WorldWideScience

Sample records for hydrothermal pre-treatment processes

  1. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    Science.gov (United States)

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    Science.gov (United States)

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke

    2006-01-01

    Retted hemp fibres were treated using chemical-physical pre-treatments and the material was characterised chemically in order to evaluate the effect of the pre-treatments, respectively, wet oxidation (WO), hydrothermal treatment (HT) and steam explosion (STEX). Process variables were addition...

  4. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition

    International Nuclear Information System (INIS)

    Hu, Yuyan; Zhang, Pengfei; Chen, Dezhen; Zhou, Bin; Li, Jianyi; Li, Xian-wei

    2012-01-01

    Highlights: ► The first study to apply Fe-sulfate in hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. ► The first study to comprehensively evaluate the effect of hydrothermal treatment on dioxin decomposition and heavy metal stabilization in municipal solid waste incineration fly ash. ► Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation, and to support the experimental data by the calculation results. - Abstract: Hydrothermal treatment of MSWI fly ash was performed in this paper with a purpose to reduce its dioxin content. First a hydrothermal reactor was set up with a mixture of ferric sulphate and ferrous sulphate serviced as the reactant, then the effects caused by reaction conditions such as reaction temperature, pre-treatment by water-washing and reactant dosage were checked; the results showed that as a promising technology, hydrothermal treatment exhibited considerable high efficiencies in decomposition of PCDDs/PCDFs and good stabilization of heavy metals as well. Experimental results also showed that for dioxin destruction, higher reaction temperature is the most important influencing factor followed by Fe addition, and pre-treatment of raw fly ash by water-washing increased the destruction efficiencies of dioxins only very slightly. Finally with help of Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation. The calculation results were supported by the experimental data. The leaching toxicities of hydrothermal products were higher than upper limits defined in the latest Chinese standard GB 16889-2008 for sanitary landfill disposal, thus an auxiliary process is suggested after the hydrothermal treatment for heavy metal stabilization.

  6. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  7. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    Science.gov (United States)

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  8. Waste treatment process by solidifying cementitious materials using hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kamakura, T.; Yamasaki, N.; Hashida, T.

    2001-01-01

    Solidification of low-level radioactive wastes containing Na 2 SO 4 with cement by hydrothermal hot-pressing (HHP) technique was examined. Relatively high mechanical strength, reduced leaching ratio of SO 3 , and higher resistance to the carbonation of the HHP product were attained in comparison with conventional concrete. The solidification by the HHP treatment may be proceeded by the rearrangement of particles and the bonding material formation among the particles by dissolution-deposition process. The possibility of developing the accelerated testing method for duration of cemented materials by hydrothermal method was discussed. (author)

  9. Effect of hydrothermal treatment on some properties of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi-cai; Shui Heng-fu; Zhang De-xiang; Gao Jin-sheng [East China University of Science and Technology, Shanghai (China). College of Resource and Environmental Engineering

    2006-10-15

    Effects of hydrothermal treatment on swelling, extraction and liquefaction behavior of Shenhua coal were studied through analyses of element content, ash content, volatile content and IR spectrum of treated coal. The results indicate that hydrogenation of coal is distinctly carried out in the process of hydrothermal pre-treatment and the hydrogen content of treated coal is more than that of raw coal. The contents of ash and volatile matters of treated coal are lower than those of raw coal. With the increase of treatment temperature the volatile content of the hydrothermal treated coal decreases and the ash content of treated coal increases. CO{sub 2} is main gas product and unvaries with the temperature changing, whereas CO and CH{sub 4} are formed when the temperature is above 250{sup o}C and increase with the temperature during hydrothermal treatment. Hydrothermal treatment is not in favor of coal swelling and the swelling ratio of treated coal decreases with the increase of treatment temperature. The swelling ratio of extraction residue by CS{sub 2}/NMP mixed solvent in NMP solvent is lower than that of the corresponding raw coal. The CS{sub 2}/NMP mixed solvent extraction yields of coal treated at appropriate temperature are higher than that of raw coal, but the extraction yields of treated coal obtained by n-hexane, toluene and THF successive Soxhelt extraction are lower. Hydrothermal treatment at 250-300{sup o}C can increase the conversion of treated coal in direct hydro-liquefaction. The gas + oil yield of treated coal is lower than that of raw coal and the preasphaltene yield of treated coal is much higher. IR spectra of treated coals show that the forms of non-covalent bonds are changed by hydrothermal treatment, and the hydrolysis of ester and ether bonds and the pyrolysis of aromatic side chains also maybe occur at high treatment temperature. 21 refs., 3 figs., 4 tabs.

  10. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    Science.gov (United States)

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one

  11. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment.

    Science.gov (United States)

    Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z

    2018-04-01

    (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hydrothermal processing of radioactive combustible waste

    International Nuclear Information System (INIS)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-01-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO 2 and H 2 O, with 30 wt.% H 2 O 2 as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture

  13. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  14. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  15. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  16. Duration of hydrothermal treatment and peeling of 'Murcott' tangor

    Directory of Open Access Journals (Sweden)

    Ana Luiza Pinheiro

    2011-12-01

    Full Text Available Hydrothermal treatment facilitates the peeling of 'Pera' sweet orange fruit and does not alter its quality. The aim of this work was to adapt the technology of peeling for the use of hydrothermal treatment in 'Murcott' tangor and to evaluate its influence in the CO2 production and the physicochemical, microbiologic and sensorial characteristics of fruits. The peeling time, the yield of marketable fruits and the internal temperature of fruits during the treatment were also evaluated. The hydrothermal treatment consisted of placing the fruits in a water-bath at 50 ºC for 5, 10, 15, 20, 25 and 30 min. Fruits were peeled by first opening a gap in the peduncle region with a knife and then manually removing the flavedo and albedo. Fruits were stored at 5 ºC for six days. Hydrothermal treatment caused changes in the fruits' CO2 production for only the first few hours after processing. Internal fruit temperature after 30 min of treatment reached 35 ºC. There were no changes in the physicochemical and microbiologic characteristics of the fruits. The treatment did not change the flavor, improved the fruits' appearance, decreased the peeling time of the treated fruits by 57 % and increased the yield of marketable fruits. In conclusion, the hydrothermal treatment accomplished from 5 to 30 min at 50 ºC can be used as part of the peeling process for 'Murcott' tangor.

  17. Controlled retting of hemp fibres: Effect of hydrothermal pre-treatmen tand enzymatic retting on the mechanical properties of unidirectiona lhemp/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Silva, Diogo Alexandre Santos; Fernando, Dinesh

    2016-01-01

    The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting...... produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08.Traditional...

  18. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  19. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  20. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    Science.gov (United States)

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-06-01

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  2. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  3. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga

    Directory of Open Access Journals (Sweden)

    Chukwuma Onumaegbu

    2018-03-01

    Full Text Available Cell disruption is an integral part of microalga production process, which improves the release of intracellular products that are essential for biofuel production. In this work, pre-treatment parameters that will enhance the efficiency of lipid production using high-pressure homogenizer on microalgae biomass will be investigated. The high-pressure homogenizer that is considered is a GYB40-10S/GY60-6S; with a pre-treatment pressure of 1000 psi, 2000 psi, and 3000 psi, the number of passes; 1, 2, and 3, a reaction time of 3, 3.5, and 4 h. Pressure and cavitation increase the efficiency of the pre-treatment process of the homogenizer. In addition, homogenization shear force and pressure are the basic significant factors that enhance the efficiency of microalgae cell rupture. Also, the use of modelling to simulate pre-treatment processes (Response Surface Methodology (RSM, Box-Behnken Designs (BBD, and design of experiment (DOE for process optimization will be adopted in this study. The results clearly demonstrate that high-pressure homogenization pre-treatment can effectively disrupt microalga cell walls to enhance lipid recovery efficiency, with a relatively short extraction time, both that are essential for maintaining a good quality of lipids for biofuel production. A maximum of 18% lipid yields were obtained after 3 h of HPH pre-treatment at 3000 psi.

  4. Production of lightweight refractory material by hydrothermal process

    International Nuclear Information System (INIS)

    Sulejmani, Ramiz B.

    2002-01-01

    Many different processes of production of lightweight refractories are well known over the World. Traditional production of lightweight refractories is by addition of combustibles or by a special frothing process. This work is concerned with hydrothermal of lightweight refractories from rice husk ash. The rice husk ash, used in present investigations were from Kocani region, R. Macedonia. The chemical analysis of the rice husk ash shows that it contains 91,8 - 93,7% SiO 2 and some alkaline and alkaline earth oxides. Microscopic and X - ray diffraction examinations of the rice husk ash have shown that it is composed of cristobalite, tridimite and amorphous silica. The composition of the mixture for lightweight refractory brick production is 93,4% rice husk ash and 6,6% Ca(OH) 2 . The mixtures were well mixed, moistened and pressed at 5 - 10 MPa. The hydrothermal reactions between calcium hydroxide and rice husk ash over the temperature range 80 - 160 o C were investigated. The period of autoclave treatment was from 2 to 72 h. After the hydrothermal treatment of the samples, the mineralogical composition, bulk density, density, cold crushing strength, porosity, refractoriness and thermal expansion were examined. Analysing the properties of the obtained samples it can be concluded that from rice husk ash and calcium hydroxide under hydrothermal condition it is possible to obtain lightweight acid refractory material with high quality.(Author)

  5. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, C.; Samori, C.; van der Spek, J.J.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2012-01-01

    The hydrothermal treatment (HTT) technology is evaluated for its potential as a process to convert algae and algal debris into a liquid fuel, within a sustainable algae biorefinery concept in which, next to fuels (gaseous and liquid), high value products are coproduced, nutrients and water are

  6. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  7. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  8. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  9. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  10. Hydrothermal treatment of coprecipitated YSZ powders

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci

    2009-01-01

    Zirconia stabilized with 8.5 mol% yttria (YSZ) were synthesized by coprecipitation and resulting gels were hydrothermally treated at 200°C and 220 PSI for 4, 8 and 16 hours. Products were oven dried at 70°C for 24 hours, uniaxially pressed as pellets and sintered at 1500 °C for 1 hour. Powders were characterized for surface area with N 2 gas adsorption, X-ray diffraction, laser diffraction granulometric analysis and scanning and transmission electronic microscopy. Density of ceramics was measured by an immersion method based on the Archimedes principle. Results showed that powders dried at 70°C are amorphous and after treatment has tetragonal/cubic symmetry. Surface area of powders presented a significant reduction after hydrothermal treatment. Ceramics prepared from hydrothermally treated powders have higher green density but sintered pellets are less dense when compared to that made with powders calcined at 800°C for 1 hour due to the agglomerate state of powders. Solvothermal treatment is a promising procedure to enhance density. (author)

  11. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  12. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  13. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  14. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  15. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Anne Belinda; Schmidt, Anette Skammelsen

    1999-03-01

    The efficiency of several processes for pre-treatment of lignocellulose has been investigated to provide feedstock for enzymatic hydrolysis and fermentation. Wet oxidation (WO) (with and without alkaline) has been investigated for wheat straw, birch wood, and willow treating 60 g/L. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year to year. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline WO fractionated wheat straw efficiently into solubilised hemicellulose and a highly convertible cellulose fraction. High oxygen (12 bar) during WO and low lignin in treated fibres resulted in highly convertible cellulose. Different optimal reaction conditions were found for different harvest years. For straw 1993 and 1997, conditions were 185 deg. C, 15 minutes resulting in 9-10 g/L solubilised hemicellulose and 63-67% cellulose convertibility. For straw 1994, conditions were 195 deg. C, 5 minutes resulting in 7.5 g/L solubilised hemicellulose and 96% cellulose convertibility. For willow, the optimal pre-treatment was WO without alkaline using 185 deg. C, 15 minutes, giving 8.2 g/L hemicellulose in solution and 50% cellulose convertibility. For birch wood, the best process conditions were hydrothermal treatment (without oxygen and alkaline). At 200 deg. C and 15 minutes, 8 g/L hemicellulose was solubilised with high recoveries for both polysaccharides, however, poor cellulose convertibility was found (<30%). Alkaline WO resulted in the highest cellulose convertibility but low contents of solubilised hemicellulose (<4 g/L). In general, formation of furfural was avoided by adding alkaline during wet oxidation. In the absence of alkaline, furfural formation was higher (up to 130 mg/100 g wheat straw) than that of steam explosion (43 mg/100 g straw). Formation of carboxylic acids was highest during alkaline wet oxidation and highest for birch wood (up to 8 g/L). Minor amounts of

  16. Hydrothermal treatment of grape marc for solid fuel applications

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Kwong, Chi Wai; Broström, Markus; Yoshikawa, Kunio

    2017-01-01

    Highlights: • The effects of treatment temperature and liquid pH on char and liquid properties. • Liquid pH had a statistically significant effect only on liquid carbon yield. • Higher treatment temperature increased char volatiles that can enhance ignitability. • Char showed promising fuel properties if elevated ash phosphorus can be tolerated. - Abstract: The treatment and disposal of grape marc, a residue from grape processing, represents a significant economic and environmental challenge for the winemaking industry. Hydrothermal treatment of grape marc could be an efficient way for producing solid fuels on-site at the wineries. In this work the effects of treatment temperature and liquid pH on grape marc char and liquid properties were determined based on laboratory experiments and the combustion characteristics of char were assessed through thermogravimetric analysis and fuel ash classification. The results showed that hydrothermal treatment increased the energy and carbon contents and decreased the ash content of grape marc. The effect of liquid pH was statistically significant (p < 0.05) only for the determined carbon yield of liquid samples. The energy yield from grape marc was maximized at lower treatment temperatures, which also decreased the content of less thermally stable compounds in the attained char. Higher treatment temperatures decreased grape marc solid, carbon and energy yields and led to an increase in thermally labile compounds compared to lower temperatures likely due to the condensation of liquid compounds or volatiles trapped in the pores of char particles. The alkali metal contents of char ash were reduced coupled with an increase in respective phosphorus. Overall the results support the use of hydrothermally treated grape marc in solid fuel applications, if elevated levels of ash phosphorus can be tolerated.

  17. Synthesis of ZrO2 nanoparticles by hydrothermal treatment

    International Nuclear Information System (INIS)

    Machmudah, Siti; Widiyastuti, W.; Prastuti, Okky Putri; Nurtono, Tantular; Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-01-01

    Zirconium oxide (zirconia, ZrO 2 ) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl 4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal

  18. Improving the circular economy via hydrothermal processing of high-density waste plastics.

    Science.gov (United States)

    Helmer Pedersen, Thomas; Conti, Federica

    2017-10-01

    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improvement of Haramay Fiber by Pre-treatment of Retting Process withPhosphoric Acid

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Neni-Rustini Eriawati

    2000-01-01

    Haramay as bast fiber contains of cellulose fiber as the main part, mixedwith hemi cellulose, pectin, and lignin as binding material for cellulosefiber to keep it together in the bundle form. For textile material, this bastfiber has to be freed from its binding material, called as retting process,before subjecting to scouring, dyeing and finishing process in textileindustry. In the retting process the dissolve of binding material can be doneeither by using enzyme in bio technology or extraction with strong alkalinecondition in common technology. Using sodium hydroxide for dissolving thebinding material can be carried out easily with good dissolving ability, butcan render the strength retention of the cellulose fiber. Pre-treatment ofthe bast fiber with phosphoric acid (H 3 PO 4 ), is expected to hydrolyze someof the binding materials that can not be dissolved in alkaline condition,including natural pigment that colored the fiber with creamy white. In thisstudy, the pre-treatment process before retting with phosphoric acid wascarried out in various condition, such as concentration of phosphoric acid (5ml/l- 25 ml/l), time and temperature of pre-treatment (1-3 hours at 50 o C or12-24 hours at room temperature), followed by neutralization in dilutealkaline. The retting process was carried out by means of scouring in variousconcentration of sodium hydroxide (NaOH 38 o Be, 10 ml/l-30 m/l), and then wascontinued with bleaching process in hydrogen peroxide solution. Aftercarrying out those experiment, the bast fiber that called haramay wassubjected to testing for weight reduction, strength retention and degree ofwhiteness. From the testing results it is concluded that pre-treatment withphosphoric acid can increase the weight reduction, strength retention ortenacity and degree of whiteness of haramay fiber compared to the oneswithout pre-treatment with phosphoric acid. The best result was obtained bypre-treatment with 5 ml/l H 3 PO 4 at 50 o C for 2 hours, continued by

  20. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    Science.gov (United States)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  1. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process

    International Nuclear Information System (INIS)

    Hu, J.; Russell, J.; Ben-Nissan, B.

    1999-01-01

    Since the 1970s it is well known that if a biocompatible ceramic prosthesis with appropriate interconnected pores is used, growth of hard and soft tissue into the surface pores will be observed. A very strong attachment and hence the resultant mechanical and chemical bond to the existing surrounding tissue will be produced. Current artificial eyes although widely used encounter various problems due to the their motility and fail to deliver natural movement. They also cause sagging of the lids due to unsupported weight of the prosthesis. It is expected that application of a porous bioceramic such as the hydroxyapatite can generate good bonding to the tissue and hence a life-like eye movement. Hydroxyapatite (HAp) and related calcium phosphates have been studied for many years as implant materials, due to their similarity with the mineral phase of bone. From the point of view of biocompatibility, HAp seems to be the most suitable ceramic material for tissue replacement implants. Hydroxyapatite ceramics do not exhibit any cytoxic effects. It shows excellent biocompatibility with hard and soft tissues. Moreover, HAp can directly bond to the bone. Various preparation methods for HAp including the hydrothermal method have been used. The hydrothermal method was first used for hydroxyapatite formation directly from corals in 1974 by Roy and Linnehan. Complete replacement of aragonite by phosphatic material was achieved under 270degC and 103MPa using the hydrothermal process. This process has the disadvantage that the hydrothermal treatment must be carried out at a relatively high temperature under very high pressure. In 1996, HAp derived from Indian coral using hydrothermal process was developed by Sivakumar et al. However, the resultant material was in the form of a powder. Australia has rich variety of corals. Their application for implants have been studied very little. In this study, Australian corals selected were used for hydroxyapatite conversion. A new hydrothermal

  2. Improvement in the productivity of xylooligosaccharides from waste medium after mushroom cultivation by hydrothermal treatment with suitable pretreatment.

    Science.gov (United States)

    Sato, Nobuaki; Shinji, Kazunori; Mizuno, Masahiro; Nozaki, Kouichi; Suzuki, Masayuki; Makishima, Satoshi; Shiroishi, Masahiro; Onoda, Takeru; Takahashi, Fumihiro; Kanda, Takahisa; Amano, Yoshihiko

    2010-08-01

    The effective xylooligosaccharides (XOs) production from the waste medium after mushroom cultivation (WM) was investigated. The WM contains rich nutrients (protein, etc.) which induce Maillard reaction with reducing sugars under hydrothermal conditions. To improve the productivity of XOs, the suitable pretreatment combined with washing and grinding was investigated, and subsequently hydrothermal treatment was demonstrated with batch type and continuous flow type reactor. The washing pretreatment with hot water of 60 degrees C was effective to remove nutrients from the WM, and it led to prevent brownish discoloration on the hydrothermal treatment. On the basis of experimental data, industrial XOs production processes consisting of the pretreatment, hydrothermal treatment and purification step was designed. During the designed process, 2.3 kg-dry of the purified XOs was produced from 30 kg-wet of the WM (15% yield as dry basis weight). Theoretical yield of XOs attained to 48% as xylan weight in the WM. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons

    International Nuclear Information System (INIS)

    Yu Huogen; Yu Jiaguo; Cheng Bei; Zhou Minghua

    2006-01-01

    Titanate nanoribbons were prepared via a hydrothermal treatment of rutile-type TiO 2 powders in a 10 M NaOH solution at 200 deg. C for 48 h. The as-prepared titanate nanoribbons were then hydrothermally post-treated at 150 deg. C for 12-36 h. The titanate nanoribbons before and after hydrothermal post-treatment were characterized with FESEM, XRD, TEM, UV-VIS and nitrogen adsorption-desorption isotherms. The results showed that the hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO 2 , but also was beneficial to the removal of Na + ions remained in the titanate nanoribbons. After hydrothermal post-treatment, the TiO 2 samples retained the one-dimensional structure feature of the titanate nanoribbons and showed an obvious increase in the specific surface area and the pore volume

  4. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps

    Directory of Open Access Journals (Sweden)

    Fidele Tugizimana

    2016-11-01

    Full Text Available Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the “exhaustive” extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen were used. Raw data were pre-processed with MarkerLynxTM software (Waters Corporation, Manchester, UK. Here, two parameters were varied: the intensity threshold (50–100 counts and the mass tolerance (0.005–0.01 Da. After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc. and data transformation (log and power methods were explored. The results showed that the pre-processing parameters (or algorithms influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables. Thus, as informed by the results, to maximize the value of untargeted metabolomic data

  5. Effect of hydrothermal treatment of coal on its associative structure

    Energy Technology Data Exchange (ETDEWEB)

    Shui Heng-fu; Wang Zhi-cai; Wang Gao-qiang; Niu Min-feng [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2006-10-15

    4 bituminous coals with different ranks were thermally and hydrothermally treated under different conditions, and the raw and treated coals were extracted with carbon disulfide/N-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent (1:1 by volume). It is found that the extraction yields of the thermal or hydrothermal treated coals at proper conditions increase in different extent. The increments of extraction yields for hydrothermal treated coals are higher than those of thermal treated coals. FT-IR shows that the adsorption peaks at 3410 cm{sup -1} attributed to OH group for the hydrothermal treated coals decrease, suggesting the dissociation of the coal aggregation structure due to the breakage of hydrogen bonds, resulting in the increase of extraction yields for the treated coals. For higher rank coal, the removal of minerals and the dissociation of {pi}-cation association after hydrothermal treatment of coal may be responsible for the increase of extraction yield. In addition, the mechanism of hydrothermal treatment of coal was discussed. 15 refs., 2 figs., 5 tabs.

  6. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    International Nuclear Information System (INIS)

    Benito, P.; Labajos, F.M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-01

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27 Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al 3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M 2+ /M 3+ ratio and consequent modification of the cell parameters. - Graphical Abstract: The influence of the nature of the interlayer anion during the ageing process of carboxylate-intercalated (TA and ox) hydrotalcite-like compounds (HTlcs) is studied. Well crystallized for TA-containing compounds were obtained. However, the non-desired side-reaction of ox with the aluminum of the layers is enhanced by the microwaves and a partial destruction of the structure takes place

  7. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification

    International Nuclear Information System (INIS)

    Moon, Jihong; Mun, Tae-Young; Yang, Won; Lee, Uendo; Hwang, Jungho; Jang, Ensuk; Choi, Changsik

    2015-01-01

    Highlights: • Hydrothermal treatment (HT) is energy efficient and increases fuel energy density. • Pyrolysis and steam gasification were performed with sewage sludge before/after HT. • Product gases resembled those from wood chips, particularly at high temperature. • HT increases sludge lignin content, possibly enhancing methane yield of product gas. • HT can improve sewage sludge for use as an alternative to biomass and fossil fuels. - Abstract: Hydrothermal treatment is a promising option for pretreatment drying of organic waste, due to its low energy consumption and contribution to increasing fuel energy density. In this study, the characteristics of hydrothermally treated sewage sludge were investigated, and pyrolysis and steam gasification were performed with the sludge before and after hydrothermal treatment. The overall composition of product gases from treated sludge was similar to that obtained from steam gasification of wood chips, particularly under high-temperature conditions. In addition, the increase in lignin content of sewage sludge following hydrothermal treatment could help enhance methane yield in product gas during pyrolysis and steam gasification. The findings suggest that hydrothermal treatment is an appropriate method for improving sewage sludge for use as an alternative to biomass and fossil fuels

  8. Influence of Reaction Conditions on Lignin Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erdocia, Xabier; Prado, Raquel; Corcuera, M. Ángeles; Labidi, Jalel, E-mail: jalel.labidi@ehu.es [Chemical and Environmental Engineering Department, University of the Basque Country, San Seabastian (Spain)

    2014-04-01

    Organosolv lignin, obtained from olive tree pruning under optimized conditions, was subjected to a hydrothermal depolymerization process catalyzed by sodium hydroxide. The depolymerization of lignin was carried out at 300°C using different reaction times (20, 40, 60, 70, 80, 90, and 100 min) in order to study the influence of this parameter on lignin depolymerization. The resulting products (oil and residual lignin) were measured and analyzed by different techniques (GC/MS, high-performance size-exclusion chromatography, and pyrolysis–GC/MS) in order to determine their nature and composition. Coke was also formed, at a lower quantity, uncompetitive repolymerization reactions during the lignin hydrothermal treatment. The maximum oil yield and concentration of monomeric phenolic compounds was obtained after 80 min of reaction time. The highest reaction time studied (100 min) had the worst results with the lowest oil yield and highest coke production.

  9. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Machmudah, Siti, E-mail: machmudah@chem-eng.its.ac.id; Widiyastuti, W., E-mail: machmudah@chem-eng.its.ac.id; Prastuti, Okky Putri, E-mail: machmudah@chem-eng.its.ac.id; Nurtono, Tantular, E-mail: machmudah@chem-eng.its.ac.id; Winardi, Sugeng, E-mail: machmudah@chem-eng.its.ac.id [Chemical Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya 60111 (Indonesia); Wahyudiono,; Kanda, Hideki; Goto, Motonobu [Department of Chemical Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2014-02-24

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  10. Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept.

    Science.gov (United States)

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

    2013-05-01

    The present work investigated the effects of hydrothermal treatment (HTT) of Tamarix ramosissima by determination of sugar and inhibitor formation in the liquid fraction, and chemical and morphological changes of the pretreated solid material coupled with an evaluation of enzymatic hydrolysis. HTT was carried out in a batch reactor system at a maximal temperature (TMAX 180-240 °C) and evaluated for severities logRo ranging from 2.40 to 4.17. The liquid fractions were analyzed by HPLC, GPC, and GC-MS. The morphology and composition of the solid residues were characterized using an array of techniques, such as SEM, XRD, BET surface area, and CP/MAS (13)C NMR. Using a variety of tools, we have developed a better understanding of how HTT process affects biomass structure and cellulose properties that impact on its digestibility. These results provided new insights into the factors limiting enzymatic digestibility and mechanism of biomass deconstruction during hydrothermal process. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    Science.gov (United States)

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  12. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  13. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  14. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  15. Hydrothermal carbonization. Investigation of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, J.; Rossbach, M.; Reichert, D.; Bockhorn, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. of Technical Chemistry and Polymerchemistry; Walz, L. [Energie Baden-Wuerttemberg AG, Karlsruhe (Germany); Eyler, D. [European Institute for Energy Research, Karlsruhe (Germany)

    2010-07-01

    For energetic use and as a raw material lignocellulosic biomass becomes more and more important. Among pyrolytic refining, the hydrothermal treatment can be an alternative way to deoxygenerate biomass. The objective of this study is to gain deeper insights into the Hydrothermal Carbonization (HTC) process and also to define basic parameters for the construction of a small pilot plant. The biomass is converted in an autoclave at temperatures between 180 C and 240 C establishing the respective vapour pressure. Reaction times between 1 and 12 hours are applied and various catalysts in different concentrations are tested. Elemental analysis of the product, a brown coal-like solid, shows a composition of ca. C{sub 4}H{sub 3}O{sub 1}, corresponding to a carbon recovery of 60% of initial carbon mass. The elemental composition of the product is independent of the process temperature and the applied biomass, if a minimal reaction time is adhered, which however heavily depends on the reaction temperature. The remaining carbon species in intermediate reaction products in the liquid and gas phase are characterised by use of GC/MS, HPLC and FTIR. From the experimental data a two-way mechanism is deduced that includes a rapid formation of an initial solid and dehydration and decomposition reactions which lead to smaller organic molecules, e.g. furfural and aromatic species, and can be promoted by acid catalysis, e.g. H{sub 2}SO{sub 4}. (orig.)

  16. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  17. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  18. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhen; Ma Lijian; Li Shuqiong; Geng Junxia; Song Qiang; Liu Jun; Wang Chunli; Wang Hang; Li Juan [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China); Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Shoujian, E-mail: sjli000616@scu.edu.cn [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China)

    2011-08-01

    It was found that a large number of oxygen-containing functional groups (OFGs) could be created on the surface of hydrothermal carbon (HTC) by simply heating at lower temperature in air during the course of our preliminary experiments which focused on oxidation pre-treatment of pristine HTC for the purpose of grafting functionalization. Especially carboxyl groups on HTC would increase significantly, from 0.53 to 3.70 mmol/g after heat treatment at 300 deg. C. So, effects of heat-treatment on the OFGs on the carbon microsphere were deeply studied to confirm and explain the findings. Experiments involving different materials (HTC, activated carbon and glucose) were performed under varying conditions (heating temperature and time, in air or in Ar atmosphere). A reaction mechanism for newly generating carboxyl groups on HTC surface during heat-treatment process was supposed based on the results from the sample characterization using Boehm titrations, infrared spectra, X-ray photoelectron spectroscopy, energy dispersive spectrometry and elemental analysis. In addition, the as heat-treated product has excellent sorption capability for Pb{sup 2+} and Cd{sup 2+} ions.

