selected by the optimizing technique to fill a need for ''light load'' plants. This infers that geothermal plants may be used in the future primarily for load-following purposes.

  15. Electric utility system planning studies for OTEC power integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-30

    Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

  16. Simulation and comparison of different operational strategies for storage utilization in concentrated solar power plants

    Science.gov (United States)

    García-Barberena, Javier; Erdocia, Ioseba

    2016-05-01

    The increase of electric power demand and the wish to protect the environment are leading to a change in the energy sources. Conventional energy plants are losing strength against the renewable energy plants and, in particular, solar energy plants have a huge potential to provide clean energy supply for the increasing world's energy demand. Among the existing solar technologies, Concentrating Solar Power (CSP) is one of the most promising technologies. One of the major advantages of CSP plants is the technically feasible and cost-effective integration of Thermal Energy Storage (TES) systems. To increase the plant dispatchability, it is possible to create different operational strategies defining how such TES system is used. In this work, different strategies with different overall goals have been simulated over a complete year and the results are presented and compared here to demonstrate the capabilities of the operational strategies towards an increased dispatchability and plant economic effectiveness. The analysis shows that different strategies may lead to significant differences in the plant annual production, expected economic incomes, number of power block stops, mean efficiency, etc. Specifically, it has been found that the economic incomes of a plant can be increased (+1.3%) even with a decreased total energy production (-1.5%) if the production is scheduled to follow a demand/price curve. Also, dramatic reduction in the number of turbine stops (-67%) can be achieved if the plant is operated towards this objective. The strategies presented in this study have not been optimized towards any specific objective, but only created to show the potential of well designed operational strategies in CSP plants. Therefore, many other strategies as well as optimized versions of the strategies explained below are possible and will be analyzed in future works.

  17. Utilization of stable isotopes in power reactor; Utilisation des isotopes stables dans les reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Desmoulins, P. [Electricite de France (EDF), 75 - Paris (France)

    1994-12-31

    The stable isotopes, besides uranium, used in EDF power nuclear reactors are mainly the boron 10 and the lithium 7. Boron is used in reactors as a neutrophagous agent for core reactivity control, and lithium, and more especially lithium 7, is extensively used as a solution in PWR moderators for primary fluid pH control. Boron and lithium ore reserves and producers are presented; industrial isotopic separation techniques are described: for the boron 10, they include dissociative distillation (Sulzer process) and separation on anionic resins, and for lithium 7, ion exchange columns (Cogema). 1 tab.

  18. Utilization of genetic algorithm in on-line tuning of fluid power servos

    Energy Technology Data Exchange (ETDEWEB)

    Halme, J.

    1997-12-31

    This study describes a robust and plausible method based on genetic algorithms suitable for tuning a regulator. The main advantages of the method presented is its robustness and easy-to-use feature. In this thesis the method is demonstrated by searching for appropriate control parameters of a state-feedback controller in a fluid power environment. To corroborate the robustness of the tuning method, two earlier studies are also presented in the appendix, where the presented tuning method is used in different kinds of regulator tuning situations. (orig.) 33 refs.

  19. Design of Informatization Conceptual for Smart Power Utilization%面向智能用电的信息化方案设计

    Institute of Scientific and Technical Information of China (English)

    苏立

    2011-01-01

    智能用电是智能电网建设的重要组成部分,分析智能用电方案的种类及特点。信息化建设是智能用电发展的基础关键,分析各智能用电方案对信息化技术的需求,包括数据采集、信息管理以及辅助决策。对用户内部智能用电、信息计量、信息管理及智能决策四个方面设计智能用电信息化方案。%Smart power utilization is the key component of smart Grid. Analyses the types and character of smart power utilization. The construction of information system is the basis for smart power utilization, and analyses the demand of the types of smart power utilization in the viewpoint of information technology, which is consisted of the collect of date, the management of information and decision-making support. Designs the informatization for smart power utilization including smart power utilization of power consumer, information meter, information manage and smart decision-making.

  20. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields

    NARCIS (Netherlands)

    Gibson, R.A.; van der Meer, M.T.J.; Hopmans, E.C.; Reysenbach, A.-L.; Schouten, S.; Sinninghe Damsté, J.S.

    2013-01-01

    The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations. Gene-b

  1. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields

    NARCIS (Netherlands)

    Gibson, R.A.; van der Meer, M.T.J.; Hopmans, E.C.; Reysenbach, A.-L.; Schouten, S.; Sinninghe Damsté, J.S.

    2013-01-01

    The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations.

  2. Solar Cogeneration Facility: Cimarron River Station, Central Telephone and Utilities-Western Power

    Science.gov (United States)

    1981-08-01

    A site-specific conceptual design and evaluation of a solar central receiver system integrated with an existing cogeneration facility are described. The system generates electricity and delivers a portion of that electricity and process steam to a natural gas processing plant. Early in the project, tradeoff studies were performed to establish key system characteristics. As a result of these studies the use of energy storage was eliminated, the size of the solar facility was established at 37.13 MW (sub t), and other site-specific features were selected. The conceptual design addressed critical components and system interfaces. The result is a hybrid solar/fossil central receiver facility which utilizes a collector system of Department of Energy second generation heliostats.

  3. On the Empirical Estimation of Utility Distribution Damping Parameters Using Power Quality Waveform Data

    Directory of Open Access Journals (Sweden)

    Irene Y. H. Gu

    2007-01-01

    Full Text Available This paper describes an efficient yet accurate methodology for estimating system damping. The proposed technique is based on linear dynamic system theory and the Hilbert damping analysis. The proposed technique requires capacitor switching waveforms only. The detected envelope of the intrinsic transient portion of the voltage waveform after capacitor bank energizing and its decay rate along with the damped resonant frequency are used to quantify effective X/R ratio of a system. Thus, the proposed method provides complete knowledge of system impedance characteristics. The estimated system damping can also be used to evaluate the system vulnerability to various PQ disturbances, particularly resonance phenomena, so that a utility may take preventive measures and improve PQ of the system.

  4. Utilization of ultrasound sensors for anti-collision systems of powered wheelchairs.

    Science.gov (United States)

    Dutta, Tilak; Fernie, Geoff R

    2005-03-01

    Anti-collision systems have been developed for use with powered wheelchairs in order to enable people with cognitive or physical impairments to safely operate a powered wheelchair. Anti-collision systems consist of sensors that have the ability to detect objects near the wheelchair and a computer that can stop the chair if a collision is determined to be likely. This investigation considered the suitability of using ultrasound sensors in such a system when encountering objects typically found within a home or a long-term care facility. An ultrasound sensor's ability to detect an object was dependent on the object's size, shape, specularity, reflectivity, and sound absorption characteristics. Ultrasound sensors, by themselves, were found to be unsuitable for anti-collision systems due to an inability to detect objects commonly encountered in the target environment (the home or long-term care facility) without increasing the complexity of the system to such a degree that it would be prohibitive to deploy this technology to the public.

  5. Experience and prospects of oil shale utilization for power production in Russia

    Science.gov (United States)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  6. Reduction of greenhouse-gas emissions by utilization of superconductivity in electric-power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.; Lehtonen, J.; Mikkonen, R. [Tampere University of Technology (Finland). Institute of Electromagnetics

    2004-06-01

    The reduction of greenhouse-gas (GHG) emissions is becoming a topical issue due to the Kyoto Protocol which requires the European Union (EU) to reduce its emissions by 8% from the 1990 levels by between 2008 and 2012. The main source for GHG-emissions is energy production. Superconducting electrical machinery is starting to emerge into the market of power devices. High-temperature superconducting (HTS) windings in generators and transformers can approximately halve the losses compared to conventional devices. Higher efficiency saves electrical energy and also reduces GHG-emissions as well. In this paper, the reduction potential of GHG-emissions in the EU by HTS-machinery is calculated. The replacement of existing devices by HTS ones is considered from the environmental point-of- view. The structure of energy production for the EU was investigated and the emission data from different type of power plants were screened. The potential energy savings were converted to saved GHG-emission tonnes. (author)

  7. Helicopter payload gains utilizing water injection for hot day power augmentation

    Science.gov (United States)

    Stroub, R. H.

    1972-01-01

    An analytical investigation was undertaken to assess the gains in helicopter mission payload through the use of water injection to produce power augmentation in an altitude-hot day environment. Substantial gains are shown for two representative helicopters, the UH-lH and CH-47B. The UH-lH payload increased 86.7 percent for a 50 n.mi. (92.6 km) radius mission involving two out-of-ground effect (OGE) hover take-offs of 2 minutes each at 5000 ft. (1525 m) 35 C ambient conditions. The CH-47B payload increased 49.5 percent for a 50 n.mi. (92.6 km) radius mission with sling loaded cargo as the outbound payload and a 3000 lb. (1360 kg) internal cargo on the return leg. The mission included two 4 min. OGE hovers at 6000 ft. (1830 m) 35 C. An improvement in take off performance and maximum performance climb also resulted as a consequence of the OGE hover capability and higher maximum power available.

  8. How does geographic scale alter the utilization of wind and solar power in the USA?

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A.; Xie, Y.; Wilczak, J. M.

    2012-12-01

    A significant obstacle to the widespread use of wind and solar energy is the high variability. While this obstacle is significant for a small area, because of the possibility of low wind and solar energy production for a significant period every year, over larger areas renewable energy production can make use of the fact that there will always be wind or solar energy available somewhere in the domain. A key scientific question is how large does an area have to be such that wind and solar can supply significant electricity production without large shortages? Results will be presented from a study that exams whether the continental US has enough areal scale such that the weather can drive large-scale wind and solar deployment? The study uses assimilated hourly weather data for 2006-8 and hourly electric load projected from 2006-8 to 2030. An optimization model developed for this study evaluates the cost of the national system when taking into account not only the cost of wind turbines and solar panels but also the costs of building the electricity producing stations, building the transmission lines, allowing for transmission losses and the fuel burned in the dispatch-able generation. While some results from this study are intuitive, others give surprising insights relevant to planning energy systems of the future. We show that wind and solar energy utilization increases with domain size, while the total atmospheric carbon release and total system costs are subsequently reduced. We show that transmission constraints do not significantly alter the utilization of wind and solar deployment, however, transmission dramatically affect the areal locations of the wind and solar generation plants. A similar scaling for global land and adjacent coastal areas, with no transmission constraints, shows that wind and solar energy systems are most effective on large geographic areas. The optimization model will be explained in greater detail and key results will be shared.

  9. Evaluating Proposed Investments in Power System Reliability and Resilience: Preliminary Results from Interviews with Public Utility Commission Staff

    Energy Technology Data Exchange (ETDEWEB)

    LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eto, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    Policymakers and regulatory agencies are expressing renewed interest in the reliability and resilience of the U.S. electric power system in large part due to growing recognition of the challenges posed by climate change, extreme weather events, and other emerging threats. Unfortunately, there has been little or no consolidated information in the public domain describing how public utility/service commission (PUC) staff evaluate the economics of proposed investments in the resilience of the power system. Having more consolidated information would give policymakers a better understanding of how different state regulatory entities across the U.S. make economic decisions pertaining to reliability/resiliency. To help address this, Lawrence Berkeley National Laboratory (LBNL) was tasked by the U.S. Department of Energy Office of Energy Policy and Systems Analysis (EPSA) to conduct an initial set of interviews with PUC staff to learn more about how proposed utility investments in reliability/resilience are being evaluated from an economics perspective. LBNL conducted structured interviews in late May-early June 2016 with staff from the following PUCs: Washington D.C. (DCPSC), Florida (FPSC), and California (CPUC).

  10. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  11. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  12. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  13. A contribution to the problems of utilizing coal combustion wastes from the EVO Vojany power station

    Directory of Open Access Journals (Sweden)

    Marta Benková

    2006-04-01

    Full Text Available In the contribution the procedures mineral processing technologies are presented. By their application, individual valuable components are of gained from the solid waste of black coalfired in a power station. The flotation product of unburned coal rests is characterized by 85 – 86 % loss ignition. The magnetic product (usually is it a new mineral formation of magnetite includes 47 – 49 % Fe. The fly ash which is free of the unburned coal rests and magnetite iron includes only 1.02 – 1.34 % loss ignition and 5.38 – 4.71 % Fe. The products from the can be usable in several industrial areas (building industry, metallurgy, etc.

  14. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    OpenAIRE

    LaCommare, Kristina H.

    2008-01-01

    Large blackouts, such as the August 14-15, 2003 blackout in the northeastern United States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. ...

  15. Hydrothermal research and development assessment. Task force report: projections for electric systems

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    It is estimated that high temperature (greater than 150/sup 0/C or 300/sup 0/F) hydrothermal resources in the western United States have the potential for producing about 140,000 megawatts of electric power for 30 years. The objectives of the present analysis were to realistically evaluate the extent to which these resources might be utilized over the next 20 years, and to assess the probably impact of Federal programs on that utilization. The R and D assessment team interviewed industry personnel to determine the nature and the relative significance of investment decision criteria for developers and utilities. The results of these interviews were used to develop a probabilistic model to simulate the investment decision behavior of these two groups toward hydrothermal resources. Estimations of the characteristics of anticipated available resources (e.g., temperature, salinity, depth) and predictions of the geographic distribution of new resource discoveries were based upon the characteristics and distribution of known reservoirs. The impact of a minimal R and D program and the impact of expanded R and D program were estimated on the basis of its effect upon industry investment decision criteria (e.g., the cost of power). The Task Force estimates comparing three different scenarios: (1) no program, (2) minimal R and D, and (3) expanded R and D are presented.

  16. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    Science.gov (United States)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  17. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  18. Utilizing power procurement strategies to win in the upcoming retail battle

    Energy Technology Data Exchange (ETDEWEB)

    Willerton, K. [TransAlta Energy Marketing Corp., Calgary, AB (Canada)

    1998-09-01

    Some strategies for municipal electric utilities (MEUs) for mitigating risk and using procurement as a tool to become more competitive, were presented. The largely unknown hazards of commodity retailing for the financial health of MEUs, and the value of strategic alliances were emphasized. Some of the risks inherent in commodity trading were outlined. The two main types of risk in energy procurement are associated with price and volume. Both are closely linked to energy supply and demand in a retailers portfolio. Details of how these impact on procurement decisions were explained with examples. The approach for contracting for energy under the request for proposal (RFP) option was strongly discouraged because it immediately places the MEU in a loss position if market prices go down. The two kinds of RFPs that could be issued are: (1) a contract for a fixed amount of energy at a fixed price, and (2) a contract to have a wholesaler to supply all the energy a retailer needs to meets its load at a fixed price. Banding together with other MEUs to purchase in bulk will not only be more cost effective, but probably essential for survival. Learning from private sector experience will favor MEUs over MEUs that fail to take advantage of the mistakes of others. 4 figs.

  19. Heat generated by power cables in utility tunnels. Dodonai denryoku cable no ondo yosoku gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Inoue, M.; Takagi, K.; Karikomi, M. (Kajima Corp., Tokyo (Japan))

    1993-10-31

    In order to investigate the method of expelling the heat generated by the power cable in the utility tunnel, the numerical analysis of model experiment on the heat transfer by natural convection and by radiation was carried out. As the thermal flow from the power cable is positioned in the transition region in the high Rayleigh region where the change takes place from laminar flow to turbid flow, the calculation results may be not always accurate. The visualization of thermal flow using the heat-sensitive liquid crystal was tested to be compared with the calculation results from the generalized simplified marker and cell method (GSMAC) which made it possible to shorten the calculation time. For the analysis of heat transfer by radiation, the radiation energy absorption distribution (READ) method which required short calculation time was employed. The results were as follows: The GSMAC finite element method could be employed in the analysis of this region of natural convention heat transfer. For the visualization of the thermal convection, the microcapsule thermo-sensitive liquid crystal was effective. For the radiation heat transfer analysis of narrow band radiation, the READ was suitable as it gave accurate results within a short period of time. In the construction design, it is important to enhance the radiation between the cable and the wall by separating the power cable. 9 refs., 14 figs., 3 tabs.

  20. Burr Utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2010-01-01

    This note proposes the Burr utility function. Burr utility is a flexible two-parameter family that behaves approximately power-like (CRRA) remote from the origin, while exhibiting exponential-like (CARA) features near the origin. It thus avoids the extreme behavior of the power family near the origi

  1. The Lassen hydrothermal system

    Science.gov (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  2. Studies on Effective Utilization of SOFC Exhaust Heat Using Thermoelectric Power Generation Technology

    Science.gov (United States)

    Terayama, Takeshi; Nagata, Susumu; Tanaka, Yohei; Momma, Akihiko; Kato, Tohru; Kunii, Masaru; Yamamoto, Atsushi

    2013-07-01

    Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.

  3. Energy analysis of the basic materials utilized in electric power transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The energy content per mile of installed underground and overhead power transmission systems has been calculated for the following types of systems: self-contained oil-filled cables; HPOF pipe-type cables; extruded dielectric cables; compressed-gas-insulated systems; overhead lines (ac and dc) and two proposed superconducting systems (ac and dc). The system operating voltages analyzed included 138, 230, 345, 500, 765 and 1,200 kV for ac systems, but all systems were not analyzed at the higher voltages. The dc overhead lines operated at +-200, +-400, +-600 and +-800 kV. Total installed energy content for these systems ranged from 4 x 10/sup 9/ to 1.2 x 10/sup 11/ Btu per mile. Installation energy requirements were generally 10% or less of the inherent system energy content based on the materials used in each system. Most of the energy content in each system can be attributed to the metallic components; plastic and insulating oil also contribute significantly. The energy content of 36 materials and basic products, in terms of Btu per ton, was calculated as part of this study. Substitution of conductor materials (e.g., aluminum for copper) in cable systems resulted in changes in the total system energy content on the order of 15%.