  19. [Variation of water DOC during the process of pre-pressure and coagulation sedimentation treatment].

    Science.gov (United States)

    Chen, Wen-Jing; Cong, Hai-Bing; Xu, Ya-Jun; Wang, Wei; Jiang, Xin-Yue; Liu, Yu-Jiao

    2014-07-01

    The aim of the study was to explore whether the pre-pressure and coagulation sedimentation process would result in algal cell disruption, leading to increased dissolved organic carbon (DOC) in water, based on which, the pressure application mode would be optimized and safe and efficient pre-pressure algae removal process would be obtained. The changes in DOC during the process of pre-pressure and preoxidation treatment, the distribution of molecular weight in water as well as the removal efficiency of algae, turbidity and DOC after coagulation and sedimentation were investigated. The results showed that the DOC in water did not increase but decreased, and the molecular weight decreased after treated with 0.5-0.8 MPa pressure. While KMnO4 and NaClO pre-oxidation both increased the DOC, in the meanwhile, the distribution of molecular weight showed no obvious change. After the pre-pressure coagulation and sedimentation process, the removal rate of algae was 96.23% and that of DOC was 29. 11%, which was by 10% - 30% higher than the rate of pre-oxidation coagulation and sedimentation process.

  20. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  1. Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield

    DEFF Research Database (Denmark)

    Di Girolamo, Giuseppe; Grigatti, Marco; Barbanti, Lorenzo

    2013-01-01

    /20min, 180°C/10min and 180°C/20min. Conversely, the eight pre-treatments with H2SO4 catalyst incurred a methanogenic inhibition in association with high SO42- concentration in the hydrolysate, known to enhance sulphate reducing bacteria. Furfurals were also detected in the hydrolysate of five strong...

  2. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  3. Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats

    International Nuclear Information System (INIS)

    Barakat, Nasser A.M.; Park, Soo Jin; Khil, Myung Seob; Kim, Hak Yong

    2009-01-01

    In the present study, manganese monoxide (MnO) which is hard to prepare because of the chemical activity of the manganese metal has been synthesized in nanofibrous form. An electrospun manganese acetate/poly(vinyl alcohol) nanofiber mats have been hydrothermally treated by novel strategy. The treatment process was based on producing of water gas (Co and H 2 ) to eliminate the polymer and reduced the manganese acetate to manganese monoxide. The process was carried out by heating the dried nanofiber mates at 400 deg. C for 3 h in an especial designed reactor in which a stream of water vapor was passing through a bed of an activated carbon. The obtained physiochemical characterization results indicated that the proposed hydrothermal treatment process does have the ability to produce pure MnO nanofibers with good crystallinity.

  4. Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, Nasser A.M. [Chemical Engineering Department, Faculty of Engineering, El-Minia University, El-Minia (Egypt); Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: nasbarakat@yahoo.com; Park, Soo Jin [Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Khil, Myung Seob [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: khy@chonbuk.ac.kr

    2009-06-15

    In the present study, manganese monoxide (MnO) which is hard to prepare because of the chemical activity of the manganese metal has been synthesized in nanofibrous form. An electrospun manganese acetate/poly(vinyl alcohol) nanofiber mats have been hydrothermally treated by novel strategy. The treatment process was based on producing of water gas (Co and H{sub 2}) to eliminate the polymer and reduced the manganese acetate to manganese monoxide. The process was carried out by heating the dried nanofiber mates at 400 deg. C for 3 h in an especial designed reactor in which a stream of water vapor was passing through a bed of an activated carbon. The obtained physiochemical characterization results indicated that the proposed hydrothermal treatment process does have the ability to produce pure MnO nanofibers with good crystallinity.

  5. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    International Nuclear Information System (INIS)

    Currier, R.P.

    1994-01-01

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported

  6. Hydrothermal processing of biomass from invasive aquatic plants

    Science.gov (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt

    2008-01-01

    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  7. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Science.gov (United States)

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-02-01

    Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.

  8. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Iyyappan, E.; Wilson, P.; Sheela, K.; Ramya, R.

    2016-01-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO 3 ) 2 ·4H 2 O and (NH 4 ) 2 HPO 4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption–desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. - Highlights: • Nanoporous HA nanorods are synthesized via triton X-100 assisted hydrothermal treatment. • Triton X-100 hinder the agglomeration of HA primary particles • Hydrothermal treatment increase the aspect ratio of the HA particles • Oriented attachment of HA particles occurs under hydrothermal treatment facilitated by triton X-100 stabilized HA collides • The percentage of mesopore volume is higher for hydrothermally treated samples

  9. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  10. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zuldesmi, Mansjur, E-mail: mzuldesmi@yahoo.com [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Department of Mechanical Engineering, Manad State University (UNIMA) (Indonesia); Waki, Atsushi [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Kuroda, Kensuke; Okido, Masazumi [EcoTopia Science Institute, Nagoya University, Nagoya (Japan)

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H{sub 3}PO{sub 4} with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s{sup −1}. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (R{sub B–I}) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  11. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Iyyappan, E.; Wilson, P., E-mail: catwils@gmail.com; Sheela, K.; Ramya, R.

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4} as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption–desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. - Highlights: • Nanoporous HA nanorods are synthesized via triton X-100 assisted hydrothermal treatment. • Triton X-100 hinder the agglomeration of HA primary particles • Hydrothermal treatment increase the aspect ratio of the HA particles • Oriented attachment of HA particles occurs under hydrothermal treatment facilitated by triton X-100 stabilized HA collides • The percentage of mesopore volume is higher for hydrothermally treated samples.

  12. Mobility of rare earth element in hydrothermal process and weathering product: a review

    Science.gov (United States)

    Lintjewas, L.; Setiawan, I.

    2018-02-01

    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  13. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  14. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  15. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  16. Preparation and Characterization of Lignocellulosic Oil Sorbent by Hydrothermal Treatment of Populus Fiber

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-09-01

    Full Text Available This study is aimed at achieving the optimum conditions of hydrothermal treatment and acetylation of Populus fiber to improve its oil sorption capacity (OSC in an oil-water mixture. The characteristics of the hydrolyzed and acetylated fibers were comparatively investigated by FT-IR, CP-MAS 13C-NMR, SEM and TGA. The optimum conditions of the hydrothermal treatment and acetylation were obtained at170 °C for 1 h and 120 °C for 2 h, respectively. The maximum OSC of the hydrolyzed fiber (16.78 g/g was slightly lower than that of the acetylated fiber (21.57 g/g, but they were both higher than the maximum OSC of the unmodified fiber (3.94 g/g. In addition, acetylation after hydrothermal treatment for the Populus fiber was unnecessary as the increment of the maximum OSC was only 3.53 g/g. The hydrolyzed and the acetylated Populus fibers both displayed a lumen orifice enabling a high oil entrapment. The thermal stability of the modified fibers was shown to be increased in comparison with that of the raw fiber. The hydrothermal treatment offers a new approach to prepare lignocellulosic oil sorbent.

  17. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-12

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios received increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.

  18. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  20. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.

    2018-04-01

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil. CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.

  1. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

    Science.gov (United States)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.

    2015-06-01

    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  2. Influence of hydrothermal carbonization and treatment by microwave on morphology of carbonaceous materials obtained from lignin

    International Nuclear Information System (INIS)

    Oliveira, I.B.; Barin, G.B.; Barreto, L.S.; Santos, M.C.G.

    2014-01-01

    The conversion of biomass into carbon materials with special morphologies via hydrothermal carbonization presents itself as a potential route for the use of renewable precursors in obtaining carbonaceous structures. In the present study the influence of the hydrothermal carbonization (250 ° C / 4 h) followed by microwave treatment (1-2-4 hours at 25 and 40 mL) in morphology and structure of lignin. The samples were analyzed by X-ray diffraction and scanning electron microscopy. The plaque morphology of lignin was preserved during the hydrothermal process. However, when treated by microwave can be observed partial dissolution of lignin leading to the formation of microspheres on the surface. XRD presence of an amorphous halo 2θ = 23 ° attributed to the (002) network of the amorphous carbon was observed. (author)

  3. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  4. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  5. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.

    Science.gov (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans

    2017-10-01

    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    Science.gov (United States)

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products.

    Science.gov (United States)

    Wang, Liping; Li, Aimin

    2015-01-01

    Hydrothermal treatment coupled with mechanical expression at increased temperature in two separate cells respectively is effective for the dewatering of excess sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and the characteristics of obtained products (hydrothermal sludge, hydrochar and filtrate). The results showed that harsher hydrothermal treatment (temperature from 120 to 210 °C and residence time from 10 to 90 min) led to greater water removal (from 7.44 to 96.64% reduction of total water) and mechanical pressure became less significant as it increased. The whole expression stage was completely described by the modified Terzaghi-Voigt rheological model. The role of tertiary consolidation stage in the water removal was reduced with hydrothermal treatment being stronger. The hydrothermal treatment is mainly a devolatilization process. The observed changes in H/C and O/C for hydrothermal sludge suggested dehydration was the major reaction mechanism and decarboxylation only occurred significantly at higher temperature. The higher heating value correlated well with carbon content of sludge, which was increased by 4.8% for hydrothermal sludge at 210 °C for 60 min and significantly decreased by 15.4% for hydrochar after 6.0 MPa for 20 min. The solubilization and decomposition of proteins, polysaccharides and DNA were determined to be temperature and residence time dependent. The improvement of dewaterability was closely correlated to the variation of these biopolymers. The filtrates collected above 150 °C were found to be acidic. The increase of humic substances and the melanoidins formed by Maillard reaction were largely responsible for the filtrate color.

  8. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  9. Possibility of content change in bioethanol gasoline during pre-treatment process for using accelerator mass spectroscopy

    International Nuclear Information System (INIS)

    Saito, Masaaki; Yunoki, Shunji; Suzuki, Takashi

    2010-01-01

    We attempted to determine the bioethanol content of E3 gasoline by applying ASTM D6866 method B. In the pre-treatment process using accelerator mass spectroscopy(AMS), the graphite samples were prepared from E3 gasoline. Three portions of the same graphite sample were measured, and the contents agreed within the measurement error of AMS. The graphite samples prepared from eight portions of the same E3 gasoline sample were measured, but the accuracy was insufficient. There are many kinds of hydrocarbon compounds in the gasoline and their boiling points are different. The content of bioethanol was found to decrease with vaporization when E3 gasoline was placed in open air. A very small amount of E3 gasoline is pre-treated for AMS and the volatile loss cannot be ignored. It seems that the content change of bioethanol was caused by vaporization of E3 gasoline during the pre-treatment process. (author)

  10. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    International Nuclear Information System (INIS)

    Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A.

    2012-01-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH. - Highlights: ► We study the enzymatic hydrolysis of cellulose and hemicellulose in sugarcane bagasse. ► We study the combination of three pretreatments: electron beam processing, EBP followed by hydrothermal and by diluted acid treatment. ► The electron beam processing increased the enzymatic hydrolysis from 8% to 15% with 20 kGy. ► The enzymes used were commercial preparations, as Celluclast 1.5 L and β-glycosidase. ► The EBP with 50 kGy increased on 20% the yield of EH of cellulose after TH and 30% after AH.

  11. Application of hydrothermally crystallized coal ashes for waste water treatment, 2

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yasuhiko; Kakimoto, Kohji; Ogawa, Hiroaki; Tomari, Masao; Sakamoto, Eiji; Asahara, Teruzo

    1986-11-01

    To provide an application of combustion coal ash, hydrothermal reaction of fly ash (FA) and clinker ash (CA) is performed and an investigation is carried out to determine the capability of the P type zeolite produced from these ashes to adsorb heavy metal ions. Hydrothermal reaction of FA and CA at 95 - 100 deg C is conducted with various concentrations of sodium hydroxide for various reaction times. Both types of ash are found to easily undergo crystallization to form P type zeolite (PZ) and hydroxy sodalite (HS) when treated with a sodium hydroxide solution (sodium hydroxide/coal ash = 10 v/w) for 18 hours. The FA-PZ and CA-PZ produced by the hydrothermal treatment have degrees of crystallinity in the range of 40 - 60 percent. It is seen that the degree of crystallinity gradually increases with increasing treatment time. The crystallinity of hydrothermally treated coal ash is also shown to have good correlation with the base substitution capacity and the maximum adsorption of ammonium ion. Furthermore, they are shown to effectively adsorb metal ions, in particular those of lead, cadmium and strontium. It is suggested that they may serve as an enrichment agent for low-level radioactive nuclides produced in nuclear power plants. They also seem to have the possibility of serving as a metal elution preventive for industrial wastes of some special types. (Nogami, K.).

  12. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Liang Yanyu; Bao Shujuan; Li Hulin

    2006-01-01

    A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+ , F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle. - Graphical abstract: It is a SEM image of the spinel LiMn 2 O 4 , which was prepared by this novel hydrothermal procedure. It illustrates that reasonable-crystallized spinel oxide has occurred through the special hydrothermal process and the average particle size declined to about 1 μm. This homogeneous grain size distribution provides an important morphological basis for the reversibility and accessibility of lithium ion insertion/extraction reactions

  13. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hydrothermal Disintegration and Extraction of Different Microalgae Species

    Directory of Open Access Journals (Sweden)

    Michael Kröger

    2018-02-01

    Full Text Available For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina to determine whether it has an advantage in comparison to other disintegration methods for lipid extraction. It was shown, that hydrothermal treatment is a reasonable opportunity to utilize microalgae without drying and increase the lipid yield of an algae extraction process. For three of the four microalgae species, the extraction yield with a prior hydrothermal treatment elevated the lipid yield up to six times in comparison to direct extraction. Only Scenedesmus rubescens showed a different behaviour. Reason can be found in the different cell wall of the species. The investigation of the differences in cell wall composition of the used species indicate that the existence of algaenan as a cell wall compound plays a major role in stability.

  15. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    Science.gov (United States)

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  16. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  17. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  18. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    Science.gov (United States)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  19. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature.

    Science.gov (United States)

    López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel

    2017-11-01

    Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.

  20. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.

    Science.gov (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong

    2018-01-01

    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m 2 /g) from 25 to 171m 2 /g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO 2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH - groups) basic sites with subsequent surge in the number of strong basic sites (O 2- ) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  1. Desorption of cesium ions from vermiculite with sea water by hydrothermal process

    International Nuclear Information System (INIS)

    Yin, Xiangbiao; Takahashi, Hideharu; Inaba, Yusuke; Takeshita, Kenji

    2016-01-01

    Cesium ions (Cs + ) strongly intercalated in vermiculite clay (Verm) had been effectively removed using sea water for its free utility, totally environmental friendly feature, and within containing numerous salt by the hydrothermal treatment process (HTT), which can help significantly promote desorption by the cation-exchange mechanism in subcritical condition. >74-100% removal was achieved to the interacted Cs + for a loading capacity of 4.8-50 mg g −1 . XRD results indicated that cation exchange proceeded between the intercalated Cs + and various cations in sea water during HTT. (author)

  2. Thermal and Hydrothermal Treatment of Silica Gels as Solid Stationary Phases in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Silica gel was prepared and treated thermally and hydrothermally and was characterized as solid stationary phase in gas chromatography. The characteristics have been evaluated in terms of polarity, selectivity, and separation efficiencies. These parameters were used to assess the outer silica surface contributions and the degree of surface deactivation brought about by different treatment techniques. The parent silica elutes the paraffinic hydrocarbons with high efficiency of separation and elutes aromatic hydrocarbons with nearly good separation and has bad separation of alcohols. The calcined silica at 500°C and 1000°C has a pronounced effect on the separation of aromatic hydrocarbons compared with the parent silica and hydrothermal treatment of silica. With respect to alcohols separation, the obtained bad separations using treated and untreated silica reflect the little effect of the thermal and hydrothermal treatment on the silica surface deactivation.

  3. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges.

    Science.gov (United States)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M; Ingall, Ellery D; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.; Ingall, Ellery D.; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.

  5. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.

    Science.gov (United States)

    Iyyappan, E; Wilson, P; Sheela, K; Ramya, R

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    Science.gov (United States)

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  8. The Effect of Hydrothermal Treatment on Olivine Nano-Silica

    NARCIS (Netherlands)

    Griend, van de M.C; Lazaro, A.; Brouwers, H.J.H.

    2012-01-01

    This paper provides an overview of the effects of ripening the olivine nano-silica to form particles with a lower specific surface area for optimal use in high performance concrete. The nano-silica was ripened using a hydrothermal treatment in a mixed batch reactor at 90 C, pH ranging from 8 to 10

  9. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications.

    Science.gov (United States)

    Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin

    2018-05-26

    In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    Science.gov (United States)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  11. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  12. Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Starodubtseva Galina Petrovna

    2018-03-01

    Full Text Available Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

  13. Dry ice blasting as a substitution for the conventional electroplating pre-treatments

    Directory of Open Access Journals (Sweden)

    Uhlmann Eckart

    2016-01-01

    Full Text Available For high quality electroplated products, surfaces must be thoroughly pre-treated. For this purpose electroplating currently needs a variety of chemical baths. The used chemicals are injurious to health and harmful to the environment. In addition, the conventional pre-treatment has a long process time which results in high costs. Dry ice blasting alone or in combination with other processes has the potential to completely substitute these conventional pre-treatment processes. Three process sequences as pre-treatment methods prior to electroplating were investigated on the aluminium alloys AlSi12 and AlMg3. The used processes are dry ice blasting, tempering during dry ice blasting and glass bead blasting followed by dry ice blasting. The influence of the parameters on the surface roughness, surface topography and surface tension of the workpieces was examined. A model to describe the correlation between the dry ice blasting parameters and surface parameters was developed. Finally, an adhesion test of electroplated specimen was conducted in order to determine the suitability of these alternative pre-treatment processes.

  14. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  15. The effect of hydrothermal treatment on samaria and gadolinia doped ceria powders synthesized by coprecipitation

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci

    2009-01-01

    One of the main applications of ceria-based (CeO 2 ) ceramics is the manufacturing of Intermediate Temperature Solid Oxide Fuel Cells electrolytes. In order to improve ionic conductivity and densification of these materials various powder synthesis routes have been studied. In this work powders with composition Ce 0.8 (SmGd) 0.2 O 1.9h ave been synthesized by coprecipitation and hydrothermal treatment. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as precursor materials. The powders were characterized by X-ray diffraction, scanning and transmission electron microscopy, agglomerate size distribution by laser scattering and specific surface area by gas adsorption. Ceramic sinterability was evaluated by dilatometry and density measurements by Archimedes method. High specific surface area powders (~100m 2 /g) and cubic fluorite structure were obtained after hydrothermal treatment around 200 deg C. Ceramic densification was improved when compared to the one prepared from powders calcined at 800 deg C. (author)

  16. Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Kim Yong-Jin

    2010-01-01

    Full Text Available Abstract Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property.

  17. Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge

    Science.gov (United States)

    Cao, Hong; Sun, Zhilei; Zhai, Shikui; Cao, Zhimin; Jiang, Xuejun; Huang, Wei; Wang, Libo; Zhang, Xilin; He, Yongjun

    2018-04-01

    The Edmond hydrothermal field, located on the Central Indian Ridge (CIR), has a distinct mineralization history owing to its unique magmatic, tectonic, and alteration processes. Here, we report the detailed mineralogical and geochemical characteristics of hydrothermal metal sulfides recovered from this area. Based on the mineralogical investigations, the Edmond hydrothermal deposits comprise of high-temperature Fe-rich massive sulfides, medium-temperature Zn-rich sulfide chimney and low-temperature Ca-rich sulfate mineral assemblages. According to these compositions, three distinctive mineralization stages have been identified: (1) low-temperature consisting largely of anhydrite and pyrite/marcasite; (2) medium-high temperature distinguished by the mineral assemblage of pyrite, sphalerite and chalcopyrite; and (3) low-temperature stage characterized by the mineral assemblage of colloidal pyrite/marcasite, barite, quartz, anglesite. Several lines of evidence suggest that the sulfides were influenced by pervasive low-temperature diffuse flows in this area. The hydrothermal deposits are relatively enriched in Fe (5.99-18.93 wt%), Zn (2.10-10.00 wt%) and Ca (0.02-19.15 wt%), but display low Cu (0.28-0.81 wt%). The mineralogical varieties and low metal content of sulfides in the Edmond hydrothermal field both indicate that extensive water circulation is prevalent below the Edmond hydrothermal field. With regard to trace elements, the contents of Pb, Ba, Sr, As, Au, Ag, and Cd are significantly higher than those in other sediment-starved mid-ocean ridges, which is indicative of contribution from felsic rock sources. Furthermore, the multiphase hydrothermal activity and the pervasive water circulation underneath are speculated to play important roles in element remobilization and enrichment. Our findings deepen our understanding about the complex mineralization process in slow- to intermediate-spreading ridges globally.

  18. Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-04-01

    Full Text Available Pre-treatment is a significant step in the production of second-generation biofuels from waste lignocellulosic materials. Obtaining biofuels as a result of fermentation processes requires appropriate pre-treatment conditions ensuring the highest possible degree of saccharification of the feed material. An influence of the following process parameters were investigated for alkaline pre-treatment of Salix viminalis L.: catalyst concentration (NaOH, temperature, pre-treatment time and granulation. For this purpose, experiments were carried out in accordance to the Box-Behnken design for four factors. In the saccharification process of the pre-treated biomass, cellulolytic enzymes immobilized on diatomaceous earth were used. Based on the obtained results, a mathematical model for the optimal conditions of alkaline pre-treatment prediction is proposed. The optimal conditions of alkaline pre-treatment are established as follows: granulation 0.75 mm, catalyst concentration 7%, pre-treatment time 6 h and temperature 65 °C if the saccharification efficiency and cost analysis are considered. An influence of the optimized pre-treatment on both the chemical composition and structural changes for six various lignocellulosic materials (energetic willow, energetic poplar, beech, triticale, meadow grass, corncobs was investigated. SEM images of raw and pre-treated biomass samples are included in order to follow the changes in the biomass structure during hydrolysis.

  19. On the theory system of hydrothermal uranium metallization in China

    International Nuclear Information System (INIS)

    Du Letian

    2011-01-01

    Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)

  20. EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...

    African Journals Online (AJOL)

    Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...

  1. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis

    International Nuclear Information System (INIS)

    Yuan, Zhengqiu; Long, Jinxing; Wang, Tiejun; Shu, Riyang; Zhang, Qi; Ma, Longlong

    2015-01-01

    Highlights: • Novel pretreatment of ball milling combined with hydrothermal method was presented. • Intensification effect of ball milling was significant for corn straw enzymolysis. • Ball milling destroyed the physical structure of corn straw. • Chemical (liquid mixture) method removed lignin and hemicellulose. • Glucose yield increased from 0.41 to 13.86 mg mL −1 under the optimized condition. - Abstract: Enhancement of the cellulose accessibility is significant for biomass enzymatic hydrolysis. Here, we reported an efficient combined pretreatment for corn straw enzymolysis using ball milling and dilute acid hydrothermal method (a mixture solvent of H 2 O/ethanol/sulfuric acid/hydrogen peroxide liquid). The process intensification effect of ball milling on the pretreatment of the corn straw was studied through the comparative characterization of the physical–chemical properties of the raw and pretreated corn straw using FT-IR, BET, XRD, SEM, and HPLC analysis. The effect of the pretreatment temperature was also investigated. Furthermore, various pretreatment methods were compared as well. Moreover, the pretreatment performance was measured by enzymolysis. The results showed that ball milling had a significant process intensification effect on the corn straw enzymolysis. The glucose concentration was dramatically increased from 0.41 to 13.86 mg mL −1 after the combined treatment of ball milling and hydrothermal. The efficient removal of lignin and hemicellulose and the enlargement of the surface area were considered to be responsible for this significant increase based on the intensive analysis on the main components and the physical–chemical properties of the raw and pretreated corn straw

  2. Treatment of urban sludge by hydrothermal carbonization.

    Science.gov (United States)

    Xu, Xiwei; Jiang, Enchen

    2017-08-01

    Urban sludge was treated by Hydrothermal carbonization (HTC). The effect of hydrothermal carbonization temperature, mixing with or without catalysts on solid products yield, heavy metal contents, turbidity and COD value was evaluated. The result showed solid products yield decreased from 92.04% to 52.65% when the temperature increased from 180 to 300°C. And the Cu, Zn, and Pb contents under exchangeable states decreased and reached discharge standard. Addition of FeCl 3 or Al(OH) 3 resulted in a significant increase in the exchangeable states of Zn, Pb, Cr, and Cd and decrease in their residual states. The turbidity and COD value of hydrothermal liquid decreased from 450° to 175°, and 13 to 6.8g/L, with increasing hydrothermal temperature. Comparison with HTC, solid productivity from low-temperature pyrolysis is higher. The exchangeable states of Cu, Zn, and Cr exceeded the limiting values. Our results show HTC can facilitate transforming urban sludge into no-pollution and energy-rich products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Obtaining zeolite Y synthesized by hydrothermal treatment assisted by microwave

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Rodrigues, M.G.F.; Gama, L.; Oliveira, J. B.L.

    2011-01-01

    n search of new catalysts several man-made structures have been developed. The use of zeolites in catalysis is applied due to its ability to associate activity, selectivity and stability, the main conditions to have an effective catalyst. Thus, studies have been done on the hydrothermal synthesis of zeolites by microwave assisted, since the use of microwave radiation offers several advantages over conventional heating. In this context, this work aims to synthesis and characterization of zeolite Y via hydrothermal treatment in a microwave oven. The sample obtained was characterized by XRD, BET and SEM. XRD results showed the formation of zeolite Y in just 60 minutes. The sample showed high value of surface area, the latter being of 476.2 m² / g. The particles are agglomerated, but with a narrow distribution of size. (author)

  4. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method

    International Nuclear Information System (INIS)

    Luo Xixian; Cao Wanghe; Zhou Lixin

    2007-01-01

    ZnS:Ag and (Zn,Cd)S:Ag nanoparticles with particle sizes of about 50 and 150 nm have been prepared by hydrothermal method. The effects of hydrothermal process on the physical and luminescence characteristics are investigated. The photoluminescence intensities of hydrothermal treatment ZnS:Ag samples are 10 times higher than that of non-treated samples after annealing at 800 deg. C

  5. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  6. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  7. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate.

    Science.gov (United States)

    Ekpo, U; Ross, A B; Camargo-Valero, M A; Williams, P T

    2016-01-01

    Thermal hydrolysis and hydrothermal processing show promise for converting biomass into higher energy density fuels. Both approaches facilitate the extraction of inorganics into the aqueous product. This study compares the behaviour of microalgae, digestate, swine and chicken manure by thermal hydrolysis and hydrothermal processing at increasing process severity. Thermal hydrolysis was performed at 170°C, hydrothermal carbonisation (HTC) was performed at 250°C, hydrothermal liquefaction (HTL) was performed at 350°C and supercritical water gasification (SCWG) was performed at 500°C. The level of nitrogen, phosphorus and potassium in the product streams was measured for each feedstock. Nitrogen is present in the aqueous phase as organic-N and NH3-N. The proportion of organic-N is higher at lower temperatures. Extraction of phosphorus is linked to the presence of inorganics such as Ca, Mg and Fe in the feedstock. Microalgae and chicken manure release phosphorus more easily than other feedstocks. Copyright © 2015. Published by Elsevier Ltd.

  8. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  9. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries

    Science.gov (United States)

    Liang, Yan-Yu; Bao, Shu-Juan; Li, Hu-Lin

    2006-07-01

    A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+, F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle.

  10. Pre-treatment of oil palm fronds biomass for gasification

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2017-01-01

    Full Text Available Oil Palm Fronds (OPF has been proven as one of the potential types of biomass feedstock for power generation. The low ash content and high calorific value are making OPF an attractive source for gasification. The objective of this study is to investigate the effects of pre-treatments of OPF residual on gasification. The pre-treatments included the briquetting process and extensive drying of OPF which are studied separately. In briquetting process, the OPF were mixed with some portions of paper as an additives, leaflets, and water, to form a soupy slurry. The extensive drying of OPF needs to cut down OPF in 4–6 cm particle size and left to dry in the oven at 150°C for 24 hours. Gasification process was carried out at the end of each of the pre-treated processes. It was found that the average gas composition obtained from briquetting process was 8.07%, 2.06%, 0.54%,and 11.02% for CO, H2, CH4, and CO2 respectively. A good composition of syngas was produced from extensive dried OPF, as 16.48%, 4.03%, 0.91%,and 11.15% for CO, H2, CH4, and CO2 contents respectively. It can be concluded that pre-treatments improved the physical characteristics of biomass. The bulk density of biomass can be increased by briquetting but the stability of the structure is depending on the composition of briquette formulation. Furthermore, the stability of gasification process also depended on briquette density, mechanical strength, and formulation.