  4. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  7. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

  8. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

  9. A study on excavation of rock mass by lasers. Researching the possibility of utilizing low-power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fumio [Taisei Corporation, Technology Research Center, Yokohama, Kanagawa (Japan)

    2000-03-01

    The object of this research is to develop the techniques of rock-mass excavation by laser irradiation. This rock-mass excavation technique by lasers has a characteristic of extremely little effect to the surroundings of an excavation site no matter how the target rock mass is with regard to geological aspects and given physical property. Moreover, it could be utilized in excavation of waste dump facilities, which need to be re-buried, and applied to excavation of long piles and tunnels, which are drilled through different kinds of strata, and to improvement of rock mass and ground. Lasers have a characteristic of concentrating the energy into a limited point and not only discontinue or cut a large area with a small output like sharp scissors but also block up the cracks deep inside the rock mass by fusing vitrification for its improvement. It leads to restrain the loss of energy, minimization of the effected environment, effective utilization of resources and energy, environmental restoration, and improvement of the working environment. In the field of nuclear fuel, which includes excavating dump pits, dismantling a furnace, and taking appropriate steps of mine remains, excavating, cutting, and fusing could be required to do within a limited space of rock mass or concrete. Up to the present, those things have been done mainly by large machines, but it is too scarce in possibility for them to improve their large size, heavy weight, difficulty in unmanned operation, limited shapes of cutting, and stabilization of waste. In this research the concrete system images have been examined, doing the fundamental researches about higher-power lasers, smaller sizing, transmitting by fibers to find our the breakthrough to realization of laser excavation, This year, as the summary of examining the laser excavation techniques, utilizing a low-power laser, which is thought to be highly effective in rock-mass improvement, will be examined, considering application of the technique

  10. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

  11. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and

  12. Power Generation Utilizing Process Gases to Avoid Flaring; Elkraftproduktion ur processgas som idag facklas

    Energy Technology Data Exchange (ETDEWEB)

    Naesvall, Henrik; Larfeldt, Jenny

    2011-01-15

    There is an increasing awareness that process gases, such as associated gases in oil extraction and byproduct gases in liquidizing of natural gas, can be utilized for energy production. Efficient energy production through the use of a gas turbine is profitable both from economical and environmental point of view compared to simply getting rid of the process gas in flares. Gases with an elevated amount of heavier hydrocarbons generally speaking burns faster and more intense compared to standard natural gas. In gas turbines with so called premixed, low emitting combustor systems this might induce changes in flame stability and the combustion stability connected with this. This might in turn affect the emissions from the gas turbine, the operation life and ability to operate. This work aimed at proving the potential of running Siemens standard SGT-600 and SGT-700 engines on gas with elevated amount of heavy hydrocarbons. Pentane (C{sub 5}H{sub 12}) was used as a model substance for heavy hydrocarbons and a facility for feeding and mixing pentane with natural gas was designed and built at Siemens delivery test bed in Finspaang. The two engines were demonstrated to be able to operate on the mixed fuel at various loads. The results show that both engines are able to stable operation on fuels with up to 10% by volume pentane content. Stable in the sense that no change in combustion dynamics was noted and the control system worked as normal. There were no impact on the temperature distribution through the turbine that could be seen and a boroscope inspection after the test did not reveal anything unusual. A slight increase in emissions of nitrogen oxides (NO{sub x}) was detected explained by a slightly more intense flame which also explains the simultaneous lowering of carbon monoxide (CO) emissions. Unexpected difficulties were faced by the external laboratories when the sampled gas samples should be analysed. If the difficulties in analysing the samples could have been

  13. A Structure for Three-Phase Four-Wire Distribution System Utilizing Unified Power Quality Conditioner (UPQC

    Directory of Open Access Journals (Sweden)

    B. Santhosh Kumar

    2014-02-01

    Full Text Available This paper presents a novel structure for a three- phase four-wire (3P4W distribution system utilizing unified power quality conditioner (UPQC. The 3P4W system is realized from a three-phase three-wire system where the neutral of series transformer used in series part UPQC is considered as the fourth wire for the 3P4W system. A new control strategy to balance the unbalanced load currents is also presented in this paper. The neutral current that may flow toward transformer neutral point is compensated by using a four-leg voltage source inverter topology for shunt part. Thus, the series transformer neutral will be at virtual zero potential during all operating conditions. The simulation results based on MATLAB/Simulink are presented to show the effectiveness of the proposed UPQC-based 3P4W distribution system.

  14. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of wat

  15. Hydrothermal Reactivity of Amines

    Science.gov (United States)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  16. Nitrogen-doped hydrothermal carbons

    Energy Technology Data Exchange (ETDEWEB)

    Titirici, Maria-Magdalena; White, Robin J. [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; Zhao, Li [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; National Center for Nanoscience and Technology, Beijing (China)

    2012-07-01

    Nitrogen doped carbon materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as supercapacitors and proton exchange membrane fuel cells as well as in catalytic applications, adsorption and CO{sub 2} capture. The production of such materials using benign aqueous based processes, mild temperatures and renewable precursors is of great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that nitrogen doped carbons prepared using sustainable processes such as ''Hydrothermal Carbonisation'' has advantages in many applications over the conventional carbons. We also summarize an array of synthetic strategies used to create such nitrogen doped carbons, and discuss the application of these novel materials. (orig.)

  17. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  18. Implementation of network flow programming to the hydrothermal coordination in an energy management system

    Energy Technology Data Exchange (ETDEWEB)

    Chaoan Li; Jap, P.J.; Streiffert, D.L. (ESCA Corp., Bellevue, WA (United States))

    1993-08-01

    Hydrothermal Coordination (HTC), consisting of hydro optimization and thermal unit commitment, is a major function in a power system for allocating its generating resources to achieve the system's maximum economy. This paper is divided into two major parts. In the first part the optimality conditions of an Incremental Network Flow Programming (INFP) is described. In the second part the implementation of INFP in an EMS system and its interface with the existing Unit Commitment (UC) software is presented. Some new features are described in detail. The combined HTC and UC package has been delivered to a power utility, Tenaga National Berhad (TNB) in West malaysia. ESCA's internal tests and Factory Acceptance Tests have shown that NFP with a modified Superkilter algorithm is a powerful tool for hydro network flow optimization.

  19. A contribution on utilization of renewable energy sources in micro-power plants operating for autonomous power supply; Ein Beitrag zur Nutzung regenerativer Energie in Kleinstkraftwerken im Inselbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.

    2005-09-21

    The present dissertation deals with several aspects related to the electrification of remote areas. Being restricted to plants with electromechanical energy conversion, solar cells are not part of the research done. The work describes the prime movers to be utilized: the water wheel and the windmill. An analytic approach to describe the windmill is presented and necessary to understand the basic physical equations. As there is no mathematical way to describe the water wheel, measurements taken from a model build by the Research Center for Water and Environmental Engineering fwu provide the necessary characteristics of the water wheel. The watercourse in the fwu laboratories was used to measure the torque to speed characteristic of a triangular-segment cell-wheel under well defined conditions. These measurements are especially worth to be mentioned as almost no information regarding the water wheel characteristics is available in the literature. The description of the basics of the two prime movers is followed by the presentation of three different generator types. Special attention is paid to the self excitation process of the asynchronous machine, which is analytically examined in detail to create appropriate simulation models. The approach to describe the behavior of the machine in the rotor reference frame allows the consideration of the residual magnetism as a cause for the self excitation. The nonlinearities of the iron are also included in the model which leads to good consistency between measured and simulated results. A further contribution of innovative technology is the introduction of the rotating armature machine with switchable stator windings. This particular generator allows a wide variation of speed and is therefore especially suitable for its utilization together with the windmill. From the large number of possible of power electronic topologies, three are of special interest and became part of the investigations. First, the ferroresonant

  20. Final Technical Report for Contract No. DE-EE0006332, "Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation"

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, Dallas [San Diego Gas & Electric, CA (United States); Edra, Sherwin [San Diego Gas & Electric, CA (United States); Espinoza, Michael [San Diego Gas & Electric, CA (United States); Daye, Tony [Green Power Labs, San Diego, CA (United States); Kostylev, Vladimir [Green Power Labs, San Diego, CA (United States); Pavlovski, Alexandre [Green Power Labs, San Diego, CA (United States); Jelen, Deborah [Electricore, Inc., Valencia, CA (United States)

    2014-12-29

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  1. 风电利用水平评价关键指标研究%Research on Key Indexes Comparison of Wind Power Utilization Level

    Institute of Scientific and Technical Information of China (English)

    白建华; 张钦; 辛颂旭; 谢国辉

    2012-01-01

    为合理评价风电发展状况,以及对风电利用水平进行全面的比较,构建了多元化的风电利用水平指标比较体系.在简要介绍我国风电发展现状的基础上,对国内外风电发展基础条件及风电利用水平进行比较与分析.利用电力系统整体优化规划模型,对未来风电利用水平进行了展望与分析.研究结果表明,科学衡量风电发展水平需从多个方面综合衡量,应重点考虑风电与电力系统协调发展水平;提高电力系统整体规划和运行水平,是最终实现风电科学、高效发展的关键.%In order to reasonably evaluate wind power development status and perform comprehensive comparison of wind power utilization level, the comparison system with various indexes are constructed. Firstly, an overview of the status quo development of wind power in China is briefly introduced, and the basic conditions and utilization level of the development of wind power at home and abroad are clarified. Moreover, with system integrated optimization model, future wind power utilization level comparison is considered. The analytic results show that: wind power utilization level need to be scientifically measured from multiple aspects and the coordination development level between wind power and power system is the key factor. Increasing power system planning and operation level is the key to finally realize wind power scientific and effective development.

  2. Characteristics Evaluation of a CO2-Caputuring Power Generation System with Reheat Cycle Utilizing Regenerative Oxygen-Combustion Steam-Superheater

    Science.gov (United States)

    Pak, Pyong Sik

    A new CO2-capturing power generation system is proposed that can be easily realized by applying conventional technologies. In the proposed system, the temperature of middle-pressure steam in a thermal power plant is raised by utilizing oxygen-combusting regenerative steam-superheater. The generated CO2 by combusting fuel in the superheater can be easily separated and captured from the exhaust gas at condenser outlet, and is liquefied. The superheated steam is used to drive a steam turbine power generation system. By adopting a high efficient combined cycle power generation system as an example, it has been shown that the proposed system can increase power output by 10.8%, decrease the CO2 emission amount of the total integrated system by 18.6% with power generation efficiency drop of 2.36% compared with the original power plant without CO2-capture, when superheated steam temperature is 750°C

  3. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    Science.gov (United States)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  4. Hydrothermal commercialization baseline for state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Hanny, J.A.; Lunis, B.C. [eds.

    1979-06-01

    Wyoming does have numerous hot springs; but there has been little development effort in geothermal energy, since the state's primary interests are in coal, gas and oil. The hot springs of Thermopolis are among the largest in the world. Recent data from the central portion of the state indicate the potential for electric power generation from geothermal energy. Oil and gas wells (about 70,000) have been drilled in the state and some have geothermal waters that can be utilized for direct applications. The Madison Aquifer extends into the northeastern quadrant of the state and offers considerable potential for geothermal energy. Leasing activity is very limited. Geothermal legislation is basically non-existent, but the State Engineer has the responsibility for protecting the thermal springs. This handbook provides a synopsis of various aspects of the geothermal program in Wyoming. The section on Basic State Data (Section 2) lists government personnel (both legislative and executive branches) who are most directly involved with geothermal development. Some basic demographic data are also included. The various hydrothermal resources and the pertinent geology are summarized in Section 3. Activities (ranging from leases to operational systems) that lead to commercialization are described in Section 4. Plans for various developments are summarized in Section 5, while government assistance to Wyoming projects is list4ed in Section 6. The section on energy use patterns (Section 7) summarizes existing energy use and identifies counties and industries likely to be impacted most by geothermal energy. The section on leasing and permitting policies (Section 8) deals with legal and institutional considerations and includes a time table of institutional procedures for a typical resource to show the interrelationships among various organizations involved in development and regulation of the resource.

  5. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...

  6. Hydrothermal synthesis of hydroxyapatite

    Science.gov (United States)

    Earl, J. S.; Wood, D. J.; Milne, S. J.

    2006-02-01

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO3)2bold dot4H2O and (NH4)2HPO4 with distilled water, in a hydrothermal reactor at 200 °C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO4). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  7. Hydrothermal synthesis of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Earl, J S; Wood, D J; Milne, S J [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2006-02-22

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO{sub 3}){sub 2}{center_dot}4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4} with distilled water, in a hydrothermal reactor at 200 deg. C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO{sub 4}). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  8. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  9. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  10. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  11. Comprehensive Evaluation of a CO2-Capturing NOx-Free Repowering System with Utilization of Middle Pressure Steam in a Thermal Power Plant

    Science.gov (United States)

    Sik Pak, Pyong

    A CO2-capturing NOx-free H2O turbine power generation system is proposed in which middle pressure steam produced in a thermal power plant is utilized to increase generated power when demand for electricity is large. The proposed system can capture all the generated CO2 based on the oxygen combustion method and emits no NOx, so that it causes no urban and global environmental problems. A combined cycle power generation system with 200MW gas turbine power output is adopted as an example of a thermal power plant. It was assumed that 32 t/h of steam with 25kg/cm2 pressure produced at waste heat recovery boiler was utilized in the proposed system.It has been shown through simulation study that increase of power output by 11.8MW or 4.51% of the rated output is possible with no efficiency decrease. The amount of CO2 reduction is estimated to be 19600t/y.The unit cost of generated power is estimated to be 8.38yen/kWh, annual gross profit of the proposed system 271 million yen, depreciation year 4.87, and thus the proposed system is estimated to be economically feasible.

  12. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  13. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  14. 1.8V Operation Power Amplifier IC for Bluetooth Class 1 Utilizing p+-GaAs Gate Hetero-Junction FET

    Science.gov (United States)

    Harima, Fumio; Bito, Yasunori; Takahashi, Hidemasa; Iwata, Naotaka

    We have developed a power amplifier IC for Bluetooth Class 1 operating at single low voltage of 1.8V for both control and drain voltages. We can realize it due to fully enhancement-mode hetero-junction FETs utilizing a re-grown p+-GaAs gate technology. The power amplifier is a highly compact design as a small package of 1.5mm×1.5mm×0.4mm with fully integrated gain control and shutdown functions. An impressive power added efficiency of 52% at an output power of 20dBm is achieved with an associated gain of 22dB. Also, sufficiently low leakage current of 0.25μA at 27°C is exhibited, which is comparable to conventional HBT power amplifiers.

  15. Factors affecting the potential of direct load control for non-generating utilities. Final report. [Distribution and wholesale power supply interaction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    Several alternatives are available for achieving load management, including direct or voluntary control of customer loads, customer or utility energy storage systems for diurnal load shifting, and expanded interconnection and operation of electric power systems. All of these alternatives are available to the fully integrated (generating, transmitting and distributing) electric utility and the analysis of their effects encompasses the power supply and delivery system. However, the costs and benefits of the alternatives to the fully integrated electric utility are perhaps not so obvious. Therefore, by considering a non-generating utility, this analysis focuses upon the distribution system and wholesale power supply interaction as a step toward an analysis including the power supply and delivery system. This report develops an analysis procedure and discusses some of the relevant factors to be consdered in the application of direct load control for a non-generating utility system. The analysis concentrates on the distribution system only to determine the effect of rates and payback as a result of direct load control. Thus, the study is responsive to the specific needs of the non-generating utility. This analysis of direct load control encompasses the determination of those loads amenable to control, the selection of a suitable one-way communications system to rend control and the estimation of expected benefits and costs. The complementary functions to the application of direct load control such as automatic meter reading via the addition of a bi-directional communications system and voltage control are not included in the analysis but are detailed for future consideration.

  16. Synergistic Use of Nighttime Satellite Data, Electric Utility Infrastructure, and Ambient Population to Improve Power Outage Detections in Urban Areas

    Directory of Open Access Journals (Sweden)

    Tony A. Cole

    2017-03-01

    Full Text Available Natural and anthropogenic hazards are frequently responsible for disaster events, leading to damaged physical infrastructure, which can result in loss of electrical power for affected locations. Remotely-sensed, nighttime satellite imagery from the Suomi National Polar-orbiting Partnership (Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band (DNB can monitor power outages in disaster-affected areas through the identification of missing city lights. When combined with locally-relevant geospatial information, these observations can be used to estimate power outages, defined as geographic locations requiring manual intervention to restore power. In this study, we produced a power outage product based on Suomi-NPP VIIRS DNB observations to estimate power outages following Hurricane Sandy in 2012. This product, combined with known power outage data and ambient population estimates, was then used to predict power outages in a layered, feedforward neural network model. We believe this is the first attempt to synergistically combine such data sources to quantitatively estimate power outages. The VIIRS DNB power outage product was able to identify initial loss of light following Hurricane Sandy, as well as the gradual restoration of electrical power. The neural network model predicted power outages with reasonable spatial accuracy, achieving Pearson coefficients (r between 0.48 and 0.58 across all folds. Our results show promise for producing a continental United States (CONUS- or global-scale power outage monitoring network using satellite imagery and locally-relevant geospatial data.

  17. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  18. Numerical simulation of magmatic hydrothermal systems

    Science.gov (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  19. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  20. 电厂废弃稻壳灰水热合成ZSM-5分子筛%Hydrothermal synthesis of ZSM-5 zeolite from rice husk ash in power plant

    Institute of Scientific and Technical Information of China (English)

    张超; 郎林; 阴秀丽; 吴创之

    2012-01-01

    The rice husk ash collected from biomass power plants was reacted with KOH solution to obtain silica sol, which was used to synthesize ZSM-5 zeolite by hydrothermal crystallization. The effects of KOH solution concentration, reaction temperature, and reaction time on the Si dissolving rate were investigated, and the optimum parameters of alkali dissolution were obtained. The effects of template contentrations and Si/Al molar ratio on the synthesis of ZSM -5 zeolite in the complex system were also studied. The as-synthesized samples were characterized by XRD, SEM, ICP, TG-DSC and BET. The results show that the ZSM-5 crystals could be successfully synthesized in a wide range of the Si/Al molar ratio (15~2002), and the products (30≤Si/Al≤52002)had complete crystal shape, high thermal stability, large specific surface area, and its micropore size was centered at about 0.53 nm.%以电厂废弃稻壳灰为原料,通过KOH溶液水热处理制取硅溶胶,采用水热合成法制备ZSM-5分子筛.考察了KOH溶液浓度、反应温度和反应时间对Si溶出率的影响,探索出最佳碱溶工艺条件;研究了在复杂合成体系中,模板剂用量、Si/Al等因素对ZSM-5分子筛合成过程的影响;采用XRD,SEM,ICP,TG-DSC,N2吸附脱附等手段进行表征,结果表明,以电厂废弃稻壳灰为原料,在较宽Si/Al范围内(15~2002)均可合成出ZSM-5分子筛;当Si/Al为30~2002时,分子筛产物晶形较为完备,热稳定性好,比表面积较大,微孔分布集中于0.53 nm.

  1. A Novel approach for Low temperature Condenser waste heat Utilization in winter air conditioning for overall Performance Improvement of a Power Plant in Northern India

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Yadav

    2014-10-01

    Full Text Available The objective of this paper to highlight the scope of utilization of waste heat of condenser for winter air conditioning in and around thermal power stations. The vast amount of low grade condenser waste heat can be used to provide winter air conditioning by utilizing the existing system of year round central air conditioning without additional heavy capital expenditure .The present case study is about North India where peak winter lasts about 90 days . The waste heat utilization for winter conditioning will not only save large amount of electrical energy being used in electrical heaters but also generate additional revenue by selling out extra/spared power ,increase thermal energy utilization ,improve performance of the plant .The novel method of winter air conditioning will also reduce the heat load of the cooling towers, avoid pumping and blow down power as the returning water from air conditioning system can be used as blow down to maintain cooling water parameters in the plant.

  2. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A. [Electronic Power Conditioning, Inc., Corvallis, OR (United States)

    1996-12-31

    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  3. Unutilized energy utilizing systems. ; Power and levelling measures and unutilized energies. Miriyo energy katsuyo system. ; Denryoku fuka heijunka taisaku to miriyo energy

    Energy Technology Data Exchange (ETDEWEB)

    Kuromoto, E. (The Tokyo Electric Power Co. Inc., Tokyo (Japan))

    1993-02-12

    This paper explains quantitatively performance of heat storage tanks contributing largely to levelling power loads, and promoting and spreading more effective use of unutilized energies. A model case was used to compare differences in effectiveness of unutilized energy utilization with and without use of heat storage tanks. The heat demand used was a value in a day with a peak room cooling demand, and a heat supply system using water heat source heat pumps that utilize sewage treated water was used to manufacture cold water. As a result, the effective utilization rate of unutilized energy was increased to about 1.3 times when heat storage tanks were used. Effectiveness of a heat storage tank comes from its capability that excess amount of cold water manufactured during nighttime when heat demand falls by utilizing sewage treated water is stored in the heat storage tank, and the stored cold water can be supplied being mixed with cold water manufactured during daytime when heat demand rises sharply in daytime. Because sewage treated water has its annual temperature difference stabilized at about 10[degree]C, a heat pump utilizing the sewage treated water can reduce power required to produce heat of 1 Gcal by about 40% during room heating and about 15% during room cooling over the heating tower type heat pump. 8 figs., 1 tab.

  4. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  5. A Buck-Boost Converter Modified to Utilize 600V GaN Power Devices in a PV Application Requiring 1200V Devices

    OpenAIRE

    2015-01-01

    This paper presents a buck-boost converter which is modified to utilize new 600 V gallium nitride (GaN) power semiconductor devices in an application requiring 1200 V devices. The presented buck-boost converter is used as a part of a dc/dc stage in an all-GaN photovoltaic (PV) inverter and it provides a negative voltage for the 3-level neutral-point-clamped (NPC) PWM inverter which is connected to the utility grid. Since in this application the transistor and the diode of ...

  6. Operational reliability evaluation of restructured power systems with wind power penetration utilizing reliability network equivalent and time-sequential simulation approaches

    DEFF Research Database (Denmark)

    Ding, Yi; Cheng, Lin; Zhang, Yonghong

    2014-01-01

    and reserve provides, fast reserve providers and transmission network in restructured power systems. A contingency management schema for real time operation considering its coupling with the day-ahead market is proposed. The time-sequential Monte Carlo simulation is used to model the chronological...... with high wind power penetration. The proposed technique is based on the combination of the reliability network equivalent and time-sequential simulation approaches. The operational reliability network equivalents are developed to represent reliability models of wind farms, conventional generation...... characteristics of corresponding reliability network equivalents. A simplified method is also developed in the simulation procedures for improving the computational efficiency. The proposed technique can be used to evaluate customers’ reliabilities considering high penetration of wind power during the power...

  7. Highly efficient high power single-mode fiber amplifier utilizing the distributed mode filtering bandgap rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Jørgensen, Mette Marie

    2012-01-01

    We report on an ytterbium doped single mode distributed mode filtering rod fiber in an amplifier configuration delivering high average output power, up to 292 watts, using a mode-locked 30ps source at 1032nm with good power conversion efficiency. We study the modal stability of the output beam...

  8. The Restoration of a Local Energy Regime Amid Trends of Power Liberalization in East Asia: The Seoul Sustainable Energy Utility

    Science.gov (United States)

    Yu, Jung-Min

    2009-01-01

    Since the mid-1980s, power sector liberalization has been embraced at different levels in the East Asian countries of China, Japan, South Korea and Taiwan. The dominant rationale underlying power liberalization has been a quest for efficiency improvements, to be achieved by substituting private market activity for public regulations and by opening…

  9. The Restoration of a Local Energy Regime Amid Trends of Power Liberalization in East Asia: The Seoul Sustainable Energy Utility

    Science.gov (United States)

    Yu, Jung-Min

    2009-01-01

    Since the mid-1980s, power sector liberalization has been embraced at different levels in the East Asian countries of China, Japan, South Korea and Taiwan. The dominant rationale underlying power liberalization has been a quest for efficiency improvements, to be achieved by substituting private market activity for public regulations and by opening…

  10. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su’ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  11. Is the future of utilizing wind power on sea?; Liegt die Zukunft der Windenergienutzung auf dem Meer?

    Energy Technology Data Exchange (ETDEWEB)

    Hamerak, Kurt

    2010-07-01

    The German Federal Government is determined to produce nearly 28 % of the total electric power from renewable energy sources up to the year 2020 in order to become independant from the energy supplies of the neighboring countries. The largest share of electrical energy generated in Germany results from renewable energy sources of wind energy. Currently, about 7 % of total gross electricity demand are covered by wind converters. Wind power stations are not base loadable. Thus, wind power stations cannot replace completely power plants powered by fossil fuels or nuclear energy. Under this aspect, the author of the paper under consideration examines the question of whether the future of wind energy use is on the sea.

  12. 大数据技术在配用电系统的应用%Application of Big Data Technologies in Power Distribution and Utilization System

    Institute of Scientific and Technical Information of China (English)

    张东霞; 王继业; 刘科研; 郑安刚

    2015-01-01

    With the development of smart grid,power distribution and utilization systems are producing large volume of data.The processing and analytics based on these data have the potential to improve management and operation of power distribution and utilization systems.The development tendency of power distribution and utilization systems, structure of the data the systems are producing,and the characteristics of the big data are analyzed.The related domestic and international research and practice home and abroad are reviewed.The potential application scenarios and values of big data technologies are summarized.%随着智能电网的发展,配用电系统正在产生出越来越多的数据,利用大数据技术对这些数据进行处理和分析,对提高配用电系统的管理、运行水平有潜在的价值.分析配用电系统的技术发展趋势、配用电系统数据的构成及大数据特征;综述国内外相关研究和实践;总结大数据技术在配用电系统的主要应用场景和应用价值.

  13. The U.S. power industry's activities to expand coal ash utilization in face of lower ash quality

    Energy Technology Data Exchange (ETDEWEB)

    Golden, D.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    2001-07-01

    The use of coal by electric power utilities results in more than 105 million tons of by products each year in the United States. More restrictive air quality emission limits have resulted in cleaner air, but this means the fly ash is more contaminated and cannot be used in its largest market, the concrete industry. For this reason, the Electric Power Research Institute (EPRI) conducted a 5 year program at increasing ash utilization in the cement and concrete market in the United States. This initiative was in response to recent concerns regarding the impacts on ash quality due to more aggressive nitrogen oxide (NOx) controls. The EPRI program provides the technical basis for protecting the bulk sale of coal ash in high-volume applications in cement and concrete and other high volume civil engineering applications. Fly ash derived from NOx control systems has higher carbon levels and ammonia levels. Problems with ammoniated ash are a major concern for coal-fired power plants. It was shown that there are four ways to minimize the impact of NOx controls that reduce ash quality directly affecting ash utilization. These are: (1) prevention of carbon accumulation in fly ash for use in sensitive markets, (2) carbon removal, (3) concentration of reactive ash fractions by removal of coarse fractions, and (4) ammonia removal. It was concluded that more studies are needed to examine long-term durability and other properties before any of these options can be exploited on an industrial scale. 21 refs., 1 tab.

  14. Practice and prospect of China intelligent power utilization%中国智能用电的实践与未来展望

    Institute of Scientific and Technical Information of China (English)

    王广辉

    2012-01-01

    Based on the analysis of international development status in the field of intelligent power utilization and smart grid construction practices in China, an intelligent power utilization architecture suitable for China is presented. In-depth analysis and discussion focusing on the key supporting technologies including cloud computing and internet of things is performed. With practices in intelligent community, intelligent building and intelligent industrial park, the data mining of power utilization data and construction of urban energy management network are discussed.%基于对智能用电领域国内外发展现状的分析,依据中国智能电网建设实际,提出适合中国国情的智能用电体系架构,并对物联网和云计算关键支撑技术在智能用电方面的实践应用进行分析与探讨.结合在智能小区、智能楼宇和智能园区的智能用电典型实践,展望了未来用电数据价值的挖掘和城市能源管理网络的构建.

  15. First operation experiences from a 30 kV, 104 MVA HTS power cable installed in a utility substation

    Science.gov (United States)

    Willén, Dag; Hansen, Finn; Däumling, Manfred; Rasmussen, Claus N.; Østergaard, Jacob; Træholt, Chresten; Veje, Erling; Tønnesen, Ole; Jensen, Kim-Høj; Olsen, Søren Krüger; Rasmussen, Carsten; Hansen, Evald; Schuppach, Octav; Visler, Torben; Kvorning, Svend; Schuzster, Jozef; Mortensen, Johnny; Christiansen, Jørn; Mikkelsen, Søren D.

    2002-08-01

    An HTS cable with a voltage rating of 30 kV and a power rating of 104 MVA, has been installed and operated in the electric grid of Copenhagen Energy in the spring of 2001. This article describes the development phases, the system specifications, and the first experiences of operation under realistic conditions in the substation of Amager (AMK). Approximately 50 000 private and business customers are supplied from this cable. The load can be adjusted from 20% to 100% of the power supplied and the number of branches connected can be altered. This and other early HTS power installations are expected to act as ice-breakers for the HTS technology.

  16. First operation experiences from a 30 kV 104 MVA HTS power cable installed in a utility substation

    DEFF Research Database (Denmark)

    Willen, D.; Hansen, F.; Daumling, M.

    2002-01-01

    An HTS cable with a voltage rating of 30 kV and a power rating of 104 MVA, has been installed and operated in the electric grid of Copenhagen Energy in the spring of 2001. This article describes the development phases, the system specifications, and the first experiences of operation under...... realistic conditions in the substation of Amager (AMK). Approximately 50 000 private and business customers are supplied from this cable. The load can be adjusted from 20% to 100% of the power supplied and the number of branches connected can be altered. This and other early HTS power installations...

  17. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  18. 面向智能配用电网络的电力无线专网技术方案%A Power Wireless Broadband Technology Scheme for Smart Power Distribution and Utilization Networks

    Institute of Scientific and Technical Information of China (English)

    曹津平; 刘建明; 李祥珍

    2013-01-01

    智能配用电通信网络覆盖范围广、测量点多,是配用电系统智能化的基础之一.文中从配用电业务出发对无线宽带在配用电通信接入网的带宽、时延、安全需求进行分析,并提出一种新型的电力无线宽带系统的解决方案.这种基于电力专用频谱资源,使用分时长期演进(TD-LTE)技术的电力无线宽带能承载电力用户用电信息采集、配电自动化、配电监测终端以及视频监控等业务,有效解决了配用电业务信息传输的可靠性、稳定性问题.%The smart power distribution and utilization communication network is one of the foundations for the smart distribution and utilization system characterized by the wide range covered and large numbers of measuring points.The paper analyses the requirements of bandwidth,delivery time and security in distribution networks access layer from power services,and proposes a solving scheme for a novel power wireless broadband network.The power wireless broadband network is designed at the dedicated spectrum for electric power system and based on time division long-term evolution (TD-LTE) technology.The system can render the service of power consumption information collection,distribution automation,emergency first-aid repair,overhaul and mobile asset management,effectively keeping the transmission of the service information reliable and stable in the distribution and utilization networks.

  19. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  20. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  1. THE EFFECTS OF UTILIZING GEOTHERMAL ENERGY IN THERMAL POWER PLANTS ON THE PLANT PERFORMANCE AND FUEL SAVING

    Directory of Open Access Journals (Sweden)

    Ahmet DAĞDAŞ

    2006-02-01

    Full Text Available The share of electricity production from thermal power plants for Turkey is about 61 %. Since the fossil fuels are rapidly consumed, the concept of fossil fuel saving is very important for humanity. In this paper, the effects of boiler feed water preheating by means of geothermal brine on overall performance and fossil fuel savings in thermal power plants are examined. According to the performed analysis, power plant thermal efficiency could be increased of 2-4 % via geothermal preheating. In this analysis, a hypothetical thermal power plant is considered and its performance is evaluated. According to analysis, 1 million US$ in fossil fuel savings and 4.1 % increase in thermal efficiency could be achieved by the use of geothermal preheating.

  2. Three-phase power conversion system for utility-interconnected PV applications. Phase 1 technical progress report, 1 October 1995--17 April 1997

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.G.; Meyer, H.; Leang, W. [Omnion Power Engineering Corp., East Troy, WI (United States)

    1998-02-01

    This report describes work performed by Omnion Power Corporation under Phase 1 of a two-phase subcontract. During this phase, Omnion researchers: designed an advanced product specification to guide prototype design and development; analyzed field failure data with Omnion`s hard-switched insulated-Gate Bipolar Transistor technology hardware to better understand where design improvements were needed; presented and reviewed product specifications with key customers/users; drafted a working product specification to serve as a baseline in developing the new power conversion system; developed the core-resonant converter technology in conjunction with Soft Switching Technologies Corp.; designed a 100-kW prototype power conversion system; designed a prototype system package; initiated interaction with vendors to optimize component selection and specifications; initiated the preparation of design documentation; built the prototype core-resonant converter and initiated preliminary testing; and initiated the assembly of a 1-kW prototype power conversion system. This work has demonstrated the potential of the soft-switching resonant DC link (RDCL) inverter and its application to a three-phase utility-interconnected PV power conversion system. The RDCL inverter has demonstrated its advantage over hard-switching pulse-width modulated inverters in terms of efficiency and audible noise. With proper package design and manufacturing process design and implementation, the RDCL power conversion system has the potential to be low-cost and reliable with superior performance.

  3. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb; Muljadi, Eduard

    2017-02-01

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

  4. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    Science.gov (United States)

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region.

  5. 抽油机电动机合理负载率的研究%Reasonable Range of Electrical Motor Power Utilization Ratio of Pumping Units

    Institute of Scientific and Technical Information of China (English)

    宋扬; 姜雪; 张德实; 王新民

    2012-01-01

    The load characteristic of pumping units is a cyclicity loading. In order to startup and run the pumping units normally, the electrical motor theory installed power of pumping unit was usually higher than running power for requirement of the motor margin, which makes the electric power lost. The reasonable upper limit of electrical motor power utilization ratio by theorical check of the motor heating conditions, overload capacity and startup character and the lower limit by characteristic curve of electrical motor were made. It had been checked by experimental study. Declining electrical motor of pumping units installed power reasonably not only can raise electrical motor power utilization ratio and decrease inirial investment, but also can make importance for energy saving of oilfield.%游梁式抽油机的负载属于一种周期性交变载荷,为了满足抽油机正常启动、运行,所用电动机装机功率普遍高于理论装机功率,使电动机长期处于低负荷运行,造成能耗浪费.通过对电动机发热条件、过载能力及启动性能的理论校验与分析,确定了电动机负载率的合理上限,根据电动机工作特性曲线确定了负载率的合理下限,并利用试验研究进行了验证,合理地降低抽油机所用电动机的装机功率,不仅可以提高油井电动机负载率,降低初期投入,而且对油田生产节能降耗意义重大.

  6. Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-12

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

  7. Utilization of online-analysis of ashes in the power plant Neurath; Verwendung der Online-Ascheanalyse im Kraftwerk Neurath

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Horst [RWE Power, Neurath (Germany); Gocht, Dietmar [Evonik Energy Services GmbH, Essen (Germany)

    2008-07-01

    The authors of the contribution under consideration report on the use of on-line ash analysis in the power station Neurath (Federal Republic of Germany). On the basis of concrete data from the plant operation it is shown, how the complex closed-loop-monitoring of soot blowing adjusts the effects of changing coal qualities on the contamination reliably. The system preventively reacts to alterations of the coal qualities, since the analyses are accessible online. It has been shown during the continuous operation of the power station that the soot blowing can be accomplished further automatically by these measures also under altered circumstances due to the changing coal qualities. Thus, the personnel of the power station is relieved clearly.