  11. Effect of hydrothermal treatment on the extraction of coal in the CS{sub 2}/NMP mixed solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Gaoqiang Wang [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2006-09-15

    The extraction of four Chinese different rank bituminous coals with the carbon disulfide/N-2-pyrrolidinone (CS2/NMP) mixed solvent (1:1 by volume) was carried out in room temperature. It was found that one of middle bituminous raw coal of the four coals gave more than 74% (daf) extraction yield, suggesting an associative structural model for the coal. The four coals were hydrothermal treated under different conditions, and it was found that the extraction yields of the treated coals obviously increased. This will have great significance for coal liquefaction. FTIR measurements show the removal of minerals after the hydrothermal treatment of coals suggesting the dissociation of the coal aggregation structure due to ionic interactions and/or hydrogen bonds broken because of the removal of oxygen and hydroxyl oxygen proceeded through ionic pathways, resulting in the extraction yields of the treated coals increase. However, breaking of {pi}-cation interactions by hydrothermal treatment may be one of possible mechanisms for the enhancement of extraction yield of higher rank of treated coal. The mechanism of hydrothermal treatment of coal was discussed in the paper. 28 refs., 4 figs., 4 tabs.

  12. Hydrothermal decomposition of TBP and fixation of its decomposed residue by HHP technique

    International Nuclear Information System (INIS)

    Yamasaki, N.; Fujiki, M.; Nishioka, M.; Ioku, K.; Yanagisawa, K.; Kozai, N.; Muraoka, S.

    1991-01-01

    The tributyl phosphate (TBP) used for the fuel reprocessing by Purex process is discharged as spent solvent because of the chemical decomposition and the damage due to radiation. Alkaline hydrothermal treatment in oxygen which is the reaction in a closed system is effective for the decomposition of TBP as it can transform organic materials to stable inorganic ions. Hydrothermal hot pressing technique has been applied to the immobilization of various radioactive wastes. This work deals with the continuous treatment process for the decomposition of TBP waste and the immobilization of its decomposed residue under hydrothermal condition. These processes are outlined. The experiment and the results are reported. TBP was completely decomposed above 200degC, and COD value showed the maximum at 250degC. The reaction process consists of two steps of the hydrolysis of TBP and the oxidation of the formed organic material. (K.I.)

  13. Is a pre-analytical process for urinalysis required?

    Science.gov (United States)

    Petit, Morgane; Beaudeux, Jean-Louis; Majoux, Sandrine; Hennequin, Carole

    2017-10-01

    For the reliable urinary measurement of calcium, phosphate and uric acid, a pre-analytical process by adding acid or base to urine samples at laboratory is recommended in order to dissolve precipitated solutes. Several studies on different kind of samples and analysers have previously shown that a such pre-analytical treatment is useless. The objective was to study the necessity of pre-analytical treatment of urine on samples collected using the V-Monovette ® (Sarstedt) system and measured on the analyser Architect C16000 (Abbott Diagnostics). Sixty urinary samples of hospitalized patients were selected (n=30 for calcium and phosphate, and n=30 for uric acid). After acidification of urine samples for measurement of calcium and phosphate, and alkalinisation for measurement of uric acid respectively, differences between results before and after the pre-analytical treatment were compared to acceptable limits recommended by the French society of clinical biology (SFBC). No difference in concentration between before and after pre-analytical treatment of urine samples exceeded acceptable limits from SFBC for measurement of calcium and uric acid. For phosphate, only one sample exceeded these acceptable limits, showing a result paradoxically lower after acidification. In conclusion, in agreement with previous study, our results show that acidification or alkalinisation of urine samples from 24 h urines or from urination is not a pre-analytical necessity for measurement of calcium, phosphate and uric acid.

  14. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  15. The design of a novel, environmentally improved cotton pre-treatment proces

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit)

    2011-01-01

    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These

  16. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков

    2017-06-01

    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  17. Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions

    Science.gov (United States)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-06-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.

  18. VA residential substance use disorder treatment program providers' perceptions of facilitators and barriers to performance on pre-admission processes.

    Science.gov (United States)

    Ellerbe, Laura S; Manfredi, Luisa; Gupta, Shalini; Phelps, Tyler E; Bowe, Thomas R; Rubinsky, Anna D; Burden, Jennifer L; Harris, Alex H S

    2017-04-04

    In the U.S. Department of Veterans Affairs (VA), residential treatment programs are an important part of the continuum of care for patients with a substance use disorder (SUD). However, a limited number of program-specific measures to identify quality gaps in SUD residential programs exist. This study aimed to: (1) Develop metrics for two pre-admission processes: Wait Time and Engagement While Waiting, and (2) Interview program management and staff about program structures and processes that may contribute to performance on these metrics. The first aim sought to supplement the VA's existing facility-level performance metrics with SUD program-level metrics in order to identify high-value targets for quality improvement. The second aim recognized that not all key processes are reflected in the administrative data, and even when they are, new insight may be gained from viewing these data in the context of day-to-day clinical practice. VA administrative data from fiscal year 2012 were used to calculate pre-admission metrics for 97 programs (63 SUD Residential Rehabilitation Treatment Programs (SUD RRTPs); 34 Mental Health Residential Rehabilitation Treatment Programs (MH RRTPs) with a SUD track). Interviews were then conducted with management and front-line staff to learn what factors may have contributed to high or low performance, relative to the national average for their program type. We hypothesized that speaking directly to residential program staff may reveal innovative practices, areas for improvement, and factors that may explain system-wide variability in performance. Average wait time for admission was 16 days (SUD RRTPs: 17 days; MH RRTPs with a SUD track: 11 days), with 60% of Veterans waiting longer than 7 days. For these Veterans, engagement while waiting occurred in an average of 54% of the waiting weeks (range 3-100% across programs). Fifty-nine interviews representing 44 programs revealed factors perceived to potentially impact performance in

  19. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  20. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hydrothermal carbonization of biomass waste under low temperature condition

    Directory of Open Access Journals (Sweden)

    Putra Herlian Eriska

    2018-01-01

    Full Text Available In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C, residence times (30 and 60 min, and biomass to water ratio (1:3, 1:5, and 1:10. Three of product were collected from the process with primary material balance. Solid phase (hydrochar was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV of 20.09 MJ/kg for its char after dried naturally.

  2. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zi Gu

    2014-05-01

    Full Text Available The synthesis method of layered double hydroxides (LDHs determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h. After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties.

  3. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  5. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    OpenAIRE

    Elliott, DC; Biller, P; Ross, AB; Schmidt, AJ; Jones, SB

    2015-01-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their pr...

  6. Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium

    International Nuclear Information System (INIS)

    Gavrilov, Nemanja; Vujkovic, Milica; Pasti, Igor A.; Ciric-Marjanovic, Gordana; Mentus, Slavko V.

    2011-01-01

    Highlights: → Carbonized polyaniline nanoparticles were treated hydrothermally in 1 M KOH. → Hydrothermal treatment improved the electrocatalytic activity towards ORR. → Significant effect of catalyst loading was evidenced too. → At the loading 0.5 mg cm -2 the 4e - reaction path was achieved. - Abstract: The electrocatalytic activity of carbonized polyaniline nanostructures (Carb-nanoPANI) towards oxygen reduction reaction (ORR), estimated in 0.1 mol dm -3 KOH solution, was significantly improved upon a hydrothermal treatment in 1 mol dm -3 KOH solution. Namely, the onset of ORR was shifted by ∼70 mV to more positive potentials, and the number of electrons consumed per O 2 molecule was enhanced in comparison to the original material. The number of electrons involved in ORR depended on loading, and with a loading of 0.5 mg cm -2 , for the potentials lower than -0.5 V vs SCE, the number of electrons approached 4. For this material, high stability of electrochemical behavior and resistance to the poisoning by ethanol was evidenced by potentiodynamic cycling.

  7. Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, Nemanja; Vujkovic, Milica; Pasti, Igor A.; Ciric-Marjanovic, Gordana [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade (Serbia); Mentus, Slavko V., E-mail: slavko@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade (Serbia); Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11158 Belgrade (Serbia)

    2011-10-30

    Highlights: > Carbonized polyaniline nanoparticles were treated hydrothermally in 1 M KOH. > Hydrothermal treatment improved the electrocatalytic activity towards ORR. > Significant effect of catalyst loading was evidenced too. > At the loading 0.5 mg cm{sup -2} the 4e{sup -} reaction path was achieved. - Abstract: The electrocatalytic activity of carbonized polyaniline nanostructures (Carb-nanoPANI) towards oxygen reduction reaction (ORR), estimated in 0.1 mol dm{sup -3} KOH solution, was significantly improved upon a hydrothermal treatment in 1 mol dm{sup -3} KOH solution. Namely, the onset of ORR was shifted by {approx}70 mV to more positive potentials, and the number of electrons consumed per O{sub 2} molecule was enhanced in comparison to the original material. The number of electrons involved in ORR depended on loading, and with a loading of 0.5 mg cm{sup -2}, for the potentials lower than -0.5 V vs SCE, the number of electrons approached 4. For this material, high stability of electrochemical behavior and resistance to the poisoning by ethanol was evidenced by potentiodynamic cycling.

  8. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    Science.gov (United States)

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  10. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Buelow, S.

    1997-01-01

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  11. Effect of hydrothermal treatment of coal on the oxidation susceptibility and electrical resistivity of HTT coke

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, N.B.; Sarkar, P.; Choudhury, A. [Central Fuel Research Institute, P.O. FRI, Dhanbad-828108, Jharkhand (India)

    2005-02-25

    The influence of hydrothermal treatment of coal prior to carbonization, on the oxidation susceptibility of resultant coke/char, calcined at 1350, 1800 and 2200 {sup o}C has been investigated. The non-isothermal thermogravimetric analysis technique has been employed, and parameters such as onset, DTG peak temperatures, and cumulative oxidation loss (wt.%) at different temperatures have been utilized to compare proneness to oxidation with respective untreated samples apart from electrical resistivity. Data suggest that all the cokes/chars samples produced from hydrothermally treated coals are less reactive and more electrically conductive (less resistive) than their respective untreated counterparts. But the extent of improvement of oxidation resistance and electrical conductivity appears to be coal-specific. The kinetic parameters obtained by non-linear regression analysis on multi-curve reveal that the n{sup th} order reaction model (where 'n' was found to vary from 0.9 to 1.3) is the best-fitted model. The higher activation energy values observed for hydrothermally treated coke samples are in agreement with the observation of TG analysis data. Overall results indicate the importance of introducing a hydrothermal treatment step for the improvement of oxidation resistance as well as electrical conductivity of the coke samples.

  12. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  13. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  14. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions.

    Science.gov (United States)

    Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene

    2015-02-01

    The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.

  15. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.

    2017-10-03

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support

  16. Nuclide separation by hydrothermal treatment and ion exchange: a highly effective method for treatment of liquid effluents - 59217

    International Nuclear Information System (INIS)

    Braehler, Georg; Rieck, Ronald; Avramenko, V.A.; Sergienko, V.I.; Antonov, E.A.

    2012-01-01

    Liquid low level radioactive effluents, when solidified in e.g. cement matrix, contribute to a significant extent to the waste amount to be disposed of in final repositories. Accordingly, since many years scientists and engineers investigate processes to remove the radioactive nuclides selectively from the effluents, to split the raw solution into two separate fractions: a large fraction with activity concentrations below the limits for free release; and a small fraction, containing the activity in concentrated form on e. g. ion exchanger materials (ion exchange has proven to be the most promising method for such 'nuclide separation'). The challenge to be taken up is: When (and this is most often the case) the effluent contains organic materials and complexing agents, the formation of e. g. the 60-Co-EDTA complex prohibits its fixation to the ion exchangers. Accordingly the complexing agent needs to be removed or destroyed. The Institute for Chemistry of the Russian Academy of Sciences has applied the method of hydrothermal treatment (at elevated temperature and pressure, 200 deg. C, 200 bar), supported by Hydrogen Peroxide oxidation, to allow virtually complete removal of radioactive nuclides on inorganic ion exchangers. Pilot plants have been operated successfully in Russian power stations, and an operational plant has been designed. The method is being extended for an interesting and promising application: spent organic ion exchange resins, loaded up to the medium activity level, represent a serious disposal problem. With the hydrothermal process, in a process cycle, the activity can be stripped from the resins, the organic content is destroyed, and the activity is fixed on an inorganic absorber, well suited for final disposal. (authors)

  17. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior

    International Nuclear Information System (INIS)

    He, Chao; Giannis, Apostolos; Wang, Jing-Yuan

    2013-01-01

    Highlights: • The hydrothermal carbonization of sewage sludge process is developed. • Hydrochars are solid fuels with less nitrogen and sulfur contents. • The first order combustion reaction of hydrochars is derived. • Main combustion decomposition of hydrochars is easier and more stable. • Formation pathways of hydrochars during hydrothermal carbonization are proposed. - Abstract: Conventional thermochemical treatment of sewage sludge (SS) is energy-intensive due to its high moisture content. To overcome this drawback, the hydrothermal carbonization (HTC) process was used to convert SS into clean solid fuel without prior drying. Different carbonization times were applied in order to produce hydrochars possessing better fuel properties. After the carbonization process, fuel characteristics and combustion behaviors of hydrochars were evaluated. Elemental analysis showed that 88% of carbon was recovered while 60% of nitrogen and sulfur was removed. Due to dehydration and decarboxylation reactions, hydrogen/carbon and oxygen/carbon atomic ratios reduced to 1.53 and 0.39, respectively. It was found that the fuel ratio increased to 0.18 by prolonging the carbonization process. Besides, longer carbonization time seemed to decrease oxygen containing functional groups while carbon aromaticity structure increased, thereby rendering hydrochars highly hydrophobic. The thermogravimetric analysis showed that the combustion decomposition was altered from a single stage for raw sludge to two stages for hydrochars. The combustion reaction was best fitted to the first order for both raw sludge and hydrochars. The combustion of hydrochars is expected to be easier and more stable than raw sludge because of lower activation energy and pre-exponential factor

  18. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    Science.gov (United States)

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  19. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    Science.gov (United States)

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Mass transfer processes in a post eruption hydrothermal system: Parameterisation of microgravity changes at Te Maari craters, New Zealand

    Science.gov (United States)

    Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn

    2018-05-01

    Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the

  1. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  2. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  3. Reducing the pollution risk of pesticide using nano networks induced by irradiation and hydrothermal treatment.

    Science.gov (United States)

    Sun, Xiao; Liu, Zuojun; Zhang, Guilong; Qiu, Guannan; Zhong, Naiqin; Wu, Lifang; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Traditional pesticides (TP) often do not adhere tightly to crop foliage. They can easily enter the surrounding environment through precipitation and volatilization. This can result in the pollution of the surrounding soil, water, and air. To reduce pesticide pollution, we developed a loss-control pesticide (LCP) by adding attapulgite with a nano networks structure fabricated using high energy electron beam (HEEB) irradiation and hydrothermal treatment to TP. HEEB irradiation effectively dispersed originally aggregated attapulgite through modified thermal, charge, and physical effects. Hydrothermal treatment further enhanced the dispersion of attapulgite to form nano porous networks via thermal and wet expansion effects, which are beneficial for pesticide binding. An LCP has improved retention on crop leaf surfaces. It has a higher adhesion capacity, reduced leaching and volatilization, and extended residual activity compared with the TP formulation. The treatment increases the residual activity of pesticides on crop foliage and decreases environmental pollution.

  4. Conversation on data mining strategies in LC-MS untargeted metabolomics: pre-processing and pre-treatment steps

    CSIR Research Space (South Africa)

    Tugizimana, F

    2016-11-01

    Full Text Available -MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode...

  5. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available Titanium dioxide (TiO2) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO2 powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures...

  6. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  7. Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield

    NARCIS (Netherlands)

    Ramos-Tercero, E.A.; Bertucco, A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work, the effect of recycling the process water (PW) of hydrothermal liquefaction (HTL) to the HTL reactor was investigated, with the objective being to recover carbon from the organic content of the PW and to develop a solvent-free process. When recycling twice the PW at 220, 240, and 265

  8. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    Science.gov (United States)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  9. Enhancing the efficiency of dye-sensitized solar cells by hydrothermal post-treatment in acidic environment

    Science.gov (United States)

    Nathania, A.; Nursam, N. M.; Shobih; Hidayat, J.; Prastomo, N.

    2018-03-01

    Dye-sensitized solar cell (DSSC) have been extensively studied due to its low production cost and simple production process. In this research, DSSC with improved performance is acquired by modification of TiO2 layer through hydrothermal post-treatment with different hydrochloric acid (HCl) concentrations to obtain various particles and pore sizes. Qualitative and quantitative characterizations of the TiO2 film were conducted using thickness measurement, scanning electron microscope (SEM), and X-ray diffraction (XRD), while the solar cell performances were characterized using current-voltage (I-V) measurement under 0.5 Sun. When hydrothermally treated with 1 mol/L HCl at 180 °C for 3 h, the DSSC showed the most optimum photo-electricity conversion performance of 3.60%, which improved the efficiency of the non-treated DSSC by a factor of 1.2. As the HCl concentration increased, the treated TiO2 film became thinner with smaller particle size and denser structure. It was suspected that the modification in the TiO2 film morphology has led to better light absorption, which consequently resulted in the improvement of DSSC performance.

  10. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    Gao Ningfeng; Inagaki, F.; Sasai, R.; Itoh, H.; Watari, K.

    2005-01-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO 3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO 3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO 3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO 3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO 3 .0.33H 2 O powder and a small amount of WO 3 . The recovered WO 3 .0.33H 2 O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  11. Liquid fuels from biomass via a hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Goudriaan, F.; Peferoen, D.G.R. (Koninklijke Shell, Amsterdam (Netherlands). Lab.)

    1990-01-01

    Preliminary process studies on the conversion of various biomass types into liquid fuels have indicated that HydroThermal Upgrading (HTU) is more attractive than pyrolysis or gasification. In HTU the biomass is treated at temperatures of 300-350{sup 0}C in the presence of liquid water for 5-15 min. A large proportion of the oxygen is removed as carbon dioxide. In a case study a process for the production of 3600 t/d hydrocarbons starting from wood is evaluated. Six HTU units convert wood into ''biocrude'' containing 10 %w oxygen. The biocrude is upgraded by catalytic hydrodeoxygenation in a central facility. The final products are kerosine and gas oil which may be expected to have excellent properties. The manufacturing cost is 400-450 $/t. (author).

  12. Synthesis of Titanium Dioxide nanoparticles via sucrose ester micelle-mediated hydrothermal processing route

    International Nuclear Information System (INIS)

    Anwar, N.S.; Kassim, A.; Lim, H.N.; Zakarya, S.A.; Huang, N.M.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photo catalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photo reactor. The as-synthesized nanoparticles exhibited higher photo catalytic performance as compared to the commercial counterpart. (author)

  13. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  14. Effect of hydrothermal modification on the structure of REY zeolite studied by PAS

    International Nuclear Information System (INIS)

    Zhu Jun; Wang Shaojie

    2003-01-01

    The effect of temperature of the hydrothermal modification on the structure of Rare-earth Y zeolite (REY) was studied by positron annihilation spectroscopy. We measured the positron lifetime spectrum as a function of the temperature (300-800 degree C) of one hour hydrothermal modification for the REY zeolite after through pre-heated dehydration at 150 degree C. All lifetime spectra could be resolved into five components. The fifth lifetime component and its intensity were found to be related to the size and number of the secondary pores. The experimental results showed that the secondary pore in REY zeolite was produced by hydrothermal modification in some temperature range, and the largest size and the greatest quantity of the secondary pores were observed in the sample treated at 500 degree C for 1 hour. The effect of hydrothermal modification on REY zeolite without pre-heated dehydration was also discussed

  15. Gorse (Ulex europaeus) as a possible source of xylans by hydrothermal treatment

    NARCIS (Netherlands)

    Ligero, P.; Vega, de A.; Kolk, van der J.C.; Dam, van J.E.G.

    2011-01-01

    Autocatalytic hydrothermal process conditions were used to study Ulex europæus (Gorse) as a source of xylan compounds. The aim was to study the possibilities for using this unutilised biomass material to produce xylans. Ulex is an evergreen shrub that grows in the northwest of Spain and has no

  16. Hydrothermal formation and characterization of magnesium oxysulfate whiskers

    International Nuclear Information System (INIS)

    Xiang, L.; Liu, F.; Li, J.; Jin, Y.

    2004-01-01

    Magnesium oxysulfate (5Mg(OH) 2 ·MgSO 4 ·3H 2 O) whiskers with a diameter of 0.2-1.0 μm and a length of 20-50 μm were synthesized via the hydrothermal treatment of the slurry formed by mixing the MgSO 4 and NaOH solutions at room temperature. The composition, morphology, structure and thermal behavior of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and chemical analysis. The experimental results indicated that the process parameters, such as the concentration of the reactant, the dispersion of the Mg(OH) 2 slurry and the temperature in hydrothermal treatment should be controlled carefully to synthesis 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers and to avoid the formation of the sectorial or granular impurities. 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers were decomposed gradually and converted finally to MgO particles after being heated in air at temperature up to 1050 deg. C. Granular products formed if the heating temperature was above 320 deg. C

  17. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter

    2012-01-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  18. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  19. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  20. Ash behavior during hydrothermal treatment for solid fuel applications. Part 2: Effects of treatment conditions on industrial waste biomass

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Effect of treatment conditions on composition and solubility of ash. • Ash dissolution and yield governed by liquid pH and calcium carbonate solubility. • Dissolution of calcium carbonate decreases ash fusion temperature during combustion. • Decreasing the ash content of sludge can weaken ash properties for combustion. - Abstract: This second half of our work on ash behavior concentrates on the effects of hydrothermal treatment conditions on paper sludge. Ash composition and solubility were determined based on treatment temperature, reactor solid load and liquid pH using experimental design and univariate regression methods. In addition, ash properties for combustion were evaluated based on recent developments on ash classification. Based on the results, all experimental variables had a statistically significant effect on ash yields. Only reactor solid load was statistically insignificant for char ash content, which increased based on increasing treatment temperature due to the decomposition of organic components. Ash dissolution and ash yield were governed by liquid pH and the generation of acids mainly due to the solubility of calcium carbonate identified as the main mineral species of paper sludge. Dissolution of calcium carbonate however decreased ash fusion temperatures more likely causing problems during char incineration. This indicated that decreasing the ash content of sludge during hydrothermal treatment can actually weaken ash properties for solid fuel applications.

  1. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  2. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  3. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism......Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  4. Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide

    International Nuclear Information System (INIS)

    Kan Kan; Xia Tingliang; Li Li; Bi Hongmei; Fu Honggang; Shi Keying

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) have been amidated by hydrothermal treatment with different aliphatic amines. The amido groups modified on the surface of the SWCNTs were characterized by Fourier transform infrared spectroscopy. The electrooxidation of nitric oxide (NO) at the modified electrodes of amidated SWCNTs was investigated. The modified electrodes of amidated SWCNTs exhibited different electrocatalytic activity for NO when different aliphatic amines were being used. The electrode amidated by ammonia has the highest activity, which is 1.8 times value of the SWCNT modified electrode. The electrocatalytic activity of the amidated SWCNT modified electrodes depends on the length of the alkyl groups. The results demonstrate that hydrothermal treatment is an efficient way to modify SWCNTs with amines, and the reaction rate of NO electrooxidation can be changed by the amidation of SWCNTs.

  5. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  6. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.

    Science.gov (United States)

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  8. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  9. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Fullana, Andrés; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Ash behavior of 29 different feedstock interpreted using multivariate data analysis. • Two different groups identified based on char ash content and ash yield. • Solubility of individual elements evaluated based on a smaller data set. • Ash from industrial sludge contained anthropogenic metals with low solubility. - Abstract: Differences in ash behavior during hydrothermal treatment were identified based on multivariate data analysis of literature information on 29 different feedstock. In addition, the solubility of individual elements was evaluated based on a smaller data set. As a result two different groups were distinguished based on char ash content and ash yield. Virgin terrestrial and aquatic biomass, such as different types of wood and algae, in addition to herbaceous and agricultural biomass, bark, brewer’s spent grain, compost and faecal waste showed lower char ash content than municipal solid wastes, anaerobic digestion residues and municipal and industrial sludge. Lower char ash content also correlated with lower ash yield indicating differences in chemical composition and ash solubility. Further evaluation of available data showed that ash in industrial sludge mainly contained anthropogenic Al, Fe and P or Ca and Si with low solubility during hydrothermal treatment. Char from corn stover, miscanthus, switch grass, rice hulls, olive, artichoke and orange wastes and empty fruit bunch had generally higher contents of K, Mg, S and Si than industrial sludge although differences existed within the group. In the future information on ash behavior should be used for enhancing the fuel properties of char based on feedstock type and hydrothermal treatment conditions.

  11. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres.

    Science.gov (United States)

    Braghiroli, F L; Fierro, V; Izquierdo, M T; Parmentier, J; Pizzi, A; Celzard, A

    2014-01-01

    Aqueous solutions of condensed tannins were submitted to hydrothermal carbonization (HTC) in a stainless steel autoclave, and the kinetics of hydrothermal carbon formation was investigated by changing several parameters: amount of tannin (0.5; 1.0; 1.5; 2.0 g in 16 mL of water), HTC temperature (130, 160, 180 and 200°C) and reaction times (from 1 to 720 h). The morphology and the structure of the tannin-based hydrothermal carbons were studied by TEM, krypton adsorption at -196°C and helium pycnometry. These materials presented agglomerated spherical particles, having surface areas ranging from 0.6 to 10.0 m(2) g(-1). The chemical composition of the hydrothermal carbons was found to be constant and independent of reaction time. HTC kinetics of tannin were determined and shown to correspond to first-order reaction. Temperature-dependent measurements led to an activation energy of 91 kJ mol(-1) for hydrothermal conversion of tannin into carbonaceous microspheres separable by centrifugation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  13. Impact of pre-treatment technologies on soil aquifer treatment

    Directory of Open Access Journals (Sweden)

    A. Besançon

    2017-03-01

    Full Text Available This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT. For this purpose a conventional activated sludge (CAS process, a membrane bioreactor (MBR and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months.

  14. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    Directory of Open Access Journals (Sweden)

    Jasmina Lukinac

    2009-01-01

    Full Text Available The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid solution; 0.3% L–cysteine solution; 0.1% 4–hexyl resorcinol solution and 1% sodium metabisulphite solution. Mean values of colour parameters, colour changes and correlation coefficients for apple discs were calculated for both colour models. The analysis showed statistically significant influence of pre-treatment method on total colour changes for both chosen colour models of dried apples. Calculated correlation coefficient between colour changes for used models was found to be 0.894. According to colour characteristics the best results were achieved when samples were pre-treated with 0.5% ascorbic acid solution. According to calculated results it was found that image analysis method as well as colorimetric method can be used to observe the colour changes on dried apple discs.

  15. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  16. Silane pre-treatments on copper and aluminium

    International Nuclear Information System (INIS)

    Deflorian, F.; Rossi, S.; Fedrizzi, L.