  8. First operation experiences from a 30 kV 104 MVA HTS power cable installed in a utility substation

    DEFF Research Database (Denmark)

    Willen, D.; Hansen, F.; Daumling, M.

    2002-01-01

    An HTS cable with a voltage rating of 30 kV and a power rating of 104 MVA, has been installed and operated in the electric grid of Copenhagen Energy in the spring of 2001. This article describes the development phases, the system specifications, and the first experiences of operation under realis...... are expected to act as ice-breakers for the HTS technology...... realistic conditions in the substation of Amager (AMK). Approximately 50 000 private and business customers are supplied from this cable. The load can be adjusted from 20% to 100% of the power supplied and the number of branches connected can be altered. This and other early HTS power installations...

  9. Analysis of System Wide Distortion in an Integrated Power System Utilizing a High Voltage DC Bus and Silicon Carbide Power Devices

    Science.gov (United States)

    2007-06-01

    concentrated on the power supplied to a propulsion motor driven by an inverter with simulated silicon carbide switches. Theoretically, silicon ... carbide switches have the advantage of being able to withstand a very large blocking voltage and carry very large forward currents. Silicon carbide switches...are also very efficient due to their quick rise and fall times. Since silicon carbide switches can withstand high voltage differentials and switch

  10. 地热发电及综合梯级利用系统%Geothermal Power Generation and Its Comprehensive Cascade Utilization System

    Institute of Scientific and Technical Information of China (English)

    骆超; 龚宇烈; 马伟斌

    2012-01-01

    高效利用地热资源已成为地热开发利用的焦点话题,中国地热资源丰富,但大多分布偏远,地热资源利用率总体较低.本文结合国内外地热利用现状及发展趋势,重点阐述以氨水作为工质的动力循环系统,提出了净功率、电力产率、热效率和换热面积比率的性能指标,并分析氨水溶液质量分数、循环倍率和热水温度对上述指标的影响.在此基础上,探讨了建设适合于华南地域特征的地热资源综合梯级利用示范项目,实现资源利用率达到70%以上,为中低温余热利用提出了一个新的途径.%It becomes a hot topic that geothermal resources are effectively utilized; there is rich geothermal resource located in the remote areas in China. Based on the situation and development trend of geothermal utilization, the ammonia water power cycle is introduced and the cycle performance criteria, such as net power output, net power energy per ton of geothermal water, heat efficiency, and heat exchanger area of per net power, are presented. In addition, a demonstration project of geothermal resource cascade utilization in south China area is discussed, the resource utilization rate is more than 70%. The results indicate that AWPC cycling performance could be changed by adjusting the mass fraction of the ammonia solution, a higher ammonia mass fraction solution is favorable for protecting the system from the negative pressure, and the higher mass fraction is, the higher pressure is. There is an optimal circulation ratio in AWPC system, the value is about four for the mid-low temperature geothermal resource and the corresponding mass fraction difference between concentrated solution and dilute solution is about 12% -3%. The mode exploits a new way for efficiently utilizing the mid-low temperature geothermal resource.

  11. Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

    1995-03-01

    The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

  12. Utilization of power customers in the end user market. Analysis of the competitive relationship between the Norwegian power contracts; Utnytting av kraftkundar i sluttbrukarmarknaden. Analyser av konkurransetilhoevet mellom norske kraftavtaler

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Bjarne Bjoerkavaag

    2011-07-01

    This study deals with the competitive relationship between the Norwegian power agreements in end user markets. As expected we find clear evidence of an exploitation of locked-in customers through expensive standard variable rate agreements. One also find evidence that the extent of this utilization have increased after power providers began to use price discrimination of customers more actively. Vendors say the exploitation of locked-in customers have held out for and utilization is often seen as the biggest problem for the market. In time to come, it is not however given that exploitation of locked-customers, through expensive standard variable rate agreements, will continue to be the biggest problem with the market. Today, 60% of households are connected to the spot price contract, and such a percentage would indicate less use of customers. Electricity suppliers uses hand spot agreements without notification to exploit uncertainty customers have about competitive premiums. Agreements without notification will not be registered in this summary power to the Competition Authority and the agreements are therefore difficult to compare for customers. Today, over half of the spot price agreements without notification, and power providers achieve much greater profit on these agreements than the spot price agreements with notification.(eb)

  13. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Theregowda, Ranjani B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Hsieh, Ming-Kai [Tamkang Univ., Taipei (Taiwan). Waer Resources Management and Policy Research Center; Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  14. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    Science.gov (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  15. Utilizing Critical Race Theory to Examine Race/Ethnicity, Racism, and Power in Student Development Theory and Research

    Science.gov (United States)

    Hernández, Ebelia

    2016-01-01

    Recognition of social forces (racism, privilege, power) to the extent that is required by critical race theory (CRT) results in a paradigm shift in the way that we theorize and research student development, specifically self-authorship. This paradigm shift moves the center of analysis from individual, to the individual in relation to her…

  16. Utilizing Critical Race Theory to Examine Race/Ethnicity, Racism, and Power in Student Development Theory and Research

    Science.gov (United States)

    Hernández, Ebelia

    2016-01-01

    Recognition of social forces (racism, privilege, power) to the extent that is required by critical race theory (CRT) results in a paradigm shift in the way that we theorize and research student development, specifically self-authorship. This paradigm shift moves the center of analysis from individual, to the individual in relation to her…

  17. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  18. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  19. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  20. Power plant waste heat utilization in aquaculture. Volume III. Final report, 1 November 1976-1 November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Farmanfarmaian, A.

    1980-03-01

    This report is part of a three year research study on the constructive use of electric generating station waste heat in cooling water effluents for fish production. It describes procedures and methods for the commercial culture of the giant fresh water shrimp, Macrobrachium rosenbergii, and the rainbow trout, Salmo gairdneri, in the thermal discharge water of the Mercer Power Plant in Trenton, New Jersey. Discharge water from this plant was used in a preliminary assessment of the survival, growth, and food conversion ratio of these species. It was shown that acute or chronic exposure to power plant intake and discharge water; discharge with or without coal particles; and discharge with or without slurry overflow mix does not significantly affect metabolism, short-term survival, growth, or conversion efficiency of shrimp or trout.

  1. Utilization of Water Flow in Existing Canal System for Power Generation through Flow Acceleration Using Converging Nozzles

    OpenAIRE

    Shakeel Ahmed; Rizwan Riaz; Muhammad Anwar

    2016-01-01

    Energy crisis has remained a serious concern for developing countries like Pakistan. The problem can be addressed in two different ways: First is to start mega projects like construction of dams, power plants and nuclear reactors etc, while another method is to go for micro projects, like installation of wind turbines or micro-hydro projects. This paper presents a feasibility report on using convergent nozzles for runof-river turbines and also to devise a method for silt reduction...

  2. Hydro-Potential Utilization of Cooling Water on the Hydro-Electric Power Plant Dalešice

    OpenAIRE

    Hudec, Martin; Haluza, Miloslav; Kubálek, Jiří

    2009-01-01

    Engineering solution of a surplus pressure head in a system of reversible machine unit's cooling water. Current technologies supplemented with Francis turbine or more precisely a centrifugal volute-type pump in turbine mode. It contains the layout for the basic extent of several various high-speeds with regard to maximum coverage of working conditions. Minimization of construction works on the structure of the cooling water inlet. Furthermore it includes an assignment of the annual power prod...

  3. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US Freshwater resources.

    Science.gov (United States)

    Tidwell, Vincent C; Malczynski, Leonard A; Kobos, Peter H; Klise, Geoffrey T; Shuster, Erik

    2013-08-06

    Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings.

  4. Transition of wind power utilization technology in the 20th century; 20 seiki ni okeru furyoku riyo gijutsu no hensen

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Inst. of Tech., Tochigi (Japan)

    2000-04-01

    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at the end of 19{sup th} century. This paper, at first, reviews the windmill technologies and the researchers before 20th century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  5. Hydrothermal Synthesis of Metal Silicates

    Institute of Scientific and Technical Information of China (English)

    Lii Kwang-Hwa

    2004-01-01

    Organically templated metal phosphates have been extensively studied because of interesting structural chemistry and potential applications in catalysis. However, in most cases the organic templates cannot be removed without collapse of the frameworks. This is in contrast to the high thermal stability and extensive applications of zeolites in refinery and petrochemical processes.Therefore, studies have been directed to the synthesis of transition metal silicates to produce more stable frameworks. Our synthetic methods are twofold, namely mild hydrothermal reactions in Teflon-lined autoclaves at 100-200 ℃ using organic amines as templates and high-temperature,high-pressure hydrothermal reactions in gold ampoules contained in a high-pressure reaction vessel at ca. 550 ℃ and 150 Mpa using alkali metal cations as templates. In this presentation I will report the high-temperature, high-pressure hydrothermal synthesis, crystal structures, and solid-state NMR spectroscopy of a number of new silicates of indium, uranium, and transition metals.

  6. Free Open Source Software: FOSS Based GIS for Spatial Retrievals of Appropriate Locations for Ocean Energy Utilizing Electric Power Generation Plants

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-09-01

    Full Text Available Free Open Source Software: FOSS based Geographic Information System: GIS for spatial retrievals of appropriate locations for ocean wind and tidal motion utilizing electric power generation plants is proposed. Using scatterometer onboard earth observation satellites, strong wind coastal areas are retrieved with FOSS/GIS of PostgreSQL/GIS. PostGIS has to be modified together with altimeter and scatterometer database. These modification and database creation would be a good reference to the users who would like to create GIS system together with database with FOSS.

  7. Power plant waste heat utilization in aquaculture. Semi-annual report No. 1, 1 November 1976-1 April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Godfriaux, B.L.; Eble, A.F.

    1977-05-01

    A pilot aquaculture facility utilizing heated river water from condenser cooling (Mercer Generating Station, Trenton, New Jersey) is being used to culture the freshwater shrimp (Macrobrachium rosenbergii) and American eel (Anguilla rostrata) during the warmer months of the year and rainbow trout (Salmo gairdneri) during the colder months. Laboratory tests are also being conducted at Rutgers University to develop shrimp feeds with supplemented amino acids in order to reduce feed costs. Most of the work during the first six months of the proof-of-concept phase of the Mercer Aquaculture Project has been concerned with facility design, groundwater well construction and trials of the groundwater on trout.

  8. Possibilities of utilization of fly ash from the black coal Power Engineering of the U. S. Steel Košice

    Directory of Open Access Journals (Sweden)

    Františka Michalíková

    2005-11-01

    Full Text Available The paper presents modes of a direct utilization of the fly ash by-product of the combustion of black power coal in the slag - bottom boilers of the Division Plant Power Engineering ( DP PE of the U. S. Steel Košice ( next USSK . The properties of fly ash limit its use in metallurgy and foundry industry. The fly ash is directly utilizable in the metallurgical industry as a component of powder cover mixtures and insulation inserts, heat insulation parts and exothermical mixtures. The most important components in the mixtures are light micro spheres – cenospheres and heavy micro spheres – plerospheres. The micro spheres significantly improve properties of the powder cover mixtures.

  9. 我国核能利用与能源可持续发展探讨%Approach on Nuclear Power Utilization and Energy Sustainable Development in China

    Institute of Scientific and Technical Information of China (English)

    谭衢霖; 邵芸

    2001-01-01

    Description on the status quo of energy utilization, com parison of the impacts of coal power and nuclear power on environment, and treatment technique of nuclear waste and safty of nuclear electricity were presented and indicated that development of efficient and cleaner nuclear electricity greatly is an inevitable necessity for implementing sustainable development strategy in China.%阐述了我国目前的能源利用状况,火电与核电对环境影响的比较,核废物的处理技术及核电的安全性等,指出大力发展高效清洁的核电是我国实施可持续发展战略的必然要求。

  10. Optically-powered Voltage-supply-device for Effective Utilization of Optical Energy in the Fiber-To-The-Home Network

    Science.gov (United States)

    Fukano, Hideki; Shinagawa, Takeshi; Tsuruta, Kenji

    An optically powered device with using InGaAs-Photodiode has been developed. This study aims to harvest light energy (2.8∼500μW) from the FTTH (Fiber To The Home) network and to utilize it for operating remote sensors without external energy sources. First, we designed and evaluated the characteristics of the booster circuit and confirmed that it could boost an input voltage of 0.3 V to 3.0 V. Next, we also evaluated the characteristics of InGaAs photodiode and confirmed that it can output a voltage over 0.3 V at 10-μW input light. We demonstrate that a ready-made sensor can be operated with an input optical power as low as 10 μW.

  11. Hydrothermalism in the Mediterranean Sea

    Science.gov (United States)

    Dando, P. R.; Stüben, D.; Varnavas, S. P.

    1999-08-01

    Hydrothermalism in the Mediterranean Sea results from the collision of the African and European plates, with the subduction of the oceanic part of the African plate below Europe. High heat flows in the resulting volcanic arcs and back-arc extensional areas have set-up hydrothermal convection systems. Most of the known hydrothermal sites are in shallow coastal waters, <200 m depth, so that much of the reported fluid venting is of the gasohydrothermal type. The hydrothermal liquids are of varying salinities, both because of phase separation as a result of seawater boiling at the low pressures and because of significant inputs of rainfall into the hydrothermal reservoirs at some sites. The major component of the vented gas is carbon dioxide, with significant quantities of sulphur dioxide, hydrogen sulphide, methane and hydrogen also being released. Acid leaching of the underlying rocks leads to the mobilisation of heavy metals, many of which are deposited sub-surface although there is a conspicuous enrichment of metals in surficial sediments in venting areas. Massive polymetalic sulphides have been reported from some sites. No extant vent-specific fauna have been described from Mediterranean sites. There is a reduced diversity of fauna within the sediments at the vents. In contrast, a high diversity of epifauna has been reported and the vent sites are areas of settlement for exotic thermophilic species. Large numbers of novel prokaryotes, especially hyperthermophilic crenarchaeota, have been isolated from Mediterranean hydrothermal vents. However, their distribution in the subsurface biosphere and their role in the biogeochemistry of the sites has yet to be studied.

  12. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 面向智能电网的配用电通信网络研究%Power Distribution and Utilization Communication Network for Smart Grid

    Institute of Scientific and Technical Information of China (English)

    雷煜卿; 李建岐; 侯宝素

    2011-01-01

    Based on the up-to-date theory for the construction of smart power communication network home and abroad, the concrete planning, design and implementation of the construction of power distribution and utilization network are researched. Firstly, the related services of smart power distribution and utilization network and the relation among services and demands of service communication are analyzed, and basic service network models corresponding to various types of services are constructed; then in the viewpoint of the development of the network merging multi services, key technical elements related to the construction of communication network merging four kind of services such as available communication technology, structure of communication protocols, technology of synthetical network management and network security technology, are analyzed; finally based on the experiences of actual construction a typical infrastructure based on multi-technological networking, which can support following services: advanced distribution automation, acquisition of power utilization information, video surveillance and environment monitoring, bi-directional information communication between power suppliers and consumers and temporary emergency communication, is put forward, and corresponding typical technical implementation scheme for the construction of such a communication network is given.%结合国内外最新的智能电力通信网建设理论,研究了配用电通信网建设的具体规划和设计实现。首先分析了智能配用电网的相关业务、业务之间的关系、业务通信需求等,构建出对应各类业务的基础业务网络模型。然后从多业务融合网络发展角度,分析了构建4种业务融合通信网络涉及的关键技术要素(如可用的通信技术、通信协议结构、综合网管技术、网络安全技术等)。最后结合实际建设经验,提出一个支撑高级配电自动化、用电信息采集、视频

  14. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2011-08-01

    Full Text Available Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd. The results show the dominant role of temperature and flow rate. At a constant flow rate of 20 Nm3/h and temperatures of 500 °C, 600 °C and 700 °C the tar conversion rates reached 44.9%, 78.1% and 92.3%, respectively. These results could be increased up to 98.6% and 99.3% by using an operating temperature of 700 °C and lower flow rates of 15 Nm3/h and 10 Nm3/h. The syngas quality after the purification process at 700 °C/10 Nm3/h is acceptable for inner combustion (IC gas engine utilization.

  15. Development of the extension method of overhead power transmission wires utilizing radio controlled, small-sized airships

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Nariyuki

    1988-11-01

    Chubu Electric Power's Yokkaichi Electric Power Bureau has, with the cooperation of Taiheiyo Kogyo Co., Ltd. in Ogaki City, developed a radio-controlled, small-sized airship to fly across the particular spans (rivers, valleys, residential areas) for the installation of power transmission wires. This small-sized airship doesn't require a runway, neither does it cause danger to the workers because it does not have such large rotary wings as a radio-controlled helicopter. The ship's body length is 7.7m. Its weight is 28kg, and its carrying capacity is 3kg. It is possible for several operators to fly the ship in relays by radio control. At the starting point, a gondola is attached to the ship body. The gondola is equipped with a guide rope of 1.8mm diameter. After an electric mechanic has hooked an electric wire to the guide rope at the top of the starting steel tower, the airship flies across the span to the next steel tower, and thus extends the electric wire. At the terminal steel tower, an electric mechanic receives the wire, separates the gondola from the airship, and then the airship lands. Depending on the occasions, it is possible to station operators on the way and assure the flight. At present the span length limit is 700m. This method was experimentally carried out for the wire extension of 688m span across the Suzuka River, and for the wire extension of continuous spans in the Kawai branch line installation work. Thus the method was successfully put to practical use. 4 figures, 1 table.

  16. Microwave Hydrothermal Synthesis PZT of Nanometer Crystal

    Institute of Scientific and Technical Information of China (English)

    Hongxing LIU; Hong DENG; Yan LI; Yanrong LI

    2004-01-01

    It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.

  17. Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source.

    Science.gov (United States)

    Yokoyama, Hiroyuki; Tsubokawa, Hiroshi; Guo, Hengchang; Shikata, Jun-ichi; Sato, Ki-ichi; Takashima, Keijiro; Kashiwagi, Kaori; Saito, Naoaki; Taniguchi, Hirokazu; Ito, Hiromasa

    2007-01-01

    We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).

  18. Market power, affiliate transactions, and state regulation of public utility holding companies: Remembering the past, looking to the future

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, C.A.

    1996-11-01

    In examining the workings of the Public Utility Holding Company Act (PUHCA) and considering its possible repeal, it is best to go back to the original purposes of PUHCA and analyze whether those purposes are still relevant and, if so, whether the 1935 Act accomplished its goal. Indeed, one might ask, {open_quotes}Are the abuses which gave rise to PUHCA back in the 1930`s now eradicated such that outright repeal is warranted?{close_quotes} One is reminded of that old quote from Santayana, {open_quotes}Those who cannot remember the past are condemned to repeat it.{close_quotes} There is not a more appropriate time to heed that saying than now. To lay the foundation, we need to step back in time and place ourselves in the shoes of the policy makers at the time that PUHCA was debated.

  19. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.

    Science.gov (United States)

    Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

    2015-09-01

    Catalytic effect of goethite recovered from iron-ore mining mud was studied in microbial fuel cells (MFCs). Characterization of material recovered from mining mud confirms the recovery of iron oxide as goethite. Heat treated goethite (550 °C) and untreated raw goethite were coated on stainless-steel anode of MFC-1 and MFC-2, respectively; whereas, unmodified stainless-steel anode was used in MFC-3 (control). Fivefold increment in power was obtained in MFC-1 (17.1 W/m(3) at 20 Ω) than MFC-3 (3.5 W/m(3)). MFC with raw goethite coated anode also showed enhanced power (11 W/m(3)). Higher Coulombic efficiency (34%) was achieved in MFC-1 than control MFC-3 (13%). Decrease in mass-transport losses and higher redox current during electrochemical analyses support improved electron transfer with the use of goethite on anode. Cheaper goethite coating kinetically accelerates the electron transfer between bacteria and anode, proving to be a novel approach for enhancing the electricity generation along with organic matter removal in MFC.

  20. A Buck-Boost Converter Modified to Utilize 600V GaN Power Devices in a PV Application Requiring 1200V Devices

    Directory of Open Access Journals (Sweden)

    SRDIC, S.

    2015-08-01

    Full Text Available This paper presents a buck-boost converter which is modified to utilize new 600 V gallium nitride (GaN power semiconductor devices in an application requiring 1200 V devices. The presented buck-boost converter is used as a part of a dc/dc stage in an all-GaN photovoltaic (PV inverter and it provides a negative voltage for the 3-level neutral-point-clamped (NPC PWM inverter which is connected to the utility grid. Since in this application the transistor and the diode of the buck-boost converter need to block the sum of the PV string voltage (which is normally in the range from 150 to 350 V and the dc bus voltage (which is in the order of 400 V, the 1200 V devices or series connection of 600 V devices need to be employed. Currently, 1200 V GaN power semiconductor devices are not commercially available. Therefore, the standard buck-boost converter is modified to enable the use of 600 V GaN devices in this particular application. Based on the proposed converter topology, a PSpice simulation model and a 600 W converter prototype were developed. Both simulation and experimental results show successful operation of the converter.

  1. Two-step hydrothermal synthesis of Ru-Sn oxide composites for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Chang, Kuo-Hsin; Wang, Chen-Ching [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2007-03-20

    A two-step hydrothermal process was developed to synthesize hydrous 30RuO{sub 2}-70SnO{sub 2} composites with much better capacitive performances than those fabricated through the normal hydrothermal process, co-annealing method, or modified sol-gel procedure. A very high specific capacitance of RuO{sub 2} (C{sub S,Ru}), ca. 1150 F g{sup -1}, was obtained when this composite was synthesized via this two-step hydrothermal process with annealing in air at 150 C for 2 h. The voltammetric currents of this annealed composite were found to be quasi-linearly proportional to the scan rate of CV (up to 500 mV s{sup -1}), demonstrating its excellent power property. From Raman, UV-vis spectroscopic and TEM analyses, the reduction in mean particulate size is clearly found for this two-step oxide composite, attributable to the co-precipitation of (Ru{sub {delta}}Sn{sub 1-{delta}})O{sub 2}.xH{sub 2}O onto partially dissolved SnO{sub 2}.xH{sub 2}O and the formation of (Ru{sub {delta}}Sn{sub 1-{delta}})O{sub 2}.xH{sub 2}O crystallites in the second step. This effect significantly promotes the utilization of RuO{sub 2} (i.e., very high C{sub S,Ru}). The excellent capacitive performances, very similar to that of RuO{sub 2}.xH{sub 2}O, suggest the deposition of RuO{sub 2}-enriched (Ru{sub {delta}}Sn{sub 1-{delta}})O{sub 2}.xH{sub 2}O onto SnO{sub 2}.xH{sub 2}O seeds as well as the individual formation of (Ru{sub {delta}}Sn{sub 1-{delta}})O{sub 2}.xH{sub 2}O crystallites in the second hydrothermal step. (author)

  2. 电站烟气余热利用系统浅析%Initial Analysis on Flue Gas Waste Heat Utilization System in Power Plant

    Institute of Scientific and Technical Information of China (English)

    陈晓文; 杜文智; 熊英莹; 谭厚章

    2014-01-01

    With the growing use of energy and awareness of environmental protection around the world, more and more attention has been attracted by the utilization of waste heat from flue gas. In order to provide theoretical guidance for cascade utilization of waste heat in power plant efficiently and reasonably by setting a flue gas waste heat utilization system for our country, this article not only showed the design criteria of the system, but also analyzed heat transfer equation, ways of heat transfer, types of cold source and setting locations of that.%随着全球范围内能源需求量持续增加,环保意识不断增强,电站烟气余热利用越来越受到重视。本文介绍了电站烟气余热利用系统的设计原则,并分析了烟气余热利用系统的换热方程、换热方式、冷源种类以及可设置位置,可以作为我国电站设置烟气余热利用系统、高效合理地梯级回收烟气余热过程的参考。

  3. Modular repowering of power plants with nominal ratings lower than 180 MW: A rational design approach and its application to the Italian utility system

    Energy Technology Data Exchange (ETDEWEB)

    Melli, R.; Naso, V.; Sciubba, E. (Univ. di Roma (Italy). Dipartimento di Meccanica e Aeronautica)

    1994-09-01

    The paper describes the rationale, the technical/economical details and the results of a study which is part of a large-scale energy conservation program enacted by the Italian Public Utility (ENEL), within a broader framework of structural interventions on the national electricity production/transportation/utilization network. The objectives of the larger, long-term plan is to increase by a significant percentage (> 5 percent) the net conversion efficiency of the national system. The purpose of the present study is to recover'' a large number of nearly obsolete steam power plants by converting them to a combined cycle configuration. The expression generalized repowering'' has been used to synthetically describe this plant reconfiguration plan, and will be employed in this paper. After giving a brief description of the existing Italian electricity generation situation, the authors list some possible criteria for repowering and describe in detail the configurations which were considered to be feasible. Finally, the proposed options are comparatively analyzed, and the major parameters which can be of importance in the actual decision-making process on the part of the Public Utility are computed and presented in tabular form. In the conclusions the authors try to put the present work in the broader perspective of a large-scale (supernational), economically sound and ecologically acceptable energy conservation program.

  4. Power plant waste heat utilization in aquaculture. Semi-annual report, No. 2, 1 November 1977--1 June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Godfriaux, B.L.

    1978-06-01

    The principal objective is to evaluate, at proof-of-concept scale, the potential of intensive aquaculture operations using power plant thermal discharges to enhance productivity. The field experiments involve the rearing of rainbow trout (Salmo gairdneri), channel catfish (Ictalurus punctatus) and American eel (Anguilla rostrata) for successive periods (semi-annual) in accordance with the temperature of the thermal effluents. Striped bass (Morone saxatilis) and the freshwater shrimp (Macrobrachium rosenbergii) are also being tested in smaller, laboratory size culture systems. The above mentioned species were selected because of their economic importance. They will be evaluated for food quality and marketability with the cooperation of potential commercial users. Aquaculture facilities were constructed at a steam electric generating plant for studies determining use for waste heat released into condenser cooling water. Growth rates, food conversion ratios, disease problems and mortality rates are being studied in the project. (Color illustrations reproduced in black and white) (Portions of this document are not fully legible)

  5. Utilization of Water Flow in Existing Canal System for Power Generation through Flow Acceleration Using Converging Nozzles

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2016-06-01

    Full Text Available Energy crisis has remained a serious concern for developing countries like Pakistan. The problem can be addressed in two different ways: First is to start mega projects like construction of dams, power plants and nuclear reactors etc, while another method is to go for micro projects, like installation of wind turbines or micro-hydro projects. This paper presents a feasibility report on using convergent nozzles for runof-river turbines and also to devise a method for silt reduction in open flow channels. Ghazi-Barotha Canal has been used for the analysis based on its easily available data. The work has been carried out through analytical and numerical analyses.

  6. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed...

  7. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  8. HYDROTHERMAL CRACKING OF RESIDUAL OILS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrothermal cracking of heavy oils, such as Canadian oil sand bitumen and Arabian heavy vacuum residue, as well as their model compound were performed over sulfided Ni/Al2O3 and NiMo/Al2O3 catalysts under 663~703 K and 6.0~8.0 MPa of hydrogen pressure in a batch autoclave reactor. According to the reaction mechanism of hydrothermal cracking, a small amount of free redical initiators, such as di-tert-peroxide, sulfur, etc., was added into the feed to generate free redicals at lower temperature, and obviously showed promotional effect on the conversion of hydrocarbons. The reaction mechanisms of hydrothermal cracking as well as the enhancing effect of initiators were studied by a probe reaction with 1-phenyldodecane as a model compound. The hydrothermal cracking of hydrocarbon proceeded via free redical mechanism and hydrogenating quench. The initiators might easily generate free redicals under reaction temperature, these redicals might abstract H from hydrocarbon molecule and reasonably initiate the chain reactions, therefore, promote the conversion of hydrocarbon even at lower reaction temperature.

  9. 基于云计算的家庭智能用电策略%A Residential Smart Power Utilization Strategy Based on Cloud Computing

    Institute of Scientific and Technical Information of China (English)

    郭晓利; 于阳

    2015-01-01

    对智能小区的居民用电行为展开研究,基于云计算平台和并行关联规则 Apriori 算法,挖掘出了用户用电行为间的关联规则,根据挖掘出的关联规则使用遗传算法对家庭用电时间分布进行合理规划,达到经济用电的目标,给出了行之有效的智能用电策略。由供电局将用户的智能用电策略以短信等交互方式传递给智能用电家庭。经实例验证,文中基于云计算平台和并行 Apriori 算法的居民用电行为分析结果是有效的,可使居民高效智能用电,节约家庭能耗。%The residential electricity consumption behaviors in smart residential areas are researched.Based on the cloud computing platform and parallel Apriori algorithm,association rules among residential electricity consumption behaviors are mined out.According to the mined association rules,the household electricity time consumption distribution is reasonably planned by the genetic algorithm to achieve the goal of economical power.An effective smart power utilization strategy is given.The power supply bureau can notify residents of the smart power strategies through short message service(SMS)or in other interactive ways. Experimental results show that the residential electricity consumption behavior based on cloud computing platform and parallel Apriori algorithm are effective in guiding residents to save home energy in efficient and intelligent use of power.

  10. Power plant waste heat utilization in aquaculture. Annual report No. 1, 1 November 1976-31 October 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A pilot aquaculture facility utilizing heated river water from condenser cooling (PSEandG's Mercer Generating Station, Trenton, New Jersey) is being used to culture the freshwater shrimp (Macrobrachium rosenbergii) and American eel (Anguilla rostrata) during the warmer months of the year, and rainbow trout (Salmo gairdneri) during the colder months near Trenton, New Jersey. Twelve thousand trout were harvested from the last grow-out season. During June, 1977, juvenile shrimp 4.5 cm long were stocked at 31/sq m of total surface area in an outdoor raceway. By the end of September, 1977, the shrimp reached an average length of 7.9 cm at 11/sq m and suffered a high mortality of 58 percent. The density of 11/sq m confirms previous results in preceding years. Laboratory tests are also being conducted at Rutgers University to develop shrimp feeds with supplemented amino acids, and improve existing commercial shrimp feeds by incorporating better food binders which do not allow these food pellets to disintegrate in water as quickly.

  11. Power wheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines.

    Science.gov (United States)

    Ward, Amber L; Sanjak, Mohammed; Duffy, Kerry; Bravver, Elena; Williams, Nicole; Nichols, Mindy; Brooks, Benjamin Rix

    2010-02-01

    To determine the features most frequently selected in a power wheelchair (PWC), level of satisfaction with the selections, and how often the PWC features are used by patients diagnosed with amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Internally generated questionnaire. An ALS/Muscular Dystrophy Association center. Convenience sample of current patients (N=45) of our clinic with ALS/MND who are PWC users (men, n=27; women, n=18; age range, 27-85 y). Self-administered survey. Thirty-two patients completed a 31-question survey investigating patients' patterns of selection, satisfaction, and frequency of PWC use; technical and psychometric influences; and other aspects of decision-making processes that patients experience before, during, and after acquiring a PWC. Ninety percent of respondents received their evaluations at a multidisciplinary ALS clinic, 1 via the Department of Veterans Affairs, and 1 was unknown. Sixty-six percent of patients thought the chair evaluation was timed correctly, and 19% wished they had started sooner. Forty-five percent of people were able to walk a few steps, and 55% were able to stand when their chairs arrived. When they first received the chair, 79% were satisfied with the overall comfort of the chair, and 86% were satisfied with the ease of use; currently, 69% are satisfied with the overall comfort, and 72% are satisfied with ease of use. There was a statistically significant difference in how patients used their wheelchair features initially and currently in terms of seat elevate and attendant control, but not tilt, recline, and elevating leg rests. The average cost for the power chairs was $26,404 (range, $19,376-$34,311), and the average cost a month is $917. Overall, 88% of respondents said they would get the same type of chair with the same features again, and 81% felt that the chair was a good value for the cost. We obtained first-hand knowledge from 32 patients with ALS/MND who are current PWC users on their

  12. An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue.

    Science.gov (United States)

    Betancourt-Buitrago, L A; Vásquez, C; Veitia, L; Ossa-Echeverry, O; Rodriguez-Vallejo, J; Barraza-Burgos, J; Marriaga-Cabrales, N; Machuca-Martínez, F

    2017-01-18

    Utilization of UV LED light is trending in the development of photoreactors for pollutant treatment. In this study, two different geometries were studied in the degradation of methylenebBlue (MB) using high power UVA LED as a source of light. The dosage, initial concentration, electric power, and H2O2 addition were evaluated in the two geometries: a mini CPC (Cilindrical Parabolic Collector) and a vertical cylindrical with external irradiation both coupled with LED UVA. Best degradation was obtained for 0.3 g L(-1) TiO2, 40 min, and 15 ppm of MB of initial concentration in the standard batch reactor. It was found that the best system was a cpc geometry. Also, hydrogen peroxide was used as an electron acceptor and 97% degradation was obtained in 30 min with 10 mM H2O2 and 0.4 g TiO2/L. Power of the LEDs was also evaluated and it was found that 20 W m(-2) is the best operational condition to achieve the best MB degradation avoiding the oxidant species recombination.

  13. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter - September 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    In the Third Quarter of 1982, the number of signed contracts and committed projects rose from 148 to 173, with a total estimated nominal capacity of these projects of 922 MW. Of this nominal capacity, about 168 MW is operational, and the balance is under contract for development. Of the 173 signed contracts and committed projects, 61 were cogeneration and solid waste projects with a potential of 643 MW. PG and E also had under active discussion 28 cogeneration projects that could generate a total of 968 MW to 1,049 MW, and 10 solid waste projects with a potential of 90 MW to 95 MW. Wind projects under contract number 84, with a generating capability of 85 MW. Also, discussions are being conducted with 17 wind projects, totaling 83 MW. There are 23 hydroelectric projects with signed contracts and a potential of 95 MW, as well as 63 projects under active discussion for 169 MW. In addition, there are 25 hydroelectric projects, with a nominal capacity of 278 MW, that PG and E is constructing or planning to construct. Five contracts have been signed with projects, using other types of electric power generation, capable of producing 100 MW.

  14. Design of the Automatic Complementary Switching System for User Type Photovoltaic Power Generation and Utility Power Grid%用户型光伏发电与市电互补自动切换系统设计

    Institute of Scientific and Technical Information of China (English)

    武世敏; 徐维昌; 李明滨; 王燕昌

    2014-01-01

    太阳能光伏发电被认为是当今世界极具发展前景的新能源技术之一。对独立光伏发电系统而言,需要铅酸蓄电池为负载提供电能。为了保护蓄电池同时又保证负载正常、安全、可靠地运行,对用户型光伏发电与市网无缝互补自动切换装置进行了设计。该系统装置由电压信号检测、电压信号比较和外围控制电路3部分组成。系统通过比较被检测的电池板两端电压和最低工作电压(可设定)的大小关系,实现市电和光伏发电系统无缝互补和自动切换。系统结构简单、成本低廉,具有广泛的应用价值。%Nowadays, solar photovoltaic power generation is considered as one of the new energy technologies having very promising prospects in the world. For stand-alone photovoltaic power generation system, lead-acid storage batteries are needed for supplying electric energy to the load. To protect batteries while ensuring load running normally, safely and reliably, the seamless complementary automatic switching device for user type photovoltaic power generation and utility power grid is designed. The systematic device is composed of three parts, i. e. , voltage signal detection, voltage signal comparison, and peripheral control circuit. Through comparing the magnitude relationship of the detected voltage on both ends of the panels and the minimum operating voltage ( settable) , seamless complementary and automatic switching for utility power grid and photovoltaic power generation system can be implemented by the system. The system features simple structure, low cost, and possesses wide application value.