    2006-01-01

    A large part of aluminium products are coated with an organic layer in order to improve the corrosion resistance. Copper surfaces are also sometimes protected with an organic coating to improve the durability or the aesthetic properties. Examples of industrial applications are household appliances and heat exchanger components. For these applications it is not rare to have the industrial need to treat at the same time components made of aluminium and copper. In order to extend the service life of the organic coated copper a specific surface pre-treatment is often required. Nevertheless, probably because of the limited market of this application, no specific pre-treatments for copper are industrially developed, with the exception of cleaning procedures, but simply extensions of existing pre-treatments optimised for other metals (aluminium, zinc) are used. The application of silane pre-treatments as adhesion promoters for organic coated metals is remarkably increasing in the last decade, because silanes offer very good performance together with high environmental compatibility. The idea is therefore to try to develop a specific silane based pre-treatment for copper. The starting point is the existing silane products for aluminium, optimising the composition and the application conditions (concentration, temperature, pH of the bath, etc.) in order to develop a high performance copper alloy pre-treatment increasing the protective properties and the adhesion of a successively applied organic coating. Moreover these pre-treatments could be used for aluminium alloys too and therefore could be suggested for multi-metals components. The deposits were analysed using FTIR spectroscopy and optical and electron microscopic observations. A careful electrochemical characterisation, mainly by electrochemical impedance spectroscopy measurements (EIS) was carried out to highlight the presence of silane and to evaluate the performance of the different deposits. In order to study an

  17. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  18. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  19. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    Science.gov (United States)

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  20. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  1. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    NARCIS (Netherlands)

    Yuan, H.; Besselink, R.; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a

  2. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  3. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  4. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  5. Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿

    Science.gov (United States)

    Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki

    2009-01-01

    Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435

  6. Effect of packaging on physicochemical characteristics of irradiated pre-processed chicken

    International Nuclear Information System (INIS)

    Jiang Xiujie; Zhang Dongjie; Zhang Dequan; Li Shurong; Gao Meixu; Wang Zhidong

    2011-01-01

    To explore the effect of modified atmosphere packaging and antioxidants on the physicochemical characteristics of irradiated pre-processed chicken, the pre-processed chicken was added antioxidants first, and then packaged in common, vacuum and gas respectively, and finally irradiated at 5 kGy dosage. All samples was stored at 4 ℃. The pH, TBA, TVB-N and color deviation were evaluated after 0, 3, 7, 10, 14, 18 and 21 d of storage. The results showed that pH value of pre-processed chicken with antioxidants and vacuum packaged increased with the storage time but not significantly among different treatments. The TBA value was also increased but not significantly (P > 0.05), which indicated that vacuum package inhibited the lipid oxidation. TVB-N value increased with storage time, TVB-N value of vacuum package samples reached 14.29 mg/100 g at 21 d storage, which did not exceeded the reference indexes of fresh meat. a * value of the pre-processed chicken of vacuum package and non-oxygen package samples increased significantly during storage (P > 0.05), and chicken color kept bright red after 21 d storage with vacuum package It is concluded that vacuum packaging of irradiated pre-processed chicken is effective on ensuring its physical and chemical properties during storage. (authors)

  7. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice.

    Science.gov (United States)

    Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro

    2016-01-30

    Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.

  8. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  9. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  10. Alkaline hydrothermal de-ashing and desulfurization of low quality coal and its application to hydrogen-rich gas generation

    International Nuclear Information System (INIS)

    Mursito, Anggoro Tri; Hirajima, Tsuyoshi; Sasaki, Keiko

    2011-01-01

    This paper describes experimental research and a fundamental study of alkaline hydrothermal treatment of high-sulfur, high-ash coal from Banten, Java-Indonesia. Experiments were carried out on a laboratory-scale 0.5 L batch reactor. The alkaline hydrothermal treatment gave upgraded clean coal with low sulfur content (about 0.3 wt.%) and low ash content (about 2.1 wt.%). A zero carbon dioxide and pure hydrogen gas were produced at 330 o C by introducing an alkali (sodium hydroxide, NaOH) to the hydrothermal treatment of raw coal. X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques were used to test for the removal or reduction of major inorganic elements in the coal, and changes in carbon-functional groups and their properties were determined by Fourier transform infrared spectroscopy (FTIR) and Carbon-13 of nuclear magnetic resonance ( 13 C NMR) tests on the product of the hydrothermal upgrading and demineralization process.

  11. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    Science.gov (United States)

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    Science.gov (United States)

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  13. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  14. Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres

    Directory of Open Access Journals (Sweden)

    Yanqing Tang

    2016-11-01

    Full Text Available Starting from Ni-Co-Mn carbonate nanoparticles prepared by microreaction technology, uniform spherical particles of Ni1/3Co1/3Mn1/3CO3 with a size of 3–4 μm were obtained by a controllable hydrothermal conversion with the addition of (NH42CO3. Based on characterizations on the evolution of morphology and composition with hydrothermal treatment time, we clarified the mechanism of this novel method as a dissolution-recrystallization process, as well as the effects of (NH42CO3 concentration on the morphology and composition of particles. By changing concentrations and the ratio of the starting materials for nano-precipitation preparation, we achieved monotonic regulation on the size of the spherical particles, and the synthesis of Ni0.4Co0.2Mn0.4CO3 and Ni0.5Co0.2Mn0.3CO3, respectively. In addition, the spherical particles with a core-shell structure were preliminarily verified to be available by introducing nano-precipitates with different compositions in the hydrothermal treatment in sequence.

  15. Enhanced bioactivity and biocompatibility of nanostructured hydroxyapatite coating by hydrothermal annealing

    International Nuclear Information System (INIS)

    Hahn, Byung-Dong; Lee, Jeong-Min; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Lee, Byoung-Kuk; Kim, Jong-Woo; Kim, Hyoun-Ee; Kim, Seong-Gon

    2011-01-01

    The crystallinity of hydroxyapatite (HA) coatings prepared by aerosol deposition may be increased by heating in air or low-temperature hydrothermal processing. From the X-ray diffraction and Fourier transform infrared spectroscopy results, it was revealed that the crystallinity of the HA coatings significantly increased after the post-annealing. Transmission electron microscopy showed that the conventional furnace heating induced the substantial growth of the HA crystallites, whereas the hydrothermal treatment did not bring about any remarkable change in the HA crystallite size, which remained below 20 nm. The bioactivity of the HA coatings was estimated by the acellular simulated body fluid immersion test. After immersion for 7 days, newly-precipitated apatite crystals were only observed on the surfaces of the samples hydrothermally treated at 170 and 190 deg. C. In addition, the alkaline phosphatase activity of MC3T3-E1 preosteoblast cells cultured on the hydrothermally treated samples was significantly higher than those on the as-deposited coating and conventional furnace heated samples. The enhanced bioactivity and excellent biological in vitro cellular response of the hydrothermally treated samples were attributed to their nanostructured nature and high degree of crystallinity.

  16. Gambling Disorder: Exploring Pre-treatment and In-treatment Dropout Predictors. A UK Study.

    Science.gov (United States)

    Ronzitti, Silvia; Soldini, Emiliano; Smith, Neil; Clerici, Massimo; Bowden-Jones, Henrietta

    2017-12-01

    The aim of this study was to identify predictors of treatment dropout in a sample of gamblers attending a specialist clinic for gambling disorder. We analysed data on 846 treatment-seeking pathological gamblers. Firstly, we investigated differences in socio-demographic and clinical variables between treatment completers and pre-treatment dropouts, as well as between treatment completers and during-treatment dropouts. Subsequently, variables were entered into a multinomial logistic regression model to identify significant predictors of pre-treatment and in-treatment dropout. Overall, 44.8% of clients did not complete the treatment: 27.4% dropped out before starting it, while 17.4% dropped out during the treatment. Younger age and use of drugs were associated with pre-treatment dropout, while family history of gambling disorder, a lower PGSI score, and being a smoker were related with in-treatment dropout. Our findings suggest that pre-treatment dropouts differ from in-treatment dropouts, and, thus, further research will benefit from considering these groups separately. In addition, this newly gained knowledge will also be helpful in increasing treatment retention in specific subgroups of problem gamblers.

  17. Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Yazdani Khan, H., E-mail: hamid.yazdanikhan@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Heidarpour, A. [Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579 (Iran, Islamic Republic of)

    2016-08-15

    In this study, the oxide films were formed on carbon steel by using hot alkaline nitrate and hydrothermal treatments. A dense and protective oxide film was obtained by hydrothermal method due to application of high pressure and by increasing solution temperature from boiling temperature (155 °C) to 250 °C. Oxide films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These analyses showed that the magnetite film which was formed on carbon steel surface by hydrothermal treatment offers the best resistance in 3.5 wt.% NaCl solution. Although thicker oxide film could be obtained via hot alkaline nitrate black oxidizing, corrosion resistance was lower as a result of being highly porous and the presence of hematite. - Highlights: • Oxide films have been formed on steel by using of hot alkaline nitrate and hydrothermal treatments. • A dense and protective oxide film was obtained by hydrothermal treatment. • SEM micrographs showed that a dense and protective oxide film was obtained by hydrothermal treatment. • Film formed by hydrothermal treatment could have the best resistance in 3.5 wt.% NaCl solution.

  18. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    Science.gov (United States)

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50 mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250 °C) and residence times (1, 3, 8 h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1 MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  20. Are pre-treatment psychological characteristics influenced by pre-surgical orthodontics?

    Science.gov (United States)

    Cunningham, S J; Gilthorpe, M S; Hunt, N P

    2001-12-01

    A number of investigations have looked at psychological changes occurring in association with orthognathic treatment. However, most of these studies have used a pre-surgery questionnaire as the baseline measurement. There is little data relating to the true baseline, i.e. that prior to any active treatment. Until this aspect is investigated, it is not possible to assume that pre-surgery is an acceptable baseline. This questionnaire based study aimed to assess changes in six psychological outcome measures between T1 (prior to any active treatment) and T2 (following pre-surgical orthodontics/prior to surgery). The outcome variables were: state anxiety, trait anxiety, depression, self-esteem, body image, and facial body image. Sixty-two patients (39 females and 23 males) completed both questionnaires. The results showed that intervention, in the form of orthodontic treatment, had a minimal effect on the chosen psychometric outcome variables. There was a significant reduction in satisfaction with body image amongst patients who initially reported mild to moderate dental/facial problems, whilst a moderate increase in satisfaction occurred in those patients reporting severe conditions initially. Also of note were significant increases in state anxiety amongst older patients whilst trait anxiety showed greater increases in females than males.

  1. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    Science.gov (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  2. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  3. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2014-02-01

    Full Text Available Many low-cost feedstock i.e. used-cooking oil (UCO for the production of biodiesel fuel (BDF has contained a large amount of water and high proportion of free fatty acids (FFAs. Therefore, a pre-treatment process to reduce the water content (<0.1 wt.% and FFAs (<2.0 wt.% were necessary in order to avoid an undesirable side reactions, such as saponification, which could lead to serious problem of product separation and low fatty acid methyl ester (FAME yield. . In this study, a pre-treatment process of used cooking oil as a feedstock for the production of BDF by using various adsorbents such as Activated Carbon (AC and various clay minerals, for example Smectite (S, Bentonite (B, Kaolinite (K, and Powdered Earthenware (PE were evaluated. The oil obtained from pre-treatment was compared with oil without pre-treatment process. In this study, we reported a basic difference in material ability to the oil, depending on the adsorption condition with respect to the physico-chemical parameters, e.g. refractive index (R, density (ρ, FFAs, and water content (W. The results showed that the water content and FFAs in the oil has decreased when using AC as an adsorbent compared with clay minerals. However, the refractive index of oil has similar with the oil without pre-treatment process as well; meanwhile, the density of oil has increased after the pre-treatment process by using clay minerals.

  4. Crystallization process of zircon and fergusonite during hydrothermal alteration in Nechalacho REE deposit, Thor Lake, Canada

    Science.gov (United States)

    Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.

    2012-04-01

    The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex

  5. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  6. APLIKASI THERMAL PRE-TREATMENT LIMBAH TANAMAN JAGUNG (Zea mays SEBAGAI CO·SUBSTRAT PADA PROSES ANAEROBIK DIGESTI UNTUK PRODUKSI BIOGAS

    Directory of Open Access Journals (Sweden)

    Darwin Darwin

    2016-04-01

    Full Text Available Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC. Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL. Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL compared with corn stover that was not pre-treated (405 mL. This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover. Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas   ABSTRAK Thermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan

  7. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.

    Science.gov (United States)

    Aida, Taku Michael; Maruta, Ryouma; Tanabe, Yuuhiko; Oshima, Minori; Nonaka, Toshiyuki; Kujiraoka, Hiroki; Kumagai, Yasuaki; Ota, Masaki; Suzuki, Iwane; Watanabe, Makoto M; Inomata, Hiroshi; Smith, Richard L

    2017-03-01

    Defatted heterotrophic microalgae (Aurantiochytrium limacinum SR21) was treated with high temperature water (175-350°C, 10-90min) to obtain nitrogen and phosphorous nutrients as a water soluble fraction (WS). Yields of nitrogen and phosphorous recovered in WS varied from 38 to 100% and from 57 to 99%, respectively. Maximum yields of nitrogen containing compounds in WS were proteins (43%), amino acids (12%) and ammonia (60%) at treatment temperatures of 175, 250 and 350°C, respectively. Maximum yield of phosphorous in WS was 99% at a treatment temperature of 250°C. Cultivation experiments of microalgae (A. limacinum SR21) using WS obtained at 200 and 250°C showed positive growth. Water soluble fractions from hydrothermal treatment of defatted microalgae are effective nitrogen and phosphorous nutrient sources for microalgae cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and characterization of NiO-YSZ-CeO_2 composites with microwave-assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Pinheiro, Lucas Batochi

    2013-01-01

    In the present work, it was evaluated the effects of a microwave-assisted hydrothermal (MWH) treatment on structural, thermal and electrical properties of NiO-YSZ- CeO_2 composites synthesized by hydroxide coprecipitation method. Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) in conjunction with x-ray diffraction (XRD) measurements showed that MWH treatment contributed to enhanced nickel hydroxide crystallization. The linear shrinkage of the ceramic compacts was observed by thermomechanical analysis (TMA) and the results indicated a higher sinterability for the samples MWH-treated. The compacts were sintered in a conventional resistive and in a microwave furnace. This sintered compacts had their microstructure analyzed by scanning electron microscopy (SEM) and electrical properties investigated by impedance spectroscopy (IS). The SEM images showed phase homogeneity and sub-micrometric grains with irregular shapes. The IS data revealed that the MWH-treated samples have a conductivity increase for temperatures above 500 deg C regardless the sintering process. (author)

  9. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.

    2017-05-13

    Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.

  10. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.

  11. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  12. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  13. Process energetics for the hydrothermal carbonisation of human faecal wastes

    International Nuclear Information System (INIS)

    Danso-Boateng, E.; Holdich, R.G.; Martin, S.J.; Shama, G.; Wheatley, A.D.

    2015-01-01

    Highlights: • Impact of variations to scale of operation and feedstock solids content considered. • A framework for estimating energy budget of a waste treatment system is presented. • Combustion of by-product CH_4 renders the process self-sustaining in energy terms. - Abstract: Hydrothermal carbonisation (HTC) has the capability to convert wet biomass such as sewage sludge to a lignite-like renewable solid fuel of high calorific value. However, to date assessment of the energy efficiency of the HTC process has not been fully investigated. In this work, mass and energy balances of semi-continuous HTC of faecal waste conducted at 200 °C and at a reaction time of 30 min are presented. This analysis is based on recovering steam from the process as well as energy from the solid fuel (hydrochar) and methane from digestion of the liquid product. The effect of the feedstock solids content and the quantity of feed on the mass and energy balance were investigated. The heat of reaction was measured at 200 °C for 4 h using wet faecal sludge, and the higher heating value was determined for the hydrochar. The results indicated that preheating the feed to 100 °C using heat recovered from the process would significantly reduce the energy input to the reactor by about 59%, and decreased the heat loss from the reactor by between 50% and 60%. For feedstocks containing 15–25% solids (for all feed rates), after the process is in operation, energy recycled from the flashing off of steam and combustion of the hydrochar and would be sufficient for preheating the feed, operating the reactor and drying the wet hydrochar without the need for any external sources of energy. Alternatively, for a feedstock containing 25% solids for all feed rates, energy recycled from the flashing off of steam and combustion of the methane provides sufficient energy to operate the entire process with an excess energy of about 19–21% which could be used for other purposes.

  14. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Karayildirim, T. [Department of Chemistry, Science Faculty, Ege University, Bornova-Izmir (Turkey); Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, Besevler-Ankara (Turkey); Kruse, A. [Institut fuer Technische Chemie CPV, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)

    2008-11-15

    The hydrothermal biomass gasification is a promising technology to produce hydrogen and/or methane from wet biomass with a water content of {>=}80 % (g/g). In the process, the coke formation usually is very low, but already low amounts may cause problems like, e.g., fouling in the heat exchanger. To learn more about the product formation, the results of the hydrothermal treatment (at 400,500,600 C and 1 h) of different biomass feedstocks (artichoke stalk, pinecone, sawdust, and cellulose as model biomass) in a microreactor are compared. The gas composition and the total organic carbon content of the aqueous phase were determined after reaction. The gas formation rises with increasing temperature. The formation of carbon deposits and their characterization has been investigated by scanning electron microscopy (SEM). The variation of the solid morphology during the hydrothermal conversion is discussed based on chemical pathways occurring during hydrothermal biomass degradation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Practical Secure Computation with Pre-Processing

    DEFF Research Database (Denmark)

    Zakarias, Rasmus Winther

    Secure Multiparty Computation has been divided between protocols best suited for binary circuits and protocols best suited for arithmetic circuits. With their MiniMac protocol in [DZ13], Damgård and Zakarias take an important step towards bridging these worlds with an arithmetic protocol tuned...... space for pre-processing material than computing the non-linear parts online (depends on the quality of circuit of course). Surprisingly, even for our optimized AES-circuit this is not the case. We further improve the design of the pre-processing material and end up with only 10 megabyes of pre...... a protocol for small field arithmetic to do fast large integer multipli- cations. This is achieved by devising pre-processing material that allows the Toom-Cook multiplication algorithm to run between the parties with linear communication complexity. With this result computation on the CPU by the parties...

  16. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  17. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Directory of Open Access Journals (Sweden)

    L. H. Haraguchi

    2006-03-01

    Full Text Available The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs.

  18. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu; Li, Ming; Ren, Zhaohui; Zhu, Yihan; Han, Gaorong

    2017-01-01

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers

  19. Investigations on Bi{sub 25}FeO{sub 40} powders synthesized by hydrothermal and combustion-like processes

    Energy Technology Data Exchange (ETDEWEB)

    Köferstein, Roberto, E-mail: roberto.koeferstein@chemie.uni-halle.de; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-09-15

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi{sub 25}FeO{sub 40}) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi{sub 25}FeO{sub 40} after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi{sub 25}FeO{sub 40} was calculated as 48(9) kJ mol{sup −1}. The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10{sup −6} m{sup 3} K mol{sup −1} for sample 1 and C=57.82×10{sup −6} m{sup 3} K mol{sup −1} for sample 2a resulting in magnetic moments of µ{sub mag}=5.95(8) µ{sub B} mol{sup −1} and µ{sub mag}=6.07(4) µ{sub B} mol{sup −1}. The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi{sub 25}FeO{sub 40} powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi{sub 25}FeO{sub 40} powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi{sub 25}FeO{sub 40} powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the

  20. Surface structures and osteoblast response of hydrothermally produced CaTiO{sub 3} thin film on Ti-13Nb-13Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo, E-mail: jinwoo@knu.ac.kr [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Tustusmi, Yusuke [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan); Lee, Chong Soo; Park, Chan Hee [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Youn-Jeong; Jang, Je-Hee [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo; Im, Yeon-Min [School of Materials Science and Engineering, Gyeongsang National University, Jinju 600-701 (Korea, Republic of); Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan)

    2011-06-15

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating calcium ions (Ca) obtained by hydrothermal treatment with or without post heat-treatment in the Ti-13Nb-13Zr alloy. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. In vitro biocompatibility of the Ca-containing surfaces was assessed in comparison with untreated surfaces using a pre-osteoblast cell line. Hydrothermal treatment produced a crystalline CaTiO{sub 3} layer. Post heat-treatment at 400 deg. C for 2 h in air significantly decreased water contact angles in the CaTiO{sub 3} layer (p < 0.001). The Ca-incorporated alloy surfaces displayed markedly increased cell viability and ALP activity compared with untreated surfaces (p < 0.001), and also an upregulated expression of various integrin genes ({alpha}1, {alpha}2, {alpha}5, {alpha}v, {beta}1 and {beta}3) at an early incubation time-point. Post heat-treatment further increased attachment and ALP activity in cells grown on Ca-incorporated Ti-13Nb-13Zr alloy surfaces. The results indicate that the Ca-incorporated oxide layer produced by hydrothermal treatment and a simple post heat-treatment may be effective in improving bone healing in Ti-13Nb-13Zr alloy implants by enhancing the viability and differentiation of osteoblastic cells.

  1. Mineralogical and structural transformations related to alterations in hydrothermal and climatological conditions of basic vulcanic rocks from northern Parana (Ribeirao Preto region, SP, Brazil)

    International Nuclear Information System (INIS)

    Goncalves, N.M.M.

    1987-01-01

    Detailed studies of the basic vulcanic rocks of northern Parana basin (Region of Ribeirao Preto, SP) reveled that these rocks were affected by pre-meteoric activity (hydrothermal alteration) before being exposed to the supergene system of alteration linked to the lithosphere/atmosphere interface. Mineralogical and structural transformation are studied. The appearance of sequential crystalline-chemical paragenesis in zones suggest that the hydrothermal activity occurred during two successives processes of alteration: the expulsion of the water from the rock during the later stages of magma cooling and the continous process of dissolution of the rock wall and the ionic diffusion involving the rock sistem of structural voids. The hydro-thermal action was followed by weathering action developing a thin 'front' of superficial alteration. This alteration system, can lead to the formation of three major levels of alteration horizons and superficial accumulations: alterites, glebular and suil surface materials. (C.D.G.) [pt

  2. Effects of additives on microstructures of titanate based nanotubes prepared by the hydrothermal process

    International Nuclear Information System (INIS)

    Kubo, Takashi; Sugimoto, Keijiro; Onoki, Takamasa; Nakahira, Atsushi; Yamasaki, Yuki

    2009-01-01

    Silica-containing TiO 2 -derived titanate nanotubes were prepared by the addition of a small amount of tetraethyl orthosilicate (TEOS) to TiO 2 -derived titanate nanotubes prepared by the hydrothermal process and a subsequent heat-treatment at 473 K in air. The microstructure and thermal behavior of synthesized silica containing TiO 2 -derived titanate nanotubes were investigated by various methods such as X-ray diffraction (XRD), X-ray absorption fine structure (XAF), and X-ray photoelectron spectroscopy (XPS). As a result, the addition of a small amount of TEOS leaded to the improvement of the thermal stability for TiO 2 -derived titanate nanotubes. XPS results revealed that Si was combined onto the surface of TiO 2 -derived titanate nanotubes, forming partial Si-O-Ti chemical bonds. Therefore, it was inferred that the thermal stability could be modified by forming partial Si-O-Ti chemical bonds at interface of silica and TiO 2 -derived titanate nanotubes. (author)

  3. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times

    International Nuclear Information System (INIS)

    Ding, Lipeng; He, Yang; Wen, Zhang; Zhao, Pizhi; Jia, Zhihong; Liu, Qing

    2015-01-01

    The effect of pre-aging at four different temperatures and three holding times on the natural aging and the bake hardening response of an AA6022 alloys were studied by Vickers microhardness measurement, tensile test, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM). It was revealed that pre-aging immediately after quenching is effective in suppressing the natural aging and improving the bake hardening response (BHR), which is attributed to the readily formation of Cluster(2) during pre-aging treatment as well as depressing of Cluster(1). The optimum pre-aging treatments were exploited as: 80 °C for 8 h; 100 °C for 3 h; 130 °C for 20 min and 170 °C for 5 min. By considering the practical process requirement pre-aging at 100 °C for 3 h gives a better BHR without impairing the formability in T4P temper, which has the potential to be used in industrial production. - Highlights: • Pre-aging treatment improves T4 hardness and BHR by modifying the cluster forming. • The suitable holding time for each pre-aging temperature is given. • The optimum pre-aging process of 100 °C for 3 h is suggested

  4. Synthesis of fibrous TiO2 from layered protonic tetratitanate by a hydrothermal soft chemical process

    International Nuclear Information System (INIS)

    Jing Xuezhen; Li Yongxiang; Yang Qunbao; Yin Qingrui

    2004-01-01

    Fibrous TiO 2 (anatase) was prepared by a hydrothermal soft chemical process using H 2 Ti 4 O 9 ·0.25H 2 O as a template precursor. The influence of reaction time, temperature and precursor concentration on the phase formation, morphology and crystal-axis orientation were studied. The results have shown that fibrous anatase can be obtained at 220 deg. C for 24 h with the precursor concentrations in the range of 0.025-0.100 M, and that particles had diameters of 0.2-1 μm and lengths of 2-20 μm. The fibrous TiO 2 anatase prepared by this method showed a high orientation along a-axis direction. X-ray diffractometer (XRD) and SEM analyses have indicated that in situ transformation mechanism dominated the entire hydrothermal process but dissolution-recrystallization also occurred on the surface of the particles

  5. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  6. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  7. Influence of hydrothermal carbonization and treatment by microwave on morphology of carbonaceous materials obtained from lignin; Influencia da carbonizacao hidrotermica e do tratamento por microondas na morfologia de materiais carbonaceos obtidos de lignina

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, I.B.; Barin, G.B.; Barreto, L.S.; Santos, M.C.G., E-mail: iara.negreti18@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2014-07-01

    The conversion of biomass into carbon materials with special morphologies via hydrothermal carbonization presents itself as a potential route for the use of renewable precursors in obtaining carbonaceous structures. In the present study the influence of the hydrothermal carbonization (250 ° C / 4 h) followed by microwave treatment (1-2-4 hours at 25 and 40 mL) in morphology and structure of lignin. The samples were analyzed by X-ray diffraction and scanning electron microscopy. The plaque morphology of lignin was preserved during the hydrothermal process. However, when treated by microwave can be observed partial dissolution of lignin leading to the formation of microspheres on the surface. XRD presence of an amorphous halo 2θ = 23 ° attributed to the (002) network of the amorphous carbon was observed. (author)

  8. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    International Nuclear Information System (INIS)

    Xu, Bing; Zhao, Jun Liang; Dai, Hai Tao; Wang, Shu Guo; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Yu, Sheng-Fu; Sun, Xiao Wei

    2014-01-01

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment

  10. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing; Zhao, Jun Liang [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Dai, Hai Tao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Wang, Shu Guo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Chu, Fu-Chuan; Huang, Chou-Hsiung [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Yu, Sheng-Fu [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Sun, Xiao Wei, E-mail: xwsun@sustc.edu.cn [South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2014-01-31

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment.

  11. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture

    International Nuclear Information System (INIS)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe; Wu, Da; Liu, Baizhan; Ling, Yun

    2015-01-01

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO 2 sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m 2 g −1 and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g −1 electrocapacitivity at a current density of 0.5 A g −1 (in 6 M KOH), and a CO 2 capacity of 3.6 mmol g −1 at 0 °C and 1 bar, and a selectivity of ca. 32 for CO 2 over N 2 at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application

  12. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    Directory of Open Access Journals (Sweden)

    Min-Sik Kim

    2014-12-01

    Full Text Available Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I2D/IG ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I2D/IG ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.

  13. Mechanical pre-treatment for enzymatically enhanced energy efficient TMP; Mekanisk foerbehandling av flis foer effektiv enzymatisk paaverkan vid energieffektiv TMP tillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Viforr, Silvia

    2008-11-15

    Thermomechanical pulp (TMP) processes are high energy demanding. This together with the high energy prices of nowadays results in significant costs, why less energy demanding processes are wished. This project has evaluated the potential for energy reductions in a TMP process by a mechanical pre-treatment of the wood chips combined with an enzymatic modification based on a cellulase mixture. The structure of the wood was opened up by the mechanical pre-treatment making it easier for the enzymes to penetrate into the pre-treated wood material. The enzymatic treatment was then run at optimum standard conditions. The EU project - Ecotarget 2004-2008 (www.ecotarget.com) have studied different types of enzymes that could be used for pre-treatment of wood chips in order to save energy during TMP processes. Based on these studies cellulose enzyme was recommended to be used at pre-treatment experiment performed by the Vaermeforsk project. Due to the fact that the Ecotarget-project has also been run during 2008 with activities involving enzymes, the steering board of the Vaermeforsk project took the decision to co-ordinate the experiments from both of the projects. This co-operation increased the funds and also the number of experiments for both of the projects. The experimental results from this project showed that energy reductions at a given tensile index could be achieved if gently mechanical pre-treated wood chips were enzymatically treated. An intensive mechanical pre-treatment gave negative effects on both fibre length and tear index while the light scattering coefficient was promoted, probably due to the fibre shortening. Enzymatic modification of mechanically pre-treated chips showed a favourable modification of the fibres, even regarding the fibre shortening, if compared to mechanical pre-treated chips only. The effects of cellulases was however not as expected, why a high amount of cellulases was used. Other types of enzymes which could attack the primary wall of

  14. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  15. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  16. Effect of pre-processing on the physico-chemical properties of ...