  15. 灵活互动智能用电的技术内涵及发展方向%Technical Implications and Development Trends of Flexible and Interactive Utilization of Intelligent Power

    Institute of Scientific and Technical Information of China (English)

    李同智

    2012-01-01

    智能用电是智能电网研究的热点、难点,灵活互动的供用电模式已成为智能用电的发展趋势。文中介绍了构成灵活互动智能用电的高级量测体系标准、系统及终端技术,智能用电双向互动运行模式支撑技术,以及用户用电环境与用电模式相互影响的内涵和国内外发展现状。明确了灵活互动智能用电的发展目标,阐述了灵活互动智能用电的发展方向和研究技术路线。%Intelligent power utilization is a topical and difficult subject in the study of smart grid. The flexible and interactive mode of power supply and consumption has become the trend of intelligent power utilization. A description mcludes tne standards, system and terminal technology of advanced metering infrastructure, the bi-directional interactive operation mode and supporting technology of intelligent power utilization, and the interaction between users' power utilization environment and patterns, which constituting the flexible and interactive utilization Of intelligent power. The current situation and development problems of these techniques at home and abroad are discussed. The development goals of flexible and interactive utilization of intelligent power are clarified. The development trends and technical study route of flexible and interactive utilization of intelligent power are elaborated.

  16. Exploring the Potential Competitiveness of Utility-Scale Photovoltaics plus Batteries with Concentrating Solar Power, 2015–2030

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stekli, Joseph [Dept. of Energy (DOE), Washington DC (United States). Office of Solar Energy Technologies Program

    2016-08-01

    Declining costs of both solar photovoltaics (PV) and battery storage have raised interest in the creation of “solar-plus-storage” systems to provide dispatchable energy and reliable capacity. There has been limited deployment of PV-plus-energy storage systems (PV+ESS), and the actual configuration and performance of these systems for dispatchable energy are in the early stages of being defined. In contrast, concentrating solar power with thermal energy storage (CSP+TES) has been deployed at scale with the proven capability of providing a dispatchable, reliable source of renewable generation. A key question moving forward is how to compare the relative costs and benefits of PV+ESS and CSP+TES. While both technologies collect solar radiation and produce electricity, they do so through very different mechanisms, which creates challenges for direct comparison. Nonetheless, it is important to establish a framework for comparison and to identify cost and performance targets to aid meeting the nation’s goals for clean energy deployment. In this paper, we provide a preliminary assessment comparing the cost of energy from CSP+TES and PV+ESS that focuses on a single metric: levelized cost of energy (LCOE). We begin by defining the configuration of each system, which is particularly important for PV+ESS systems. We then examine a range of projected cost declines for PV, batteries, and CSP. Finally, we summarize the estimated LCOE over a range of configuration and cost estimates. We conclude by acknowledging that differences in these technologies present challenges for comparison using a single performance metric. We define systems with similar configurations in some respects. In reality, because of inherent differences in CSP+TES and PV+ESS systems, they will provide different grid services and different value. For example, depending on its configuration, a PV+ESS system may provide additional value over CSP+TES by providing more flexible operation, including certain

  17. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2011-01-01

    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  18. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  19. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  20. Utilities:Other:Utilities at Pipe Spring National Monument, Arizona (Utilities.gdb:Other:utilpnt_other)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents various types of utilities, not including water- and power-related utilities, at Pipe Spring National Monument, Arizona. The utilities...

  1. A comparison of hydrothermal reservoirs of the Western United States. Topical Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Meidav, H. Tsvi; Sanyal, Subir

    1976-12-01

    This report presents a portion of the results from a one-year feasibility study sponsored by the Electric Power Research Institute to assess the feasibility of constructing a 25 to 50 MWe geothermal power plant using low salinity hydrothermal fluids as the energy source. It contains the results of a comparative study of sixteen hydrothermal reservoirs in the US. The reservoirs were selected for comparison on the basis of available data, development potential, and representativeness of known hydrothermal reservoirs in the US. Six reservoir and fluid criteria were considered the most important in determining the development and power conversion potential: depth and lithology, reservoir temperature, tested flow rate per well, fluid chemistry, magnitude of the reserve and reinjection potential. These criteria were evaluated for each of the selected reservoirs.

  2. Sustainable carbon materials from hydrothermal processes

    CERN Document Server

    Titirici, Maria-Magdalena

    2013-01-01

    The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application fo

  3. Nonexpected utility and coherence

    NARCIS (Netherlands)

    Diecidue, E.

    2001-01-01

    The descriptive power of expected utility has been challenged by behavioral evidence showing that people deviate systematically from the expected utility paradigm. Since the end of the 70's several alternatives to the classical expected utility paradigm have been proposed in order to accommodate the

  4. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2012-01-01

    Now in its 3e, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Important new chapters cover Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems. New, international case studies provide practical, hands-on knowledge.

  5. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  6. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    Energy Technology Data Exchange (ETDEWEB)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  7. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruwei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Liu, Guijian, E-mail: lgj@ustc.edu.cn [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Zhang, Jiamei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China)

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM{sub 10}- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM{sub 10} and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM{sub 10} and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM{sub 10} surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. - Highlights: • PAH distribution in PM{sub 10} and gas phases primarily depend on the vapor pressure. • Combustion conditions and WFGD show typical effects on PAH level and profile. • PAH partitioning is dominated by absorption and also accompanied by adsorption. • Individual PAHs show different partitioning mechanisms in PM{sub 10}- and gas-phases. • People in

  8. 智能配用电园区技术集成方案%Technology Integration Scheme of Smart Power Distribution and Utilization Park

    Institute of Scientific and Technical Information of China (English)

    杨永标; 周立秋; 丁孝华; 白义传

    2012-01-01

    Facing new boundary conditions such as distributed power, distributed storage, electric automobile scale access, and user demand side response, the functions and business transaction of the park gradually are developing in the direction of integration, and technology integration is :the basis of achieving the above goals. A description is made of the overall line thought of the smart power distribution and utilization park integrated technology, and the specific integration method around the three aspects, viz. equipment and equipment, equipment and system, and system and system, is given. The park integrated information security problems are discussed. The proposed technology integration scheme will be applied in the China-Singapore Tianjin Eco-city.%面对分布式电源、分布式储能装置、电动汽车的规模化接入以及用户需求侧响应等新的边界条件,配用电园区的功能和业务逐步向交叉整合方向发展,而技术集成是实现上述目标的基础。介绍了智能配用电园区技术集成的总体研究思路,围绕设备与设备、设备与系统及系统与系统3个方面给出了具体的集成方法,探讨了园区集成的信息安全防护问题。该技术集成方案将在中新天津生态城得到应用。

  9. DESIGN OF NOVEL HIGH PRESSURE- RESISTANT HYDROTHERMAL FLUID SAMPLE VALVE

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Canjun; WU Shijun; XIE Yingjun; CHEN Ying

    2008-01-01

    Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the finite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.

  10. Utilization of siderurgical gases in gas engines for power generation: an important contribute to avoid the climate change; Aproveitamento de gases siderurgicos para geracao de energia em motores a gas: uma contribuicao importante para evitar a mudanca climatica

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Gustavo; Schneider, Martin; Marschik, Barbara; Amplatz, Erwin [GE Jenbacher (Austria)

    2009-11-01

    Gas engines show a high flexibility regarding the utilization of siderurgical gases. In the meantime GE's Jenbacher gas engines have more than 1.5 Mio operating hours with existing applications like coke gas or LD-gas. The modular approach with multiple units per power plant offers high flexibility regarding plant operation. The power plant can be operated in a wide range in an optimized efficiency band. This flexibility allows the economical utilization even of relatively small volumes of siderurgical gases, avoids flaring and can substitute other fossil fuels. (author)

  11. 火力发电厂采暖空调系统余热利用优化设计%The Optimum Design of the Waste Heat Utilization of Heating&Air-conditioning System in Thermal Power Plant

    Institute of Scientific and Technical Information of China (English)

    费洪磊; 刘欢; 薛岑

    2015-01-01

    我国能源紧缺,一次能源及各种余热资源利用水平较低,深度挖掘利用电厂余热,制定合理的回收利用方案,优化设计采暖空调系统,提高电厂余热利用率十分重要. 基于电厂采暖空调系统余热利用存在的问题,详细介绍了火力发电厂采暖空调系统余热利用的优化设计.%Because of the energy shortage and a lower utilization level of primary energy and various waste heat resources utilization in China, the deep excavation and utilization of the waste heat in thermal power plant, the formulation of reasonable recycling scheme, the optimum design of heating & air-conditioning system and the improvement of utilization rate of waste heat are very important.Based on the problems existing in the waste heat utilization of heating&air-conditioning system in thermal power plant, this paper introduces in detail the optimum design of the waste heat utilization of heating&air-conditioning system in thermal power plant.

  12. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  13. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Swita, Marie; Albrecht, Karl; Howe, Daniel

    2016-10-01

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions. Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.

  14. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.

    Science.gov (United States)

    Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao

    2016-08-01

    A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway.

  15. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

    DEFF Research Database (Denmark)

    Jasiunas, Lukas; Pedersen, Thomas Helmer; Toor, Saqib Sohail

    2017-01-01

    The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due...

  16. Introduction to electrical power and power electronics

    CERN Document Server

    Patel, Mukund R

    2012-01-01

    Power Generation, Distribution, and Utilization AC Power Fundamentals Common Aspects of Power Equipments AC Generator AC and DC Motors Transformer Power Cable Power Distribution Fault Current Analysis System ProtectionEconomic Use of PowerElectrochemical BatteryPower Electronics and Motor Drives Power Electronics Devices DC-DC Converters AC-DC-AC Converters Variable-Frequency Drives Quality of Power Power Converter CoolingAppendixIndex

  17. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  18. Controlling the visible luminescence in hydrothermal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lem, Laurent L.C.; Phillips, Matthew R.; Ton-That, Cuong, E-mail: Cuong.Ton-That@uts.edu.au

    2014-10-15

    Cathodoluminescence spectra have been measured in hydrothermal and hydrogen-doped ZnO at different excitation densities and temperatures to investigate the emission efficiencies of near-band-edge (NBE), green and yellow luminescence bands. The NBE intensity depends linearly on the electron beam excitation as expected for excitonic recombination character. The intensities of the green and yellow bands are highly dependent not only on the excitation density but also on temperature. At high excitation densities ZnO exhibits dominant green emission at room temperature; the intensity of the green band can be further controlled by doping ZnO with hydrogen, which passivates green luminescence centers. Conversely at small excitation densities (< 0.1 nA) and low temperatures the visible luminescence from ZnO is predominantly yellow due to the abundance of Li in hydrothermal ZnO. The results are explained by differences in the recombination kinetics and the relative concentrations of the green and yellow centers, and illustrate that single-color emission can be achieved in ZnO by adjusting the excitation power and temperature. - Highlights: • Hydrothermal ZnO crystals are analyzed by cathodoluminescence spectroscopy. • Intensities of luminescence bands are highly dependent on excitation density. • Visible luminescence is influenced by temperature and hydrogen dopants. • Emission efficiencies are explained by recombination kinetics of defects.

  19. Factors which determine the utilization of urban solid residue in vapor and electric power generation; Fatores que condicionam o aproveitamento dos residuos solidos urbanos nas geracoes eletricas e de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Flavio B.; Sanchez, Wladimyr [Companhia Energetica de Sao Paulo, SP (Brazil)

    1991-12-31

    this work describes the main aspects concerning the utilization of urban solid residues in electric power and vapor generation such as: the transportation of the solid residues; the strategic factors which should be considered for the success of the plant; economic and financial analysis; and environmental impacts 5 refs., 2 figs.

  20. Distributed architecture for operation and supervision center: the solution adopted in CELESC, an electric power utility of Santa Catarina State - South Brazil; A solucao adotando arquitetura distribuida para centro de operacao e supervisao na CELESC

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Claudio de Jesus; Kina, Eduardo Tomio [Asea Brown Boveri, XX (Brazil); Antunes, Milton de Haro; Silva, Jorge Henrique C. [Centrais Eletricas de Santa Catarina SA, Florianopolis, SC (Brazil)

    1995-12-31

    This work aims at presenting the SDSC, CELESC`s, an electric power utility of Santa Catarina State - South Brazil, Control and Supervision Digital System, project, on the context of the CELESC`s Control and Supervision Guide Plan. The work also describes the solution adopted by the company in terms of technology and Operation Centers` arquitecture 4 figs., 1 tab.

  1. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

    DEFF Research Database (Denmark)

    Jasiunas, Lukas; Pedersen, Thomas Helmer; Toor, Saqib Sohail

    2017-01-01

    The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due...... to its organic nature (e.g. straw, horse manure and sphagnum) and ample availability with an annual production of over 3.4 million metric tonnes, globally. Locally acquired samples were analyzed and converted hydrothermally. A biocrude yield of 48% on dry ash-free (DAF) basis was obtained...

  2. Microwave-assisted hydrothermal synthesis of lead zirconate fine powders

    Directory of Open Access Journals (Sweden)

    Apinpus Rujiwatra

    2011-01-01

    Full Text Available A rapid synthesis of lead zirconate fine powders by microwave-assisted hydrothermal technique is reported. The influences of type of lead precursor, concentration of potassium hydroxide mineraliser, applied microwave power and irradiation time are described. The synthesised powders were characterised by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopic microanalysis and light scattering technique. The merits of the microwave application in reducing reaction time and improving particle mono-dispersion and size uniformity as well as the drawbacks, viz. low purity of the desired phase and increasing demand of mineraliser, are discussed in relation to conventional heating method.

  3. Photovoltaic concentrator application experiment, Phase I: a 150 KW photovoltaic concentrator power system for load-center applications with feedback into the utility grid. Final report, June 1, 1978--March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G T; Alexander, G; Stember, L H; Stickford, G H; Smail, H E; Broehl, J H; Carmichael, D C

    1979-04-01

    A 150-kW-peak concentrator-type photovoltaic power system to supply a multiple building load application in the Columbus, Ohio area was designed and analyzed by a Battelle-led team. The system will operate in parallel with the utility grid (which provides backup power) to supply either or both of two service/commercial buildings and will feed surplus power into the utility grid. The array consists of fifteen 10-kW carousel-mounted subarrays which are two-axis tracking. The subarrays each consist of 40 passively cooled concentrating modules which incorporate a primary parabolic trough reflector and a secondary compound-elliptic concentrator to achieve a geometric concentration ratio of approx. 26. The power conditioning subsystem is microprocessor controlled, with maximum-power-point tracking and automatic control capabilities. The system performance analysis indicates that the system will supply approximately 147,000 kWh/year to the primary load and an additional 55,000 kWh/year to the utility grid, in the single-load operational mode. The system design and the daily and seasonal match of system output with the load are described in detail. Plans are also discussed for installation and for operational evaluations of performance, economics, and institutional issues.

  4. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  5. What Defines a Separate Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Lawless, J.V.; Bogie, I.; Bignall, G.

    1995-01-01

    Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

  6. Annual report of the electric power industry of the Federal Republic of Germany 2000. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 2000. Stromerzeugung der allgemeinen Elektrizitaetswerke einschliesslich der Deutschen Bahn AG und der industriellen Eigenanlagen sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    Karasch, G.M.

    2002-05-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. [German] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauchs aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern.

  7. Annual report of the electric power industry of the Federal Republic of Germany 1995. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 1995. Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. (HS) [Deutsch] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauches aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern. (HS)

  8. Annual report of the electric power industry of the Federal Republic of Germany 1998. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 1998. Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, L.

    1999-12-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. (orig.) [German] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauchs aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern. (orig.)

  9. Annual report of the electric power industry of the Federal Republic of Germany 1997. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 1997. Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, L.

    1999-01-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. (orig.) [Deutsch] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauchs aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern. (orig.)

  10. Annual report of the electric power industry of the Federal Republic of Germany 1996. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 1996. Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. (orig.) [Deutsch] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauchs aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern. (orig.)

  11. Annual report of the electric power industry of the Federal Republic of Germany 1999. Power generation in publicly-owned electric utilities, the industrial independent units and the Deutsche Bahn AG, and overall power consumption in the Federal Republic of Germany; Jahresbericht ueber die Elektrizitaetswirtschaft in der Bundesrepublik Deutschland 1999. Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG sowie Gesamtstromverbrauch in der Bundesrepublik

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, L.

    2000-08-01

    For the year under report, figures are given on: Origin and consumption of electric power; power generation in public utilities, industrial plants and the Deutsche Bahn AG; development of power consumption in the network of public utilities in the federal states; net power generation and consumption in industry and development of the gross power generation in public power plants and industrial units in the federal states. (orig.) [German] Fuer das Berichtsjahr werden in Tabellen Zahlen dargestellt betreffend: Herkunft und Verbleib der elektrischen Arbeit; Stromerzeugung der oeffentlichen Elektrizitaetswerke, der industriellen Eigenanlagen und der Deutschen Bahn AG; Entwicklung des Stromverbrauchs aus dem Netz der oeffentlichen Elektrizitaetsversorgung in den Bundeslaendern; Netto-Stromerzeugung und -Stromverbrauch der Industrie und Entwicklung der Brutto-Stromerzeugung der oeffentlichen Kraftwerke und der industriellen Eigenanlagen in den Bundeslaendern. (orig.)