    African Journals Online (AJOL)

    The findings indicated that the pre-processing treatments produced significant differences (p < 0.05) in protein (1.50 ± 0.18g/100g) and carbohydrate (1.09 ± 0.94g/100g) composition of the baking soda blanched milk sample. The viscosity of the baking soda blanched milk (18.91 ± 3.38cps) was significantly higher than that ...

  17. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Acid-Base Behavior in Hydrothermal Processing of Wastes - Final Report

    International Nuclear Information System (INIS)

    Johnston, K.; Rossky, P.

    2000-01-01

    A major obstacle to development of hydrothermal oxidation technology has been a lack of scientific knowledge of chemistry in hydrothermal solution above 350 C, particularly acid-base behavior, and transport phenomena, which is needed to understand corrosion, metal-ion complexation, and salt precipitation and recovery. Our objective has been to provide this knowledge with in situ UV-visible spectroscopic measurements and fully molecular computer simulation. Our recent development of relatively stable organic UV-visible pH indicators for supercritical water oxidation offers the opportunity to characterize buffers and to monitor acid-base titrations. These results have important implications for understanding reaction pathways and yields for decomposition of wastes in supercritical water

  19. Pre-treatment of Biomass By Rolling - A Combined Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Hansen, Klaus Schütt; Ravn, Christian; Nielsen, Emil Krabbe

    2017-01-01

    Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw. Experime...... process window for pre-treatment of wheat straw by roll pressing varying the feed, the roll gap, the roll speed and the moisture content of the bulk straw.......Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw....... Experiments show that the roll speed and the roll reduction should be chosen within a specific range depending on the injection screw speed to avoid blocking or insufficient compaction. A mechanical testing procedure of the bulk straw material including closed die compaction testing as well as simple...

  20. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  1. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  2. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  3. Levulinic acid from orange peel waste by hydrothermal carbonization (HTC)

    NARCIS (Netherlands)

    Puccini, Monica; Licursi, Domenico; Stefanelli, Eleonora; Vitolo, Sandra; Galletti, Anna Maria Raspolli; Heeres, Hero Jan

    2016-01-01

    With the awareness of the need for optimal and sustainable use of natural resources, hydrothermal treatment of biomass and biomass waste for energy and resource recovery has received increasing attention. The hydrothermal carbonization (HTC) of a biomass is achieved using water as the reaction

  4. Endoscopic bursectomy for the treatment of septic pre-patellar bursitis: a case series.

    Science.gov (United States)

    Dillon, John P; Freedman, Ilan; Tan, James S M; Mitchell, David; English, Shaun

    2012-07-01

    Operative treatment for septic pre-patellar bursitis generally involves open debridement in addition to an extended course of intravenous antibiotics. Skin necrosis and wound breakdown are potential complications of this procedure in addition to scar sensitivity and a prolonged recovery. We report endoscopic bursectomy for the treatment of septic pre-patellar bursitis in eight patients over a 3-year period. All patients had microbiological confirmation of an infective process. The average age was 36 years (23-68 years). The average hospital stay was 6 days (4-9 days). No patient had a recurrence or complained of tenderness or hypoaesthesia around their wound. No patient experienced wound complications or skin necrosis. The average return to work time was 18 days (7-22 days). We conclude that endoscopic bursectomy is a safe and effective treatment for septic pre-patellar bursitis with a shortened hospital stay and a quicker return to work than conventional open debridement.

  5. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  6. A review of blood sample handling and pre-processing for metabolomics studies.

    Science.gov (United States)

    Hernandes, Vinicius Veri; Barbas, Coral; Dudzik, Danuta

    2017-09-01

    Metabolomics has been found to be applicable to a wide range of clinical studies, bringing a new era for improving clinical diagnostics, early disease detection, therapy prediction and treatment efficiency monitoring. A major challenge in metabolomics, particularly untargeted studies, is the extremely diverse and complex nature of biological specimens. Despite great advances in the field there still exist fundamental needs for considering pre-analytical variability that can introduce bias to the subsequent analytical process and decrease the reliability of the results and moreover confound final research outcomes. Many researchers are mainly focused on the instrumental aspects of the biomarker discovery process, and sample related variables sometimes seem to be overlooked. To bridge the gap, critical information and standardized protocols regarding experimental design and sample handling and pre-processing are highly desired. Characterization of a range variation among sample collection methods is necessary to prevent results misinterpretation and to ensure that observed differences are not due to an experimental bias caused by inconsistencies in sample processing. Herein, a systematic discussion of pre-analytical variables affecting metabolomics studies based on blood derived samples is performed. Furthermore, we provide a set of recommendations concerning experimental design, collection, pre-processing procedures and storage conditions as a practical review that can guide and serve for the standardization of protocols and reduction of undesirable variation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Impact of hydrothermalism on the ocean iron cycle.

    Science.gov (United States)

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  8. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard

    2013-01-01

    )-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...... mechanisms determining the fate of products, lost opportunities and marginal productions. The results show that introduction of enzymatic transesterification and improved oil extraction procedure result in environmental benefits compared to a traditional process. Utilization of rapeseed straw seems to have...... positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...

  9. Solidification of glass powder by a hydrothermal hot-pressing technique

    International Nuclear Information System (INIS)

    Nishioka, Mamoru; Yanagisawa, Kazumichi; Yamasaki, Nakamichi

    1986-01-01

    A borosilicate glass powder was solidified with a NaOH solution or distilled water by the hydrothermal hot-pressing technique. The effect of hydrothermal conditions on the compressive strength was investigated, and the densification mechanism of the glass powder during the hydrothermal hot-pressing was discussed in terms of isothermal shrinkage. The glass powder was successfully solidified by hydrothermal hot-pressing at a reaction temperature lower than that of an ordinary pressure sintering. The solidified body obtained in the presence of distilled water (10 wt%) at 280 deg C had a high compressive strength of about 2300 kg/cm 2 . The analysis of initial densification process of the glass powder in hydrothermal hot-pressing with Murray's rate equation revealed that the densification proceeds both by viscous flow and by rearrangement process. Analysis of the shrinkage rates with a rate equation of hydrothermal reaction suggested that the dissolution of particles into solution controlled the initial densification of the glass powder, and that the alkaline metal acted as a catalyst. (author)

  10. Comparison of pre-treatment and post-treatment use of selenium in retinal ischemia reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alper Yazici

    2015-04-01

    Full Text Available AIM: To investigate the effects of selenium in rat retinal ischemia reperfusion (IR model and compare pre-treatment and post-treatment use. METHODS: Selenium pre-treatment group (n=8 was treated with intraperitoneal (i.p. selenium 0.5 mg/kg for 7d and terminated 24h after the IR injury. Selenium post-treatment group (n=8 was treated with i.p. selenium 0.5 mg/kg for 7d after the IR injury with termination at the end of the 7d period. Sham group (n=8 received i.p. saline injections identical to the selenium volume for 7d with termination 24h after the IR injury. Control group (n=8 received no intervention. Main outcome measures were retina superoxide dismutase (SOD, glutathione (GSH, total antioxidant status (TAS, malondialdehyde (MDA, DNA fragmentation levels, and immunohistological apoptosis evaluation. RESULTS: Compared to the Sham group, selenium pre-treatment had a statistical difference in all parameters except SOD. Post-treatment selenium also resulted in statistical differences in all parameters except the MDA levels. When comparing selenium groups, the pre-treatment selenium group had a statistically higher success in reduction of markers of cell damage such as MDA and DNA fragmentation. In contrast, the post-selenium treatment group had resulted in statistically higher levels of GSH. Histologically both selenium groups succeeded to limit retinal thickening and apoptosis. Pre-treatment use was statistically more successful in decreasing apoptosis in ganglion cell layer compared to post-treatment use. CONCLUSION: Selenium was successful in retinal protection in IR injuries. Pre-treatment efficacy was superior in terms of prevention of tissue damage and apoptosis.

  11. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.

    2015-01-01

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  12. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  13. Shape-controlled synthesis and properties of manganese sulfide microcrystals via a biomolecule-assisted hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jinghui; Yu Runnan; Zhu Jianyu; Yi Ran; Qiu Guanzhou [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu Xiaohe, E-mail: liuxh@mail.csu.edu.cn [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2009-06-15

    An effective biomolecule-assisted synthetic route has been successfully developed to prepare {gamma}-manganese sulfide (MnS) microtubes under hydrothermal conditions. In the synthetic system, soluble hydrated manganese chloride was employed to supply Mn source and L-cysteine was used as precipitator and complexing reagent. Sea urchin-like {gamma}-MnS and octahedron-like {alpha}-MnS microcrystals could also be selectively obtained by adjusting the process parameters such as hydrothermal temperature and reaction time. The phase structures, morphologies and properties of the as-prepared products were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and photoluminescence spectra (PL). The photoluminescence studies exhibited the correlations between the morphology, size, and shape structure of MnS microcrystals and its optical properties. The formation mechanisms of manganese sulfide microcrystals were discussed based on the experimental results.

  14. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.

    Science.gov (United States)

    Pala, Mehmet; Kantarli, Ismail Cem; Buyukisik, Hasan Baha; Yanik, Jale

    2014-06-01

    Grape pomace was treated by hydrothermal carbonization (sub-critical water, 175-275°C) and torrefaction (nitrogen atmosphere, 250 and 300°C), with mass yield of solid product (char) ranging between 47% and 78%, and energy densification ratio to 1.42-1.15 of the original feedstock. The chars were characterised with respect to their fuel properties, morphological and structural properties and combustion characteristics. The hydrothermal carbonization produced the char with greater energy density than torrefaction. The chars from torrefaction were found to be more aromatic in nature than that from hydrothermal carbonization. Hydrothermal carbonization process produced the char having high combustion reactivity. Most interesting was the finding that aqueous phase from hydrothermal carbonization had antioxidant activity. The results obtained in this study showed that HTC appears to be promising process for a winery waste having high moisture content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  16. Comparative Study of Pre-Germination Treatments and their Effects ...

    African Journals Online (AJOL)

    FIRST LADY

    of leaves (10.05) respectively. Pre-germination treatments of seeds soaked in running water (SRW) for 24 hours were found to be more effective in seedlings growth and biomass production. Keywords: Tectona grandis, pre-germination treatment, seed dormancy, seedling growth. Introduction. Tectona grandis is one of the ...

  17. Single crystalline ZnO nanorods grown by a simple hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhang Qianfeng [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-09-15

    Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 {mu}m. Raman peak at 437.8 cm{sup -1} displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.

  18. Single crystalline ZnO nanorods grown by a simple hydrothermal process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Zhang Qianfeng

    2009-01-01

    Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 μm. Raman peak at 437.8 cm -1 displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.

  19. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei; Lou, Jiaying [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Bai, Shizhe [Department of Chemistry, Fudan University, Shanghai 200433 (China); Wu, Da, E-mail: wud@sh.tobacco.com.cn [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Liu, Baizhan [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Ling, Yun, E-mail: yunling@fudan.edu.cn [Department of Chemistry, Fudan University, Shanghai 200433 (China)

    2015-04-15

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO{sub 2} sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m{sup 2} g{sup −1} and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g{sup −1} electrocapacitivity at a current density of 0.5 A g{sup −1} (in 6 M KOH), and a CO{sub 2} capacity of 3.6 mmol g{sup −1} at 0 °C and 1 bar, and a selectivity of ca. 32 for CO{sub 2} over N{sub 2} at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application.

  20. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    Science.gov (United States)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and

  1. Hydrothermal germination models: Improving experimental efficiency by limiting data collection to the relevant hydrothermal range

    Science.gov (United States)

    Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...

  2. The 1996 ENDF pre-processing codes

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1996-01-01

    The codes are named 'the Pre-processing' codes, because they are designed to pre-process ENDF/B data, for later, further processing for use in applications. This is a modular set of computer codes, each of which reads and writes evaluated nuclear data in the ENDF/B format. Each code performs one or more independent operations on the data, as described below. These codes are designed to be computer independent, and are presently operational on every type of computer from large mainframe computer to small personal computers, such as IBM-PC and Power MAC. The codes are available from the IAEA Nuclear Data Section, free of charge upon request. (author)

  3. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production.

    Science.gov (United States)

    Contreras-Hernández, M G; Ochoa-Martínez, L A; Rutiaga-Quiñones, J G; Rocha-Guzmán, N E; Lara-Ceniceros, T E; Contreras-Esquivel, J C; Prado Barragán, L A; Rutiaga-Quiñones, O M

    2018-02-01

    Approximately 1 million tons of agave plants are processed annually by the Mexican tequila and mezcal industry, generating vast amounts of agroindustrial solid waste. This type of lignocellulosic biomass is considered to be agroindustrial residue, which can be used to produce enzymes, giving it added value. However, the structure of lignocellulosic biomass makes it highly recalcitrant, and results in relatively low yield when used in its native form. The aim of this study was to investigate an effective pre-treatment method for the production of commercially important hydrolytic enzymes. In this work, the physical and chemical modification of Agave durangensis leaves was analysed using ultrasound and high temperature as pre-treatments, and production of enzymes was evaluated. The pre-treatments resulted in modification of the lignocellulosic structure and composition; the ultrasound pre-treatment improved the production of inulinase by 4 U/mg and cellulase by 0.297 U/mg, and thermal pre-treatment improved β-fructofuranosidase by 30 U/mg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.

    Science.gov (United States)

    Hunter, William J; Manter, Daniel K

    2014-10-01

    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.

  5. USE OF NANOTECHNOLOGY PRE-TREATMENT IN AUTOMOTIVE PAINTING LINE

    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa

    2012-09-01

    Full Text Available The current safety requirements, environmental impacts and performance have been ledding the automotive industry to search for new alternatives, not just for new car bodies materials, also for new sheet surface treatments as well, used in the painting process in order to fit simultaneous, environmental requirements and corrosion resistance maintenance, that are the key feature guarantees offered by automakers and are also vital to the durability of the vehicle. This fact is of great importance considering that, besides the various types of steels and their metalic coatings, another factor that directly influences the corrosion resistance is the painting system used. Within this context, the GMB, in partnership with CSN, has been performing several works by adding the knowledge of the supplier to automotive technology. An example of this partnership we have the present study, which aimed to, comparatively, evaluate the corrosion resistance of two systems of painted galvanized steel, the first one with pre-treatment based on a traditional phosphate, and the another one based on a nano-ceramic film. In this study, was found out that materials with pre-treatment based on results of nanotechnology showed similar corrosion resistance comparing the phosphatized materials in a traditional way.

  6. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Haagensen, Frank [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Skiadas, Ioannis V.; Gavala, Hariklia N.; Ahring, Birgitte K. [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Copenhagen Institute of Technology (Aalborg University Copenhagen), Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Lautrupvang 15, DK 2750 Ballerup (Denmark)

    2009-11-15

    Renewable energy sources have received increased interest from the international community with biomass being one of the oldest and the most promising ones. In the concept of exploitation of agro-industrial residues, the present study investigates the pre-treatment and ethanol fermentation potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic durations have been tested. Both wet oxidation and enzymic treatment were evaluated based on the ethanol obtained in a subsequent fermentation step by Saccharomyces cerevisiae and Thermoanaerobacter mathranii. It was found that a four-day hydrolysis time was adequate for a satisfactory release of glucose and xylose. The combination of wet oxidation and enzymatic hydrolysis resulted in the glucose and xylose concentration increase of 138 and 444%, respectively, compared to 33 and 15% with only enzymes added. However, the highest ethanol production was obtained when only enzymic pre-treatment was applied, implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively easily available. The results of the experiments in batch processes clearly emphasize that the simultaneous saccharification and fermentation (SSF) mode is advantageous in comparison with the separate hydrolysis and fermentation (SHF) mode concerning process contamination. (author)

  7. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  8. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  9. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    OpenAIRE

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformatio...

  10. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  11. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  12. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  13. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Science.gov (United States)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  15. HYDROTHERMAL TREATMENT IN PREVENTION BROWNING OF LYCHEE PERICARP

    Directory of Open Access Journals (Sweden)

    Rosana Gonçalves Pires Matias1

    2012-07-01

    Full Text Available The browning of litchi pericarp (Litchi chinensis Sonn. occurs rapidly after harvest, limiting the marketing period of the fruits. The objective of this study was to evaluate the effect of hot water treatments in preventing browning of the pericarp and the maintenance of postharvest quality of litchi fruit. Fruits of litchi cv. Bengal uniformly red pericarp were submitted to immersion in water at tree temperature (45, 50 and 55°C x five soaking times (0, 4, 8, 12 and 16 minutes in a completely randomized design with tree replications and five fruit per replicate. After drying, the fruits were packed in polystyrene trays, covered with plastic wrap with 12 mm thick and stored in the lab benches at room temperature (19.0 ± 2.4°C and 75 ± 5% RH to simulate the exposure conditions at supermarket counters. Every two days, during eight days, were evaluated the weight loss, color of the pericarp, soluble solids, titratable acidity of the pulp and ascorbic acid content of the pericarp and pulp. It was observed that the weight loss was higher in fruits that were not subjected to hydrothermal treatment. Fruits subjected to 50°C during 16 minutes and 55°C in all immersion times were evaluated only until the 4th day, thereafter, these fruits are not suitable for commercialization. Immersion at 45°C during four minutes was the most effective in maintaining the red color of the pericarp and did not affect the quality measured during the experimental period.

  16. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  17. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  18. Pre-treatment technology for electrochemical detection of heavy metal lead and cadmium in food

    Directory of Open Access Journals (Sweden)

    Ke YAN

    2015-04-01

    Full Text Available Wet digestion is used as the pre-treatment technology for the electrochemical detection of heavy metals in food, and the complete wet digestion condition of food sample is optimized by electrochemical experiments. The results show that the experimental samples can be digested completely using the Nitric acid-hydrogen peroxide system and is not pre-digested after adding 10 mL nitric acid at 120~140 ℃ and adding 10~15 mL of hydrogen peroxide during the heating process. The correlation coefficient of electrochemical detect is 0.99 for digestion solution of the samples, and the recovery of standard addition is 82%~115%. Wet digestion as a pre-treatment technology of food samples. It can digest sample fully and meet the requirements of electrochemical detection.

  19. Treatment of sewage sludge by hydrothermal carbonization as part of a sustainable recycling management; Hydrothermale Karbonisierung zur weitergehenden Klaerschlammaufbereitung als Baustein einer nachhaltigen Kreislaufwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, Rainer; Loewen, Achim; Hoebel, Wanja [HAWK Hochschule fuer angewandte Wissenschaft und Kunst, Fachhochschule Hildesheim/Holzminden/Goettingen (DE). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2010-07-15

    An analysis of up-to-date research on hydrothermal carbonization HTC shows that extensive basic investigation has been conducted and the process has proven to be of relevance. First results published indicate a wide range of applications for HTC and open up the path for large scale utilization. The application of HTC in technical scale is most promising for liquid media such as sewage sludge or fermentation residues deriving from waste and waste water treatment or from bioenergy processes. Especially municipal sewage sludge offers great potential. Due to the current amendment of the regulation on sewage sludge, an increasing demand for alternative treatment processes has developed. The mass flow distribution is of special importance with respect to preventive soil protection. Also, a sustainable handling of nutrient rich biomass is require d for reasons of climate and resource protection. In this regard, HTC can offer a relevant contribution. However, there is still significant demand for further research. (orig.)

  20. Effect of the pre-treatment on the performance of MBR, Berghausen WWTP. Germany

    Directory of Open Access Journals (Sweden)

    Medhat A.E. Moustafa

    2011-06-01

    Full Text Available Pilot scale experiments were carried out to examine the effect of the pre-treatment methods on the performance of MBR. The PURON® MBR module was used in this study. In order to investigate the effect of pre-treatment on the behaviour of membrane, samples were withdrawn at different locations in Berghausen WWTP. During the first period samples have been collected directly from the main source as raw sewage to determine its main characteristics. During the second period samples have been screened with screening 1 mm filter material to prevent debris from damaging the membrane. During the third phase samples have been taken after the primary settling tank to have the benefits of filtering out unwanted trash, removing scum and floating debris. The study showed that the membrane bio-reactor filters out nearly all solids, the pre-treatment has a positive effect on the MBR performance, and the pre-sedimentation is more effective than fine screening. Moreover, aeration is considered as one of the intrinsic parameters in both hydraulic and biological process performances because of its ability to maintain solids in suspension, scours the membrane surface, limits fouling, and provide oxygen to the biomass, which results in a better biodegradability.

  1. Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2018-03-01

    Full Text Available Waste biomass as a mean for global carbon dioxide emissions mitigation remains under-utilized. This is mainly due to the low calorific value of virgin feedstock, characterized generally with high moisture content. Aqueous processing, namely hydrothermal liquefaction in subcritical water conditions, has been demonstrated experimentally to thermally densify solid lignocellulose into liquid fuels without the pre-requisite and energy consuming drying step. This study presents a techno-economic evaluation of an integrated hydrothermal liquefaction system with downstream combined heat and power production from forest residues. The utilization of the liquefaction by-products and waste heat from the elevated processing conditions, coupled with the chemical upgrading of the feedstock enables the poly-generation of biocrude, electricity and district heat. The plant thermal efficiency increases by 3.5 to 4.6% compared to the conventional direct combustion case. The economic assessment showed that the minimum selling price of biocrude, based on present co-products market prices, hinders commercialization and ranges between 138 EUR to 178 EUR per MWh. A sensitivity analysis and detailed discussion on the techno-economic assessment results are presented for the different process integration and market case scenarios.

  2. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    International Nuclear Information System (INIS)

    May, T.H.; Gehner, P.D.; Stegen, Gary; Hymas, Jay; Pajunen, A.L.; Sexton, Rich; Ramsey, Amy

    2009-01-01

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  3. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  4. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  5. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  6. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  7. Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre- and intermediate treatments. Technical and economic analysis at a full-scale WWTP.

    Science.gov (United States)

    Campo, Giuseppe; Cerutti, Alberto; Zanetti, Mariachiara; Scibilia, Gerardo; Lorenzi, Eugenio; Ruffino, Barbara

    2018-06-15

    Anaerobic digestion (AD) is the most commonly applied end-treatment for the excess of waste activated sludge (WAS) generated in biological wastewater treatment processes. The efficacy of different typologies of pre-treatments in liberating intra-cellular organic substances and make them more usable for AD was demonstrated in several studies. However, the production of new extracellular polymeric substances (EPSs) that occur during an AD process, due to microbial metabolism, self-protective reactions and cell lysis, partially neutralizes the benefit of pre-treatments. The efficacy of post- and inter-stage treatments is currently under consideration to overcome the problems due to this unavoidable byproduct. This work compares three scenarios in which low-temperature (<100 °C) thermal and hybrid (thermal+alkali) lysis treatments were applied to one sample of WAS and two samples of digestate with hydraulic retention times (HRTs) of 7 and 15 days. Batch mesophilic digestibility tests demonstrated that intermediate treatments were effective in making the residual organic substance of a 7-day digestate usable for a second-stage AD process. In fact, under this scenario, the methane generated in a two-stage AD process, with an in-between intermediate treatment, was 23% and 16% higher than that generated in the scenario that considers traditional pre-treatments carried out with 4% NaOH at 70 and 90 °C respectively. Conversely, in no cases (70 or 90 °C) the combination of a 15-day AD process, followed by an intermediate treatment and a second-stage AD process, made possible to obtain specific methane productions (SMPs) higher than those obtained with pre-treatments. The results of the digestibility tests were used for a tecno-economic assessment of pre- and intermediate lysis treatments in a full scale wastewater treatment plant (WWTP, 2,000,000 p.e.). It was demonstrated that the introduction of thermal or hybrid pre-treatments could increase the revenues from the

  8. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  9. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  10. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  11. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Vázquez, Liz M., E-mail: limdiaz@uprrp.edu; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V. [Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan, PR (United States); Jena, Umakanta [Bioenergy Laboratory, Desert Research Institute, Reno, NV (United States); Das, K. C. [College of Engineering, University of Georgia, Athens, GA (United States)

    2015-02-11

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  12. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    International Nuclear Information System (INIS)

    Díaz-Vázquez, Liz M.; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V.; Jena, Umakanta; Das, K. C.

    2015-01-01

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  13. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production

    Directory of Open Access Journals (Sweden)

    Liz M Díaz-Vázquez

    2015-02-01

    Full Text Available Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR Spectroscopy, Energy Dispersive Spectroscopy (EDS, Scanning Electron Microscopy (SEM, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment, was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5-21 MPa. Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46% to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4±0.1 % and 22.2±0.1 % (ash free dry basis, respectively.

  14. Preliminary results on optimising hydrothermal treatment used in co-production of biofuels

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thomsen, A.B.; Jørgensen, H.

    . The solubilised hemicellulose is in a second step converted by either enzymes or weak acid hydrolyses tomonomeric sugar compounds for ethanol production. The cellulose fraction containing the lignin will be burned for electricity or part of it may be used for ethanol production by means of SSF. By-products from......In December 2002, an EU-project for co-production of biofuels was started. The overall objective is to develop cost and energy effective production systems for co-production of bio ethanol and electricity based on integrated biomass utilization. Duringthe first 12 months period of the project...... illustrates that it is possible to extract more than 95% of the alkaline salts (at 200 C) leaving a solid cellulose rich biofuel for combustion or for further treatment in the ethanol process. In the experiments performed at 190 C, the best totalglucose yield after pre-treatment and following enzymatic...

  15. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  16. Hydrothermal calcification of alkali treated titanium in CaHPO_4 solution

    International Nuclear Information System (INIS)

    Fu, T.; Fan, J.T.; Shen, Y.G.; Sun, J.M.

    2017-01-01

    The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO_4 solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO_2 with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO_4 solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO_2 and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO_4 solution. • HA nanocrystallites are formed at 80–120 °C, but TiO_2 nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.

  17. Pre-hospital treatment of acute poisonings in Oslo

    Science.gov (United States)

    Heyerdahl, Fridtjof; Hovda, Knut E; Bjornaas, Mari A; Nore, Anne K; Figueiredo, Jose CP; Ekeberg, Oivind; Jacobsen, Dag

    2008-01-01

    Background Poisoned patients are often treated in and discharged from pre-hospital health care settings. Studies of poisonings should therefore not only include hospitalized patients. Aims: To describe the acutely poisoned patients treated by ambulance personnel and in an outpatient clinic; compare patients transferred to a higher treatment level with those discharged without transfer; and study the one-week mortality after pre-hospital discharge. Methods A one-year multi-centre study with prospective inclusion of all acutely poisoned patients ≥ 16 years of age treated in ambulances, an outpatient clinic, and hospitals in Oslo. Results A total of 3757 health service contacts from 2997 poisoning episodes were recorded: 1860 were treated in ambulances, of which 15 died and 750 (40%) were discharged without transfer; 956 were treated in outpatient clinic, of which 801 (84%) were discharged without transfer; and 941 episodes were treated in hospitals. Patients discharged alive after ambulance treatment were mainly poisoned by opiates (70%), were frequently comatose (35%), had respiratory depression (37%), and many received naloxone (49%). The majority of the patients discharged from the outpatient clinic were poisoned by ethanol (55%), fewer were comatose (10%), and they rarely had respiratory depression (4%). Among the hospitalized, pharmaceutical poisonings were most common (58%), 23% were comatose, and 7% had respiratory depression. Male patients comprised 69% of the pre-hospital discharges, but only 46% of the hospitalized patients. Except for one patient, who died of a new heroin overdose two days following discharge from an ambulance, there were no deaths during the first week after the poisonings in the 90% of the pre-hospital discharged patients with known identity. Conclusion More than half of the poisoned patients treated in pre-hospital treatment settings were discharged without transfer to higher levels. These poisonings were more often caused by drug and

  18. Pre-hospital treatment of acute poisonings in Oslo

    Directory of Open Access Journals (Sweden)

    Nore Anne K

    2008-11-01

    Full Text Available Abstract Background Poisoned patients are often treated in and discharged from pre-hospital health care settings. Studies of poisonings should therefore not only include hospitalized patients. Aims: To describe the acutely poisoned patients treated by ambulance personnel and in an outpatient clinic; compare patients transferred to a higher treatment level with those discharged without transfer; and study the one-week mortality after pre-hospital discharge. Methods A one-year multi-centre study with prospective inclusion of all acutely poisoned patients ≥ 16 years of age treated in ambulances, an outpatient clinic, and hospitals in Oslo. Results A total of 3757 health service contacts from 2997 poisoning episodes were recorded: 1860 were treated in ambulances, of which 15 died and 750 (40% were discharged without transfer; 956 were treated in outpatient clinic, of which 801 (84% were discharged without transfer; and 941 episodes were treated in hospitals. Patients discharged alive after ambulance treatment were mainly poisoned by opiates (70%, were frequently comatose (35%, had respiratory depression (37%, and many received naloxone (49%. The majority of the patients discharged from the outpatient clinic were poisoned by ethanol (55%, fewer were comatose (10%, and they rarely had respiratory depression (4%. Among the hospitalized, pharmaceutical poisonings were most common (58%, 23% were comatose, and 7% had respiratory depression. Male patients comprised 69% of the pre-hospital discharges, but only 46% of the hospitalized patients. Except for one patient, who died of a new heroin overdose two days following discharge from an ambulance, there were no deaths during the first week after the poisonings in the 90% of the pre-hospital discharged patients with known identity. Conclusion More than half of the poisoned patients treated in pre-hospital treatment settings were discharged without transfer to higher levels. These poisonings were more often

  19. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono

    2011-05-01

    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  20. Improving enzymatic saccharification of cassava stem using peroxide and microwave assisted pre-treatment techniques

    Directory of Open Access Journals (Sweden)

    Sudha A.