  12. Research and development of system to utilize photovoltaic energy. Survey on system and peripheral technologies for utilization of photovoltaic power; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on systems and peripheral technologies for use of PV power in fiscal 1994. On the case study of PV communities, as housing zone PV community, Seibu Kitanodai housing estate mainly composed of detached houses, and the Suwa area of Tama New Town of apartment houses were selected to study PV power generation on a roof, wall and window. The result clarified that generated energy of a detached house reaches 3-4 times as much as consumed one, that of an apartment house is nearly equal to consumed one, and power generation of nearly 380MW is possible based on expected housing supply until 2000. As urban core zone PV community, the survey result on Ebisu Garden Place clarified that the expected PV power supply rate is 10% or more, 20% and 30% or more for hotel and office buildings, high-rise apartment building more than 30 stories, and medium-rise one of 10 and several stories, respectively. In Sakura industrial estate, the maximum generated power was nearly equal to consumed power in a weekday, and as inverse power flow in a holiday was considered, the annual PV power supply rate was extremely high.

  13. ENERGY LOSS REDUCTION IN SMART GRID UTILITIES FOR ACCOUNT OF TRANSITION FROM SINGLE-PHASE TO THREE-PHASE POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    G.G. Zhemerov

    2014-10-01

    Full Text Available Analytical dependences of such efficiency indices as energy loss power and copper consumption under transition from single-phase power distribution systems to three-phase ones are obtained.

  14. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    Science.gov (United States)

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile.

  15. Pareto utility

    NARCIS (Netherlands)

    Masako, I.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  16. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.

    1978-01-01

    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  17. Dissolubility of Hydroxyapatite Powder under Hydrothermal Condition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dissolubility of hydroxyapatite(HA) in the hydrothermal solution was investigated in Morey-type autoclave over a temperature range of 150 to 350 ℃ and the pH value range of 5 to 9. It is shown that the dissolubility of HA is determined as a function of temperature and time under a constant filling ratio of autoclave, and the temperature coefficient for the solubility of HA is positive. The equilibrium time attained in the hydrothermal solution is shortened with the increase of hydrothermal temperature, and the effect of temperature on the solubility is obviously stronger than that of pH value. The solubility data suggest that HA has higher dissolubility in the HA-H2O system under the hydrothermal condition than that under the normal temperature-pressure.

  18. Hydrothermal Manganese Mineralization Near the Samoan Hotspot

    Science.gov (United States)

    Hein, J. R.; Staudigel, H.; Koppers, A.; Hart, S. R.; Dunham, R.

    2006-12-01

    The thickest beds of hydrothermal manganese oxides recovered to date from the global ocean were collected from a volcanic cone in the south Pacific. In April 2005, samples were dredged aboard the R.V. Kilo Moana from a volcanic cone on the lower flank of Tulaga seamount (about 2,700 m water depth; 14° 39.222' S; 170° 1.730' W), located 115 km SW of Vailulu'u, the volcanically and hydrothermally active center of the Samoan hotspot. Additional hydrothermal manganese samples were collected off Ofu Island (dredge Alia 107), 72 km to the WSW of Vailulu'u. Manganese-oxide beds up to 9 cm thick are composed of birnessite and 10 Å manganates. Some layers consist of Mn-oxide columnar structures 4 cm long and 1 cm wide, which have not been described previously. The mean Mn and Fe contents of 18 samples are 51 weight percent and 0.76 weight percent, respectively. Elevated concentrations of Li (mean 0.11 wt. percent) are indicators of a hydrothermal origin, and distinguishes these samples, along with the high Mn and low Fe contents, from hydrogenetic Fe-Mn crusts. Other enriched elements include Ba (mean 0.14 percent), Cu (249 ppm), Mo (451 ppm), Ni (400 ppm), Zn (394 ppm), V (214 ppm), and W (132 ppm). Chondrite-normalized REE patterns show large negative Ce anomalies and LREE enrichments, both characteristic of hydrothermal Mn deposits. Small negative Eu anomalies are not typical of hydrothermal deposits and can be explained either by the absence of leaching of plagioclase by the hydrothermal fluids or by the precipitation of Eu-rich minerals, such as barite and anhydrite, at depth. The high base-metal contents indicate that sulfides are not forming deeper in the hydrothermal system or that such deposits are being leached by the ascending fluids. Textures of the thickest Mn deposits indicate that the Mn oxides formed below the seabed from ascending fluids during multiple phases of waxing and waning hydrothermal pulses. The deposits were later exposed at the seafloor by

  19. Hydrothermal industrialization: direct heat development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  20. The impacts of the generation of biomass power plants in the Brazilian hydrothermal dispatch and its influence on the formation of prices of electric power in Brazil; Os impactos da geracao de usinas a biomassa no despacho hidrotermico brasileiro e sua influencia na formacao do preco da energia eletrica no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Eduardo S.; Ribeiro, Paulo [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil)], Emails: luizeduardo_jf@yahoo.com.br, pfribeiro@ieee.org; Tardin, Thiago V. [Engenho Pesquisa, Desenvolvimento e Consultoria Ltda., Rio de Janeiro, RJ (Brazil)], E-mail: thiago@engenho.com

    2009-07-01

    The positive and negative impacts of the electric energy generation from biomass of sugar in the Brazilian energy matrix are presented, as well as in the hydrothermal dispatch. Studies on the impacts of the generation sources using sugar cane bagasse in the operational planning and in the composition of the electric energy price are done. Computational implementations using optimized methods, as the stochastic dual dynamic programing, are done, to support the decision making and to compare the obtained results. It is, also presented the commercialization rules for energy in the Free Contracting Environment and in the Regulated Contracting Environment related to the alternative sources of energy, as well as the mechanisms of encouraged energy auction (reserve auction) and the rules for commercialization of energy applied to encouraged sources.

  1. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum

    Institute of Scientific and Technical Information of China (English)

    Chengjun Liu; Qing Zhao; Yeguang Wang; Peiyang Shi; Maofa Jiang

    2016-01-01

    Plenty of flue gas desulfurization (FGD) gypsum generated from coal-fired power plants for sulfur dioxide se-questration caused many environmental issues. Preparing calcium sulfate whisker (CSW) from FGD gypsum by hydrothermal synthesis is considered to be a promising approach to solve this troublesome problem and uti-lize calcium sulfate in a high-value-added way. The effects of particle size of FGD gypsum, slurry concentration, and additives on CSW were investigated in this work. The results indicated that fine particle size of FGD gypsum and moderately high slurry concentration were beneficial for crystal nucleation and growth. Three additives of magnesium chloride, citric acid, and sodium dodecyl benzene sulfonate (SDBS) were employed in this study. It was found that mean length and aspect ratio of CSW were both decreased by the usage of magnesium chloride, while a small quantity of citric acid or SDBS could improve the CSW morphology. When multi-additives of citric acid-SDBS were employed, the mean length and aspect ratio increased more than 20%. Moreover, surface morphology of CSW went better, and the particle size and crystal shape became more uniform.

  2. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  3. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    Science.gov (United States)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  4. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  5. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  6. The Marketability of Integrated Energy/Utility Systems: A Guide to the Dollar Savings Potential in Integrated Energy/Utility Systems; for Campuses, Medical Complexes, and Communities; Architect/Engineers, Industrial and Power Plant Owners; Suppliers; and Constructors.

    Science.gov (United States)

    Coxe, Edwin F.; Hill, David E.

    This publication acquaints the prospective marketplace with the potential and underlying logic of the Integrated Utility System (IUS) concept. This system holds promise for educational and medical institutions seeking to reduce their energy costs. The generic IUS concept is described and how it can be incorporated into existing heating and…

  7. In situ chemical sensing for hydrothermal plume mapping and modeling

    Science.gov (United States)

    Fukuba, T.; Kusunoki, T.; Maeda, Y.; Shitashima, K.; Kyo, M.; Fujii, T.; Noguchi, T.; Sunamura, M.

    2012-12-01

    Detection, monitoring, and mapping of biogeochemical anomalies in seawater such as temperature, salinity, turbidity, oxidation-reduction potential, and pH are essential missions to explore undiscovered hydrothermal sites and to understand distribution and behavior of hydrothermal plumes. Utilization of reliable and useful in situ sensors has been widely accepted as a promised approach to realize a spatiotemporally resolved mapping of anomalies without water sampling operations. Due to remarkable progresses of sensor technologies and its relatives, a number of highly miniaturized and robust chemical sensors have been proposed and developed. We have been developed, evaluated, and operated a compact ISFET (Ion-Sensitive Field-Effect Transistor)-based chemical sensors for ocean environmental sensing purposes. An ISFET has advantages against conventional glass-based electrodes on its faster response, robustness, and potential on miniaturization, and thus variety of chemical sensors has been already on the market. In this study, ISFET-based standalone pH sensors with a solid-state Cl-ISE as a reference electrode were mounted on various platforms and operated to monitor the pH anomalies in deep-sea environment at the Kairei, Edmond, and surrounding hydrothermal sites in the southern Central Indian Ridge area during KH10-06 scientific cruise (Nov. 2010), supported by project TAIGA (Trans-crustal Advection and In situ biogeochemical processes of Global sub-seafloor Aquifer). Up to three pH sensors were mounted on a wire-lined CTD/RMS (Rosette Multiple Sampler), dredge sampler, a series of MTD plankton nets, and VMPS (Vertical Multiple-operating Plankton Sampler). A standalone temperature sensor was bundled and operated with the pH sensor when they were mounted on the dredge sampler, MTD plankton nets, and VMPS. An AUV equipped with the pH sensor was also operated for hydrothermal activity survey operations. As a result of Tow-Yo intersect operations of the CTD

  8. 煤气综合利用电厂设计中风机选型问题分析%Analysis of type selection of fan in BFG comprehensive utilization power plant design

    Institute of Scientific and Technical Information of China (English)

    李广伟

    2012-01-01

    The problem of insufficient performance capability of fans in the design of BFC comprehensive utilization power plant thermal process system was discussed and analyzed. The engineering example and the conclusion provide the reference to the reasonable selection of fans in the design of BFC comprehensive utilization power plant.%对煤气综合利用电厂热力工艺系统设计中遇到的送、引风机出力不足的情况,进行了探讨、分析.工程实例及结论,为煤气综合利用电厂设计中风机的合理选型提供参考.

  9. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that it is predisposed to…

  10. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  11. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  12. 家庭智能用电系统研究及智能控制器开发%Study of smart power utilization system and development of smart controller for homes

    Institute of Scientific and Technical Information of China (English)

    李东东; 崔龙龙; 林顺富; 刘庆强; 覃子珊; 任婧玮

    2013-01-01

    Compared with conventional power utilization, smart power utilization stresses on users’ involvement and encourages the two-way interaction between users and grids. In order to acquire energy consumption information at appliance level and strengthen two-way interaction between users and grids, realization of smart power utilization system for homes has been studied. A novel structural framework of smart power utilization system for homes has been built, which consists of smart meter, smart interactive terminal, smart controllers, Home Area Network (HAN) and other devices. A smart controller is developed and an experimental demonstration system of the smart power utilization is set up. Test results show that the smart controller can grasp power consumption information of the home appliances accurately on the real time and deliver the information to another device called as interactive terminal. In addition, according to the electricity price change, the use of energy of electric appliances is limited. The experiment has validated the effect of energy saving of smart controller.%  与传统用电相比,智能用电强调用户的参与,鼓励用户与电网之间的信息双向互动。为了获取家庭内负荷级别的用电信息,加强用户与电网的双向互动,对家庭智能用电系统的实现进行了研究。构建了一种新型的家庭智能用电系统结构框架,其由智能电表,智能互动终端,智能控制器,家庭局域网络等构成。开发了一种智能控制器装置,搭建了一套演示系统进行测试验证。测试结果表明,智能控制器可以实时准确地获取各用电设备的耗电信息,将用电信息传送给互动终端。而且智能控制器可根据电价变化控制电器设备的运行,实验验证了智能控制器可实现有效节能的效果。

  13. Peptide synthesis in early earth hydrothermal systems

    Science.gov (United States)

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  14. Utilization of tidal power in Russia in overcoming the global energy and ecological crisis; Utilisation de l`energie maremotrice en Russie dans un contexte de globalisation de la production d`electricite et de crise ecologique

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, L.B.; Usachev, I.N. [Institute Hydroproject, Moscow (Russian Federation)

    1997-12-31

    The 30 years of the exploitation of the TPP Rance in France and Kyslogubskaya TPP in Russia had proved the energy expedience economical and ecological effectiveness and a high performance of the tidal energy. The possibility of such utilizing could be proved thanks to the application of the theoretical cycles of Gibrat, of the bulb units and the russian model of the tidal utilizing and application of the floating methods of creating the TPP. The investigations at TPP Kislaya Guba helped to solve the row of problems of marine power building with the high exploitation performance and ecological safety. Thus the TPP of Mezen with a capacity of 17 million kW can transfer to the united power system of Europe 50 TWh/year and the Tugur TPP with a capacity 8 million kW can produce 20 TWh/year of energy for the power system of seaside of Russian and Japan. Penzinskaya TPP with the capacity of 87 million kW can be promoted in 21. century in connection to the advanced in USA proposition of construction of the combining transport-power tunnel across the Bering Strait. (authors). 4 refs.

  15. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    Science.gov (United States)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  16. Tools required for efficient management of municipal utilities in the future heat and power market; Zukunftsfaehiges Management von Stadtwerken braucht Instrumente

    Energy Technology Data Exchange (ETDEWEB)

    Estermann, Andre S. [Strategieprojekt stadtwerke-monitor.de, Berlin (Germany)

    2010-10-15

    The key aspect of organizational management is the definition and implementation of goals for the future. This requires continuous reflection of the organization's position at a given moment and of the further strategy required to achieve the targeted goals. Small and medium-sized municipal utilities as a rule are reluctant to take this strategy and promote innovations. The author presents a new online platform that was developed specifically for municipal utilities, offering them the option to find new ways of business management. In the energy markets of the future, participation of municipal utilities will thus no longer be a matter of 'if' but a matter of 'how'. (orig.)

  17. Research on Multi-medium Communication Mechanism and Implementing Strategy for Power Distribution and Utilization Network%面向智能配用电的多介质通信方式及应用方案研究

    Institute of Scientific and Technical Information of China (English)

    孙方楠; 胡秀园; 吴润泽

    2012-01-01

    中低压配电通信网是电力通信网络的薄弱环节,制约了智能电网的实施和发展.本文在分析比较智能电网中各种不同宽带通信接入技术的基础上,提出面向智能配用电环节的多网融合技术的全方位通信体系.该体系以xPON光纤接入网为核心,以宽带无线、PLC等通信方式作为必要补充,实现智能配用电网“一体化、全覆盖”.最后结合配用电应用场景,提出了主要通信技术的实现模式,并给出一个多介质融合的整体通信应用方案,满足智能配电网发展各阶段对电力通信网络的需求,为智能配用电环节的深入发展和实施提供网络基础.%The communication network for distribution power grid is the weak link, which restricts the development of smart grid. Based on the analysis and comparison of different available broadband access technologies in smart grid, a comprehensive communication system with multi-network integration technology towards the power distribution and u-tilization of smart grid is put forward. In this architecture, xPON fiber access networks is the key part, such communication modes as integrating broadband wireless, PLC are taken as necessary compensation, then the integration and complete coverage for power distribution and utilization in smart grid are realized. In addition, as to power distribution and utilization network, the application mode of main communication technique is presented and a implementing strategy of whole communication with multi-media integration is given, which meets the requirement of power communication network during each development phase of smart grid, and provides the basis for the deep development and implementation of power distribution and utilization network.

  18. Hydrothermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions.

  19. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    Hydrothermal processing has evolved as an alternative processing technology for wet biomass and waste materials in recent years. Using hot-compressed water as a reaction medium at temperatures of 200–500°C, materials with increased energy density can be obtained. The technology is particularly......). Each of these hydrothermal routes results in energy densification by removal of oxygen to produce hydrochar (HTC), biocrude (HTL), or syngas (HTG). The process chemistry and reactions in hydrothermal media are described for each process. Suitable feedstocks and their considerations are reviewed...... as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  20. Hydrothermal processing of radioactive combustible waste

    Energy Technology Data Exchange (ETDEWEB)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  1. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    Science.gov (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  2. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  3. Metal flux from hydrothermal vents increased by organic complexation

    Science.gov (United States)

    Sander, Sylvia G.; Koschinsky, Andrea

    2011-03-01

    Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.

  4. Geochemical Energy for Catabolism and Anabolism in Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; McCollom, T. M.; Bach, W.

    2008-12-01

    Chemically reduced deep-sea vent fluids mixed with oxidized seawater can generate redox disequilibria that serve as energy sources for chemolithoautotrophic (catabolism) and biomass synthesis (anabolism) reactions. Numerical models can be used to evaluate Gibbs energies of such processes on the early Earth and in present-day systems. Here, geochemical data from compositionally diverse vent fluids (Lost City, Rainbow, Logatchev, TAG, 21 °N EPR) are combined with several seawater chemistries to yield a wide range of mixed hydrothermal solutions; this is the starting point for our thermodynamic calculations. In ultramafic-hosted hydrothermal systems, such as Rainbow or Lost City, aerobic chemolithotrophic catabolisms (oxidation of H2, FeII, CH4) are the most energy-yielding at low temperatures (catabolic reaction energetics can then be used to put constraints on the amount of primary biomass production. Under putative early Earth conditions, for example, the net chemoautotrophic synthesis of cellular building blocks is thermodynamically most favorable at moderate temperatures (~50°C), where the energy contributions from HCO3- and H+ in cool seawater coupled to the reducing power in hot vent fluid are optimized. At these conditions, and counter to conventional wisdom, the synthesis of amino acids may even yield small amounts of energy.