    2017-01-01

    Full Text Available The effectiveness of microwave assisted alkali (MAA and alkaline hydrogen peroxide (AHP pre-treatment methods in improving the enzymatic saccharification of cassava stem was investigated. Ground cassava stems were by MAA method by varying microwave power, NaOH concentration and pre-treatment time. AHP method was performed at various H2O2 concentrations, pre-treatment temperatures and times. The results showed that reducing sugar yield was higher from MAA pretreated stem when compared with AHP pre-treatment, which demonstrated that MAA pre-treatment was effective in releasing sugars. SEM studies on the pre-treated samples revealed extensive distortion of fibres in MAA pre-treated than AHP pre-treated samples, which showed pores and cracks in the fibrous structure. Spectral studies showed the change in the chemical structure of pre-treated samples. The work revealed that the studied pre-treatment methods were effective in improving the enzymatic saccharification of cassava stem.

  1. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  2. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chengyuan, E-mail: suchengyuan2008@126.com [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Li, Weiguang [School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Lu, Yuxiang; Chen, Menglin; Huang, Zhi [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China)

    2016-08-15

    Highlights: • Rhein has metabolic or physiological toxicity on methanogens in anaerobic granular sludge. • TCM wastewater containing rhein can be successfully treated by the combined treatment. • The productions of the EPS of granular sludge increased after pre-treatment. • Methanoregula, Methanobacterium, Methanosphaerula were predominant in the DC reactor after pre-treatment. - Abstract: The effect of a heterogeneous Fenton-like pre-treatment on the anaerobic processes, characteristics and microbial community of sludge was investigated for traditional Chinese medicine (TCM) wastewater containing rhein. When the concentrations of rhein were 50 mg/L and 100 mg/L, the toxic effect was physiological toxicity for anaerobic granular sludge. Using a single double circle (DC) reactor for the treatment of TCM wastewater containing rhein at concentrations of 15–20 mg/L, the chemical oxygen demand (COD) removal rate was 69%, and coenzyme F{sub 420} was nearly undetectable in the 3D-excitation-emission matrix (EEM) spectra of soluble microbial products (SMP). The abundances of Methanoregula, Methanobacterium, Methanosphaerula were only 5.57%, 2.39% and 1.08% in the DC reactor, respectively. TCM wastewater containing rhein could be successfully treated by the combination of the heterogeneous Fenton-like pre-treatment and the DC reactor processes, and the COD removal rate reached 95%. Meanwhile, the abundances of Methanoregula, Methanobacterium, Methanosphaerula increased to 22.5%, 18.5%, and 13.87%, respectively. For the bacterial community, the abundance of Acidobacteria-Gp6 decreased from 6.99% to 1.07%, while the abundances of Acidobacteria-Gp1 and Acidobacteria-Gp2 increased from 1.61% to 6.55% and from 1.28% to 5.87%, respectively.

  3. Study on the pre-treatment of oxidized zinc ore prior to flotation

    Science.gov (United States)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  4. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  5. Effect of pre-treatments on seed germination of Parkia biglobosa ...

    African Journals Online (AJOL)

    Effect of pre-treatments on seed germination of Parkia biglobosa (Benth) ... There has been emphasis on the use of indigenous tree species to check land ... out to investigate the most effective pre-sowing treatments to break seed dormancy and to ... Matured seeds of P. biglobosa were collected from farmers at Mbalagh ...

  6. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  7. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    Science.gov (United States)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  8. The alkaline pre-filming process of the RWCU piping surface

    Energy Technology Data Exchange (ETDEWEB)

    Kao, D-Y.; Wen, T-J., E-mail: dahyukao@iner.gov.tw [Atomic Energy Council, Inst. of Nuclear Energy Research, Lungtan Taoyuan, Taiwan (China); Fong, C., E-mail: clinton@itri.org.tw [Industrial Technology Research Inst., Chutung, Hsinchu (China); Lu, J-H., E-mail: u879864@taipower.com.tw [Taiwan Power Co., Lungmen Nuclear Power Plant, Gongliao Township, Taipei County (China)

    2010-07-01

    The radiation dose rate on a BWR can cause great damage to operators and their maintenances working quality, so it is very important to lower it. The RWCU of a BWR primary system has the highest radiation dose rate and deposition of an active corrosion product because of: continually cleaning the reactor water and the repeated, acute change of temperature. The Lungmen NPP was built as an advanced BWR (ABWR) system. All new ABWRs in Japan, such as Kashiwazaki-Kariwa NPP units K6 and K7, Hamaoka NPP unit H5, and Shika NPP unit2, were given in passivation treatment in the stage of nuclear heating or flow-induced vibration (FIV) testing before each plant's initial start up. The conditions of alkaline pre-filming process include: pH, dissolve oxygen (DO) and temperature. This project had been decided by the results of earlier water loop testing. Three kinds of specimens including stainless steel AISI SS316L and carbon steel SA106 GrB, SA333 Gr6 were put into the autoclave located at a bypass system during the process of passivation treatment. The materials of these specimens have been used in RWCU piping, and during the alkaline pre-filming process they were monitored by AC impedances and electrochemical corrosion potential (ECP). Their surface analyses including SEM, EDS, ESCA and SIMS data were obtained from the initial test, and obtained every six months thereafter. From the SEM plot of first issue it was found that the specimens' surface of all three different materials presented excellent levels of oxidized pellets. They are almost completely packed, for both large and small granules, and the porosity is less than 40%. The deposition tests of cobalt ion were also completed. The material of stainless steel was nearly not affected through the passive process. However, carbon steel could reduce about 30% to 50% of deposited cobalt ion. This result follows the conclusion of Hatch Company. Based on the nominal cost of radiation protection, i.e. 10000 USD

  9. Tolerance of mango cv. ´Ataulfo' to irradiation with Co-60 vs. hydrothermal phytosanitary treatment

    Science.gov (United States)

    Gómez-Simuta, Y.; Hernández, Emilio; Aceituno-Medina, Marysol; Liedo, Pablo; Escobar-López, Arseny; Montoya, Pablo; Bravo, Bigail; Hallman, Guy J.; Bustos, M. Emilia; Toledo, Jorge

    2017-10-01

    The use of ionizing irradiation or the use of hot water treatment (HWT) has been demonstrated as a successful commercial phytosanitary treatment during the past two decades. Several countries currently use this technology for commercial treatments to meet plant quarantine requirements. However, hydrothermal treatment has been found to significantly affect the firmness of ;Ataulfo; mango fruit, the susceptibility to damage by cold and it also accelerates their maturation. In this study, we focused on the effect of irradiation doses on the sensorial quality and the physiochemical properties of mango cv ;Ataulfo; compared with the traditional hot water treatment. We found that doses of 150 Gy and 300 Gy of gamma radiation can be applied successfully as well as the hot water treatment. There was no significant difference in between irradiation treatments in terms of weight loss, external and internal color, pH, soluble solids, titratable acidity and firmness, and consumer's acceptance. There was no adverse effect of color appearance, odor and flavor, indicating that consumers will have the willingness to buy and consume irradiated mangoes. Irradiation of mangoes can be a successful post-harvest treatment as an alternative to the hot water treatment.

  10. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    International Nuclear Information System (INIS)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-01-01

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: → SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. → The dopped MCM-41 materials show a wormhole-like mesoporous structure. → The thermal stability of the dopped materials have an increment of almost 100 o C compared with the pure MCM-41. → The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N 2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 o C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  11. Superior pre-attentive auditory processing in musicians.

    Science.gov (United States)

    Koelsch, S; Schröger, E; Tervaniemi, M

    1999-04-26

    The present study focuses on influences of long-term experience on auditory processing, providing the first evidence for pre-attentively superior auditory processing in musicians. This was revealed by the brain's automatic change-detection response, which is reflected electrically as the mismatch negativity (MMN) and generated by the operation of sensoric (echoic) memory, the earliest cognitive memory system. Major chords and single tones were presented to both professional violinists and non-musicians under ignore and attend conditions. Slightly impure chords, presented among perfect major chords elicited a distinct MMN in professional musicians, but not in non-musicians. This demonstrates that compared to non-musicians, musicians are superior in pre-attentively extracting more information out of musically relevant stimuli. Since effects of long-term experience on pre-attentive auditory processing have so far been reported for language-specific phonemes only, results indicate that sensory memory mechanisms can be modulated by training on a more general level.

  12. The 1989 ENDF pre-processing codes

    International Nuclear Information System (INIS)

    Cullen, D.E.; McLaughlin, P.K.

    1989-12-01

    This document summarizes the 1989 version of the ENDF pre-processing codes which are required for processing evaluated nuclear data coded in the format ENDF-4, ENDF-5, or ENDF-6. The codes are available from the IAEA Nuclear Data Section, free of charge upon request. (author)

  13. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Stojanović, Zoran S.; Ignjatović, Nenad [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Wu, Victoria [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Žunič, Vojka [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Veselinović, Ljiljana [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Škapin, Srečo [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Miljković, Miroslav [Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš (Serbia); Uskoković, Vuk [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908 (United States); and others

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm{sup 2}. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P6{sub 3/m} space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the

  14. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hydrothermal treatment favors peeling of 'Pera' sweet orange fruit and does not alter quality Tratamento hidrotérmico facilita o descascamento de laranja 'Pera' e não afeta sua qualidade

    Directory of Open Access Journals (Sweden)

    Maria Cecília de Arruda

    2008-04-01

    Full Text Available Consumer demand for ready-to-eat-products has stimulated the development of new processing techniques to prepare fresh-cut fruit and vegetables. The aim of this study was to propose a peeling method for 'Pera' oranges (Citrus sinensis [L.] Osb. by using a hydrothermal treatment and to determine its influence on the respiratory activity, physicochemical and sensorial characteristics, as well as on the peeling time. Cooled oranges (6ºC were immersed in heated water (50ºC for eight minutes and then, peeled and stored at 6ºC. The internal fruit temperatures taken at 1 and 3 cm depths (from fruit surface were 15ºC and 10ºC, respectively, at the end of the hydrothermal treatment. Non-hydrothermally-treated peeled oranges were used as control. The peeling time for treated oranges was 3.2 times as short as the time used for the control. The yield of marketable oranges was 95% for hydrothermally-treated oranges versus 60% for control. The respiratory activity of hydrothermally-treated oranges was greater than that of control oranges only during the first hour after peeling. The hydrothermal treatment influenced neither the physicochemical quality (given by soluble solids, titratable acidity and ascorbic acid content nor fruit flavor. Oranges peeled with the aid of the hydrothermal treatment had better appearance. The hydrothermal treatment makes the peeling of oranges easier and does not affect their respiratory activity or their physicochemical and sensorial qualities.A demanda dos consumidores por produtos 'prontos para o consumo' tem estimulado o desenvolvimento de técnicas de processamento para preparar frutas e hortaliças minimamente processadas. O objetivo deste trabalho foi propor um método de descascamento para laranja 'Pera' (Citrus sinensis [L.] Osb. pelo uso do tratamento hidrotérmico e determinar sua influência na atividade respiratória, características físico-químicas e sensoriais e no tempo de descascamento de laranja 'Pera

  16. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements.

    Science.gov (United States)

    Lemmens, Elien; De Brier, Niels; Spiers, Kathryn M; Ryan, Chris; Garrevoet, Jan; Falkenberg, Gerald; Goos, Peter; Smolders, Erik; Delcour, Jan A

    2018-10-30

    Chelation of iron and zinc in wheat as phytates lowers their bio-accessibility. Steeping and germination (15 °C, 120 h) lowered phytate content from 0.96% to only 0.81% of initial dry matter. A multifactorial experiment in which (steeped/germinated) wheat was subjected to different time (2-24 h), temperature (20-80 °C) and pH (2.0-8.0) conditions showed that hydrothermal processing of germinated (15 °C, 120 h) wheat at 50 °C and pH 3.8 for 24 h reduced phytate content by 95%. X-ray absorption near-edge structure imaging showed that it indeed abolished chelation of iron to phytate. It also proved that iron was oxidized during steeping, germination and hydrothermal processing. It was further shown that zinc and iron bio-accessibility were respectively 3 and 5% in wheat and 27 and 37% in hydrothermally processed wheat. Thus, hydrothermal processing of (germinated) wheat paves the way for increasing elemental bio-accessibility in whole grain-based products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    International Nuclear Information System (INIS)

    Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simoes, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G.

    2008-01-01

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained

  18. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    Energy Technology Data Exchange (ETDEWEB)

    Volanti, D.P. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Keyson, D. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil)], E-mail: laeciosc@bol.com.br; Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Joya, M.R. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Longo, E.; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Souza, A.G. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil)

    2008-07-14

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained.

  19. Selective formation of VO2(A) or VO2(R) polymorph by controlling the hydrothermal pressure

    International Nuclear Information System (INIS)

    Ji Shidong; Zhang Feng; Jin Ping

    2011-01-01

    Missing VO 2 (A) usually occurs during the preparation of VO 2 polymorphs. This leads to an ambiguous understanding of the transformation between VO 2 polymorphs. The calculation of the ground state energies for different VO 2 polymorphs indicated that there is only a small energy gap between VO 2 (A) and VO 2 (R), which destined that the transformation from VO 2 (A) to VO 2 (R) should be pressure sensitive. This hypothesis was verified during the synthesizing of VO 2 polymorphs by reducing V 2 O 5 with oxalic acid through hydrothermal treatment process. Selective formation of pure phase VO 2 (A) or VO 2 (R) was achieved by controlling the hydrothermal pressure through varying the filling ratio at 270 deg. C. It was found that a filling ratio over 0.5 favors the formation of pure VO 2 (R) while a reduced filling ratio to 0.4 or lower results in the formation of VO 2 (A). Based on our experiments, VO 2 (B) nanobelts were always first formed and then it transformed to VO 2 (A) by assembling process at increased temperature or extended reaction time. Under further higher pressure, the VO 2 (A) transformed spontaneously to VO 2 (R) initialized from the volume shrinkage due to the formation of denser VO 2 (R). - Graphical abstract: Selective formation of VO 2 (A) or VO 2 (R) could be achieved by controlling the system pressure through varying the filling ratio during hydrothermal treatment. Highlights: → Selective formation of VO 2 polymorphs by controlling hydrothermal pressure. → Ground state energy characteristics were revealed for the first time. → Phase transformation mechanism was clearly elucidated.

  20. [Pre- and post-surgical orthodontic treatment of mandibular asymmetry and prognathism].

    Science.gov (United States)

    Chen, Song; Chen, Yang-xi; Hu, Jing

    2005-01-01

    The purpose of this study was to analyze the pre- and post surgical orthodontic treatment of mandibular asymmetry and prognathism in our hospital, and to summarize some helpful experiences for future clinical work. The data were derived from 21 adults aged from 19 - 28 years who had severe mandibular asymmetry and prognathism. The ANB angle of all patients is from -3 degrees to -8 degrees. The value of wits of all patients is from -7 mm to -14 mm. The deviation of chin point of all patients is from 3 mm to 7 mm. The duration of pre- and post-surgical orthodontic treatment was 10-20 months (mean 18 months) and 5-10 months (mean 7.5 months), respectively. The keys in pre-surgical orthodontic treatment include (1) three dimensional dental decompensation; (2) arch form and transverse discrepancy correction; (3) model surgery and the splint making. The main objective of post surgical orthodontic treatment is to detail the occlusion. Pre- and post surgical orthodontic treatment is essential for the orthognathic treatment of patients with mandibular asymmetry and prognathism.

  1. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES.

    Science.gov (United States)

    Huang, Rixiang; Tang, Yuanzhi

    2016-09-01

    (Hydro)thermal treatments of sewage sludge is a promising option that can simultaneously target safe waste disposal, energy recovery, and nutrient recovery/recycling. The speciation of phosphorus (P) in sludge is of great relevance to P reclamation/recycling and soil application of sludge-derived products, thus it is critical to understand the effects of different treatment techniques and conditions on P speciation. This study systematically characterized P speciation (i.e. complexation and mineral forms) in chars derived from pyrolysis and hydrothermal carbonization (HTC) of municipal sewage sludges. Combined sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy analysis revealed the dependence of P transformation on treatment conditions and metal composition in the feedstocks. Pyrolysis of sludges decreased the relative abundance of phytic acid while increased the abundance of Al-associated P. HTC thoroughly homogenized and exposed P for interaction with various metals/minerals, with the final P speciation closely related to the composition/speciation of metals and their affinities to P. Results from this study revealed the mechanisms of P transformation during (hydro)thermal treatments of sewage sludges, and might be applicable to other biosolids. It also provided fundamental knowledge basis for the design and selection of waste management strategies for better P (re)cycling and reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of pre-processing methods for multiplex bead-based immunoassays.

    Science.gov (United States)

    Rausch, Tanja K; Schillert, Arne; Ziegler, Andreas; Lüking, Angelika; Zucht, Hans-Dieter; Schulz-Knappe, Peter

    2016-08-11

    High throughput protein expression studies can be performed using bead-based protein immunoassays, such as the Luminex® xMAP® technology. Technical variability is inherent to these experiments and may lead to systematic bias and reduced power. To reduce technical variability, data pre-processing is performed. However, no recommendations exist for the pre-processing of Luminex® xMAP® data. We compared 37 different data pre-processing combinations of transformation and normalization methods in 42 samples on 384 analytes obtained from a multiplex immunoassay based on the Luminex® xMAP® technology. We evaluated the performance of each pre-processing approach with 6 different performance criteria. Three performance criteria were plots. All plots were evaluated by 15 independent and blinded readers. Four different combinations of transformation and normalization methods performed well as pre-processing procedure for this bead-based protein immunoassay. The following combinations of transformation and normalization were suitable for pre-processing Luminex® xMAP® data in this study: weighted Box-Cox followed by quantile or robust spline normalization (rsn), asinh transformation followed by loess normalization and Box-Cox followed by rsn.

  3. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  4. Hydrothermal synthesis of magnetic reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Shi, Min; Ma, Hongwei; Yan, Bo; Li, Na; Ye, Mingxin

    2011-01-01

    Graphical abstract: An environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite with a one-step hydrothermal method was demonstrated. The reducing process was accompanied by generation of magnetic nanoparticles. Highlights: → A one-step hydrothermal method for preparation of MN-CCG was demonstrated. → Glucose was used as the 'green' reducing agent. → The reducing process was accompanied by generation of magnetic nanoparticles. → The prepared MN-CCG is highly water suspendable and sensitive to magnetic field. -- Abstract: We demonstrated an environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite (MN-CCG). Glucose was used as the reducing agent in this one-step hydrothermal method. The reducing process was accompanied by generation of magnetic nanoparticles. The structure and composition of the nanocomposite was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and transmission electron microscopy. It was found that the prepared MN-CCG is highly water suspendable and sensitive to magnetic field.

  5. Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process

    International Nuclear Information System (INIS)

    Pal, Umapada; Pal, Mou; Sánchez Zeferino, Raul

    2012-01-01

    We report the synthesis of highly crystalline SnO 2 nanoparticle and nanorod structures with average diameters well within quantum confinement limit (3.5−6.4 nm), through surfactant-free hydrothermal synthesis. The size and shape of the nanostructures could be controlled by controlling the pH (4.5–13.0) of the reaction mixture and the temperature of hydrothermal treatment. Probable mechanisms for the variation of particle size and growth of one-dimensional structures are presented considering the size-dependent crystal solubility at lower pH values of the reaction solution and Ostwald ripening of the quasi-spherical nanoparticles at higher pH values, respectively. Variation of optical band gap energy and hence the effects of quantum confinement in the nanostructures have been studied.

  6. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma; Ha, Changwon; Kennedy, Maria Dolores; Amy, Gary L.

    2013-01-01

    and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values

  7. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  8. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulsrud, B.; Gjerde, B.; Lundar, A.

    2003-07-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criteria, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain limes. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. (author)

  9. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera

    Science.gov (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.

    2017-12-01

    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  10. Performance of seeds Crambe exposed to pre-germination treatments

    International Nuclear Information System (INIS)

    Rocha Cardoso, Rebeca; Costa Nobre, Danubia Aparecida; Santos de Souza David, Andreia Marcia; Ribeiro Amaro, Hugo Tiago; Borghetti, Renato Antonio; Costa, Marcia Regina

    2014-01-01

    Encouraging the production and use of biodiesel, seeds of crambe today constitute one of the best options for the supply of raw material, is also an excellent alternative for autumn-winter crop rotation order. The aim of this study was to evaluate the efficiency of combined pre-germination treatments on the seed behavior of Crambe. From a seed sample of FMS Brilhante cultivar, an experimental design completely randomized with a 2 x 5 factorial arrangement was performed. it was formed from combination of two structural conditions, seeds with or without pericarp, and treatments with or without giberelic acid, being: control (no treatment); seeds pre-soaked in distilled water for 24 hours as control; and seeds pre-soaked in gibberellic acid at 4 % at different concentrations (400, 500 and 600 mg.L"-1). Water content, first count germination, germination, seedling emergence and emergence rate index were determined. From these results it is concluded that removal of the pericarp in seed of Crambe, cultivar FMS brilhante, accelerated the germination rate, however, decreased your final percentage. The pre-soaking in gibberellic acid (400, 500 and 600 mg L"-1) for 24 hours, increased the germination and seed vigor crambe with pericarp.

  11. pre-germination treatments in castor seeds, cultivar IAC 226

    International Nuclear Information System (INIS)

    Costa Nobre, Danubia Aparecida; Gomes Damascena, Joyce; Marcia, Andreia; Santos de Souza, David; Pereira dos Santos, Marlucia; Rodrigues Pereira, Adriana; Goncalves Pereira, Cassio

    2013-01-01

    The present study aimed to evaluate the efficiency of different pre-germination treatments in castor beans, IAC 226. The experimental design was completely randomized in a factorial 4 x 4 (four temperatures and four immersion times), with four replications. Pre-germination treatments were: immersion in water at room temperature (25 Celsius degrade) and immersion in hot water at temperatures of 60, 70 and 80 Celsius degrade for 2, 4, 6 and 8 minutes. Water content of the seeds was determined before treatments. Before and after each treatment, seeds were subjected to germination test; 20-30 Celsius degrade alternating temperature, determining the percentages of normal and abnormal seedlings, dormant and dead seeds. Independent of time, immersion in 70 Celsius degrade, water was the most efficient treatment for accelerating germination of castor bean cultivar IAC 226.

  12. Hydrothermal calcification of alkali treated titanium in CaHPO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Fu, T., E-mail: taofu@xjtu.edu.cn [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China); Fan, J.T., E-mail: jitang_fan@hotmail.com [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081 (China); Shen, Y.G. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Sun, J.M. [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China)

    2017-03-01

    The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO{sub 4} solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO{sub 2} with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO{sub 4} solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO{sub 2} and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO{sub 4} solution. • HA nanocrystallites are formed at 80–120 °C, but TiO{sub 2} nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.

  13. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  14. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  15. EFFECT OF PRE-HEAT TREATMENT ON MECHANICAL PROPERTIES OF Ti-6Al-4V WELDS

    Directory of Open Access Journals (Sweden)

    Gnofam Jacques TCHEIN

    2016-11-01

    Full Text Available The work presented here is related to the optimization of the Friction Stir Welding (FSW process. The objective is to study the influence of some parameters used in the production of welded joints by FSW. The most important parameters are the welding speed and the rotational speed of the tool. The effect of pre-heat treatment on the plates to be welded is also studied by the design of experimental methods. These pre-heat treatments result not only in a change of mechanical properties of plates to be welded, but also of their microstructure. The experiments were performed following a 16 lines fractional Taguchi table.

  16. Some genetic aspects of hydrothermal uranium deposits in the Bakulja granitoide (Serbia)

    International Nuclear Information System (INIS)

    Jelenkovic, Rade

    1998-01-01

    This paper discusses the influence of temperature and the way of hydrothermal fluids flow in function of both the degree of tectonized granitoid and the origin of solutions, and partly the processes accompanying mineralization expressed through physico-chemical, mineralogical and mechanical alterations of the mother rock. It has been concluded that heat energy exchange is in function of: 1) petrochemical characteristic of a rock the hydrothermal fluids flow through; 2) degree of tectonization of the surrounding mineralized rocks; 3) volume and morphology of the fissured-porous space; 4) form of uranium bonding in mineral carriers; 5) degree of uranium leaching in hydrothermal solutions; 6) the way of hydrothermal fluids flow, and 7) coefficient of heat exchange expressed by distribution of heat energy within a fluid-rock system. It has also been established that contraction of granite volume results from physico-chemical processes that take place within a granitoid-hydrothermal fluid system and its quantification has been carried out. (Author)

  17. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2014-01-01

    Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.

  18. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    Directory of Open Access Journals (Sweden)

    Siika-aho Matti

    2011-01-01

    Full Text Available Abstract Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases, resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C.

  19. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  20. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem

    Science.gov (United States)

    Morgan, Lisa A.

    2007-01-01

    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  1. Research on pre-processing of QR Code

    Science.gov (United States)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  2. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  3. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  4. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hydrothermal impacts on trace element and isotope ocean biogeochemistry.

    Science.gov (United States)

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H

    2016-11-28

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  6. A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles.

    Science.gov (United States)

    Zhang, Lizhi; Yu, Jimmy C; Xu, An-Wu; Li, Quan; Kwong, Kwan Wai; Wu, Ling

    2003-12-07

    Single crystalline lithium manganese oxide nanobelts were obtained through a self-seeded, surfactant-directed growth process from the commercial bulky particles under hydrothermal treatment. A possible mechanism was proposed to explain the growth of the nanobelts. This new process could be extended to prepare other one-dimensional nanomaterials such as Se nanorods, Te nanotubes, and MnO2 nanowires.

  7. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  8. Low temperature hydrothermal processing of organic contaminants in Hanford tank waste

    International Nuclear Information System (INIS)

    Jones, E.O.; Pederson, L.R.; Freeman, H.D.; Schmidt, A.J.; Babad, H.

    1993-02-01

    Batch and continuous flow reactor tests at Pacific Northwest Laboratory (PNL) have shown that organics similar to those present in the single-shell and double-shell underground storage tanks at Hanford can be decomposed in the liquid phase at relatively mild temperatures of 150 degree C to 350 degree C in an aqueous process known as hydrothermal processing (HTP). The organics will react with the abundant oxidants such s nitrite already present in the Hanford tank waste to form hydrogen, carbon dioxide, methane, and ammonia. No air or oxygen needs to be added to the system. Ferrocyanides and free cyanide will hydrolyze at similar temperatures to produce formate and ammonia and may also react with nitrates or other oxides. During testing, the organic carbon was transformed first to oxalate at∼310 degree C and completely oxidized to carbonate at ∼350 degree C accompanied by hydroxide consumption. Solids were formed at higher temperatures, causing a small-diameter outlet tube to plug. The propensity for plugging was reduced by diluting the feed with concentrated hydroxide

  9. Textural Analysis of Fatique Crack Surfaces: Image Pre-processing

    Directory of Open Access Journals (Sweden)

    H. Lauschmann

    2000-01-01

    Full Text Available For the fatique crack history reconstitution, new methods of quantitative microfractography are beeing developed based on the image processing and textural analysis. SEM magnifications between micro- and macrofractography are used. Two image pre-processing operatins were suggested and proved to prepare the crack surface images for analytical treatment: 1. Normalization is used to transform the image to a stationary form. Compared to the generally used equalization, it conserves the shape of brightness distribution and saves the character of the texture. 2. Binarization is used to transform the grayscale image to a system of thick fibres. An objective criterion for the threshold brightness value was found as that resulting into the maximum number of objects. Both methods were succesfully applied together with the following textural analysis.

  10. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  11. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization.

    Science.gov (United States)

    Zhou, Nan; Chen, Honggang; Xi, Junting; Yao, Denghui; Zhou, Zhi; Tian, Yun; Lu, Xiangyang

    2017-05-01

    Fresh and dehydrated banana peels were used as biomass feedstock to produce highly effective sorbent biochars through a facile one-step hydrothermal carbonization approach with 20%vol phosphoric acid as the reaction medium. The elemental ratio of oxygen content of the two as-prepared biochars were about 20%, and the FT-IR analysis confirmed the existence of abundant surface functional groups such as hydroxyl and carboxyl which greatly enhanced the adsorption performance. The sorbents showed excellent lead clarification capability of 359mg·g -1 and 193mg·g -1 for dehydrated and fresh banana peels based biochars, respectively. The change of the CO/OCO and the appearance of PbO/PbOC on the surface after adsorption confirmed that the ion exchange might be the dominant mechanism. The dehydration and pulverization pre-treatment and the addition of phosphoric acid can benefit the formation of those functional groups and hydrothermal carbonization can be a promising method to transfer biomass like fruit peels into biochars with excellent adsorption performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms

    Directory of Open Access Journals (Sweden)

    Carlos A. F. Marques

    2017-04-01

    Full Text Available In this work, fibre Bragg gratings (FBGs were inscribed in two different undoped poly- (methyl methacrylate (PMMA polymer optical fibres (POFs using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology.

  13. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    National Research Council Canada - National Science Library

    Gerdes, Gary L; Curtin, Deborah; Gutkowski, Christopher

    2008-01-01

    ..., both within and outside the Continental United States. The purpose of this study was to determine if the hydrothermal system could be made more energy efficient, thus making it suitable to deploy at Army contingency operations bases...

  14. [Advances in research on mechanisms of seed pre-treatments.

    Science.gov (United States)

    Liu, Xu; Liu, Juan; Liu, Qian; Gao, Ya Ni; Wang, Quan Zhen

    2016-11-18

    Seeds play a vital role in nature and agro-ecosystems. The success of seed germination and the establishment of a normal seedling determine the propagation and survival of a plant species, but seed vigor is often seriously damaged because of seed aging, dormancy and the deterioration of natural habitat. Thus, exploring methods for improving germination quality is of great significance to ecology and the economy. Based on the latest international reports, seed pre-treatments are the most practical and effective methods for improving plant performance, increasing yields and enhancing stress resistance. This review provided a summary of the current pre-sowing treatment technologies and the physiological and biochemical responses of plants to these methods by addressing gene expression, cytological effects, enzyme system activities, material and energy metabolism, antioxidation mechanisms and signal transduction pathways. We also interpreted the mechanisms of the seed pre-treatment methods from aspects of seed germination acceleration and stress resistance enhancement. The bottleneck in seed pre-treatments at the cytological and molecular levels and the problems involved in their application were also discussed. Thus far, most studies had largely focused on the partial reaction alterations of plant biochemistry and enzyme activities, and they had generally been characterized by a lack of systematic and holistic study for applications to crop production. Finally, we proposed an outlook for further study in an attempt to provide a prospective and scientific reference for plant germplasm conservation, high-efficiency organic agriculture development and ecological environment re-construction.

  15. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Descascamento de laranja 'Pêra' em função da duração do tratamento hidrotérmico Peeling of 'Pera' sweet orange related to the duration of the hydrothermal treatment

    Directory of Open Access Journals (Sweden)

    Ana Luiza Pinheiro

    2009-09-01

    were removed, manually. Fruits with no hydrothermal treatment were considerate as control. The fruits were stored at 5°C by six days. Hydrothermal treatment caused changes in respiratory activity just in first hours after processing. Internal fruit temperature after 30 minutes of treatment reached up to 35°C. There were no changes in the physicochemical and microbiologic characteristics of the fruits. The treatment did not change the flavor and improved the appearance. The treatment decreased in until 78% the peeling time of the treated fruits and it increased marketable fruits yield. In conclusion, the hydrothermal treatment from 10 to 30 minutes at 50°C can be used as peeling technique for 'Pera' sweet orange.

  17. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.

  18. Pre-eclampsia Diagnosis and Treatment Options: A Review of Published Economic Assessments.

    Science.gov (United States)

    Zakiyah, Neily; Postma, Maarten J; Baker, Philip N; van Asselt, Antoinette D I

    2015-10-01

    Pre-eclampsia is a pregnancy complication affecting both mother and fetus. Although there is no proven effective method to prevent pre-eclampsia, early identification of women at risk of pre-eclampsia could enhance appropriate application of antenatal care, management and treatment. Very little is known about the cost effectiveness of these and other tests for pre-eclampsia, mainly because there is no clear treatment path. The aim of this study was to provide a comprehensive overview of the existing evidence on the health economics of screening, diagnosis and treatment options in pre-eclampsia. We searched three electronic databases (PubMed, EMBASE and the Cochrane Library) for studies on screening, diagnosis, treatment or prevention of pre-eclampsia, published between 1994 and 2014. Only full papers written in English containing complete economic assessments in pre-eclampsia were included. From an initial total of 138 references, six papers fulfilled the inclusion criteria. Three studies were on the cost effectiveness of treatment of pre-eclampsia, two of which evaluated magnesium sulphate for prevention of seizures and the third evaluated the cost effectiveness of induction of labour versus expectant monitoring. The other three studies were aimed at screening and diagnosis, in combination with subsequent preventive measures. The two studies on magnesium sulphate were equivocal on the cost effectiveness in non-severe cases, and the other study suggested that induction of labour in term pre-eclampsia was more cost effective than expectant monitoring. The screening studies were quite diverse in their objectives as well as in their conclusions. One study concluded that screening is probably not worthwhile, while two other studies stated that in certain scenarios it may be cost effective to screen all pregnant women and prophylactically treat those who are found to be at high risk of developing pre-eclampsia. This study is the first to provide a comprehensive overview

  19. Performance of Pre-processing Schemes with Imperfect Channel State Information

    DEFF Research Database (Denmark)

    Christensen, Søren Skovgaard; Kyritsi, Persa; De Carvalho, Elisabeth

    2006-01-01

    Pre-processing techniques have several benefits when the CSI is perfect. In this work we investigate three linear pre-processing filters, assuming imperfect CSI caused by noise degradation and channel temporal variation. Results indicate, that the LMMSE filter achieves the lowest BER and the high......Pre-processing techniques have several benefits when the CSI is perfect. In this work we investigate three linear pre-processing filters, assuming imperfect CSI caused by noise degradation and channel temporal variation. Results indicate, that the LMMSE filter achieves the lowest BER...... and the highest SINR when the CSI is perfect, whereas the simple matched filter may be a good choice when the CSI is imperfect. Additionally the results give insight into the inherent trade-off between robustness against CSI imperfections and spatial focusing ability....

  20. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  1. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+,Er3+ nanoparticles

    International Nuclear Information System (INIS)

    Liang, Yanjie; Chui, Pengfei; Sun, Xiaoning; Zhao, Yan; Cheng, Fuming; Sun, Kangning

    2013-01-01

    Graphical abstract: YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The PL intensity of the sample increases with the increase of annealing temperature and excitation power. Under the excitation of a 980 nm diode laser, the samples show bright green luminescence. Highlights: ► YVO 4 :Yb 3+ ,Er 3+ nanoparticles were prepared by a hydrothermal approach. ► Bright green luminescence is observed under the excitation of a 980 nm laser diode. ► The PL intensity increases with the increase of annealing temperature. ► Energy transfer properties between Yb 3+ ion and Er 3+ ion were analyzed. -- Abstract: In this paper, YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The nanostructures, morphologies and upconversion luminescent properties of the as-prepared YVO 4 :Yb 3+ ,Er 3+ upconverting nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescent (PL) spectra. XRD results indicate that all the diffraction peaks of samples can be well indexed to the tetragonal phase of YVO 4 . TEM images demonstrate that the samples synthesized hydrothermally consist of granular-like nanoparticles ranging in size from about 30 to 50 nm. After being calcined at 500–800 °C for 2 h, the grain sizes of nanoparticles increase slightly. Additionally, the as-prepared nanoparticles show bright green luminescence corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions of Er 3+ ions under the excitation of a 980 nm diode laser, which might find potential applications in fields such as phosphor powders, infrared detection and display devices

  2. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-08

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading

  3. The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process

    International Nuclear Information System (INIS)

    Zhu Gangqiang; Hojamberdiev, Mirabbos; Liu Peng; Peng Jianhong; Zhou Jianping; Bian Xiaobin; Huang Xijin

    2011-01-01

    Highlights: ► Submicron- and micron-sized PbI 2 particles were hydrothermally synthesized. ► Structural transformation form belt-like to rod- and microtube-like was observed. ► Phase-pure PbI 2 particles could be hydrothermally obtained at pH 2 particles. ► The optical band gap energy of PbI 2 was slightly affected by morphology. - Abstract: Submicron- and micron-sized lead iodide (PbI 2 ) particles with well-controlled morphologies were successfully fabricated via a low-temperature hydrothermal process assisted by dodecyltrimethylammonium bromide (DTAB) as cationic surfactant. The as-synthesized powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy. The effects of synthesis parameters (temperature, time, pH, and surfactant amount) were systematically investigated. The obtained results showed that the submicron structure was belt-like at 100–120 °C, transformed to rod-like by increasing temperature to 140 °C and it became a microtube-like at 160–200 °C. By changing the pH of the synthesizing solution, it was found that a pure PbI 2 phase could be obtained below 7. With the addition of increasing amount of surfactant, microparticles were converted to microrods → submicron belts → microtubes. The time-dependent experimental results revealed that the dissolution–recrystallization and dissolution–recrystallization–self-oriented-attachment were considered to be the possible mechanisms for the formation of the belt- and tube-like PbI 2 submicron- and micron-sized particles, respectively. The optical properties of the PbI 2 particles synthesized at 100–200 °C for 8 h under hydrothermal conditions were also studied.

  4. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... and then dissolved using oxalic acid. This HT process yielded tungstite (WO3 center dot H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 degrees C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production...

  5. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  6. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    Science.gov (United States)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched

  7. Pre-treatment of biofuels for power production. Final report (1998). K. Joule 3 - OPTEB, Task: No. 19/20

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, P.A.; Sander, B.; Dam-Johansen, K.

    1999-10-01

    Co-firing of straw and coal on existing pulverised coal fired power plants may cause problems with deposition, corrosion, deactivation of SCR catalysts and impedes the utilisation of the fly ash, because of the high chlorine and potassium content of straw. Experiments with co-combustion of straw and coal on boilers plants have shown, that when maximal 20% of straw on a thermal basis is applied the most serious problems is the deactivation of high dust SCR catalysts and the deterioration of fly ash quality. The objective of this work was to evaluate a large-scale pre-treatment process for straw. The process applies pyrolysis at a moderate temperature, where the alkaline is retained in the char. The char is then washed and char and pyrolysis gasses can be co-fired with coal without causing serious problems. Fundamental laboratory studies as well as technical investigations were conducted to evaluate the pre-treatment concept. The laboratory studies were mainly done to improve the understanding of potassium and chlorine release during pyrolysis and the extraction of char with water. Some work were also done with respect to particle characterisation, straw pyrolysis kinetic and straw char combustion. The technical evaluation of a plant with 20 tons/hour capacity included investigations of possible reactor technologies, waste water handling, power efficiency and investment costs. Based on the laboratory experiments a pyrolysis temperature of 500 to 600 deg. C is recommended for the pre-treatment process. A high degree of pyrolysis is obtained without a significant release of potassium to the gas, but a release of 30 to 60% of the chlorine can not be avoided. Extraction of potassium from char with water is a two-step process, where the first step is a fast dissolution of potassium salts and the second step is a slow release of potassium from the interior of the char particle. A high potassium removal during char wash could not be obtained for all types of char within

  8. Protein Adsorption and Antibacterial Behavior for Hydroxyapatite Nanocrystals Prepared by Hydrothermal Method

    OpenAIRE

    笠原, 英充; 小形, 信男; 荻原, 隆

    2005-01-01

    Homogeneous hydroxyapatite nanocrystals which have aspect ratio with more than four were synthesized by hydrothermal method. X-ray fluorescence analysis revealed that the Ca/P ratio of hydroxyapatite nanocrystals was maintaining start composition. The protein adsorption properties and bacteria-resistant of hydroxyapatite nanocrystals were investigated. The protein adsorption properties of hydroxyapatite nanocrystals were improvement after the hydrothermal treatment. Bacteria-resistant behavio...

  9. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    Directory of Open Access Journals (Sweden)

    Junki Sato

    2014-09-01

    Full Text Available Hydrothermal synthesis of Fe3O4 (magnetite particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic acid, citric acid or pyridine resulted in the formation of polyhedral crystals, indicating the presence of not only {1 1 1}, {1 0 0} and {1 1 0} facets but also high-index facets including at least {3 1 1} and {3 3 1}. When citric acid was used as an additive, octahedral crystals with {1 1 1} facets also appeared, and their size decreased as the amount of citric acid was increased. Thus, control of Fe3O4 particle morphology was achieved by a simple hydrothermal treatment using additives.

  10. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dakai; Li Jing [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China); Ren Jie, E-mail: renjie6598@163.com [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China) and Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2011-04-15

    Research highlights: {yields} Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. {yields} Fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. {yields} The swelling of ramie fibers reduce the interfacial adhesive strength in critical area of PLLA matrix-ramie fabric interface. - Abstract: The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(L-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.

  11. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E.

    2014-04-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  12. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment.

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E

    2014-04-03

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  13. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  14. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  15. Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects

    Science.gov (United States)

    Vlaskin, M. S.; Chernova, N. I.; Kiseleva, S. V.; Popel', O. S.; Zhuk, A. Z.

    2017-09-01

    The article presents a review of the state of the art and lines of research on hydrothermal liquefaction (HTL) of microalgae (MA). The main advantages of this technology for production of biofuel are that it does not require predrying of the feedstock and ensures a relatively high product yield—the ratio of the end product weight to the feedstock weight—owing to the fact that all the microalgal components, viz., lipids, proteins, and carbohydrates, are converted into biofuel. MA hydrothermal liquefaction is considered to be a promising technology for conversion of biomass and is a subject of a series of research studies and, judging by the available publications, the scope of research in this field is expanding currently. However, many significant problems remain unsolved. In particular, an active searched is being conducted for suitable strains that will ensure not only a high lipid yield—necessary to convert microalgae into biodiesel—but also higher biomass productivity and a higher biofuel yield; the chemical reactions that occur during the hydrothermal treatment are being studied; and the effect of significant process variables, such as temperature, heating rate, holdup time at the maximum temperature, biomass concentration in the water suspension, biochemical and elemental compositions of the microalgae, use of catalysts, etc., on the liquefaction processes is being studied. One of the urgent tasks is also the reduction of the nitrogen content in the resulting biofuel. Studies aimed at the development of a continuous process and rational heat-processing plants for thermal microalgal conversion are being conducted to increase the energy efficiency of the HTL process, in particular, to provide the heat recovery and separation of the end product.

  16. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr2O3–ZrO2 nanomaterials for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahmoud, Hala R.

    2015-01-01

    Mesoporous 0.25Cr 2 O 3 –0.75ZrO 2 binary oxide catalysts (CZ-H) with high specific surface areas were successfully synthesized by hydrothermal treatment. The effect of synthesis conditions, such as hydrothermal temperature and time of CZ-H nanomaterials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopic (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and N 2 adsorption–desorption measurements (BET). The XRD analysis indicated the formation of amorphous materials of binary oxides. The results showed that hydrothermal temperature and time of CZ-H nanomaterials had great influence on the average particle diameter and surface area. Under the optimum synthesis conditions, the best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213), presented spherical structure with smallest average particle diameter found to be 1.5 nm and possessed highest surface area of 526.6 m 2 /g. Optical studies by UV–vis spectroscopy for the different CZ-H nanomaterials exhibit slightly blue shift from 3.20 to 3.33 eV due to quantum confined exciton absorption. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than conventional co-precipitation method. Compared to the other nanomaterials, the CZ-H213 catalyst appears to be the best candidate for further application in acid–base catalysis and reusability. - Graphical abstract: Display Omitted - Highlights: • Mesoporous 25%Cr 2 O 3 –75%ZrO 2 catalysts (CZ-H) were prepared by hydrothermal method. • The hydrothermal temperature and time modified the properties of CZ-H nanomaterials. • The best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213). • A CZ-H213 nanomaterial had the highest S BET and smallest average particle diameter. • A mesoporous CZ-H213 used as a reusable active catalyst in the ethanol conversion

  17. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  18. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  19. Predicting Treatment Response for Oppositional Defiant and Conduct Disorder Using Pre-treatment Adrenal and Gonadal Hormones.

    Science.gov (United States)

    Shenk, Chad E; Dorn, Lorah D; Kolko, David J; Susman, Elizabeth J; Noll, Jennie G; Bukstein, Oscar G

    2012-12-01

    Variations in adrenal and gonadal hormone profiles have been linked to increased rates of oppositional defiant disorder (ODD) and conduct disorder (CD). These relationships suggest that certain hormone profiles may be related to how well children respond to psychological treatments for ODD and CD. The current study assessed whether pre-treatment profiles of adrenal and gonadal hormones predicted response to psychological treatment of ODD and CD. One hundred five children, 6 - 11 years old, participating in a randomized, clinical trial provided samples for cortisol, testosterone, dehydroepiandrosterone, and androstenedione. Diagnostic interviews of ODD and CD were administered up to three years post-treatment to track treatment response. Group-based trajectory modeling identified two trajectories of treatment response: 1) a High-response trajectory where children demonstrated lower rates of an ODD or CD diagnosis throughout follow-up, and 2) a Low-response trajectory where children demonstrated higher rates of an ODD or CD diagnosis throughout follow-up. Hierarchical logistic regression predicting treatment response demonstrated that children with higher pre-treatment concentrations of testosterone were four times more likely to be in the Low-response trajectory. No other significant relationship existed between pre-treatment hormone profiles and treatment response. These results suggest that higher concentrations of testosterone are related to how well children diagnosed with ODD or CD respond to psychological treatment over the course of three years.

  20. Effect of Pre-treatment method on the Hydrolysis of Corn cob and Sawdust

    Directory of Open Access Journals (Sweden)

    Olawole Ogirima Olanipekun

    2016-12-01

    Full Text Available Efficient pre-treatment has been found to be crucial step before enzymatic hydrolysis of cellulose into fuels or chemicals. As a result various pretreatment methods have been developed to facilitate these bio-conversion processes, and this research focuses on the effect of two pretreatment methods such as liquid hot water and sulphuric acid pre-treatment to remove some of the components like lignin and hemicellulose which form structural barrier to enzymatic accessibility of cellulose in corn cobs and sawdust. The cellulosic materials were first dried in oven at 65 oC for 24 hours,  and using   solid to liquid ratio of 1:10, the two methods were carried out at resident times ranging from 10 - 40 minutes. The liquid hot water method involved heating the cellulosic materials in water at 120 oC and 1atmosphere in a pressure vessel, and for the second method, the dried cellulosic materials were refluxed in 5 % sulphuric acid at a temperature of 120 oC. Pretreated samples were filtered and liquid fractions were analyzed for the presence of reducing sugars, while solid residues were dried in the oven and weighed to measure the mass lost during pretreatment as a pointer to lignin breakdown. It was observed that the mass lost increased with time for both pretreatment methods, but the liquid hot water pretreatment gave higher lignin and hemicellulose removal when compared to the sulphuric acid pre-treatment. The pretreated materials were hydrolyzed with two combinations of commercial enzymes namely cellulase/ hemicellulase and cellulase/β glucosidase. The reducing sugar was measured using Dinitrosalycilic acid (DNSA method and the sugar yields from corn cobs were higher than that of sawdust when subjected to similar process conditions, and the enzyme combination of cellulase/glucosidase gave higher yields of reducing sugars.  A model equation which describes the hydrolysis process was developed from first principles and the experimental data

  1. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.

    1980-08-01

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  2. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    International Nuclear Information System (INIS)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-01-01

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process

  3. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Qi, Yingying [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  4. SU-E-T-148: Benchmarks and Pre-Treatment Reviews: A Study of Quality Assurance Effectiveness

    International Nuclear Information System (INIS)

    Lowenstein, J; Nguyen, H; Roll, J; Walsh, A; Tailor, A; Followill, D

    2015-01-01

    Purpose: To determine the impact benchmarks and pre-treatment reviews have on improving the quality of submitted clinical trial data. Methods: Benchmarks are used to evaluate a site’s ability to develop a treatment that meets a specific protocol’s treatment guidelines prior to placing their first patient on the protocol. A pre-treatment review is an actual patient placed on the protocol in which the dosimetry and contour volumes are evaluated to be per protocol guidelines prior to allowing the beginning of the treatment. A key component of these QA mechanisms is that sites are provided timely feedback to educate them on how to plan per the protocol and prevent protocol deviations on patients accrued to a protocol. For both benchmarks and pre-treatment reviews a dose volume analysis (DVA) was performed using MIM softwareTM. For pre-treatment reviews a volume contour evaluation was also performed. Results: IROC Houston performed a QA effectiveness analysis of a protocol which required both benchmarks and pre-treatment reviews. In 70 percent of the patient cases submitted, the benchmark played an effective role in assuring that the pre-treatment review of the cases met protocol requirements. The 35 percent of sites failing the benchmark subsequently modified there planning technique to pass the benchmark before being allowed to submit a patient for pre-treatment review. However, in 30 percent of the submitted cases the pre-treatment review failed where the majority (71 percent) failed the DVA. 20 percent of sites submitting patients failed to correct their dose volume discrepancies indicated by the benchmark case. Conclusion: Benchmark cases and pre-treatment reviews can be an effective QA tool to educate sites on protocol guidelines and to minimize deviations. Without the benchmark cases it is possible that 65 percent of the cases undergoing a pre-treatment review would have failed to meet the protocols requirements.Support: U24-CA-180803

  5. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process

    International Nuclear Information System (INIS)

    Zhou Zhuohua; Zhou, Ping-Le; Yang Shiping; Yu Xibin; Yang Liangzhun

    2007-01-01

    The morphology and size of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 (denoted HAP) can be controlled under hydrothermal treatment assisted with different dendrimers, such as carboxylic terminated poly(amidoamine) (PAMAM) and polyhydroxy terminated PAMAM. The structure and morphology were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). IR spectra were also used to investigate the complexation of Ca 2+ with PAMAM. The results revealed that the inner cores of the PAMAM dendrimers are hydrophilic and potentially open to calcium ions, since interior nitrogen moieties serve as complexation sites, especially in case of the polyhydroxy terminated PAMAM. And the reasonable mechanism of crystallization was proposed that it can be attributed to the localization of nucleation site: external or interior PAMAM. Additionally, the PAMAM dendrimer with carboxylic and polyhydroxy groups has an effective influence on the size and shape of hydroxyapatite (HAP) nanostructures. Different crystal morphology was accomplished by adsorption of different dendrimers onto specific faces of growing crystals, altering the relative growth rates of the different crystallographic faces and leading to different crystal habits

  6. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  7. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  8. Muscle individual phospholipid classes throughout the processing of dry-cured ham: influence of pre-cure freezing.

    Science.gov (United States)

    Pérez-Palacios, Trinidad; Ruiz, Jorge; Dewettinck, Koen; Le, Thien Trung; Antequera, Teresa

    2010-03-01

    This paper aims to study the profile of phospholipid (PL) classes of Iberian ham throughout its processing and the changes it underwent due to the influence of the pre-cure freezing treatment. The general profile of each PL class did not vary during the ripening stage. Phosphatidylcholine (PC) showed the highest proportion, followed by phosphatidyletanolamine (PE) and phosphatidylserine (PS) and phosphatidylinositol (PI) being the minor PL. The four PL classes were highly hydrolysed during the salting stage and their degradation continued during the rest of the processing. Pre-cure freezing of Iberian ham influenced the levels of the four PL classes at the initial stage, all of them being higher in refrigerated (R) than in pre-cure frozen (F) hams. Moreover, the pattern of hydrolysis was not the same in these two groups. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  10. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    International Nuclear Information System (INIS)

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-01-01

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm −2 , 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment

  11. Examination of Speed Contribution of Parallelization for Several Fingerprint Pre-Processing Algorithms

    Directory of Open Access Journals (Sweden)

    GORGUNOGLU, S.

    2014-05-01

    Full Text Available In analysis of minutiae based fingerprint systems, fingerprints needs to be pre-processed. The pre-processing is carried out to enhance the quality of the fingerprint and to obtain more accurate minutiae points. Reducing the pre-processing time is important for identification and verification in real time systems and especially for databases holding large fingerprints information. Parallel processing and parallel CPU computing can be considered as distribution of processes over multi core processor. This is done by using parallel programming techniques. Reducing the execution time is the main objective in parallel processing. In this study, pre-processing of minutiae based fingerprint system is implemented by parallel processing on multi core computers using OpenMP and on graphics processor using CUDA to improve execution time. The execution times and speedup ratios are compared with the one that of single core processor. The results show that by using parallel processing, execution time is substantially improved. The improvement ratios obtained for different pre-processing algorithms allowed us to make suggestions on the more suitable approaches for parallelization.

  12. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Science.gov (United States)

    2010-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Pre-filtration treatment toolbox...

  13. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  14. Treatment Foster Care Pre-Service Trainings: Changes in Parenting Attitudes and Fostering Readiness

    Science.gov (United States)

    Strickler, Amy; Trunzo, Annette C.; Kaelin, Michael S.

    2018-01-01

    Background: Pre-service training of treatment parents is a requirement for all foster care models to ensure safety and well-being of children in care. Researchers theorize treatment parents benefit more from enhanced pre-service trainings; however, no rigorous studies exist indicating the effectiveness of these trainings for treatment parents.…

  15. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste.

    Science.gov (United States)

    Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K

    2017-11-01

    This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Hydrothermal systems on Mars: an assessment of present evidence

    Science.gov (United States)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  17. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough

    Science.gov (United States)

    Zhang, Xia; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Cai, Zongwei

    2018-04-01

    The study of hydrothermal deposits in the Okinawa Trough can help us to uncover the hydrothermal mineralization characteristics in the back-arc basin during the early expanding stage. Mineralogy and geological significance of hydrothermal deposits from both the middle and southern trough are studied in this paper. First of all, using optical microscope to confirm the mineral compositions, characteristics of crystal shape, paragenetic relationship and minerals crystallization order. Then the minerals chemical composition were analyzed in virtue of electron microprobe. On these basis, the paragenetic sequence and the mineralization characteristics of the hydrothermal deposits were discussed. The results show that the hydrothermal deposit from the mid-Okinawa Trough belongs to Zn-Cu-rich type, consisting dominantly of sulfide minerals such as sphalerite, chalcopyrite, pyrite, etc. The minerals crystallization order is first generation pyrite(PyI)-sphalerite-chalcopyrite-galena-second generation pyrite(PyII)-amorphous silica. While the deposit from the southern Okinawa Trough is Ba-Zn-Pb-rich type mainly composing of barite, sphalerite, galena, etc. The minerals crystallization order is barite-pyrite-sphalerite-tetrahedrite-galena-chalcopyrite-amorphous silica. Hydrothermal fluid temperature in the mid-Okinawa Trough undergoes a process from high to low, which is high up to 350 °C in the early stage, but decreasing gradually with the evolution of hydrothermal fluid. On the contrary, the hydrothermal activity in the southern Okinawa Trough is low temperature dominated, but the mineralization environment is unstable and the fluid temperature changes drastically during the period of hydrothermal activity.

  18. Selected chemical composition changes in microwave-convective dried parsley leaves affected by ultrasound and steaming pre-treatments - An optimization approach.

    Science.gov (United States)

    Dadan, Magdalena; Rybak, Katarzyna; Wiktor, Artur; Nowacka, Malgorzata; Zubernik, Joanna; Witrowa-Rajchert, Dorota

    2018-01-15

    Parsley leaves contain a high amount of bioactive components (especially lutein), therefore it is crucial to select the most appropriate pre-treatment and drying conditions, in order to obtain high quality of dried leaves, which was the aim of this study. The optimization was done using response surface methodology (RSM) for the following factors: microwave power (100, 200, 300W), air temperature (20, 30, 40°C) and pre-treatment variant (ultrasound, steaming and dipping as a control). Total phenolic content (TPC), antioxidant activity, chlorophyll and lutein contents (using UPLC-PDA) were determined in dried leaves. The analysed responses were dependent on the applied drying parameters and the pre-treatment type. The possibility of ultrasound and steam treatment application was proven and the optimal processing conditions were selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  20. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  2. Characterization of Donut-Like SrMoO4 Produced by Microwave-Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Surangkana Wannapop

    2013-01-01

    Full Text Available SrMoO4 hierarchical nanostructures were successfully produced by a one step of 270 W microwave-hydrothermal process of one of the solutions containing three strontium salts [Sr(NO32, Sr(CH3CO22, and SrCl2·6H2O] and (NH46Mo7O24·4H2O for different lengths of time. The as-produced products were characterized by X-ray diffraction, electron microscopy, and spectroscopy. In this research, they were primitive tetragonal structured donut-like SrMoO4, with the main 881 cm−1  ν1(Ag symmetric stretching vibration mode of [MoO4]2− units and 3.92 eV energy gap.

  3. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  4. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    Science.gov (United States)

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  5. An unit commitment model for hydrothermal systems; Um modelo de unit commitment para sistemas hidrotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Thiago de Paula; Luciano, Edson Jose Rezende; Nepomuceno, Leonardo [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: ra611191@feb.unesp.br, edson.joserl@uol.com.br, leo@feb.unesp.br

    2009-07-01

    A model of Unit Commitment to hydrothermal systems that includes the costs of start/stop of generators is proposed. These costs has been neglected in a good part of the programming models for operation of hydrothermal systems (pre-dispatch). The impact of the representation of costs in total production costs is evaluated. The proposed model is solved by a hybrid methodology, which involves the use of genetic algorithms (to solve the entire part of the problem) and sequential quadratic programming methods. This methodology is applied to the solution of an IEEE test system. The results emphasize the importance of representation of the start/stop in the generation schedule.

  6. Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.

    Science.gov (United States)

    Gao, Xuehua; Li, Qisheng; Qiu, Jun

    2018-04-01

    Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  8. The economic pre-treatment of coal mine drainage water with caustic and ozone.

    Science.gov (United States)

    Boyden, B H; Nador, L; Addleman, S; Jeston, L

    2017-09-01

    Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.

  9. Influence of pre-cure freezing of Iberian ham on proteolytic changes throughout the ripening process.

    Science.gov (United States)

    Pérez-Palacios, Trinidad; Ruiz, Jorge; Barat, Jose Manuel; Aristoy, María Concepción; Antequera, Teresa

    2010-05-01

    This work aimed to investigate the effect of pre-cure freezing Iberian hams on proteolysis phenomena throughout the ripening process. Non-protein nitrogen (NPN), peptide nitrogen (PN) and amino acid nitrogen (AN) as well as amino acid and dipeptide evolution followed the same trend in both refrigerated (R) and pre-cure frozen (F) Iberian hams during processing. At the different stages of ripening, there were no differences in the content of NPN and AN while F dry-cured hams had higher levels of PN than R hams at the final step. This seemed to be more related to the salt content (lower in F than in R hams) than to the pre-cure freezing treatment. Most amino acids and dipeptides detected showed higher concentrations in F than in R Iberian hams at the green stage, being rather similar at the intermediate phases. At the final stage, the effects of pre-cure freezing of Iberian hams were not well defined, higher levels of some amino acids and dipeptides were found in R than in F Iberian hams whereas other amino acids were lower in R than in F hams. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Pre-Service Teachers' Perceptions with Regard to Teaching-Learning Processes

    Science.gov (United States)

    Özdas, Faysal

    2018-01-01

    Teaching-learning process has a great important medium where pre-service teachers develop experiences and competences. Pre-service teachers are introduced to this process in a professional sense through the school experience course in teacher training. In this process, it is crucial to identify the encountered difficulties and matters. For this…

  11. FMECA about pre-treatment system for purge gas of test blanket module in ITER

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    The pre-treatment system for purge gas of TBM will be installed in Port Cell for installing TBM in ITER, the function of which includes filtering purge gas, removing HTO, cooling, and adjusting flow rate, etc. The purge gas treated will be conveyed into TES (Tritium Extraction System). The technological process and system components in pre-treatment system were introduced. Tritium releasing risk was regarded as failure criterion; failure mode, effects and criticality analysis (FMECA) were carried out and several weaknesses or failure mode in the system were found. Besides, risk priority number (RPN) and failure mode criticality were calculated. Finally, some design improvement measures and usage compensation measures were given. At last, four important potential failure modes were found out. The analysis will provide the design basis for reducing risk of excessive tritium releasing, which is also a useful assist for safety analysis about other tritium system. (authors)

  12. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach

    International Nuclear Information System (INIS)

    Rincon, B.; Gonzalez de Canales, M.; Martin, A.; Borja, R.

    2016-01-01

    The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) and 7660 kJ·kg TS−1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded−1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR. [es

  13. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    Science.gov (United States)

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  14. American Elementary Education Pre-Service Teachers' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-01-01

    This study examined elementary education pre-service teachers' attitudes towards biotechnology processes. A sample comprised 88 elementary education pre-service teachers at a mid-sized university in the Midwest of the USA. Sixty and 28 of these pre-service teachers were enrolled in Introductory Science Methods course and Advance Science Methods…

  15. Hydrothermal pretreatments of macroalgal biomass for biorefineries

    DEFF Research Database (Denmark)

    Ruiz, Héctor A.; Rodríguez-Jasso, Rosa M.; Aguedo, Mario

    2015-01-01

    in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore...

  16. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Bonamartini Corradi, A.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.

    2006-01-01

    Nanocrystalline ceria powders (CeO 2 ) have been prepared by adding NaOH to a cerium ammonium nitrate aqueous solution under microwave-hydrothermal conditions. In particular the effect of the synthesis conditions (time, pressure and concentration of both the precursor and the precipitant agent solutions) on the physical properties of the crystals have been evaluated. Microwave-hydrothermal treatment of 5 min at 13.4 atm allows to obtain almost crystallized powders (amorphous phase 4%) as underlined by Rietveld-reference intensity ratio (RIR) results

  17. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    Science.gov (United States)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  18. Investigating Crustal Scale Fault Systems Controlling Volcanic and Hydrothermal Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey

    Science.gov (United States)

    Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.

    2017-12-01

    At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.

  19. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  20. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  1. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  2. Polymer-Assisted Hydrothermal Synthesis of Hierarchically Arranged Hydroxyapatite Nanoceramic

    Directory of Open Access Journals (Sweden)

    A. Joseph Nathanael

    2013-01-01

    Full Text Available Flower-like hydroxyapatite (HA nanostructures were synthesized by a polymer-assisted hydrothermal method. The thickness of the petals/plates decreased from 200 nm to 40 nm as the polymer concentration increased. The thickness also decreased as the hydrothermal treatment time increased from 6 to 12 hr. The HRTEM and SAED patterns suggest that the floral-like HA nanostructures are single crystalline in nature. Structural analysis based on XRD and Raman experiments implied that the produced nanostructure is a pure form of HA without any other impurities. The possible formation mechanism was discussed for the formation of flower-like HA nanostructures during polymer-assisted hydrothermal synthesis. Finally, in vitro cellular analysis revealed that the hierarchically arranged HA nanoceramic had improved cell viability relative to other structures. The cells were actively proliferated over these nanostructures due to lower cytotoxicity. Overall, the size and the crystallinity of the nanostructures played a role in improving the cell proliferation.

  3. Preliminary conceptual design for the destruction of organic/ferrocyanide constituents in the Hanford tank waste with low-temperature hydrothermal processing

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Jones, E.O.; Orth, R.J.; Cox, J.L.; Elmore, M.E.; Neuenschwander, G.G.; Hart, T.R.; Meng, C.D.

    1993-05-01

    Hydrothermal processing (HTP) is a thermal-chemical processing method that can be employed to destroy organic and ferrocyanide constituents in Hanford tank waste by using the abundant existing oxidants in the tank waste such as nitrite and nitrate. Use-temperature HTP effectively destroys organics at temperatures from 250 degree C to 400 degree C to eliminate safety hazards and improve further processing. This proposal describes a conceptual design of a low-temperature HTP system (including a preliminary flow diagram and plot plan, equipment descriptions and sizes, utility requirements, and costs); the experimental work supporting this effort at Pacific Northwest Laboratory (PNL); the reaction chemistry and kinetics; the technical maturity of the process; and a preliminary assessment of maintenance, operation, and safety of a system. Nitrate destruction using organic reductants is also described. The low-temperature hydrothermal program at PNL was initiated in January 1993. It is part of an overall program to develop organic destruction technologies, which was originally funded by Hanford's Tank Waste Remediation System program and then was transferred to the Initial Pretreatment (IPM) project. As described in the document, low-temperature HTP (1) meets or exceeds system requirements in organic, ferrocyanide, and nitrate destruction, and processing rate; (2) is technically mature with little additional technology development required; (3) is a simple process with good operational reliability; (4) is flexible and can be easily integrated in the system; (5) has reasonable costs and utility requirements; and (6) is safe and environmentally-benign

  4. Pre-authorization processes have no effect on patients undergoing knee MRI in a pediatric setting when evaluated by specialists

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Drew; Kan, J.H.; Bisset, George S. [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); May, Megan [Texas Children' s Hospital, Department of Sports Medicine, Houston, TX (United States)

    2017-02-15

    Pre-authorization processes are often used by medical insurance companies to reduce costs by managing the utilization of advanced diagnostic imaging, and their impact on patient care is unclear. The purpose of our study is to determine if a pre-authorization process increases the rate of surgically significant abnormal knee MRI and surgical referrals compared with patients referred from pediatric orthopedic specialists who do not undergo a pre-authorization process. A retrospective study was performed; 124 patients were identified who were referred for knee MRI by a pediatric orthopedist. The study population included patients who underwent an insurance pre-authorization process and the control group consisted of those who did not. The results of the MRI and whether they were deemed surgically significant, in addition to surgical referral, were recorded and compared. The study and control groups showed no statistically significant difference in outcome with regard to surgically significant findings on MRI (p = 0.92) or whether the patient required surgery (p = 0.6). In this population, there is no difference in the likelihood of an abnormal knee MRI demonstrating surgically significant findings or referral to surgery in patients who did and those who did not undergo an insurance pre-authorization process when patients are referred from a pediatric orthopedic specialist. The insurance pre-authorization process does not appear to have an impact on patient diagnosis and treatment and may unnecessarily add bureaucracy and costs. (orig.)

  5. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  6. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  7. Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence

    International Nuclear Information System (INIS)

    Levy, S.S.

    1992-01-01

    This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago

  8. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  9. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  10. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  11. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  12. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    Science.gov (United States)

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  13. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    Science.gov (United States)

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparative performance evaluation of transform coding in image pre-processing

    Science.gov (United States)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  15. Methods and apparatus for catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  16. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  17. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  18. Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant.

    Science.gov (United States)

    Oleszkiewicz, J A; Kalinowska, E; Dold, P; Barnard, J L; Bieniowski, M; Ferenc, Z; Jones, R; Rypina, A; Sudol, J

    2004-12-01

    The proposed transfer of wastewater from the western part of Warsaw, across the Wisla (Vistula) River for joint treatment at the existing eastern side "Czajka" wastewater treatment plant (WWTP) will result in combined winter flows of approx. 580,000 m3 d(-1). One-year of pilot-scale studies defined the COD characteristics and kinetics of nitrogen removal and VFA production from primary sludge. BioWin simulation was used to size and price the optional processes and pointed to the Westbank process as the most cost-effective. The process consists of a sequence of a RAS pre-denitrification zone followed by an anaerobic, anoxic and aerobic zone. Some 100-150 t d(-1) of 10% methanol would be needed to remove 2-4 mg l(-1) of NO3-N above the recommended effluent level TN = 10 mg l(-1). Applying the principle of annual average 80% TN removal, and allowing for use of daily composite samples (rather than grab) could annually save the municipality over 1.5 million Euro on external carbon source.

  19. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  20. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.

    Science.gov (United States)

    Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank

    2014-08-21

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  1. Pre-treatment social anxiety severity moderates the impact of mindfulness-based stress reduction and aerobic exercise.

    Science.gov (United States)

    Jazaieri, Hooria; Lee, Ihno A; Goldin, Philippe R; Gross, James J

    2016-06-01

    We examined whether social anxiety severity at pre-treatment would moderate the impact of mindfulness-based stress reduction (MBSR) or aerobic exercise (AE) for generalized social anxiety disorder. MBSR and AE produced equivalent reductions in weekly social anxiety symptoms. Improvements were moderated by pre-treatment social anxiety severity. Mindfulness-based stress reduction (MBSR) and aerobic exercise (AE) are effective in reducing symptoms of social anxiety. Pre-treatment social anxiety severity can be used to inform treatment recommendations. Both MBSR and AE produced equivalent reductions in weekly levels of social anxiety symptoms. MBSR appears to be most effective for patients with lower pre-treatment social anxiety symptom severity. AE appears to be most effective for patients with higher pre-treatment social anxiety symptom severity. © 2015 The British Psychological Society.

  2. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pilot scale digestion of source-sorted household waste as a tool for evaluation of different pre-sorting and pre-treatment strategies

    DEFF Research Database (Denmark)

    Svärd, Å; Gruvberger, C.; Aspegren, H.

    2002-01-01

    Pilot scale digestion of the organic fraction of source-sorted household waste from Sweden and Denmark was performed during one year. The study includes 17 waste types with differences in originating municipality, housing type, kitchen wrapping, sack type, pre-treatment method and season. The pilot...... scale digestion has been carried out in systems with a 35-litres digester connected to a 77-litres gas tank. Four rounds of digestion were performed including start-up periods, full operation periods for evaluation and post-digestion periods without feeding. Different pre-sorting and pre-treatment...

  4. The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Thornber, Stephanie M.; Heath, Paul G. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Da Costa, Gabriel P. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Chemical Engineering & Petroleum Engineering, Universidade Federal Fluminense, Rua Passo da Patria 156, CEP 24210-240, Niteroi, RJ (Brazil); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2017-03-15

    Glass-ceramics with high glass fractions (70 wt%) were fabricated in stainless steel canisters by hot isostatic pressing (HIP), at laboratory scale. High (600 °C) and low (300 °C) temperature pre-treatments were investigated to reduce the canister evacuation time and to understand the effect on the phase assemblage and microstructure of the hot isostatically pressed product. Characterisation of the HIPed materials was performed using scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) and powder X-ray diffraction (XRD). This analysis showed the microstructure and phase assemblage was independent of the variation in pre-treatment parameters. It was demonstrated that a high temperature pre-treatment of batch reagents, prior to the HIP cycle, is beneficial when using oxide precursors, in order to remove volatiles and achieve high quality dense materials. Sample throughput can be increased significantly by utilising a high temperature ex-situ calcination prior to the HIP cycle. Investigation of glass-ceramic wasteform processing utilising a glass frit precursor, produced a phase assemblage and microstructure comparable to that obtained using oxide precursors. The use of a glass frit precursor should allow optimised throughput of waste packages in a production facility, avoiding the need for a calcination pre-treatment required to remove volatiles from oxide precursors. - Highlights: • Optimisation of pre-treatment parameters for HIP glass-ceramics was investigated. • Entrained porosity was minimised by ex-situ bake-out of oxide precursors at 600 °C. • Phase assemblage and microstructure proved independent of bake-out parameters. • Use of glass-frit precursor further improved process s throughput and simplification.

  5. The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing

    International Nuclear Information System (INIS)

    Thornber, Stephanie M.; Heath, Paul G.; Da Costa, Gabriel P.; Stennett, Martin C.; Hyatt, Neil C.

    2017-01-01

    Glass-ceramics with high glass fractions (70 wt%) were fabricated in stainless steel canisters by hot isostatic pressing (HIP), at laboratory scale. High (600 °C) and low (300 °C) temperature pre-treatments were investigated to reduce the canister evacuation time and to understand the effect on the phase assemblage and microstructure of the hot isostatically pressed product. Characterisation of the HIPed materials was performed using scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) and powder X-ray diffraction (XRD). This analysis showed the microstructure and phase assemblage was independent of the variation in pre-treatment parameters. It was demonstrated that a high temperature pre-treatment of batch reagents, prior to the HIP cycle, is beneficial when using oxide precursors, in order to remove volatiles and achieve high quality dense materials. Sample throughput can be increased significantly by utilising a high temperature ex-situ calcination prior to the HIP cycle. Investigation of glass-ceramic wasteform processing utilising a glass frit precursor, produced a phase assemblage and microstructure comparable to that obtained using oxide precursors. The use of a glass frit precursor should allow optimised throughput of waste packages in a production facility, avoiding the need for a calcination pre-treatment required to remove volatiles from oxide precursors. - Highlights: • Optimisation of pre-treatment parameters for HIP glass-ceramics was investigated. • Entrained porosity was minimised by ex-situ bake-out of oxide precursors at 600 °C. • Phase assemblage and microstructure proved independent of bake-out parameters. • Use of glass-frit precursor further improved process s throughput and simplification.

  6. Using Pre-TMIn Treatment to Improve the Optical Properties of Green Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2014-01-01

    Full Text Available We investigated the effects of pre-TMIn treatment on the optical properties of green light emitting diodes (LEDs. Although pre-TMIn treatment did not affect the epitaxial structure of quantum wells, it significantly improved the quality of the surface morphology relative to that of the untreated sample. Indium cluster can be seen by high-resolution transmission electron microscopy (HR-TEM, which is the explanation for the red-shift of photoluminescence (PL. Time-resolved photoluminescence measurements indicated that the sample prepared with pre-TMIn treatment had a shorter radiative decay time. As a result, the light output power of the treated green LED was higher than that of the conventional untreated one. Thus, pre-TMIn treatment appears to be a simple and efficient means of improving the performance of green LEDs.

  7. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  8. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  9. Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants.

    Science.gov (United States)

    Brinkkemper, O; Braadbaart, F; van Os, B; van Hoesel, A; van Brussel, A A N; Fernandes, R

    2018-02-15

    Isotopic analysis of archaeological charred plant remains offers useful archaeological information. However, adequate sample pre-treatment protocols may be necessary to provide a contamination-free isotopic signal while limiting sample loss and achieving a high throughput. Under these constraints, research was undertaken to compare the performance of different pre-treatment protocols. Charred archaeological plant material was selected for isotopic analysis (δ 13 C and δ 15 N values) by isotope ratio mass spectrometry from a variety of plant species, time periods and soil conditions. Preservation conditions and the effectiveness of cleaning protocols were assessed through Fourier transform infrared spectroscopy and X-ray fluorescence (XRF) spectrometry. An acid-base-acid protocol, successfully employed in radiocarbon dating, was used to define a contamination-free isotopic reference. Acid-base-acid isotopic measurements were compared with those obtained from untreated material and an acid-only protocol. The isotopic signals of untreated material and the acid-only protocol typically did not differ more than 1‰ from those of the acid-base-acid reference. There were no significant isotopic offsets between acid-base-acid and acid-only or untreated samples. Sample losses in the acid-base-acid protocol were on average 50 ± 17% (maximum = 98.4%). Elemental XRF measurements showed promising results in the detection of more contaminated samples albeit with a high rate of false positives. For the large range of preservation conditions described in the study, untreated charred plant samples, water cleaned of sediments, provide reliable stable isotope ratios of carbon and nitrogen. The use of pre-treatments may be necessary under different preservation conditions or more conservative measurement uncertainties should be reported. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  11. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  12. Pre-germination treatments on palm tree seeds

    Directory of Open Access Journals (Sweden)

    Maitê dos Santos Ribeiro

    2015-12-01

    Full Text Available Palm tree seeds present slow and uneven germination. Therefore, the objective of this research was to evaluate the efficiency of pre-germination treatments in promoting germination and early seedling growth of palm tree (Euterpe edulis Martius. Treatments were: control, immersion in GA3 solution, exposure to ethylene, water immersion, H2SO4 immersion, mechanical scarification, stratification for 30 days at 10 °C, and scarification followed by stratification. Soaking seeds in gibberellic acid (GA3; 2000 µL L-1 for 24 h or their exposure to ethylene (1000 µL L-1 for 24 h are effective for promoting emergence, which started 30 days after seed treatment, and for early seedling growth of palm tree.

  13. [Pre- and post-surgical orthodontic treatment for skeletal open bite].

    Science.gov (United States)

    Zhou, Y; Hu, W; Sun, Y

    2001-05-01

    To Study the principles and rules of pre- and post-surgical orthodontic treatment for skeletal open bite patients. Thirty-two surgically treated open bite cases were analyzed, of which 9 were males, and 23 were females, aged from 16 to 38. Open bite was from 1 to 8.5 mm, average was 4 mm. 31 patients were Class III malocclusion, while 1 patient was Class II malocclusion. 1. Totally 21 patients were treated with orthodontics before and after orthognathic surgery, while 8 patients had pre-surgical orthodontics only, and other 3 had post-surgical orthodontics only. The duration for pre-surgical orthodontics was from 4 to 33 months, average was 12 months. The duration for post-surgical orthodontics was from 3 to 17 months, average was 8.5 months. 2. Presurgical orthodontic treatment included: Alignment of arches, decompensation of incisors, avoiding extrusion of incisors, and slight expansion of arches for coordination of arches. 3. Post-surgical orthodontic treatment included: Closure of residual spaces in the arches, realignment of arches, vertical elastics and Class II or III intermaxillary elastics. Skeletal open bites require combined orthodontic-orthognathic surgery for optimal and esthetical pleasing results.

  14. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  15. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  16. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  17. Optimisation of dilute acid pre-treatment of artisan rice hulls for ethanol production

    International Nuclear Information System (INIS)

    Lopez, Yoney; Martin, Carlos; Gullon, Beatriz; Parajo, Juan Carlos

    2011-01-01

    Rice hulls are potential low-cost feedstocks for fuel ethanol production in many countries. In this work, the dilute-acid pre-treatment of artisan rice hulls was investigated using a central composite rotatable experimental design. The experimental variables were temperature (140-210 C), biomass load (5-20%) and sulphuric acid concentration (0.5-1.5 g per 100 g of reaction mixture). A total of 16 experimental runs, including a 23-plan, two replicates at the central point and six star points, were carried out. Low temperatures were found to be favourable for the hydrolysis of xylan and of the easily hydrolyzable glucan fraction. High glucose formation (up to 15.3 g/100 g), attributable to starch hydrolysis, was detected in the hydrolysates obtained under the least severe pre-treatment conditions. Using the experimental results, several models for predicting the effect of the operational conditions on the yield of pretreated solids, xylan and glucan conversion upon pre-treatment, and on enzymatic convertibility of cellulose were developed. Optimum results were predicted for the conversion of easily-hydrolyzable glucan in the material pretreated at 140.7 C, and for the enzymatic saccharification of cellulose in the material pretreated at 169 C. These results suggested the use of two-step acid hydrolysis as future pre-treatment strategy for artisan rice hulls. Key words: Dilute acid hydrolysis, enzymatic hydrolysis, pre-treatment, rice hulls. (author)

  18. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  19. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  20. Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

    International Nuclear Information System (INIS)

    Robinson, J.M.; Foy, B.R.; Dell'Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J.; Breshears, D.; Brewer, R.; Eaton, H.; McFarland, R.; McInroy, R.; Reynolds, T.; Sedillo, M.; Wilmanns, E.; Buelow, S.J.

    1993-01-01

    This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 degree K to 873 degree K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 degree K to 798 degree K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 degree K to 1963 mg/kg at 30.3 MPa and 723 degree K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723 degree K and 798 degree K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 degree K

  1. Pre-processing for Triangulation of Probabilistic Networks

    NARCIS (Netherlands)

    Bodlaender, H.L.; Koster, A.M.C.A.; Eijkhof, F. van den; Gaag, L.C. van der

    2001-01-01

    The currently most efficient algorithm for inference with a probabilistic network builds upon a triangulation of a networks graph. In this paper, we show that pre-processing can help in finding good triangulations for probabilistic networks, that is, triangulations with a minimal maximum

  2. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    Science.gov (United States)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  4. Development of Improved Process with Treatment of Cellulase for Isolation of Ampelopsin from Dried Fruits of Ampelopsis grossedentata

    Directory of Open Access Journals (Sweden)

    Wa Gao

    2016-02-01

    Full Text Available The commercial method for isolation of ampelopsin, one of the most common flavonoids isolated from the plant species Ampelopsis grossedentata, is a simple hydrothermal extraction at high temperature. To develop an improved process to isolate ampelopsin, the effects of treatment of cellulase on hydrolysis of the dried fruit of A. grossedentata were investigated. The treatment of cellulase was found to decrease the temperature and time for hydrolysis of the dried fruit of A. grossedentata. The conditions of the filter press and continuous flow centrifuge for removal of insoluble materials from the hydrolysate of the dried fruit of A. grossedentata were optimized. The recovery yield of ampelopsin from the dried fruits of A. grossedentata was 39.4%, as determined by HPLC chromatographic analysis. A safe and economical process at low temperature with treatment of cellulase for the isolation of ampelopsin was developed in this study.

  5. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.

    Science.gov (United States)

    Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S

    2009-12-01

    A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).

  6. Rapid hydrothermal route to synthesize cubic-phase gadolinium ...

    Indian Academy of Sciences (India)

    Administrator

    The elongated nanoscale systems, as produced via a hydrothermal process .... by adding several drops of 5 M NaOH solution under vigorous ... at an accelerating voltage of 200 kV. ..... remarkable distribution of nanoscale rods, with aspect ...

  7. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  8. Evaluation of focused ultrasound algorithms: Issues for reducing pre-focal heating and treatment time.

    Science.gov (United States)

    Yiannakou, Marinos; Trimikliniotis, Michael; Yiallouras, Christos; Damianou, Christakis

    2016-02-01

    Due to the heating in the pre-focal field the delay between successive movements in high intensity focused ultrasound (HIFU) are sometimes as long as 60s, resulting to treatment time in the order of 2-3h. Because there is generally a requirement to reduce treatment time, we were motivated to explore alternative transducer motion algorithms in order to reduce pre-focal heating and treatment time. A 1 MHz single element transducer with 4 cm diameter and 10 cm focal length was used. A simulation model was developed that estimates the temperature, thermal dose and lesion development in the pre-focal field. The simulated temperature history that was combined with the motion algorithms produced thermal maps in the pre-focal region. Polyacrylimde gel phantom was used to evaluate the induced pre-focal heating for each motion algorithm used, and also was used to assess the accuracy of the simulation model. Three out of the six algorithms having successive steps close to each other, exhibited severe heating in the pre-focal field. Minimal heating was produced with the algorithms having successive steps apart from each other (square, square spiral and random). The last three algorithms were improved further (with small cost in time), thus eliminating completely the pre-focal heating and reducing substantially the treatment time as compared to traditional algorithms. Out of the six algorithms, 3 were successful in eliminating the pre-focal heating completely. Because these 3 algorithms required no delay between successive movements (except in the last part of the motion), the treatment time was reduced by 93%. Therefore, it will be possible in the future, to achieve treatment time of focused ultrasound therapies shorter than 30 min. The rate of ablated volume achieved with one of the proposed algorithms was 71 cm(3)/h. The intention of this pilot study was to demonstrate that the navigation algorithms play the most important role in reducing pre-focal heating. By evaluating in

  9. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    Science.gov (United States)

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  10. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  11. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  12. Treatment Integrity in a Home-Based Pre-Reading Intervention Programme

    Science.gov (United States)

    van Otterloo, Sandra G.; van der Leij, Aryan; Veldkamp, Esther

    2006-01-01

    Treatment integrity is an underexposed issue in the phonological awareness intervention research. The current study assessed the integrity of treatment of the families (N = 32) participating in the experimental condition of a home-based pre-reading intervention study. The participating kindergartners were all genetically at risk for developing…

  13. Learners’ processes during pre-task planning and Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Maria da Gloria Tavares

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p79 The present study is part of a larger scale research (Guará-Tavares, 2011, 2013 that investigates the relationship among working memory capacity, pre-task planning, and L2 speech performance. The aim of the study was to analyze 1 what processes learners engage during pre-task planning, and 2 whether higher and lower working memory spans engage in different processes during pre-task planning. Learners’ processes were accessed by means of think aloud protocols and a retrospective interview. Working memory capacity was measured by the Speaking Span Test. Results show that learners engage mainly in organization of ideas, rehearsal, lexical searches, and monitoring.. Moreover, higher spans employ significantly more metacognitive strategies during planning when compared to lower spans.

  14. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment.

    Science.gov (United States)

    Marković, Dejan; Jokanović, Vukoman; Petrović, Bojan; Perić, Tamara; Vukomanović, Biserka

    2014-05-01

    Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA) obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material's particles took place after 25 weeks. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects.

  15. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  16. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing

    Science.gov (United States)

    Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.

    2017-08-01

    Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.

  17. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    Science.gov (United States)

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  18. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull.

    Science.gov (United States)

    Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim

    2017-03-26

    The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

  19. Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2012-06-01

    Full Text Available The addition of a capped mini-exon [spliced leader (SL] through trans-splicing is essential for the maturation of RNA polymerase (pol II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1 in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin, we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

  20. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    Science.gov (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205