  5. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals

    DEFF Research Database (Denmark)

    Østergaard Petersen, Mai; Larsen, Jan; Thomsen, Mette Hedegaard

    2009-01-01

    In the IBUS process (Integrated Biomass Utilization System) lignocellulosic biomass is converted into ethanol at high dry matter content without addition of chemicals and with a strong focus on energy efficiency. This study describes optimization of continuous hydrothermal pretreatment of wheat s...

  6. Group Search Optimization for Fixed Head Hydrothermal Power System

    Science.gov (United States)

    Jena, Chitralekha; Basu, Mousumi

    2017-02-01

    This paper presents group search optimization for optimal scheduling of thermal plants in coordination with fixed head hydro units. Numerical results for two test systems have been presented to demonstrate the performance of the proposed method. Results obtained from the proposed group search optimization method have been compared with those obtained from differential evolution and evolutionary programming.

  7. Study on the hydrothermal drying technology of sewage sludge

    Institute of Scientific and Technical Information of China (English)

    Kunio; Yoshikawa

    2010-01-01

    Drying of sewage sludge is an effective way for treatment and utilization of sewage sludge,where reduction of energy consumption is one of the major technical challenges.So we experimentally investigated the possibility of the hydrothermal treatment.We have found that treatment of sewage sludge by saturated steam with the temperature of 190°C and pressure of 20 bar can dramatically improve the dehydration performance of the slurry like product.And the water content can be reduced down to about 55% by a mechanical dehydration.After natural drying 24 h it can be reduced down to about 20%.The final product is almost odorless and can easily be used for the refuse derived fuel(RDF).The sewage sludge product may be used as land-fill,or burned in a boiler or incinerator.

  8. Modification of FGD gypsum in hydrothermal mixed salt solution

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao

    2006-01-01

    A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus, the modification of FGD gypsum was fulfilled.

  9. Hydrothermal scheduling via extended differential dynamic programming and mixed coordination

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J. [Alfred Univ., NY (United States). Div. of Electrical Engineering; Luh, P.B. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Electrical and Systems Engineering

    1995-11-01

    This paper addresses short-term scheduling of hydrothermal systems by using extended differential dynamic programming and mixed coordination. The problem is first decomposed into a thermal subproblem and a hydro subproblem by relaxing the supply-demand constraints. The thermal subproblem is solved analytically. The hydro subproblem is further decomposed into a set of smaller problems that can be solved in parallel. Extended differential dynamic programming and mixed coordination are used to solve the hydro subproblem. Two problems are tested and the results show that the new approach performs well under a simulated parallel processing environment, and high speedup is obtained. The method is then extended to handle unpredictable changes in natural inflow by utilizing the variational feedback nature of the control strategy. A quick estimate on the impact of an unpredictable change on total cost is also obtained. Numerical results show that estimates are accurate, and unpredictable change in natural inflow can be quickly and effectively handled.

  10. Hydrothermal growth of multi-facet anatase spheres

    Science.gov (United States)

    Wu, Jin-Ming; Song, Xiao-Mei; Ma, Lu-Yao; Wei, Xiao-Dan

    2011-03-01

    Titania with various nanostructures can be synthesized by several F --mediated procedures. In this paper, we report the synthesis of a novel multi-facet microsphere consisting of etched single-crystalline anatase by simply immersing metallic Ti plates in an HF aqueous solution under hydrothermal conditions. The etched multi-facet sphere was found to grow through the nucleation and growth of truncated bipyramids on a previously precipitated one to assemble a microsphere, and its subsequent etching by HF to expose the thermodynamic stable {1 0 1} facets. The photocatalytic activity of such etched multi-facet sphere thin films was evaluated utilizing rhodamine B and sulfonic salicylic acid in water as target molecules and compared with commercial Degussa P25 titania nanoparticles.

  11. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  12. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  13. Partial representation of a multi area power system for didactic simulation of automatic generation control; Representacao parcial de sistemas de potencia multi-area para simulacao didatica do controle automatico de geracao

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Jose Roberto

    1987-08-01

    The dynamics of the automatic generation control (AGC) through partial representation of a multi-area power system was studied. A computer model has been developed to analyze the generation control of a power system taking into account several inherent aspects to the system such as dead band of speed governors, upper and lower generator limits for hydro and thermal units, sampling and zero order hold of the area control errors. Several control strategies have been studied such as integral control, proportional-integral control as well as variable structure control as a new approach to hydro-thermal system control. The performance of the proposed AGC model has been assessed with a sample for area hydro-thermal system containing several typical parameters of Brazilian utilities. (author). 46 refs., 94 figs., 3 tabs

  14. Development of a database for use in electric power utilities in the electric power distribution area; Desenvolvimento de um banco de dados para uso em concessionarias de energia eletrica na area de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Marcos Alexandre Barreiros

    1996-07-01

    The electric energy distribution system dimension together with the involved diverging elements. requires a constant updated information system. The dynamics and the reliability of the information implies in the use of modern technology, as well as data updating and control. There is a constant need of improving the utilities information system and its lack may put into risk not only the quality of the services but also consumer satisfaction. Utilities technical systems should therefore follow this need allowing for a quick response needed in order to keep the system under control and consequently to maintain the quality of the services. This work proposes a basic information technology model for technical areas and for an electric utility that can be applied to manage any data bank at any platform. To have it demonstrated, a Visual Basic application was developed applying X base data structure, which shows the use of alpha numerical data with G S (Geographic Information System). (author)

  15. Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran.

    Science.gov (United States)

    Majzoobi, Mahsa; Pashangeh, Safoora; Farahnaky, Asgar; Eskandari, Mohammad Hadi; Jamalian, Jalal

    2014-10-01

    With the aim of reducing phytic acid content of wheat bran, particle size reduction (from 1,200 to 90 μm), hydrothermal (wet steeping in acetate buffer at pH 4.8 at 55 °C for 60 min) and fermentation (using bakery yeast for 8 h at 30 °C) and combination of these treatments with particle size reduction were applied and their effects on some properties of the bran were studied. Phytic acid content decreased from 50.1 to 21.6, 32.8 and 43.9 mg/g after particle size reduction, hydrothermal and fermentation, respectively. Particle size reduction along with these treatments further reduced phytic acid content up to 76.4 % and 57.3 %, respectively. Hydrothermal and fermentation decreased, while particle size reduction alone or in combination increased bran lightness. With reducing particle size, total, soluble and insoluble fiber content decreased from 69.7 to 32.1 %, 12.2 to 7.9 % and 57.4 to 24.3 %, respectively. The highest total (74.4 %) and soluble (21.4 %) and the lowest insoluble fiber (52.1 %) content were determined for the hydrothermaled bran. Particle size reduction decreased swelling power, water solubility and water holding capacity. Swelling power and water holding capacity of the hydrothermaled and fermented brans were lower, while water solubility was higher than the control. The amount of Fe(+2), Zn(+2) and Ca(+2) decreased with reducing particle size. Fermentation had no effect on Fe(+2)and Zn(+2) but slightly reduced Ca(+2). The hydrothermal treatment slightly decreased these elements. Amongst all, hydrothermal treatment along with particle size reduction resulted in the lowest phytic acid and highest fiber content.

  16. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    Science.gov (United States)

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  17. A study of toxic emissions from a coal-fired power plant utilizing an ESP/wet FGD system. Final report, Volume 2 of 2 - appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This volume contains the appendices for a coal-fired power plant toxic emissions study. Included are Process data log sheets from Coal Creek, Auditing information, Sampling protocol, Field sampling data sheets, Quality assurance/quality control, Analytical protocol, and Uncertainty analyses.

  18. The strategical planning as quality intake in electric power utilities; O planejamento estrategico como insumo da qualidade em empresas de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, A.; Cordeiro, M.L.R. [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1992-12-31

    A methodology for a strategical plan elaboration aiming the electric power distribution sector is shown, including the following steps: thr company business; company goal; environmental analysis; definition of the company behaviour principles, guidelines, purpose and strategies; programs and projects elaboration; responsibility definition and the follow of strategical plan. (C.G.C.)

  19. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.

    Science.gov (United States)

    Barge, Laura M; White, Lauren M

    2017-09-01

    We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.

  20. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 331 Scientists

    2012-04-01

    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 331 drilled into the Iheya North hydrothermal system in the middle Okinawa Trough in order to investigate active subseafloor microbial ecosystems and their physical and chemical settings. We drilled five sites during Expedition 331 using special guide bases at three holes for reentry, casing, and capping, including installation of a steel mesh platformwith valve controls for postcruise sampling of fluids. At Site C0016, drilling at the base of the North Big Chimney (NBCmound yielded low recovery, but core included the first Kuroko-type black ore ever recovered from the modern subseafloor. The other four sites yielded interbedded hemipelagic and strongly pumiceous volcaniclastic sediment, along with volcanogenic breccias that are variably hydrothermally altered and mineralized. At most sites, analyses of interstitial water and headspace gas yielded complex patterns withdepth and lateral distance of only a few meters. Documented processes included formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, potential microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, and methanogenesis. Shipboard analyses have found evidence for microbial activity in sediments within the upper 10–30 m below seafloor (mbsf where temperatures were relativelylow, but little evidence in the deeper hydrothermally altered zones and hydrothermal fluid regime.

  1. Windpower utilization possibilities

    Science.gov (United States)

    Hoetzel, C.

    1982-01-01

    The possibilities of windpower utilization for mechanical pumps, electric generators, mechanical water vortex pumps, and heat pumps are reviewed. Application possibilities can be realized by windpower systems of different size. It must however be determined for which purpose and for which power range they are used. The site and the concomitant wind potential is of utmost importance. Small units in the 10 kW power range are very interesting for autonomous or semiautonomous energy supply.

  2. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  3. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  4. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    tool for the construction of materials containing unique structures and special ... Recently, we reported hydrothermal synthesis of binuclear Co(II) complex [19] and a new .... to two neighboring ones, through four µ2-oxo bridges, to form infinite ...

  5. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  6. Formation of zirconia polymorphs under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yanqing(郑燕青); SHl; Erwei(施尔畏); Li; Wenjun(李汶军); CHEN; Zhizhan(陈之战); ZHONG; Weizhuo(仲维卓); HUXingfang(胡行方)

    2002-01-01

    Using zirconium oxychloride solution as precursor, monoclinic zirconia crystallites withnarrow distribution of nanosize were obtained in the hydrothermal reaction. However, when thereaction was in weak acidic medium or base medium, whether directly using the colloidal precipi-tate prepared from zirconium salt solutions with base solution as precursor added, or using theprecipitate after filtrating, washing and drying treatments as precursor, the product of the hydro-thermal reaction was the mixture of both monoclinic and tetragonal polymorphs. As the pH of themedium rises, the content of tetragonal phase in the product, the morphologies and size of thecrystallites all change. There are three types of formation mechanisms under hydrothermal condi-tion, which can be called as saturation-precipitation mechanism in homogeneous solution, dissolu-tion-crystallization mechanism and in-situ crystallization mechanism, respectively. The formationmechanism of crystallites varies with different hydrothermal conditions, such as the states of theprecursor and the pH of the medium, which lead to changes in the phases, morphologies andsizes of the resulting crystallites.

  7. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  8. Project of law relative to the electricity and gas public utilities and to the power and gas companies; Projet de loi relatif au service public de l'electricite et du gaz et aux entreprises electriques et gazieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document is the definitive text of this project of law adopted by the French house of commons. The aim of this law is to allow the administrations to avoid to use their eligibility right with the opening of the electricity and gas markets to competition. It changes the juridical status of the two public utilities Electricite de France (EdF) and Gaz de France (GdF) into two anonymous companies and creates two additional companies for the management of the power and gas networks. It ensures also the transposition of the European directives from June 26, 2003 (2003/54/CE and 2003/55/CE). It contains some proper dispositions and modifies various existing French laws, in particular the law no. 46-628 from April 8, 1946 about the electricity and gas nationalization and the law no. 2000-108 from February 10, 2000 relative to the modernization and development of the electric public utility. (J.S.)

  9. Voltammetric Investigation Of Hydrothermal Iron Speciation

    Directory of Open Access Journals (Sweden)

    Charlotte eKleint

    2016-05-01

    Full Text Available Hydrothermal vent fluids are highly enriched in iron (Fe compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world`s surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE - AdCSV with salicylaldoxime (SA as the artificial ligand. Our results for total dissolved Fe (dFe in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1% and 11.8% being chemically labile. Iron binding ligand concentrations ([L] were found in µM level with strong conditional stability constants up to log K[L],Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.

  10. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  11. Frontier of CO{sub 2} reduction/sink with international Win/Win Corporation - coal fired electric power generation helps afforestation through by product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitaka, N.; Kaori, A.; Kazuo, W.; Katsumi, O. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    Several countries in Asia require coal fired electric power generation because they are rich in domestic coal. In common sense, coal firing generates carbon dioxide and sulfur dioxide more than natural gas, thus it tends to be disliked for electric power generation. When desulfurization plants are housed, these cost much and produce valuable by-poducts. Gypsum is a by-product from desulfurization plant, which can reclaim very poor alkaline or sodic soil and the combination of gypsum and quick lime is a by-product from fluidized-bed boiler and bio-briquet, which can reclaim very poor acidic soil. These two principal by-products are the key to afforestation, resulting in carbon sink. Sometimes soil reclamation can change poor soil into fertile soil which is useful for agriculture. 2 tabs.

  12. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  13. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  14. The Fight Against Extremism in the Trans-Sahel: The Utilization of Soft Power by the Department of State to Establish, Develop, and Strengthen Potential Partnerships

    Science.gov (United States)

    2016-02-16

    the long term benefits of soft power, specifically when pertaining to cooperation and assistance. While assigned to the Embassy in Malaysia , the...during their own travels to visit those relatives, greatly influenced their outlook and led to their greater understanding of “who we are,” and more...Western way of life, our core values and ideas was instrumental when conducting official business with them in Pakistan. In almost all of the cases were

  15. Diagnostic utility of an echo-contrast agent in patients with synovitis using power Doppler ultrasound: a preliminary study with comparison to contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magarelli, N.; Tartaro, A.; Bonomo, L. [Istituto di Radiologia, Universita di Chieti (Italy); Guglielmi, G. [Istituto di Radiologia, IRCCS, San Giovanni Rotondo (Italy); Di Matteo, L. [Istituto di Reumatologia, Pescara (Italy); Mattei, P.A. [Facolta di Medicina, Universita Chieti (Italy)

    2001-06-01

    The purpose of this study was to first evaluate Levovist (Schering, Berlin, Germany), an echo-contrast agent, during power Doppler sonography (PDS) in patients with synovitis using asymptomatic joints as controls. Then we evaluated the accuracy of this technique against contrast-enhanced MRI. Forty patients (19 men and 21 women; mean age 40 years) were enrolled on the basis of clinical signs, laboratory tests, and radiographic findings positive for articular inflammatory disease. They were examined with conventional ultrasonography (US) and PDS techniques before and after intravenous contrast medium injection. Fourteen patients then underwent MRI with and without contrast medium 8-14 days after PDS studies. Three expert readers independently evaluated each examination. After contrast medium, synovium in inflammatory arthritis enhanced on PDS compared with normal joints in the same patient. Power Doppler sonography after contrast medium and MRI were concordant in all cases. Power Doppler sonography with contrast medium showed a qualitative increase in signal from synovial vessels, the first sign of synovial changes in inflammatory diseases. (orig.)

  16. RET Screen Assessment of Utility Scale Wind Power Generation Based on Historical Wind Speed Data-the Case of Mankoadze in the Central Region of Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Yeboah Osei

    2014-05-01

    Full Text Available With cost being a vital factor for determining how feasible any power project will be, this study demonstrates that a 50 MW grid-connected wind power plant at Mankoadze in the Central Region of Ghana will be technically and financially viable and competitive at a certain minimum feed-in-tariff together with some incentives. In this study, we analyzed monthly mean wind speed data for Mankoadze at 12 m above ground level (a.g.l. with RET Screen Wind Energy Project Model. The monthly mean wind speeds at 12 m a.g.l. were extrapolated to 80 m a.g.l. and used to determine the annual energy production of a 50 MW wind farm. The total initial cost of the 50 MW wind power project was estimated and the minimum feed-in-tariff at which the project will be financially viable over a duration of 20 years was ascertained from Net Present Value (NPV calculations. This minimum feed-in-tariff was again determined for different scenarios of grants and incentives and some recommendations were made.

  17. Regional power supply in 1998-1999. Progress report of the association of regional utilities - Arbeitsgemeinschaft regionaler Energieversorgungs-Unternehmen - ARE e.V.; Regionale Energieversorgung 1998-1999. Taetigkeitsbericht der Arbeitsgemeinschaft regionaler Energieversorgungs-Unternehmen - ARE - e.V.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The ARE progress report discusses the following issues: Economic development and its effects on power supply; Deregulation of the electricity and gas market; Competition between regional utilities; Energy policy of the new German government; European regulations; Legislation on energy supply; Energy supply and cartel law; Regional supply in the East German states. [German] Der Taetigkeitsbericht der ARE befasst sich mit folgenden Themen: Gesamtwirtschaftliche Entwicklung und ihre Auswirkung auf die Energiewirtschaft, Oeffnung des Monopoles fuer Strom und Gas, Wettbewerb der regionalen Energieversorger, Energiepolitik der neuen Bundesregierung, Europaeische Richtlininen, energiewirtschaftsrecht, Versorgungswirtschaft und Kartellrecht und der Regionalversorgung in den neuen Bundeslaendern.

  18. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  19. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (Oglethorpe) for the construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal)...

  20. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation