Sample records for hydrothermal pre-treatment processes

  1. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. (United States)

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B


    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield

    DEFF Research Database (Denmark)

    Di Girolamo, Giuseppe; Grigatti, Marco; Barbanti, Lorenzo


    Twelve hydrothermal pre-treatment combinations of temperature (150 and 180°C), time (10 and 20min) and acid catalyst (no catalyst; H2SO4 at 2% w/w immediately before steam cooking or in 24-h pre-soaking) were tested to assess their effects on methane yield of Giant reed biomass vs. untreated....../20min, 180°C/10min and 180°C/20min. Conversely, the eight pre-treatments with H2SO4 catalyst incurred a methanogenic inhibition in association with high SO42- concentration in the hydrolysate, known to enhance sulphate reducing bacteria. Furfurals were also detected in the hydrolysate of five strong...... control. A batch anaerobic digestion was conducted with 4gVSl−1 at 53°C for 39days. Untreated biomass exhibited a potential CH4 yield of 273mlg−1 VS; the four pre-treatments without acid catalyst achieved a 10%, 7%, 23% and 4% yield gain in the respective temperature/time combinations 150°C/10min, 150°C...

  3. Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars (United States)

    Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.


    Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.

  4. Gas pre-treatment and their impact on liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenbijl, J.M.; Dillion, M.L.; Heyman, E.C.


    Natural gas generally requires removal of H{sub 2}S, CO{sub 2}, COS, organic sulfur compounds, mercury and water prior to liquefaction in order to meet product specifications, avoid blockages and to prevent damage to process equipment. The cost of pre-treatment is dependent on the type and concentrations of the contaminants in the natural gas. Most of the operational base load LNG plants process feed gas with only low concentrations of CO{sub 2}, mercury and water as contaminants. This type of gas requires the minimum of treating, often comprising of a CO{sub 2} removal unit, molecular sieves for drying and a carbon bed for mercury removal. The Shell sulfinol process is the most widely applied acid gas removal process, serving some 40% of the installed base load LNG capacity, and has proven to be very reliable and cost effective. If substantial quantities of H{sub 2}S are present in the feed, a sulfur recovery unit is required as well. When mercaptans are also present in gas feed, the Shell Sulfinol process is strongly preferred, Almost the automatic choice for as the acid gas removal step, since it combines total CO{sub 2} and H{sub 2}S removal with mercaptan removal up to 97%. Formulated methyl diethanol amine (MDEA) solvents have a comparable capital cost to Sulfinol, but lack the mercaptan removal capabilities. There is one exception, the Flexsorb formulation (from Exxon) which also contains sulfolane. Later revamp of a gas pre-treatment unit from limited mercaptan handling capability to significant mercaptan handling capability can also elegantly be done using an integrated Sulfinol based concept. Whereas the capital cost for dehydration and mercury removal depend mainly on the natural gas throughput, the relative capital investment for acid gas removal treating in a LNG plant increases significantly with increasing CO{sub 2} content., At 2% mol CO{sub 2} the acid gas unit represents from 6% of the processing equipment cost at 2% mol CO{sub 2} but at 14% mol

  5. The design of a novel environmentally improved, industrial cotton pre-treatment process

    NARCIS (Netherlands)

    Bouwhuis, Gerhard Herman; Bouwhuis, G.H.


    The scope of this thesis is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic

  6. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. (United States)

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho


    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen


    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes. (United States)

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P


    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  9. Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt; Julson, James


    The main objective of this study was to fractionate prairie cordgrass (PCG) obtaining the highest cellulose digestibility. Following clean fractionation (CF) processing, the PCG lignocellulosic biomass was fractionated into three main building blocks: cellulose, hemicellulose and lignin. Effects of processing factors such as time, temperature, catalyst concentration and organic solvent mixture composition were evaluated. Organic solvent-aqueous mixture contained methyl isobutyl ketone (MIBK), ethanol and water in different proportions. Sulfuric acid was used as a catalyst. In order to evaluate the degree of pre-treatment, enzymatic saccharification was employed on the cellulose fraction obtained from the CF process. Response surface methodology was used for process optimization and statistical analysis. Optimal conditions (39 min, 154°C, 0.69% catalyst and 9% MIBK) resulted in 84% glucose yield and 87% acid insoluble lignin (AIL). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor. (United States)

    Garg, Anurag; Mishra, I M; Chand, S


    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Development of a low-pressure materials pre-treatment process for improved energy efficiency (United States)

    Lee, Kwanghee; You, Byung Don


    Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.

  12. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. (United States)

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B


    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Process analysis of superheated steam pre-treatment of wheat straw and its relative effect on ethanol selling price

    Directory of Open Access Journals (Sweden)

    Dave Barchyn


    Full Text Available Existing bioethanol operations rely on starch-based substrates, which have been criticized for their need to displace food crops in order to be produced. As an alternative to these first generation biofuels, the use of agricultural residues is being considered to create more environmentally-benign second generation, or cellulosic biofuels. Recalcitrance of these substrates to fermentation requires extensive pre-treatment processes, which often consume more energy than can be extracted from the ethanol that they produce, so one of the priorities in developing cellulosic ethanol is an effective and efficient pre-treatment method. This study examines the use of superheated steam (SS as a process medium by which wheat straw lignocellulosic material is pre-treated. Following enzymatic hydrolysis, it was found that 47% of the total glucose could be liberated from the substrate, and the optimal conditions for pre-treatment were 15 min in hot water (193 kPa, 119˚C followed by 2 min in SS. Furthermore, a preliminary relative economic analysis showed that the minimum ethanol selling price (MESP was comparable to that obtained from steam explosion, a similar process, while energy consumption was 22% less. The conclusion of the study is that SS treatment stands to be a competitive pre-treatment technology to steam explosion.

  14. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.


    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  15. Effect of hydrothermal processing on ginseng extract

    Directory of Open Access Journals (Sweden)

    Jebin Ryu


    Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over 140°C, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.

  16. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process


    D. Magdić; Lukinac, Jasmina; Jokić, Stela; F. Čačić-Kenjerić; Bilić, M.; D. Velić


    The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid sol...

  17. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado


    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  18. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    Directory of Open Access Journals (Sweden)

    Jasmina Lukinac


    Full Text Available The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid solution; 0.3% L–cysteine solution; 0.1% 4–hexyl resorcinol solution and 1% sodium metabisulphite solution. Mean values of colour parameters, colour changes and correlation coefficients for apple discs were calculated for both colour models. The analysis showed statistically significant influence of pre-treatment method on total colour changes for both chosen colour models of dried apples. Calculated correlation coefficient between colour changes for used models was found to be 0.894. According to colour characteristics the best results were achieved when samples were pre-treated with 0.5% ascorbic acid solution. According to calculated results it was found that image analysis method as well as colorimetric method can be used to observe the colour changes on dried apple discs.

  19. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Anne Belinda; Schmidt, Anette Skammelsen


    The efficiency of several processes for pre-treatment of lignocellulose has been investigated to provide feedstock for enzymatic hydrolysis and fermentation. Wet oxidation (WO) (with and without alkaline) has been investigated for wheat straw, birch wood, and willow treating 60 g/L. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year to year. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline WO fractionated wheat straw efficiently into solubilised hemicellulose and a highly convertible cellulose fraction. High oxygen (12 bar) during WO and low lignin in treated fibres resulted in highly convertible cellulose. Different optimal reaction conditions were found for different harvest years. For straw 1993 and 1997, conditions were 185 deg. C, 15 minutes resulting in 9-10 g/L solubilised hemicellulose and 63-67% cellulose convertibility. For straw 1994, conditions were 195 deg. C, 5 minutes resulting in 7.5 g/L solubilised hemicellulose and 96% cellulose convertibility. For willow, the optimal pre-treatment was WO without alkaline using 185 deg. C, 15 minutes, giving 8.2 g/L hemicellulose in solution and 50% cellulose convertibility. For birch wood, the best process conditions were hydrothermal treatment (without oxygen and alkaline). At 200 deg. C and 15 minutes, 8 g/L hemicellulose was solubilised with high recoveries for both polysaccharides, however, poor cellulose convertibility was found (<30%). Alkaline WO resulted in the highest cellulose convertibility but low contents of solubilised hemicellulose (<4 g/L). In general, formation of furfural was avoided by adding alkaline during wet oxidation. In the absence of alkaline, furfural formation was higher (up to 130 mg/100 g wheat straw) than that of steam explosion (43 mg/100 g straw). Formation of carboxylic acids was highest during alkaline wet oxidation and highest for birch wood (up to 8 g/L). Minor amounts of

  20. Pre-treatment of oil palm frond biomass via extensive high temperature drying for gasification process

    Directory of Open Access Journals (Sweden)

    Mat Razali Nur Hazwani


    Full Text Available Oil palm frond has been utilized as a solid biomass fuel for gasification to produce synthesis gas or syngas to be used for heat and power generation. A fuel pre-treatment method by means of extensively-drying OPF blocks at 150°C and 200°C for 4 hours was implemented to investigate the effects of the fuel in terms of drying efficiency and gasification performances. Tar, pyrolysis oil and condensates were found to be squeezed out by heat during drying, signifying volatilization of fuel at temperatures between water boiling point at 100°C and fuel pyrolysis point at 280°C. Syngas produced from the updraft gasification of extensively-dried OPF blocks was analyzed and tested for sustainable gas flares. The syngas was found to be composed of 16.5% CO, 10% CO2, 4% H2 and 0.9% CH4 and was produced at gasification temperatures lower than that exhibited by normal OPF blocks.

  1. Pre-treatment of ligno-cellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.W.; Hazewinkel, J.H.O.; Bakker, R.R.


    A biomass pretreatment process is being developed based on contacting ligno-cellulosic biomass with 70% sulphuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulphuric acid is partly recovered by anion-selective

  2. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki


    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  3. Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass. (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt


    Prairie cordgrass (PCG) was pretreated by sequential extrusion and clean fractionation (CF) processing. Following CF, PCG was fractionated into cellulose, hemicellulose and lignin-rich fractions. Cellulose pulp was then enzymatically hydrolyzed, producing glucose. The main purpose of this study was to produce the highest glucose yield as possible. The effects of time, temperature, catalyst concentration and solvent mixture composition on the fractionation were tested. Different proportions of methyl isobutyl ketone (MIBK), ethanol and water with sulfuric acid as a catalyst were evaluated. Optimal conditions for sequential extrusion and clean fractionation (39 min, 129 °C, 0.69% catalyst, and 28% MIBK) resulted in higher glucose yield (92%), and more lignin (87%) and xylan (95%) removal than for clean fractionation alone. Pairwise comparison of raw PCG with extruded PCG clean fractionation revealed no difference in glucose yields, but xylan and AIL removal were higher in the case of clean fractionation of the pre-extruded PCG. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke


    of base and oxidant. These treatments were performed to make fibres that are useful as reinforcement in composite materials and for textiles. All pre-treatments tested increased the content of cellulose in the fibres by degrading and dissolving non-cell wall material (NCWM, e.g., pectin and waxes), lignin......, the pre-treatments gave fibre colours ranging from white to dark brown. Alkaline wet oxidation produced the brightest fibres with potential for use in textiles. Use of retted fibres in the pre-treatment resulted in fibres with high cellulose content (86-90%) of potential as reinforcement in composite...

  5. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps. (United States)

    Tugizimana, Fidele; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A


    Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the "exhaustive" extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen) were used. Raw data were pre-processed with MarkerLynx(TM) software (Waters Corporation, Manchester, UK). Here, two parameters were varied: the intensity threshold (50-100 counts) and the mass tolerance (0.005-0.01 Da). After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden) for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc.) and data transformation (log and power) methods were explored. The results showed that the pre-processing parameters (or algorithms) influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables). Thus, as informed by the results, to maximize the value of untargeted metabolomic data, understanding

  6. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps

    Directory of Open Access Journals (Sweden)

    Fidele Tugizimana


    Full Text Available Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the “exhaustive” extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen were used. Raw data were pre-processed with MarkerLynxTM software (Waters Corporation, Manchester, UK. Here, two parameters were varied: the intensity threshold (50–100 counts and the mass tolerance (0.005–0.01 Da. After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc. and data transformation (log and power methods were explored. The results showed that the pre-processing parameters (or algorithms influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables. Thus, as informed by the results, to maximize the value of untargeted metabolomic data

  7. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. (United States)

    Hu, Yuyan; Zhang, Pengfei; Li, Jianping; Chen, Dezhen


    In the paper, hydrothermal treatment (HT) of MSWI fly ashes was performed to stabilize and separate heavy metals. Influences of pre-treatment, types of ferric and/or ferrous additives, and subsequent heavy metal stabilization procedure by adding phosphate were investigated. The chemical stability of hydrothermal products was examined by solid waste extraction procedure with acetic acid buffer solution. Mineralogical investigation of selected hydrothermal product was carried out by XRD. FEGE SEM- -EDX was used to study the morphology and surface compositions of the ash particles. Experimental results revealed that HT process facilitated heavy metal exposure to leaching solution. FEGE SEM-EDX images revealed that fly ash particles were re-organized during hydrothermal process and that the minerals with special shapes and containing high levels of heavy metals were formed. A mild acid washing treatment with final pH around 6.20 could remove soluble heavy metals. Therefore, it may be a proper pre- or post-treatment method for fly ash particles for the purpose of reducing heavy metal contents. For the purpose of stabilizing heavy metals, the addition of ferric/ferrous salts in the HT process or phosphate stabilization after HT is recommended. The HT process may be applied to realize the environmentally sound management of MSWI fly ash or to recover and utilize MSWI fly ash. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats. (United States)

    SOT2014 Abstract for presentation: March 23-27, 2014; Phoenix, AZ Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats. V. Bass, D. Andrews, J. Richards, M. Schladweiler, A. Ledb...

  9. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.


    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  10. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. (United States)

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina


    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The fate of Transparent Exopolymer Particles (TEP) in integrated membrane systems: removal through pre-treatment processes and deposition on reverse osmosis membranes. (United States)

    Villacorte, Loreen O; Kennedy, Maria D; Amy, Gary L; Schippers, Jan C


    The abundance of Transparent Exopolymer Particles (TEP) in surface waters has been unnoticed for many years until recently as a potential foulant in reverse osmosis systems. Recent studies indicate that TEP may cause organic and biological fouling and may enhance particulate/colloidal fouling in reverse osmosis membranes. The presence of TEP was measured in the raw water, the pre-treatment processes and reverse osmosis (RO) systems of 6 integrated membrane installations. A spectrophotometric method was used to measure TEP in the particulate size range (>0.40microm) and was extended to measure TEP in the colloidal size range (0.05-0.40microm). Ultrafiltration pre-treatment applied in 4 plants, totally removed particulate TEP while microfiltration systems (2 plants) and coagulation/sedimentation/rapid sand filtration systems (3 plants) partially removed this fraction. None of the pre-treatment systems investigated totally removed colloidal TEP. Biopolymer analysis using LC-OCD showed consistency between colloidal TEP and polysaccharide removal by UF pre-treatment and further verified the presence of TEP in the RO feedwater. TEP deposition in the RO system was determined after measuring total TEP concentrations in the RO feed and concentrate. The TEP deposition factors and specific deposition rates indicate that TEP accumulation had occurred in all plants investigated. This observation was verified by an autopsy of RO modules from two RO plants. Further improvement and verification of the (modified) TEP method, in particular the calibration, is necessary so that it can be employed to investigate the role of TEP in the fouling of RO systems.

  12. Process optimization of biogas production at Nemščak biogas plant by pre-treatment of the substrate and combining with waste sludge


    Žitek, Filip


    The purpose of this thesis is to increase the amount of biogas produced by pre-treatment of the substrate and combining with waste sludge. For anaerobic digestion of different substrates, we used a pilot reactor to determine the biogas potential at Nemščak biogas plant. The pilot reactor was built in 2009 for the purpose of testing new substrates in the process of biogas production. The pilot reactor has a working volume of 2000 litres; there is a gas tank above it with the volume of 500 litr...

  13. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward


    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  14. Biofilm control in water by advanced oxidation process (AOP) pre-treatment: effect of natural organic matter (NOM). (United States)

    Lakretz, Anat; Ron, Eliora Z; Harif, Tali; Mamane, Hadas


    The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H₂O₂/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H₂O₂/UV prevented biofilm formation: (a) up to 24 h post treatment - when residual H₂O₂ was neutralized; (b) completely (days) - when residual H₂O₂ was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H₂O₂/UV system compared to UV irradiation alone, after short biofilm incubation times (NOM could enhance (•)OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H₂O₂ conc. post-treatment could prevent bacterial regrowth and biofilm formation.

  15. The role of a combined coagulation and disk filtration process as a pre-treatment to microfiltration and reverse osmosis membranes in a municipal wastewater pilot plant. (United States)

    Chon, Kangmin; Cho, Jaeweon; Kim, Seung Joon; Jang, Am


    A pilot study was conducted to assess the performance of a municipal wastewater reclamation plant consisting of a combined coagulation-disk filtration (CC-DF) process, microfiltration (MF) and reverse osmosis (RO) membranes, in terms of the removal of water contaminants and changes in characteristics of effluent organic matter (EfOM). The CC-DF and MF membranes were not effective for the removal of dissolved water contaminants. However, they could partially reduce the turbidity associated with the cake layer formation by particulate materials on the membrane surfaces. Furthermore, most of water contaminants were completely removed by the RO membranes. Although the CC-DF process could remove approximately 20% of turbidity, the aluminium concentrations considerably increased after the CC-DF process due to the residual coagulants complexed with both carboxylic acid and alcohol functional groups of EfOM. Those aluminium-EfOM complexes had a lower negative charge and higher molecular weight (>0.1 μm pore size of the MF membranes) compared to non-complexed EfOM. These results indicate that the control of the formation of the aluminium-EfOM complexes should be considered as a key step to use the CC-DF process as a pre-treatment of the MF and RO membranes for mitigation of membrane fouling in the tested pilot plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Further development of chemical and biological processes for production of bioethanol: Optimisation of pre-treatment processes and characterisation of products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Schmidt, A.S.


    /L. The conditions for willow and birchwood was selected based on the optimal conditions for wheat straw. Three different harvest years of wheat straw were included to evaluate the effect of crop variation from year toyear. Comparative studies were made using steaming and steam explosion of wheat straw. Alkaline wet......, the optimal pre-treatment was wet oxidationwithout alkaline using 185°C, 15 minutes (from 60 g willow/L). These conditions gave 8.2 g/L hemicellulose in solution and 50% cellulose convertibility, which was lower than that of wheat straw. High recoveries were obtained for willow compared to wheatstraw...

  17. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes. (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César


    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hydrothermal processing of rice husks: effects of severity on product distribution

    NARCIS (Netherlands)

    Vegas, R.; Kabel, M.A.; Schols, H.A.; Alonso, J.L.; Parajo, J.C.


    BACKGROUND: Treatment in aqueous media (hydrothermal or autohydrolysis reactions) is an environmentally friendly technology for fractionating lignocellulosic materials. Rice husks were subjected to hydrothermal processing under a variety of operational conditions to cause the selective breakdown of

  19. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.


    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  20. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  1. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  2. Structure–property tuning in hydrothermally stable sol–gel-processed hybrid organosilica molecular sieving membranes

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Dral, Albertine Petra


    Supported microporous organosilica membranes made from bridged silsesquioxane precursors by an acid-catalyzed sol–gel process have demonstrated a remarkable hydrothermal stability in pervaporation and gas separation processes, making them the first generation of ceramic molecular sieving membranes

  3. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa


    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  4. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest


    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...

  5. Hydrothermal processing of biomass from invasive aquatic plants (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt


    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  6. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process. (United States)

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e


    A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium-niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by X-ray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO(2) and Nb(2)O(5) formed on the TiNb alloy surface and hydrated to Ti(OH)(4) and Nb(OH)(5), respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 degrees C for 12 h. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  7. Mobility of rare earth element in hydrothermal process and weathering product: a review (United States)

    Lintjewas, L.; Setiawan, I.


    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  8. Influence of pre-treatment on torrefaction of Phyllostachys edulis. (United States)

    Xu, Xiwei; Jiang, Enchen; Lan, Xiang


    This study investigated the effects of different pre-treatments on structural changes in Phyllostachys edulis. Samples were pretreated with water, 15% ammonia water, 2% sulfuric acid, hydrothermal carbonization, and ball milling. Moreover, ultrasound was introduced. The influence of pre-treatment on the physiochemical property and composition of P. edulis were studied. Moreover, torrefaction characterization was performed and the distribution of torrefaction products of pretreated samples was determined. Results showed that pre-treatment effectively modified physiochemical structure and the torrefaction property of P. edulis. The pretreatment reduced the ash content and increased the bio-oil content of the torrefaction products. Compared with that of the raw material, the residual bio-char content of the pretreated samples decreased by 2-8%, and degradation temperature of bio-char fluctuated between 365°C and 321°C. The distribution of bio-oil contents, bio-char, and bio-gas in the torrefaction products significantly varied with pretreatments methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improving the circular economy via hydrothermal processing of highdensity waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    . This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical......Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  10. Improving the circular economy via hydrothermal processing of high-density waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  11. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)


    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  12. Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield

    NARCIS (Netherlands)

    Ramos-Tercero, E.A.; Bertucco, A.; Brilman, Derk Willem Frederik


    In this work, the effect of recycling the process water (PW) of hydrothermal liquefaction (HTL) to the HTL reactor was investigated, with the objective being to recover carbon from the organic content of the PW and to develop a solvent-free process. When recycling twice the PW at 220, 240, and 265

  13. The design of a novel, environmentally improved cotton pre-treatment proces


    Bouwhuis, G.H. (Gerrit)


    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These processes can be continuous or batch wise. Advances in the science of biocatalytic pre-treatment of cotton and catalytic bleaching formed the scientific basis for this work. The work of Agrawal on...

  14. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli


    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  15. Improving the circular economy via hydrothermal processing of high-density waste plastics. (United States)

    Helmer Pedersen, Thomas; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prospects for energy recovery during hydrothermal and biological processing of waste biomass. (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L


    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process


    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé


    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  18. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin


    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  19. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков


    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  20. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong, E-mail: [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024 (China); Yang, Dechao [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian 116024 (China); Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)


    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  1. The design of a novel, environmentally improved cotton pre-treatment proces

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit)


    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These

  2. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge (United States)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.


    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  3. Characterization of Particles Created By Laser-Driven Hydrothermal Processing (United States)


    sample and tektite sample J71 Sangiran Java [19]......................................................................................28 Table 5...relationship between the material characteristics and its process history [1]. Analysis methods require techniques that collect the material without...of Australasian tektite from Java (Note: FeO was used in this table to compare the sample with the reference, future chemical compositions will use

  4. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid. (United States)

    Takata, Eri; Tsutsumi, Ken; Tsutsumi, Yuji; Tabata, Kenji


    The production of monosaccharides from napier grass was investigated in the presence of acid catalysts using the hydrothermal process. When the napier grass was treated with 3 wt.% phosphoric acid at 160°C for 15min, the xylose yield reached 10.3 wt.%, corresponding to 72.0% of the xylan in it, whereas glucose was hardly obtained. A combined process was then conducted using an 85 wt.% phosphoric acid treatment at 60 °C for 1h followed by a hydrothermal treatment with 3 wt.% phosphoric acid. In the initial treatment with concentrated phosphoric acid the most of xylan was hydrolyzed to xylose, and the crystalline cellulose was converted to its amorphous form. The hydrolysis of cellulose to glucose was significantly enhanced during the following hydrothermal process with 3 wt.% phosphoric acid at 200 °C for 8 min. Consequently, 77.2% yield of xylose and 50.0% yield of glucose were obtained from the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Kim Yong-Jin


    Full Text Available Abstract Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property.

  6. Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication (United States)

    Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu


    Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.

  7. Preparation of tourmaline nano-particles through a hydrothermal process and its infrared emission properties. (United States)

    Xue, Gang; Han, Chao; Liang, Jinsheng; Wang, Saifei; Zhao, Chaoyue


    Tourmaline nano-particles were successfully prepared via a hydrothermal process using HCl as an additive. The reaction temperature (T) and the concentration of HCI (C(HCl)) had effects on the size and morphology of the tourmaline nano-particles. The optimum reaction condition was that: T = 180 degrees C and C(HCl) = 0.1 mol/l. The obtained nano-particles were spherical with the diameter of 48 nm. The far-infrared emissivity of the product was 0.923. The formation mechnism of the tourmaline nano-particles might come from the corrosion of grain boundary between the tourmaline crystals in acidic hydrothermal conditions and then the asymmetric contraction of the crystals.

  8. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. (United States)

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali


    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties (United States)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi


    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  10. Effects of hydrothermal processing on nutritional value of Canavalia ensiformis and its utilization by Clarias gariepinus (Burchell, 1822 fingerlings

    Directory of Open Access Journals (Sweden)

    V.T. Okomoda


    Full Text Available Jack bean (Canavalia ensiformis is one of the underutilized legumes in animal feed production partly because of its high antinutritional factors. This study investigated the nutritional value of C. ensiformis seed subjected to hydrothermal processing in the diet of the African catfish Clarias gariepinus. Five batches of C. ensiformis seeds were hydrothermally processed in boiling water (100 °C for 0, 10, 20, 30 and 40 min, respectively. Proximate composition of the seed showed no significant effect of hydrothermal processing on protein and fat content of C. ensiformis. However, all essential amino acids were significantly affected. The anti-nutritional factor canavanine was not markedly reduced even at 40 min hydrothermal processing. Fifty fingerlings of C. gariepinus (1.07 ± 0.01 g were stocked in 15 hapas measuring 1 × 1 × 1m3, labeled in triplicate according to five isonitrogenous diets (35% CP formulated using the processed C. ensiformis seed at an inclusion level of 27%. The highest body weight gain (2.73 g, specific growth rate (2.26gday−1, feed conversion efficiency (34.11% and protein efficiency ratio (0.078 were observed at hydrothermal treatment of 30 and 40 min. Hydrothermal processing of C. ensiformis up to 40 min could be exploited in the commercial and on-farm production of catfish diet at 27% level of inclusion.

  11. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.


    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  12. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa


    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  13. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films. (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A


    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  14. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry (United States)

    Deng, Xiao-Dong; Li, Jian-Wei; Luo, Tao; Wang, Hong-Qiang


    Andradite-rich garnet is a common U-bearing mineral in a variety of alkalic igneous rocks and skarn deposits, but has been largely neglected as a U-Pb chronometer. In situ laser ablation-inductively coupled plasma mass spectrometry U-Pb dates of andradite-rich garnet from a syenite pluton and two iron skarn deposits in the North China craton demonstrate the suitability and reliability of the mineral in accurately dating magmatic and hydrothermal processes. Two hydrothermal garnets from the iron skarn deposits have homogenous cores and zoned rims (Ad86Gr11 to Ad98Gr1) with 22-118 ppm U, whereas one magmatic garnet from the syenite is texturally and compositionally homogenous (Ad70Gr22 to Ad77Gr14) and has 0.1-20 ppm U. All three garnets have flat time-resolved signals obtained from depth profile analyses for U, indicating structurally bound U. Uranium is correlated with REE in both magmatic and hydrothermal garnets, indicating that the incorporation of U into the garnet is largely controlled by substitution mechanisms. Two hydrothermal garnets yielded U-Pb dates of 129 ± 2 (2 σ; MSWD = 0.7) and 130 ± 1 Ma (2 σ; MSWD = 0.5), indistinguishable from zircon U-Pb dates of 131 ± 1 and 129 ± 1 Ma for their respective ore-related intrusions. The magmatic garnet has a U-Pb age of 389 ± 3 Ma (2 σ; MSWD = 0.6), consistent with a U-Pb zircon date of 388 ± 2 Ma for the syenite. The consistency between the garnet and zircon U-Pb dates confirms the reliability and accuracy of garnet U-Pb dating. Given the occurrence of andradite-rich garnet in alkaline and ultramafic magmatic rocks and hydrothermal ore deposits, our results highlight the potential utilization of garnet as a powerful U-Pb geochronometer for dating magmatism and skarn-related mineralization.

  15. Pre-treatment of oil palm fronds biomass for gasification

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar


    Full Text Available Oil Palm Fronds (OPF has been proven as one of the potential types of biomass feedstock for power generation. The low ash content and high calorific value are making OPF an attractive source for gasification. The objective of this study is to investigate the effects of pre-treatments of OPF residual on gasification. The pre-treatments included the briquetting process and extensive drying of OPF which are studied separately. In briquetting process, the OPF were mixed with some portions of paper as an additives, leaflets, and water, to form a soupy slurry. The extensive drying of OPF needs to cut down OPF in 4–6 cm particle size and left to dry in the oven at 150°C for 24 hours. Gasification process was carried out at the end of each of the pre-treated processes. It was found that the average gas composition obtained from briquetting process was 8.07%, 2.06%, 0.54%,and 11.02% for CO, H2, CH4, and CO2 respectively. A good composition of syngas was produced from extensive dried OPF, as 16.48%, 4.03%, 0.91%,and 11.15% for CO, H2, CH4, and CO2 contents respectively. It can be concluded that pre-treatments improved the physical characteristics of biomass. The bulk density of biomass can be increased by briquetting but the stability of the structure is depending on the composition of briquette formulation. Furthermore, the stability of gasification process also depended on briquette density, mechanical strength, and formulation.

  16. Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. (United States)

    Guo, Hanzheng; Guo, Jing; Baker, Amanda; Randall, Clive A


    Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.

  17. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira


    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  18. Preparation of titanium phosphates with additives in hydrothermal process and their powder properties for cosmetics. (United States)

    Onoda, Hiroaki; Yamaguchi, Taisuke


    In this study, titanium phosphates were prepared from titanium chloride and phosphoric acid, sodium pyrophosphate and sodium triphosphate solutions with water retention compounds in hydrothermal process as a novel white pigment for cosmetics. Their chemical composition, powder properties, photo catalytic activity, water retention and smoothness were studied. The addition of glycerin in the preparation from sodium pyrophosphate has the useful method to obtain homogenized spherical particles of titanium phosphate pigments for the cosmetics. These titanium phosphates had less photo catalytic activity to protect the sebum on the skin. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Study of the effect of hydrothermal process conditions on pasta quality


    Maache-Rezzoug, Zoulikha; Allaf, Karim


    International audience; The effect of hydrothermal treatment on the pasting, hydration properties and colour quality of commercial fresh pasta were studied following an Instantaneous Controlled Pressure Drop treatment. This hydrothermal procedure involves a physical modification at high temperature (

  20. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. (United States)

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S


    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGa

  1. Chemical properties and hydrothermal processes on the first two directly sampled deep-sea eruptions (Invited) (United States)

    Butterfield, D. A.; Resing, J. A.; Roe, K. K.; Christensen, M.; Embley, R. W.; Lupton, J. E.; Chadwick, W.


    To understand the effects of deep-sea volcanic eruptions on oceanic chemistry, on the ecology of hydrothermal vent communities, on microbial communities in the sub-seafloor biosphere, and on the alteration of oceanic lithosphere requires direct observation and sampling of active eruption sites. Known mid-ocean ridge eruptions have so far been too brief to observe and sample, but a nearly continuous eruption at NW Rota-1 submarine volcano in the Mariana arc (2004-2009) and a potentially long-term eruption at West Mata volcano in the NE Lau Basin (detected Nov. 2008) have provided unprecedented access to magma degassing and rapid water-rock reaction processes that may typify active submarine arc volcanism. How closely this resembles the hydrothermal processes associated with mid-ocean ridge volcanism remains to be seen. NW Rota-1 has a significantly higher output of a free gas phase, but based on initial observations of fluid chemistry and venting types, NW Rota-1 and W Mata have much in common. Active hydrothermal venting was found within a depth horizon encompassing the top 100 meters of the summit peak on both volcanoes (520 m at Rota; 1200 m at Mata). The dominant particulate and chemical plumes originate at active volcanic vents. The hydrothermal chemistry of these volcanic vents is dominated by the condensation of magmatic sulfur dioxide gas, its dissolution into seawater, and subsequent acid attack on volcanic rock. Disproportionation of SO2 to elemental sulfur, H2S, and sulfuric acid occurs. Percolation of hot, acidic fluids through volcaniclastic deposits results in rapid uptake of iron, aluminum, and other metals into solution. Chemical compositions and models indicate that continued water/rock reaction, cooling, and sub-surface mixing with seawater result in rising pH and precipitation of sulfur, alunite, anhydrite, iron sulfides, and iron oxyhydroxides (in order of increasing pH and decreasing temperature). Venting fluids sampled directly out of the

  2. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.


    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  3. Hydrothermal processing of duckweed: effect of reaction conditions on product distribution and composition. (United States)

    Duan, Peigao; Chang, Zhoufan; Xu, Yuping; Bai, Xiujun; Wang, Feng; Zhang, Lei


    Influences of operating conditions such as temperature (270-380 °C), time (10-120 min), reactor loading (0.5-5.5 g), and K2CO3 loading (0-50 wt.%) on the product (e.g. crude bio-oil, water soluble, gas and solid residue) distribution from the hydrothermal processing of duckweed were determined. Of the four variables, temperature and K2CO3 loading were always the most influential factors to the relative amount of each component. The presence of K2CO3 is unfavorable for the production of bio-oil and gas. Hydrothermal processing duckweed produces a bio-oil that is enriched in carbon and hydrogen and has reduced levels of O compared with the original duckweed feedstock. The higher heating values of the bio-oil were estimated within the range of 32-36 MJ/kg. Major bio-oil constituents include ketones and their alkylated derivatives, alcohols, heterocyclic nitrogen-containing compounds, saturated fatty acids and hydrocarbons. The gaseous products were mainly CO2 and H2, with lesser amounts of CH4 and CO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Phases' characteristics of poultry litter hydrothermal carbonization under a range of process parameters. (United States)

    Mau, Vivian; Quance, Julie; Posmanik, Roy; Gross, Amit


    The aim of this work was to study the hydrothermal carbonization of poultry litter under a range of process parameters. Experiments were conducted to investigate the effect of HTC of poultry litter under a range of operational parameters (temperature, reaction time, and solids concentration) on the formation and characteristics of its phases. Results showed production of a hydrochar with caloric value of 24.4MJ/kg, similar to sub-bituminous coal. The gaseous phase consisted mainly of CO2. However, significant amounts of H2S dictate the need for (further) treatment. The process also produced an aqueous phase with chemical characteristics suggesting its possible use as a liquid fertilizer. Temperature had the most significant effect on processes and product formation. Solids concentration was not a significant factor once dilution effects were considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju


    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  6. Pre-treatment of tannery sludge for sustainable landfilling. (United States)

    Alibardi, Luca; Cossu, Raffaello


    The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production (United States)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.


    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  8. Nickel Extraction from Olivine: Effect of Carbonation Pre-Treatment

    Directory of Open Access Journals (Sweden)

    Rafael M. Santos


    Full Text Available In this work, we explore a novel mineral processing approach using carbon dioxide to promote mineral alterations that lead to improved extractability of nickel from olivine ((Mg,Fe2SiO4. The precept is that by altering the morphology and the mineralogy of the ore via mineral carbonation, the comminution requirements and the acid consumption during hydrometallurgical processing can be reduced. Furthermore, carbonation pre-treatment can lead to mineral liberation and concentration of metals in physically separable phases. In a first processing step, olivine is fully carbonated at high CO2 partial pressures (35 bar and optimal temperature (200 °C with the addition of pH buffering agents. This leads to a powdery product containing high carbonate content. The main products of the carbonation reaction include quasi-amorphous colloidal silica, chromium-rich metallic particles, and ferro-magnesite ((Mg1−x,FexCO3. Carbonated olivine was subsequently leached using an array of inorganic and organic acids to test their leaching efficiency. Compared to leaching from untreated olivine, the percentage of nickel extracted from carbonated olivine by acid leaching was significantly increased. It is anticipated that the mineral carbonation pre-treatment approach may also be applicable to other ultrabasic and lateritic ores.

  9. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.


    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  10. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.


    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support

  11. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. (United States)

    Volpe, Maurizio; Goldfarb, Jillian L; Fiori, Luca


    Opuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.07-0.30) on chars produced via hydrothermal carbonization. Multivariate linear regression demonstrated that the three process parameters are critically important to hydrochar solid yield, while B/W drives energy yield. Heating value increased together with temperature and reaction time and was maximized at intermediate B/W (0.14-0.20). Microscopy shows evidence of secondary char formed at higher temperatures and B/W ratios. X-ray diffraction, thermogravimetric data, microscopy and inductively coupled plasma mass spectrometry suggest that calcium oxalate in the raw biomass remains in the hydrochar; at higher temperatures, the mineral decomposes into CO2 and may catalyze char/tar decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. (United States)

    Waite, J Hunter; Glein, Christopher R; Perryman, Rebecca S; Teolis, Ben D; Magee, Brian A; Miller, Greg; Grimes, Jacob; Perry, Mark E; Miller, Kelly E; Bouquet, Alexis; Lunine, Jonathan I; Brockwell, Tim; Bolton, Scott J


    Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO 2 in Enceladus' ocean. Copyright © 2017, American Association for the Advancement of Science.

  13. Pre-treatment of biomasses using magnetised sulfonic acid catalysts

    Directory of Open Access Journals (Sweden)

    Yane Ansanay


    Full Text Available There is a significant interest in employing solid acid catalysts for pre-treatment of biomasses for subsequent hydrolysis into sugars, because solid acid catalysts facilitate reusability, high activity, and easier separation. Hence the present research investigated pretreatment of four lignocellulosic biomasses, namely Switchgrass (Panicum virgatum L ‘Alamo’, Gamagrass (Tripsacum dactyloides, Miscanthus (Miscanthus × giganteus and Triticale hay (Triticale hexaploide Lart. at 90°C for 2 h using three carbon-supported sulfonic acid catalysts. The catalysts were synthesized via impregnating p-Toluenesulfonic acid on carbon (regular and further impregnated with iron nitrate via two methods to obtain magnetic A and magnetic B catalysts. When tested as pre-treatment agents, a maximum total lignin reduction of 17.73±0.63% was observed for Triticale hay treated with magnetic A catalyst. Furthermore, maximum glucose yield after enzymatic hydrolysis was observed to be 203.47±5.09 mg g–1 (conversion of 65.07±1.63% from Switchgrass treated with magnetic A catalyst. When reusability of magnetised catalysts were tested, it was observed that magnetic A catalyst was consistent for Gamagrass, Miscanthus × Giganteus and Triticale hay, while magnetic B catalyst was found to maintain consistent yield for switchgrass feedstock. Our results suggested that magnetised solid acid catalyst could pre-treat various biomass stocks and also can potentially reduce the use of harsh chemicals and make bioenergy processes environment friendly.


    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa


    Full Text Available The current safety requirements, environmental impacts and performance have been ledding the automotive industry to search for new alternatives, not just for new car bodies materials, also for new sheet surface treatments as well, used in the painting process in order to fit simultaneous, environmental requirements and corrosion resistance maintenance, that are the key feature guarantees offered by automakers and are also vital to the durability of the vehicle. This fact is of great importance considering that, besides the various types of steels and their metalic coatings, another factor that directly influences the corrosion resistance is the painting system used. Within this context, the GMB, in partnership with CSN, has been performing several works by adding the knowledge of the supplier to automotive technology. An example of this partnership we have the present study, which aimed to, comparatively, evaluate the corrosion resistance of two systems of painted galvanized steel, the first one with pre-treatment based on a traditional phosphate, and the another one based on a nano-ceramic film. In this study, was found out that materials with pre-treatment based on results of nanotechnology showed similar corrosion resistance comparing the phosphatized materials in a traditional way.

  15. Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis

    Directory of Open Access Journals (Sweden)

    Michela Lucian


    Full Text Available In this paper, a hydrothermal carbonization (HTC process is designed and modeled on the basis of experimental data previously obtained for two representative organic waste materials: off-specification compost and grape marc. The process accounts for all the steps and equipment necessary to convert raw moist biomass into dry and pelletized hydrochar. By means of mass and thermal balances and based on common equations specific to the various equipment, thermal energy and power consumption were calculated at variable process conditions: HTC reactor temperature T: 180, 220, 250 °C; reaction time θ: 1, 3, 8 h. When operating the HTC plant with grape marc (65% moisture content at optimized process conditions (T = 220 °C; θ = 1 h; dry biomass to water ratio = 0.19, thermal energy and power consumption were equal to 1170 kWh and 160 kWh per ton of hydrochar produced, respectively. Correspondingly, plant efficiency was 78%. In addition, the techno-economical aspects of the HTC process were analyzed in detail, considering both investment and production costs. The production cost of pelletized hydrochar and its break-even point were determined to be 157 €/ton and 200 €/ton, respectively. Such values make the use of hydrochar as a CO2 neutral biofuel attractive.

  16. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, C.; Samori, C.; van der Spek, J.J.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik


    The hydrothermal treatment (HTT) technology is evaluated for its potential as a process to convert algae and algal debris into a liquid fuel, within a sustainable algae biorefinery concept in which, next to fuels (gaseous and liquid), high value products are coproduced, nutrients and water are

  17. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.


    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  18. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard


    positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...

  19. Fabrication of carbon/SiO2 composites from the hydrothermal carbonization process of polysaccharide and their adsorption performance. (United States)

    Li, Yinhui; Li, Kunyu; Su, Min; Ren, Yanmei; Li, Ying; Chen, Jianxin; Li, Liang


    In this work, carbon/SiO2 composites, using amylose and tetraethyl orthosilicate (TEOS) as raw materials, were successfully prepared by a facial hydrothermal carbonization process. The carbon/SiO2 composites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), transmission electron microscope (TEM), N2 adsorption and Thermogravimetric (TG) analysis. The composites, which were made up of amorphous SiO2 and amorphous carbon, were found to have hierarchical porous structures. The mass ratios of amylose and SiO2 and the hydrothermal carbonization time had significant effects on the morphology of the composites, which had three shapes including monodispersed spheres, porous pieces and the nano-fibers combined with nano-spheres structures. The adsorption performance of the composites was studied using Pb(2+) as simulated contaminants from water. When the mass ratio of amylose and SiO2 was 9/1, the hydrothermal time was 30h and the hydrothermal temperature was 180°C, the adsorption capacity of the composites achieved to 52mg/g. Experimental data show that adsorption kinetics of the carbon/SiO2 composites can be fitted well by the Elovich model, while the isothermal data can be perfectly described by the Langmuir adsorption model and Freundlich adsorption model. The maximum adsorption capacity of the carbon/SiO2 composites is 56.18mgg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis (United States)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  1. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)


    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  2. Characterization of yellow rice and development of instant flours by hydrothermal process. (United States)

    Martínez-Bustos, F; Delgado, L L; Victorio, M G; Morales, S E


    Commercial brown and yellow milled rice submitted to inappropriate storage conditions were characterized and utilized to develop instant flours that were used in the preparation of atoles. The grains were classified as long-thin; the average size was 2.13 x 6.79 mm. The milling yields obtained in laboratory with paddy rice were 70% brown rice and 60% milled rice. Brown rice and yellow milled rice had similar amylose contents, 22.5 and 25.6% respectively. Gel consistency was soft with low gelatinization temperature (63-68 degrees C) for both samples. Field fungi, such as Helminthosporium oryzae, and storage fungi, such as Aspergillus spp, were present in paddy, yellow milled and commercial rice. The fungus Helminthosporium oryzae, Aspergillus spp, and Penicillum spp were not present in instant flours. Instant flours were prepared by soaking the grain in water, and then steaming, drying and milling it. The highest values for water absorption index were obtained from yellow milled instant rice flour. The color of yellow milled instant rice flour varied from white ("L") to pale yellow (lesser values of "b"). The lower viscosity of the instant flours indicates the breakdown of polymers and reveals that unintact starch granules were not present in instant flours. Protein and ash contents of brown and milled rice were unaffected by hydrothermal process, and the lipid content showed only little changes. Sensory analyses carried out on the atoles prepared with instant flours considered them acceptable, specially for products made from milled yellow rice.

  3. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing (United States)

    Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.


    Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.

  4. Hydrothermal processing of hydrogen titanate/anatase-titania nanotubes and their application as strong dye-adsorbents. (United States)

    Harsha, N; Ranya, K R; Babitha, K B; Shukla, S; Biju, S; Reddy, M L P; Warrier, K G K


    The nanotubes of pure hydrogen titanate and anatase-titania have been synthesized via hydrothermal treatment of as-received anatase-titania particles. The formation mechanism of anatase-titania nanotubes via hydrothermal has been discussed in detail in view of the finger-prints produced by characterizing the intermediate and end products using various microscopic and spectroscopic techniques such as scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, Brunauer, Emmett, and Teller specific surface-area measurement, Fourier transform infrared spectroscope, diffuse reflectance, photoluminescence, thermal gravimetric and differential thermal analyses. The obtained results strongly support the rollup mechanism, involving multiple nanosheets, for the formation of anatase-titania nanotubes with the formation of different intermediate hydrothermal products having various morphologies such as sodium titanate having aggregated rectangular block-like structures, hydrogen sodium titanate and pure hydrogen titanate having highly aggregated unresolved fine-structures containing nanotubes, and finally, the pure anatase-TiO2 nanotubes. It is demonstrated that, during the hydrothermal treatment, the nanotubes of pure hydrogen titanate are formed first coinciding with the stable solution-pH during washing, indicating the completion of ion-exchange process, and a drastic increase in the specific surface-area of the hydrothermal product. The anatase-titania nanotubes are then derived from the pure hydrogen titanate nanotubes via thermal treatment. The use of pure hydrogen titanate and anatase-titania nanotubes for an organic textile dye-removal, from an aqueous solution under the dark condition, via surface-adsorption mechanism has been demonstrated. It is shown that, the specific surface-area and the surface-charge govern the maximum dye-absorption capacity of the anatase-TiO2 nanotubes under the dark condition.

  5. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.


    Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.

  6. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. (United States)

    Parthiban, S Prakash; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara


    Double-step hydrothermal processing is a process where powder compacts of calcium phosphates are exposed to vapor of solvent solution, followed by being immersed in the solution. In the present study, we investigated the effects of ammonium carbonate on formation of calcium-deficient hydroxyapatite (CDHA) through double-step hydrothermal processing. The synthesized CDHA has high crystallinity when the solution has relatively low concentration of the ammonium carbonate ranging from 0.01 to 0.25 mol dm(-3). Carbonate content in the prepared samples were distinctly increased with increasing the concentration of ammonium carbonate to indicate formation of carbonate-containing calcium-deficient hydroxyapatite (CHAp) with low crystallinity. Morphology of the CHAp formed on the compacts varied progressively from rods and rosette-like shape to irregular shape with increase in the initial concentration of the ammonium carbonate in the solution. Application of ammonium carbonate in the double-step hydrothermal processing allows fabrication of irregular-shaped CDHA containing carbonate ions in both phosphate and hydroxide site, with low crystallinity, when the initial concentration of ammonium carbonate was 0.5 mol dm(-3) and more.

  7. Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. (United States)

    Rafieenia, Razieh; Lavagnolo, Maria Cristina; Pivato, Alberto


    Hydrogen is regarded as a clean and non-carbon fuel and it has a higher energy content compared to carbon fuels. Dark fermentative hydrogen production from organic wastes is the most promising technology for commercialization among chemical and biological methods. Using mixed microflora is favored in terms of easier process control and substrate conversion efficiencies instead of pure cultures. However, mixed cultures should be first pre-treated in order to select sporulating hydrogen producing bacteria and suppress non-spore forming hydrogen consumers. Various inoculum pre-treatments have been used to enhance hydrogen production by dark fermentation including heat shock, acid or alkaline treatment, chemical inhibition, aeration, irradiation and inhibition by long chain fatty acids. Regarding substrate pre-treatment, that is performed with the aim of enhanced substrate biodegradability, thermal pre-treatment, pH adjustment using acid or base, microwave irradiation, sonication and biological treatment are the most commonly studied technologies. This article reviews the most investigated pre-treatment technologies applied for either inoculum or substrate prior to dark fermentation, the long-term effects of varying pre-treatment methods and the subsequently feasibility of each method for commercialization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nanocoral architecture of TiO{sub 2} by hydrothermal process: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mali, Sawanta S.; Shinde, Pravin S. [Thin film materials laboratory, Department of Physics, Shivaji University, Kolhapur, 416 004 (India); Betty, C.A.; Bhosale, Popatrao N. [Chemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai (India); Lee, Won J. [Nanohybrid and Energy Materials Research Center, Korea Electrotechnology Research Institute (KERI), 641-120 (Korea, Republic of); Patil, Pramod S., E-mail: [Thin film materials laboratory, Department of Physics, Shivaji University, Kolhapur, 416 004 (India)


    TiO{sub 2} thin films with novel nanocoral-like morphology were successfully grown directly onto the glass and conducting fluorine doped tin oxide coated glass substrates via multi-step hydrothermal (MSH) process. Titanium chloroalkoxide [TiCl{sub 2} (OEt){sub 2} (HOEt){sub 2})] precursor was used in an aqueous saturated NaCl in presence of 1 mM HCl catalyst and HNO{sub 3} peptizer at 120 deg. C. Reaction time varied from 3 to 12 h. The morphological features and physical properties of TiO{sub 2} films were investigated by field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Fourier transform IR spectroscopy, Fourier transform Raman spectroscopy, room temperature photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The surface morphology revealed the formation of TiO{sub 2} corals having nanosized (30-40 nm) polyps. The photoelectrochemical properties of the TiO{sub 2} nanocoral electrodes were investigated in 0.1 M NaOH electrolyte under UV illumination. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via controlled thickness of TiO{sub 2} nanocorals and (ii) the substantial increase in short circuit photocurrent (J{sub sc}) due to the improved charge transport through TiO{sub 2} nanocorals prepared via MSH process. This approach would be quite useful for the fabrication of nanocoral architecture that finds key applications in photocatalysis, dye-sensitized solar cells and hybrid solar cells.

  9. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. (United States)

    Zhang, Ran; Zheng, Shili; Ma, Shuhua; Zhang, Yi


    Bayer red mud (RM) is an alumina refinery waste product rich in aluminum oxides and alkalis which are present primarily in the form of sodium hydro-aluminosilicate desilication product (DSP). A hydrothermal process was employed to recover alumina and alkali from "Fe-rich" and "Fe-lean" RM, the two representative species of RM produced in China. The hydrothermal process objective phase is andradite-grossular hydrogarnet characterized by the isomorphic substitution of Al and Fe. Batch experiments were used to evaluate the main factors influencing the recovery process, namely reaction temperature, caustic ratio (molar ratio of Na(2)O to Al(2)O(3) in sodium solution), sodium concentration and residence time. The results revealed that the Na(2)O content of 0.5 wt% and A/S of 0.3 (mass ratio of Al(2)O(3) to SiO(2)) in leached residue could be achieved with Fe-rich RM under optimal conditions. However, the hydrothermal treatment of Fe-lean RM proved less successful unless the reaction system was enriched with iron. Subsequent experiments examined the effects of the ferric compound's content and type on the substitution ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The effect of stirring in the hydrothermal process to convert the mixed municipal solid waste into uniform solid fuel (United States)

    Prawisudha, P.; Mu'min, G. F.; Yoshikawa, K.; Pasek, A. D.


    An innovative waste treatment technology has been developed in Indonesia to treat the mixed municipal solid waste into a solid fuel by employing the hydrothermal process. A mixture of organic and plastic waste was treated in a 2.5 L reactor using saturated steam in the temperature range of 120 to 180 °C. Two modes of operation were employed to achieve two different goals, i.e. without stirring (NS mode) and with stirring (WS mode). It was observed that both modes resulted in increasing density of product up to twofold of the raw MSW. In NS mode, the processed mixed MSW was converted into two different products; however, in WS mode the bulky plastic was converted into small granules, producing a uniform product. The results suggest that by hydrothermal treatment, the organic fibers in the organic parts are trapped into the plastic, and the stirring breaks the bulky plastics, producing uniform granules suitable as solid fuel. Therefore, the stirring during the hydrothermal process can be a solution to treat the MSW as it is, without any separation, to produce a clean and renewable energy source.

  11. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A. (United States)

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.


    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  12. Dry ice blasting as a substitution for the conventional electroplating pre-treatments

    Directory of Open Access Journals (Sweden)

    Uhlmann Eckart


    Full Text Available For high quality electroplated products, surfaces must be thoroughly pre-treated. For this purpose electroplating currently needs a variety of chemical baths. The used chemicals are injurious to health and harmful to the environment. In addition, the conventional pre-treatment has a long process time which results in high costs. Dry ice blasting alone or in combination with other processes has the potential to completely substitute these conventional pre-treatment processes. Three process sequences as pre-treatment methods prior to electroplating were investigated on the aluminium alloys AlSi12 and AlMg3. The used processes are dry ice blasting, tempering during dry ice blasting and glass bead blasting followed by dry ice blasting. The influence of the parameters on the surface roughness, surface topography and surface tension of the workpieces was examined. A model to describe the correlation between the dry ice blasting parameters and surface parameters was developed. Finally, an adhesion test of electroplated specimen was conducted in order to determine the suitability of these alternative pre-treatment processes.

  13. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.


    of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.

  14. When and why is pre-treatment of substrates for anaerobic digestion useful?


    Carlsson, My


    Anaerobic digestion (AD) plays a key role in the recovery of renewable energy, in the form of biogas, and nutrients from waste materials. Pre-treatment of AD substrates has the potential to improve process performance in terms of increased methane yield and solids reduction, but pretreatments are not yet widely implemented into full-scale AD systems. The aims of this thesis were to identify conditions that determine when pre-treatment has a positive impact on an AD system and ways to improve ...

  15. Shape-controlled synthesis and properties of manganese sulfide microcrystals via a biomolecule-assisted hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jinghui; Yu Runnan; Zhu Jianyu; Yi Ran; Qiu Guanzhou [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu Xiaohe, E-mail: [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)


    An effective biomolecule-assisted synthetic route has been successfully developed to prepare {gamma}-manganese sulfide (MnS) microtubes under hydrothermal conditions. In the synthetic system, soluble hydrated manganese chloride was employed to supply Mn source and L-cysteine was used as precipitator and complexing reagent. Sea urchin-like {gamma}-MnS and octahedron-like {alpha}-MnS microcrystals could also be selectively obtained by adjusting the process parameters such as hydrothermal temperature and reaction time. The phase structures, morphologies and properties of the as-prepared products were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and photoluminescence spectra (PL). The photoluminescence studies exhibited the correlations between the morphology, size, and shape structure of MnS microcrystals and its optical properties. The formation mechanisms of manganese sulfide microcrystals were discussed based on the experimental results.

  16. Controllable Growth of Bi2MoO6 Nanoplates by Citric Acid Assisted Hydrothermal Process and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Wang Yi


    Full Text Available Bi2MoO6 nanoplates with different sizes have been controllably fabricated by citric acid (CA assisted hydrothermal process. The effects of CA on the morphology of Bi2MoO6 nanoplates have also been investigated. It is found that CA has a critical role in the crystallinity and size of Bi2MoO6 nanoplates. On the basis of XRD analysis and SEM observation of the products, the mechanism for CA assisted hydrothermal synthesis of the Bi2MoO6 nanoplates is discussed. The photocatalytic activity of as-prepared Bi2MoO6 was evaluated by the degradation of RhB dye in water, and the sample prepared when the amount of CA was 2.5mmol exhibited the highest photocatalytic activity.

  17. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production

    Directory of Open Access Journals (Sweden)

    Liz M Díaz-Vázquez


    Full Text Available Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR Spectroscopy, Energy Dispersive Spectroscopy (EDS, Scanning Electron Microscopy (SEM, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment, was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5-21 MPa. Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46% to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4±0.1 % and 22.2±0.1 % (ash free dry basis, respectively.

  18. Hybrid filtration method for pre-treatment of stormwater. (United States)

    Johir, M A H; Vigneswaran, S; Kandasamy, J


    In this study the hybrid filtration process (combining fibre filter with deep bed dual media filtration) was investigated as pre-treatment to stormwater. This process was investigated in-terms of reduction in turbidity, dissolved organic carbon (DOC), colour, headloss development across the filters, suspended solids removal, organic matter removal, nutrients and heavy matter (such as iron, copper, lead, zinc) removal efficiency. A comparison was made between the hybrid filter with single media (sand) deep bed filter and fibre filter. It was found that the hybrid filtration system successfully removed turbidity (98%), colour (99%), suspended solids (99%), and DOC (55%). The removal efficiency of heavy metal was relatively low as the concentration of heavy metals present in stormwater was low. The removal efficiency of nitrate, nitrite and phosphorous (as orthophosphate) was 27, 35 and 72% respectively. Hybrid filtration processes showed a better reduction of Modified Fouling Index (MFI) value (from 15.500 s/l(2) to 9 s/l(2)) compared with single media sand, anthracite and fibre filter which were 35 s/l(2), 13 s/l(2)and 14 s/l(2) respectively when operated at FeCl(3) dose of 15 mg/l.

  19. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge. (United States)

    Hassan, Muhammad; Ding, Weimin; Bi, Jinhua; Mehryar, Esmaeil; Talha, Zahir Ahmed Ali; Huang, Hongying


    In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (PProcess biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of steam explosion pre-treatment on molecular structure of ...

    African Journals Online (AJOL)

    production of sweet potato starch with high-level anti-digestion characteristics. Keywords: Sweet potato starch, Steam-explosion, Molecular ... efficient, environmentally friendly, and cost- effective pre-treatment methods for transforming ..... steam explosion process of corn stalk. Bioresour. Technol 2015; 179: 534-542. 2.

  1. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment

    CSIR Research Space (South Africa)

    Mulopo, J


    Full Text Available the technical feasibility of calcium carbonate recovery and its use for pre-treatment of Acid Mine Drainage (AMD) from coal mines. The effect of key process parameters, such as the amount of acid (HCl/Calcium molar ratio), the pH and the CO2 flow rate were...

  2. Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys

    NARCIS (Netherlands)

    Abrahami, S.T.


    For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminium for adhesively bonded aircraft structures in Europe. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and

  3. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal


    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  4. Hydrothermally processed 1D hydroxyapatite: mechanism of formation and biocompatibility studies (United States)

    Stojanović, Zoran S.; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan


    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  5. Large-scale fabrication of In2S3 porous films via one-step hydrothermal process. (United States)

    Chen, Fei; Deng, Dan; Lei, Yinlin


    Large-scale indium sulfide (In2S3) porous films were fabricated via a facile one-step and non-template hydrothermal process using L-cysteine as a capping agent. The impact of reaction conditions such as reaction time, temperatures, and capping agents on the synthesis of the In2S3 porous films were studied. The morphology, structure, and phase composition of In2S3 porous films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The formation process and the optical property of the In2S3 porous films were also evaluated.

  6. Hydrothermal oxidation of waste lipids, protein, and starch from New Zealand meat- and vegetable-processing plants. (United States)

    Richardson, Michael J; Johnston, James H; Northcote, Peter T


    Disposal of organic waste materials from the meat- and vegetable-processing industries historically has been undertaken by dumping, drying followed by combustion, or biological oxidation. As a result of higher intensity processing rates and increasingly stringent legislation, these are no longer economical. Hydrothermal oxidation, also referred to as "wet" oxidation, has been used to lower the chemical and biological oxygen demand of waste samples from the above two industries. The starch-based wastes were readily oxidized without a catalyst. For the lipid and protein-based wastes, the use of copper calcium silicate and nitrate catalysts provided a significant reduction in oxygen demand at 230 degrees C.

  7. Comparing different pre-treatment methods for strongly compacted organic sediments prior to wet-sieving : a case study on Roman waterlogged deposits


    Vandorpe, Patricia; Jacomet, Stefanie


    Four pre-treatment methods have been tested on strongly compacted organic sediments prior to sieving. They comprise of heating, freezing, soaking in NaHCO3 (sodium bicarbonate) and heating with 10% KOH (potassium hydroxide). The aim of the experiment was to find out which pre-treatment method facilitates the sieving process without destroying the waterlogged plant remains recovered. Several methods are already described in the literature, but only few systematic comparisons of pre-treatment m...

  8. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee


    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  9. Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal. (United States)

    Drikas, Mary; Dixon, Mike; Morran, Jim


    Removal of natural organic matter (NOM) is a key requirement to improve drinking water quality. This study compared the removal of NOM with, and without, the patented magnetic ion exchange process for removal of dissolved organic carbon (MIEX DOC) as a pre-treatment to microfiltration or conventional coagulation treatment over a 2 year period. A range of techniques were used to characterise the NOM of the raw and treated waters. MIEX pre-treatment produced water with lower concentration of dissolved organic carbon (DOC) and lower specific UV absorbance (SUVA). The processes incorporating MIEX also produced more consistent water quality and were less affected by changes in the concentration and character of the raw water DOC. The very hydrophobic acid fraction (VHA) was the dominant NOM component in the raw water and was best removed by MIEX pre-treatment, regardless of the raw water VHA concentration. MIEX pre-treatment also produced water with lower weight average apparent molecular weight (AMW) and with the greatest reduction in complexity and range of NOM. A strong correlation was found between the VHA content and weight average AMW confirming that the VHA fraction was a major component of the NOM for both the raw water and treated waters. © 2010 Elsevier Ltd. All rights reserved.

  10. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems (United States)

    Gysi, A. P.


    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH peralkaline granitic systems is the formation of a fluid-buffered subsystem providing the acids and ligands required for REE and Zr mobilization.

  11. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes (United States)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie


    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH district). The complex textures that are commonly encountered in these systems are the result of hydrothermal fluids interacting with their host-rocks in a heterogeneous and dynamic physical and chemical environment.

  12. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. (United States)

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E


    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Conceptual Biorefinery Design and Research Targeted for 2022: Hydrothermal Liquefacation Processing of Wet Waste to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seiple, Timothy E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The Department of Energy Bioenergy Technologies Office (BETO) invests in research and development of new pathways for commercially viable conversion of biomass into drop-in ready transportation fuels, fuel blendstocks and products. The primary emphasis has been on terrestrial and algae feedstocks, but more recently BETO has begun to explore the potential of wet wastes for biofuel production, with focus on wastewater residuals, manure, food waste, and fats, oils and grease. A recent resource analysis estimates that 77 million dry tons per year of these wastes are generated annually, 65% of which are underutilized for any beneficial purpose. Approximately 14 million dry tons of the total resource is wastewater residuals (sludge and biosolids) generated at the nation’s wastewater treatment plants (WWTPs). Conversion of this resource into transportation fuels could significantly contribute to the creation of a new domestic bioenergy and bioproduct industry, while providing an economically and environmentally sustainable alternative for current waste disposal practices. Hydrothermal liquefaction (HTL) is a process that uses hot, pressurized water in the condensed phase to convert biomass to a thermally stable oil product, also known as “biocrude”, which can then be thermo-catalytically upgraded to hydrocarbon fuel blendstocks. HTL is conceptually simple, has a high carbon efficiency, and can be applied to a wide range of wet feedstocks at similar processing conditions. The purpose of this report is to document the conceptual design, economics and supporting data for a sludge-to-fuel pathway via HTL and biocrude upgrading. The configuration includes a HTL plant that is co-located with a WWTP and a larger scale biocrude upgrading plant for production of hydrocarbon fuel blendstocks. Experimental data from bench scale testing of a 1:1 mixture of primary:secondary sludges are used to establish the economic and technical assumptions for the analysis. The design

  14. Osmotic dehydration - a pre-treatment for pineapple drying

    CSIR Research Space (South Africa)

    Lombard, GE


    Full Text Available Engineering, University College Cork, Ireland 1Email: INTRODUCTION Osmotic dehydration is widely used to remove part of the water content of fruit to obtain a product of intermediate moisture or as a pre-treatment (1). Osmotic.... Osmotic dehydration was considered as a pre-treatment for pineapple with the final aim of obtaining high quality dried fruit products. MATERIALS AND METHODS Pineapple cylinders of 2 cm in diameter and 1 cm thick were cut using a cork borer (Figure 1...

  15. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas


    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  16. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    , radon etc. to locate active venting site 4. Seabed sampling for rocks and minerals looking for indications of hydrothermal mineralization 5. TV and still Photographic surveys with real- time imaging on board 6. Submersible/ROVs for direct... thriving in this unique environments. However, the study of hydrothermal systems is still relatively young, and there are many fundamental questions that remain to be addressed in the forthcoming years. Suggested reading 1. Seafloor hydrothermal...

  17. Effect of lime pre-treatment mellowing duration on some ...

    African Journals Online (AJOL)

    The effect of lime pre-treatment duration on some geotechnical properties of shale treated with cement for use as flexible pavement material was studied. Atterberg's limits, compaction, California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were conducted on the natural shale and shale pre-treated ...

  18. Effect of combination pre-treatment on physicochemical, sensory ...

    African Journals Online (AJOL)

    Effect of combination pre-treatment on physicochemical, sensory and microbial characteristics of fresh aerobically stored minced goat (Black Bengal) meat organs. ... African Journal of Biotechnology ... However, acetic acid and glucose pretreatment controlled the fungal growth in meat samples most effectively. The


    African Journals Online (AJOL)

    temperature) for 8, 12 and 24 hours and hot water at 100 C for 5, 10 and 15 minutes . The research seeks to find the best pre germination time to be used for each of the two pre- treatments used in the experiment. Completely randomized design (CRD) of analysis of variance (ANOVA) was used in analysis of obtained data ...

  20. The effect of thermal pre-treatment on the hydrometallurgical purification of large silicon particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon-Soo; Lee, Jin-Seok; Jang, Bo-Yun; Ahn, Young-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)


    The most desirable approach to the hydrometallurgical process consists in using larger silicon particles by exposing the metallic impurities contained in the silicon to its surface via a thermally activated elution prior to chemical treatment. The present study reports experimental findings concerning the effect of a thermal pre-treatment using a mixture of 5-wt% nitric acid and 2.5-wt% hydrofluoric acid for the purification of metallurgical-grade silicon particles of different sizes on the hydrometallurgical process. The extraction rates of metallic impurities from inside the silicon were in inverse proportion to the size of the silicon particle. However, the effect of the thermal pre-treatment on the extraction rate became greater with increasing particle size.

  1. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia (United States)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.


    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  2. Formation and Photocatalytic Activity of BaTiO3 Nanocubes via Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Xinrun Xiong


    Full Text Available We reported a facile hydrothermal approach to synthesize BaTiO3 nanocubes with controlled sizes for degradation of methylene blue (MB. The nanocubes with reaction time of 48 hours exhibited the highest photocatalytic efficiency, owing to their narrower size distribution and better crystallinity compared to those of 24 hours and, at the meantime, smaller particle size than those of 72 hours. This work also demonstrated the degradation of methylene orange (MO using BaTiO3 nanocubes synthesized for 48 hours. Compared with the removal of MB, BaTiO3 had lower photocatalytic activity on MO, mainly due to the poorer absorption behavior of MO on the surface of BaTiO3 nanocubes. The degradation efficiency for each photocatalytic reaction was calculated. The possible mechanism of the photocatalytic decomposition on MB has been addressed as well.

  3. An integrated biohydrogen refinery: Synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes


    Redwood, Mark D.; Orozco, Rafael L.; Majewski, Artur J.; Macaskie, Lynne E


    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre treatment, achieving 83 99% biowaste destruction. The selective separation of organic acids fro...

  4. Two-step biodiesel production from Calophyllum inophyllum oil: optimization of modified β-zeolite catalyzed pre-treatment. (United States)

    SathyaSelvabala, Vasanthakumar; Selvaraj, Dinesh Kirupha; Kalimuthu, Jalagandeeswaran; Periyaraman, Premkumar Manickam; Subramanian, Sivanesan


    In this study, a two-step process was developed to produce biodiesel from Calophyllum inophyllum oil. Pre-treatment with phosphoric acid modified β-zeolite in acid catalyzed esterification process preceded by transesterification which was done using conventional alkali catalyst potassium hydroxide (KOH). The objective of this study is to investigate the relationship between the reaction temperatures, reaction time and methanol to oil molar ratio in the pre-treatment step. Central Composite Design (CCD) and Response Surface Methodology (RSM) were utilized to determine the best operating condition for the pre-treatment step. Biodiesel produced by this process was tested for its fuel properties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  6. Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing (United States)

    Kim, Sojin; Kang, Hyon Chol


    We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger's vectors of 1.45 nm.

  7. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes


    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  8. High-Resolution Studies of Oceanic Spreading Center Volcanic and Hydrothermal Features and Processes - New Insights from Ridge 2000 Program Experiments (United States)

    Fornari, D. J.


    During the past 60 years of research on mid-ocean ridges (MORs) we have exponentially increased our understandings one of the planet's most fundamental features and the myriad processes associated with the transfer of energy from the mantle to the hydrosphere that is focused along accretionary plate boundaries. The past decade's research, implemented by a broad community of scientists in numerous disciplines has yielded a watershed of information that has helped to make both temporal and spatial connections between processes that store and deliver magma to the crust and seafloor, and the consequent hydrothermal and biological phenomena that derive from that energy transfer. Ridge 2000 Program research at each of the three Integrated Study Sites (ISSs) - East Pacific Rise 8-10N, Juan de Fuca - Endeavour Segment, and Eastern Lau Spreading Center - provided an opportunity to coordinate field experiments, laboratory studies and modeling that has lead to new concepts of oceanic spreading center processes. In particular, the latest generation of near-bottom seafloor mapping and sampling systems and a new array of deep submergence vehicles, which include remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs), as well more traditional human occupied vehicles (HOVs) like Alvin, have yielded important new views of MOR seafloor. These systems have allowed us to resolve the sub-meter topography of specific volcanic and hydrothermal features and relate them to distributions of hydrothermal communities, chemical variations among hydrothermal chimneys and their fluid effluent, and to axial structures that are surface manifestations of tectonic processes. In situ chemical, biological and microbial studies carried out during the past decade have increasingly shown how tightly linked chemical and biological processes are within MOR hydrothermal communities. Previous hypotheses concerning frequency of magmatism and volcanic eruptions that have related

  9. Surficial Expressions of Deeper Processes- Ridge 2000 Spurs Understanding of Mantle-Hydrothermal Connections and the Role of Crustal Processes at Oceanic Spreading Centers (United States)

    Blackman, D. K.


    A decade ago the Ridge 2000 (R2K) program began implementing the Integrated Studies Site (ISS) strategy as a means to advance understanding of the linked magmatic/tectonic/hydrothermal systems that dictate the structure and ecosystems observed in young crust along the spreading axis. Through comparison amongst ISSs and other well-studied sites, where controlling factors such as spreading rate or tectonic/thermal setting differ, a number of new insights have been gained. I will review progress on 3 aspects, emphasizing R2K contributions but also noting a few other recent results: the pattern of magma supply, along and across axis; ridge segmentation and crust/mantle interplay; threshold behavior and limiting processes that are manifested in crustal properties. The results are derived from petrological/geochemical, seismic (imaging, seismicity, compliance), electromagnetic, modeling, and mapping investigations, so I will touch on each of these types of constraint. The breadth of the melt supply zone is an example where R2K results document that influx to at least the lower crust can extend out several km beyond the axial graben. Such knowledge addresses a fundamental problem in Earth Sciences- how magmatism and faulting interact and the potential for hydrothermal circulation to both influence, and be influenced by, their distributions. In addition to briefly summarizing work already completed, I will highlight efforts on the mantle portions of the Juan de Fuca and Lau ISS that are currently underway, using data/modeling from the final phase of R2K, to tease out further connections between mantle processes and crustal structure, within which the now-known-to-be-ubiquitous hydrothermal systems develop.

  10. Extraction of metals from spent hydrotreating catalysts: physico-mechanical pre-treatments and leaching stage. (United States)

    Ferella, Francesco; Ognyanova, Albena; De Michelis, Ida; Taglieri, Giuliana; Vegliò, Francesco


    The present paper is focused on physico-mechanical pre-treatments of spent hydrotreating catalysts aimed at concentration of at least one of the valuable metals contained in such secondary raw material. In particular, dry Ni-Mo and Co-Mo as well as wet Ni-Mo catalysts were used. Flotation, grain size separation and attrition processes were tested. After that, a rods vibrating mill and a ball mill were used to ground the catalysts in order to understand the best mechanical pre-treatment before leaching extraction. The results showed that flotation is not able to concentrate any metals due to the presence of coke or other depressant compounds. The particle size separation produces two fractions enriched in Mo and Co when dry Co-Mo catalyst is used, whereas attrition is not suitable as metals are uniformely distributed in rings' volume. Roasting at 550°C and vibrating grinding are the most suitable pre-treatments able to produce fractions easily leached by NaOH and H(2)SO(4) after grain size separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. (United States)

    Ravindran, Rajeev; Jaiswal, Amit Kumar


    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Variation in ultrasonic frequency and time as pre-treatments to air-drying of carrot

    Directory of Open Access Journals (Sweden)

    Ernest Ekow Abano


    Full Text Available Vegetable drying is an alternative method to curb post harvest decay of vegetables and a process to produce dried vegetables, which can be directly consumed or used as ingredients for the preparation of soups, stews, baby foods, cakes, puddings, and many other foods. In this study, the effect of ultrasound frequency and sonication time as pre-treatment prior to air drying at 70°C at an air velocity of 0.5 m/s, on carrot drying kinetics, flavour, colour, and non-enzymatic browning was investigated using a 3-level factorial response surface method. The result showed that an increase in sonication frequency and time did not significantly increase moisture diffusivity but in comparison with the control, water diffusivity increased after ultrasound application and the overall drying time was reduced. Application of the ultrasound pre-treatment in distilled water resulted in water gain and sugar loss, indicating that the ultrasonic pre-treatment can be an important step to produce low sugar content dried products. The brightness and redness to yellowness values of the ultrasonically pre-treated dried carrots were better than those without ultrasound application. In comparison with the flavour of the control, the ultrasound pre-treated samples recorded higher flavour response signals, indicating that the application of ultrasound improved the flavour of the dried carrot. The variation in sonication frequency and time did not significantly affect the non-enzymatic browning index of the dried products but were better than the control.

  13. Effectiveness of septage pre-treatment in vertical flow constructed wetlands. (United States)

    Karolinczak, Beata; Dąbrowski, Wojciech


    Septage is wastewater stored temporarily in cesspools. A periodic supply of its significant quantities to small municipal wastewater treatment plants (WWTPs) may cause many operational problems. In the frame of the research, it has been proposed to utilize vertical flow constructed wetlands for pre-treatment of septage prior to its input to the biological stage of a WWTP. The aim of the work was to assess the effectiveness of pre-treatment in relation to factors such as: seasonality, hydraulic load, pollutants load of the VF bed and interactions between these factors. The results proved that application of a VF bed to septage pre-treatment can significantly reduce the concentration of pollutants (biochemical oxygen demand (BOD5): 82%, chemical oxygen demand (COD): 82%, total suspended solids (TSS): 91%, total nitrogen (TN): 47%, ammonia nitrogen (NH4-N): 70%), and thus decrease the loading of the biological stage of a WWTP. The mathematical models of mass removal process were created. They indicate that in case of all analysed parameters, removed load goes up with the increase of load in the influent. However, with the increase of hydraulic load, a decrease of the removed BOD5, COD, TSS and total phosphorus, and in vegetation period an increase of TN, can be observed in terms of load. There are no statistically significant effects of seasonality.

  14. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Daniel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butcher, Mark G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Drennan, Corinne [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  15. Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes (United States)

    Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.


    In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two active vent fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker vents. Distinct microbial mats were abundantly present and located in close vicinity to the hydrothermal vent sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community activities, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered hydrothermal vent communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ≥ 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group actively expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an

  16. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production. (United States)

    Contreras-Hernández, M G; Ochoa-Martínez, L A; Rutiaga-Quiñones, J G; Rocha-Guzmán, N E; Lara-Ceniceros, T E; Contreras-Esquivel, J C; Prado Barragán, L A; Rutiaga-Quiñones, O M


    Approximately 1 million tons of agave plants are processed annually by the Mexican tequila and mezcal industry, generating vast amounts of agroindustrial solid waste. This type of lignocellulosic biomass is considered to be agroindustrial residue, which can be used to produce enzymes, giving it added value. However, the structure of lignocellulosic biomass makes it highly recalcitrant, and results in relatively low yield when used in its native form. The aim of this study was to investigate an effective pre-treatment method for the production of commercially important hydrolytic enzymes. In this work, the physical and chemical modification of Agave durangensis leaves was analysed using ultrasound and high temperature as pre-treatments, and production of enzymes was evaluated. The pre-treatments resulted in modification of the lignocellulosic structure and composition; the ultrasound pre-treatment improved the production of inulinase by 4 U/mg and cellulase by 0.297 U/mg, and thermal pre-treatment improved β-fructofuranosidase by 30 U/mg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth. (United States)

    Hunter, William J; Manter, Daniel K


    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.

  18. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze


    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. (United States)

    Sabio, E; Álvarez-Murillo, A; Román, S; Ledesma, B


    In this work, the influence of the variables temperature, residence time, and biomass/water ratio on the hydrothermal carbonization (HTC) of tomato peel was investigated. The implementation of a Design of Experiments - Response Surface Methodology approach allowed to identify the importance of each variable, as well as their interactions, in both the reactivity (solid yield) and energy densification (increase in higher heating value). The HTC residence time and specially temperature had a major effect on the process, increasing the solid yield and promoting energy densification. Ratio had a minor effect although under certain temperature and time conditions, it was a decisive parameter. Solid yields in the range 27.6% and 87.7% with corresponding high heating values 23.6-34.6 MJ kg(-1) were obtained. From the statistical processing of the experimental data obtained pseudo-second order models were developed. It was proven that these approaches envisaged the hydrochar final characteristics successfully. From the elemental analysis and the FTIR spectra, it was possible to investigate the HTC pathway, which was defined as a combination of several processes; considering dehydration and decarboxylation reactions and especially lignin depolimerization reactions, which lead to the formation of monomeric radicals. Moreover, the surface morphology of selected hydrochars by Scanning Electron Microscopy (SEM) showed the original structure scaffold, with minor changes between hydrochars prepared under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Novel pre-treatments to control bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Sichel, Cosima; Andre, Klaus


    Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today’s water treatment industry. Both the development of new advanced oxidation technologies, but also the enhancement of existing conventional technologies......-treatments to ozonation of ground water. Each oxidant and NH4+ were added in a single stage or separately prior to ozonation. To the best of our knowledge, this is the first study that has tested all the above-mentioned oxidants for the same water matrix. Based on our results, the most promising pre-treatments were MnO4...

  1. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    DEFF Research Database (Denmark)

    Haagensen, Frank Drøscher; Skiadas, Ioannis V.; Gavala, Hariklia N.


    , implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively...... potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic...

  2. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy). (United States)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono


    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  3. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, F; Watanabe, Y; Kishita, A; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579 (Japan); Kishida, H [Environmental Systems Headquarters, Environmental Research and Development Center Hitachi Zosen Corporation, Kyoto 625-8501 (Japan)], E-mail:


    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300 deg. C, 1 min for the first step, and 300 deg. C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  4. Co-extraction of soluble and insoluble sugars from energy sorghum based on a hydrothermal hydrolysis process. (United States)

    Yu, Qiang; Tan, Xuesong; Zhuang, Xinshu; Wang, Qiong; Wang, Wen; Qi, Wei; Zhou, Guixiong; Luo, Yu; Yuan, Zhenhong


    A process for co-extraction of soluble and insoluble sugars from energy sorghum (ES) was developed based on hydrothermal hydrolysis (HH). Two series of ES were investigated: one (N) with a high biomass yield displayed a higher recalcitrance to sugar release, whereas the second (T) series was characterized by high sugar extraction. The highest total xylose recoveries of 87.2% and 98.7% were obtained for N-11 and T-106 under hydrolysis conditions of 180°C for 50min and 180°C for 30min, respectively. Moreover, the T series displayed higher enzymatic digestibility (ED) than the N series. The high degree of branching (arabinose/xylose ratio) and acetyl groups in the hemicellulose chains of T-106 would be expected to accelerate sugar release during the HH process. In addition, negative correlations between ED and the lignin content, crystallinity index (CrI) and syringyl/guaiacyl (S/G) lignin ratio were observed. Furthermore, finding ways to overcome the thickness of the cell wall and heterogeneity of its chemical composition distribution would make cellulose more accessible to the enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer (United States)

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.


    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  6. Synthesis and Characterization of Flower-Like Bundles of ZnO Nanosheets by a Surfactant-Free Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Jijun Qiu


    Full Text Available Flower-like bundles of ZnO nanosheets have been prepared by using preheating hydrothermal process without any surfactants. The flower-like bundles consist of many thin and uniform hexagonal-structured ZnO nanosheets, with a thickness of 50 nm. The selected area electronic diffraction (SAED and high-resolution transmission electron microscope (HRTEM images indicate that the ZnO nanosheets are single crystal in nature. The growth mechanism of the flower-like bundles of ZnO nanosheets is discussed based on the morphology evolution with growth times and reaction conditions. It is believed that the formation of flower-like bundles of ZnO nanosheets is related to the shielding effect of OH− ions and the self-assembly process, which is dominated by a preheating time. Room temperature photoluminescence spectra results show that the annealing atmosphere strongly affects the visible emission band, which is sensitive to intrinsic and surface defects, especially oxygen interstitials, in flower-like bundles of ZnO nanosheets.

  7. Hydrothermal processes related to some Triassic and Jurassic submarine basaltic complexes in northeastern Hungary, the Dinarides and Hellenides

    National Research Council Canada - National Science Library

    Gabriella B Kiss; Ferenc Molnár; Ladislav A Palinkas


      Comparative studies on hydrothermal alteration of submarine peperitic basalt occurrences related to the Triassic early rifting of the Neotethys were carried out in various parts of the Dinarides and Hellenides...

  8. Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value. (United States)

    Ciccoritti, Roberto; Terracciano, Giovanna; Cammerata, Alessandro; Sgrulletta, Daniela; Del Frate, Viviana; Gazza, Laura; Nocente, Francesca


    This work describes a process for producing durum wheat flour fractions with high potential nutritional value using grain pre-milling hydrothermal treatment and ultra-fine grinding (micronization), coupled with air classification. The difference of bioactive value of the flour fractions in relation to dietary fibre and phenolic compounds was monitored on four durum wheat cultivars by analysing total arabinoxylans, water extractable arabinoxylans and 5- n-alkylresorcinols. The extractability of the analysed compounds was most significantly affected by hydrothermal treatment. On average, the hydrothermally treated kernels compared with the untreated ones presented a marked increase of water extractable arabinoxylans and alkylresorcinols (about 25 and 48%, respectively), whereas slightly lower total arabinoxylans content (about 9%) was detected. The air classification applied on micronized kernels produced two flour fractions, coarse and fine, with the last showing, irrespective of the hydrothermal treatment, an increment of alkylresorcinols (24 and 22% in untreated and treated samples) and of total arabinoxylans (13 and 20% in untreated and treated samples) in comparison with the coarse one. The fine fraction (particles ≤ 120 µm), resulting richer in bioactive compounds, provides an interesting raw material to enrich traditional semolina in which, due to the removal of the external layers, the losses of total arabinoxylans and of alkylresorcinols were more than 60 and 90% alkylresorcinols, respectively, if compared with whole wheat grain.

  9. Hydrothermal Biogeochemistry (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.


    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  10. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics. (United States)

    Wang, Liping; Zhang, Lei; Li, Aimin


    Dewatering is very important for excess sludge treatment and disposal. Hydrothermal treatment coupled with mechanical expression is a novel technology, in which a conventional pressure dewatering is combined with hydrothermal effect to realize an improved liquid/solids separation with low energy consumption. In this study, the process was performed by way of that the excess sludge was hydrothermally treated first and then the mechanical expression was employed immediately at increased temperature in two separate cells respectively. The results demonstrated that the mechanical expression employed at increased temperature showed a significant advantage than that at room temperature, given a further reduction of 19-47% of the moisture content. The dewatering process at room temperature was mostly depended on the effect of mechanical expression. Hydrothermal process, more importantly than mechanical effect at increased temperatures, seemed to govern the extent to which the dewatering process occurred. The dewatering began to show a positive effect when the temperature was exceeded the threshold temperature (between 120 and 150 °C). The residence time of 30 min promoted a substantial conversion in the sludge surface properties. After dewatering at temperatures of 180-210 °C, the moisture content decreased from 52 to 20% and the corresponding total water removal as filtrate was between 81 and 93%. It was observed that the moisture content of filter cake correlated with surface charge (Rp = -0.93, p < 0.05) and relative hydrophobicity (Rp = -0.99, p < 0.05). The calculated energy balance suggested that no additional external energy input is needed to support the dewatering process for excess sludge. The dewatering process needs an obviously lower energy input compared to thermal drying and electro-dewatering to produce a higher solids content cake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sergio León-Ríos


    Full Text Available We have successfully synthesised one-dimensional single crystals of monoclinic phase titanium dioxide nanostructures (TiO2-B, prepared by a hydrothermal process. Morphological characterization was carried out by atomic force and scanning and transmission electron microscopy techniques. In order to study the crystalline structure, samples were calcined at 500°C in an air-filled chamber. X-ray diffraction results indicated that as-prepared samples presented diffraction patterns of hydrate hydrogen titanate and those calcined at 500°C exhibited the TiO2-B and anatase phases, confirmed by Raman spectroscopy. Scanning electron microscopy results showed that the one-dimensional nanostructures had high contrast and uniform widths for those synthesised and calcined, indicating the formation of a phase of monocrystals. Besides, a proof of the antibacterial effect was carried out of the monoclinic phase of TiO2-B on Escherichia coli pure cultures, where the viability of the bacterium decreases in presence of TiO2-B nanostructures plus UV illumination. Monocrystals did not change after photocatalytic tests, suggesting a possible application as long-term antibacterial protection.

  12. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  13. The pre-treatment of water in a reverse osmosis system. Its significant importance in the design and management of the process; Pretratamiento del agua en un sistema de osmosis inversa. Su significada importancia dentro del diseno y gestion del proceso

    Energy Technology Data Exchange (ETDEWEB)

    Pujadas, A.


    The practical application of reverse osmosis technology is really easy and facilities should function without serious problems. The real difficulty is presented by the pre-treatment and conditioning of water before entering the membrane system. The present article enumerates the series of most habitual problems presented by medium or low-saline water for its correct treatment in a reverse osmosis system, also enumerating the most habitual pre-treatments for overcoming them. The conclusion of all of this is that it is necessary to haven a good laboratory available, one that allows for a complete analysis of the water to be treated and a system for tracking the systems once they are in operation. (Author)

  14. Thermal stability and field assisted sintering of cerium-doped YSZ ceramic nanoparticles obtained via a hydrothermal process

    Directory of Open Access Journals (Sweden)

    Dragut Dumitru V.


    Full Text Available Owing to its extraordinary range of properties, yttria-doped zirconia holds a unique place among the ceramic oxide systems. To improve the properties for some specific custom design applications, co-doping with other rare earth oxides such as ceria is needed. The aim of this paper is to identify the correlations between the phase composition evolution with increasing thermal treatment temperature in order to establish the thermal stability in connection with the ceria content and how does it influence the yttria-stabilised zirconia microstructure. The ZrO2–3Y2O3–nCeO2 (n = 3, 6 and 9 wt.% samples were obtained by a hydrothermal process and submitted to a thermal treatment up to 1600 °C. Intensive characterization was performed via X-ray powder diffraction and EDX analysis. It was found that up to 400 °C, a monophasic structure was formed. At higher temperatures tetragonal zirconia is formed as a major phase with the presence of secondary monoclinic and cubic phases, depending on the Ce content and thermal treatment temperature. Sintered compacts with densities up to 99.5% from the theoretical density were obtained starting from the 6%CeO2–3%Y2O3–ZrO2-nanostructured powders using a special field-assisted (FAST sintering process. With increasing CeO2 content to 9% only, tetragonal zirconia with 6–9 nm crystallite sizes is formed during the FAST sintering process.

  15. Low-Temperature Synthesis of Vertically Align ZnO Layer on ITO Glass: The Role of Seed Layer and Hydrothermal Process (United States)

    Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri


    ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.

  16. Chemo-Mechano Coupling Processes Inducing Evolution of Rock Permeability under Hydrothermal and Stressed Conditions (Invited) (United States)

    Yasuhara, H.; Takahashi, M.; Kishida, K.; Nakashima, S.


    Coupled thermo-hydro-mechano-chemo (THMC) processes prevailing within fractured rocks are of significant importance in case of a long-term geo-sequestration of anthropogenic wastes of high level radioactive materials and carbon dioxide, and an effective recovery of energy from petroleum and geothermal reservoirs typically located in deep underground. The THMC processes should change the mechanical, hydraulic, and transport properties of the host rocks. Under even moderate pressure and temperature conditions, geochemical processes such as mineral dissolution should be active and may induce the change of those properties. Therefore, the effects should be examined in detail. In this work, a suite of long-term permeability experiments using granite, sandstone, and mudstone with or without a single fracture has been conducted under moderate confining pressures ranging 3 - 15 MPa and temperatures of 20 and 90 °C, and monitors the evolution in rock permeability and effluent chemistry throughout the experimental periods. Under net reduction or augmentation of pore/fracture volumes, the net permeability should alternatively increase or decrease with time, depending on the prevailing mechanical and geochemical processes. In granite samples, At 20 °C the observed fracture permeabilities monotonically reduce and reach quasi-steady state in two weeks, but after the temperature is increased to 90 °C those resume decreasing throughout the rest of experiments - the ultimate reductions are roughly two orders of magnitude within 40 days. In mudstone samples, similar results to those in granite samples are obtained (i.e., monotonic reduction and subsequent quasi-steady state). In contrast, in sandstone samples, a monotonic augmentation in permeability has been observed throughout the experiments. A chemo-mechanical model that accounts for temperature-dependent mineral dissolutions at contacting areas and free walls of pore spaces is applied to replicating the experimental

  17. Hydrothermal treatment of rough rice: effect of processing conditions on product attributes. (United States)

    Bello, Marcelo O; Loubes, María A; Aguerre, Roberto J; Tolaba, Marcela P


    A method involving hydration, tempering and heating steps is presented to process rough rice as alternative to traditional parboiling with pressure steam. The effects of temperature (66-84 °C), tempering time (60-420 min) and heating time (30-180 min) on gelatinization degree and milling yield were analyzed by response surface method (RSM). A maximum value of gelatinization degree (37.0 %) and milling yield of 67.7 % were reached with a process temperature of 84 °C using tempering and heating times of 178 and 104 min respectively. A slight reduction of crystallinity (14 %) and a significant improvement of nutritional value with increments of 150 and 60 % in riboflavin and calcium contents were obtained in comparison with control (untreated rice). Hardness and adhesiveness of processed rice were intermediate between those of control and completely gelatinized rice. The proposed method, with lower temperature requirements than traditional parboiling, is presented to obtain an alternative product, expanding consumer choices.

  18. Ultrasonication: An effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production

    Directory of Open Access Journals (Sweden)

    M. Mubarak


    Full Text Available Biodiesel is considered as one of the promising alternative fuels for diesel engines due its renewability and environment friendly nature. As the process of lipid extraction from the biomass consumes about 90% of the total energy spent for biodiesel production, an efficient and economic method is very important. The amount of lipid extracted from the biomass could be increased if it is pre-treated before the extraction process. This work was an attempt to compare the various pre-treatment methods before extracting lipids from dried Salvinia molesta (aquatic weed, such as autoclaving, microwaving, ultrasonication, sand, and glass grinding. After each pre-treatment method, Bligh and Dyer's method was used to measure the total lipid content in percentage dry weight (% dwt, which was then compared with the untreated S. molesta. It was found experimentally that the lipid yield was 19.97% dwt for ultrasonication > 16.60% dwt for microwaving > 16.46% dwt for glass grinding >16.26% dwt for sand grindin, > 15.72% dwt for autoclaving > 15.36% dwt for untreated. The one-way ANOVA with Tukey's test was then used to validate the experimental results and showed that ultrasonication method of pre-treatment was the most efficient and had resulted in the highest lipid yield among all the methods used which was followed by the microwaving method. The Taguchi method with L9 orthogonal array was then used for the optimization of ultrasonic assisted pre-treatment method before extracting lipid from S. molesta and showed a maximum lipid of 20.86% using 100% amplitude and sonication time of 15 min. The fatty acid methyl ester (FAME of S. molesta lipid was analyzed using gas chromatography mass spectroscopy (GCMS with flame ionization detector. It showed fatty acids such as C14:0, C14:1, C16:0, C16:1, C18:0, C18:1, C20:1, C20:4, C22:0 which contributed 97.38% weight of the total fatty acids. FAME consisted of 63.59% monounsaturated, 33.18% saturated and 0

  19. Volcanic Centers in the East Africa Rift: Volcanic Processes with Seismic Stresses to Identify Potential Hydrothermal Vents (United States)

    Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.


    The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.

  20. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling (United States)


    saturated with high temperature hot water during the 30 minutes the waste travels through the hydrolyzer. The waste exits the hydrolyzer in small batches ...cost Processing system (hydrolyser, two shredders, grinder, convey- ers, drier , metal removal) 1.00 20-year life $3,000,000.00 $150,000.00 Fabric...hydro- lyser, two shredders, grinder, conveyers, drier , metal removal) 1.00 20-year life $3,000,000.00 $150,000.00 Fabric shelter 1.00 10-year life

  1. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications (United States)

    Hemley, J.J.; Hunt, J.P.


    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  2. Recovery of algal oil from marine green macro-algae Enteromorpha intestinalis by acidic-hydrothermal process. (United States)

    Jeong, Gwi-Taek; Hong, Yong-Ki; Lee, Hyung-Ho; Kong, In-Soo; Kim, Joong Kyun; Park, Nam Gyu; Kim, Sung-Koo; Park, Don-Hee


    In this study, the recovery of algal oil from Enteromorpha intestinalis based on an acidic-hydrothermal reaction was investigated. Overall, the algal oil yield after the acidic-hydrothermal reaction was increased under the conditions of high reaction temperature, high catalyst concentration, and long reaction time within the tested ranges. Significantly, catalyst concentration, compared with reaction temperature and time, less affected algal oil recovery. The optimal acidic-hydrothermal reaction conditions for production of algal oil from E. intestinalis were as follows-200 °C reaction temperature, 2.92 % catalyst concentration, 54 min reaction time. Under these conditions, an 18.6 % algal oil yield was obtained. By increasing the combined severity factor, the algae oil recovery yield linearly increased.


    Directory of Open Access Journals (Sweden)

    Darwin Darwin


    Full Text Available Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC. Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL. Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL compared with corn stover that was not pre-treated (405 mL. This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover. Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas   ABSTRAK Thermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan

  4. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. (United States)

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki


    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness. (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong


    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m(2)/g) from 25 to 171m(2)/g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH(-) groups) basic sites with subsequent surge in the number of strong basic sites (O(2-)) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  6. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes (United States)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.


    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  7. Hydrothermal conversion of biomass


    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  8. Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by a Hydrothermal Process

    NARCIS (Netherlands)

    Sun, Y.; Liu, H.; Wang, X.; Kong, X.; Zhang, H.


    Abstract: Strong visible emissions of Er3+ resulting from two-photon absorption and energy transfer from the host YVO4 were observed in nanocrystalline Er3+-doped YVO4, which was prepared by a hydrothermal method using a citrate-yttrium-vanadate complex as the precursor. The nanocrystals were


    Directory of Open Access Journals (Sweden)



    Full Text Available Start fruit (Avverhoa carambola is rich in nutrients and contains dietary antioxidants which are beneficial to human health. Currently, the commercial potential of this fruit has not been fully explored especially in its dried form. The objectives of this research were to investigate the effect of pre-treatment on the drying kinetics and product quality of star fruit slices. The various pre-treatment methods investigated were hot water blanching and dipping in sugar solution. The star fruit was cut into thin slices (5 mm for drying (60°C-80°C using a hot air ventilated oven. Mathematical modelling showed that the Page model was able to describe the moisture diffusion process during drying. Effective diffusivity values were found within the order reported for most food materials (10-8-10-12 m2/s. A decreasing trend in shrinkage ratios was observed with decreasing moisture ratios which corresponds to the greater rate of moisture removal especially at the falling rate period. Overall colour changes were more significant in the blanched samples which could be due to the non-enzymatic browning.

  10. Chemical dispersants and pre-treatments to determine clay in soils with different mineralogy

    Directory of Open Access Journals (Sweden)

    Cristiane Rodrigues


    Full Text Available Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate; pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.

  11. Dentin Pre-Treatment to Suppress Microleakage of Amalgam Restorations

    Directory of Open Access Journals (Sweden)

    Yosi Kusuma Eriwati Arianto


    Full Text Available Diminished microleakage of amalgam-to-dentin preparations would benefit large populations in public health facilities. Prior studies demonstrated less microleakage for bonded amalgams than similarly bonded advanced composites among 30 different composite/bonding agent/storage conditions, Haller et al. showed that a combination of formaldehyde pre-treatment and glutaraldehyde-containing Syntac adhesive minimized microleakage. In the current study, CLass V restorations (groups of 10 formaldehyde-treated non carious human molars were filled with Valiant (Ivoclar NA amalgam after application of one of three liners: Copalite varnish; Amalagambond Plus with microfiber; and Syntac/Variolink. The control group used no liner material. After 24 hours at 37°C/100% RH, samples were thermocycled (1000 eyeles in water at 5°C and 60°C (15 second dwell time in each. Samples were immersed in 5% methylene blue solution (4 hrs and observed under a stereomicroscope; interfaces also were examined by SEM. Krsukal Wallis ANOVA by ranks (P<0.01 and Mann Whitney U Tests (P<0.05 of the data indicate improvements (equivalent among the 3 different liners tested here over unlined amalgam preparations. Liner/aldehyde-crosslinked dentin interphases, without technique-sensitive composites, may minimize microleakage by improving amalgam contact (physical bonding.

  12. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)


    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  13. Hydrothermal synthesis of fine oxide powders

    Indian Academy of Sciences (India)

    The authors describe. hydrothermal decomposition,; hydrothermal metal oxidation,; hydrothermal reaction,; hydrothermal precipitation and hydrothermal hydrolysis,; hydrothermal electrochemical,; reactive electrode submerged arc,; hydrothermal microwave,; hydrothermal sonochemical,. etc and also ideal and real powders ...

  14. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass (United States)

    Elliott, Douglas C; Oyler, James


    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  15. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)


    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  16. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan


    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated....... The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...

  17. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.


    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  18. Pre-treatment of substrates for biogas production - A systems analysis; Foerbehandling av biogassubstrat i systemanalys

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Holmstroem, David; Lagerkvist, Anders; Bisaillon, Mattias


    additional fuel gas generation of only about 5 % is enough to offset the climate impact of the pre-treatment. The available data on substrates and treatments is lacking in several aspects. There is no generic assessment methods applicable for all substrates and some of the used ones are unsuitable. Also the operational data available is limited and not well comparable. It is a serious problem for the development of the business that leads to a sole dependency on the information and assessments of suppliers. More data exchange within the community of plant operators is needed to develop the efficiency of the business. In this process a system approach like the one used here may be useful as an evaluation tool. For a single plant it may suffice with a work sheet analysis supported with multi-variate data analysis. In either case an improved documentation is essential.

  19. Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2 (United States)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.


    Volcanism and post-magmatism contribute significant annual methane (CH4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH4 (as well as carbon dioxide (CO2) and other gases), but the ultimate sources of this CH4 flux have not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4 sampled from ten high-temperature geothermal pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ13C and δ2H values of CH4 emitted from hot springs (26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ13CCH4 and δ13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH4, or with equilibration of CH4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ13CCH4 and δ13CCO2 ranged from 250-350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ2HH2O of the thermal springs and the measured δ2HCH4 values are consistent with equilibration between the source water and the CH4 at the formation temperatures. Though the ultimate origin of the CH4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C1/C2 + composition of the gases is more consistent with abiotic origins for most of the samples. Thus, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH4 flux from the Yellowstone National Park volcanic system.

  20. The submarine hydrothermal system of Panarea (Southern Italy: biogeochemical processes at the thermal fluids - sea bottom interface

    Directory of Open Access Journals (Sweden)

    T. Maugeri


    Full Text Available Among the submarine hydrothermal systems located offshore the volcanic archipelago of the Aeolian Islands (Southern Italy, the most active is located off the coasts of Panarea island. Thermal waters, gases and sulfur deposits coexist at the sea bottom where hydrothermal fluids are released from both shallow and deep vents. The chemical and isotopic composition of the fluid phase shows the presence of a significant magmatic component and the physico-chemical conditions of the geothermal reservoir allow the release of reduced chemical species that are microbially mediated towards the production of organic carbon as a form of biochemical energy. Microorganisms inhabiting this environment possess nutritional requirements and overall metabolic pathways ideally suited to such ecosystem that represents a clear example of the close connection between geosphere and biosphere. Microscopic examination of the white mat attached to rock surfaces showed the presence of Thiothrix-like filamentous bacteria. Moderately thermophilic heterotrophic isolates were identified as strains of the genus Bacillus. Although the hydrothermal system of Panarea has to be considered a “shallow” system, it shows many characteristics that make it similar to the “deep” oceanic systems, giving a unique opportunity for improving our knowledge on such an unexplored world by working at this easily accessible site.

  1. Synthesis of Fe-Ti-MCM-48 from silatrane precursor via sol-gel process and its hydrothermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Maneesuwan, Hussaya; Chaisuwan, Thanyalak; Wongkasemjit, Sujitra, E-mail:


    A series of bimetallic Fe–Ti-MCM-48 materials was successfully synthesized via sol–gel method using cetyltrimethylammonium bromide (CTAB) as a template and silatrane, iron (III) chloride, and titanium (IV) isopropoxide as silica, iron, and titanium sources, respectively. Scanning electron microscopy (SEM) showed the truncated octahedron morphology of Fe–Ti-MCM-48.X-ray diffraction (XRD) patterns showed well-defined, order cubic mesoporous structures. X-ray fluorescence (XRF) revealed the total metal content of the final product. UV–visible absorption spectra confirmed both iron (Fe{sup 3+}) and cerium (Ti{sup 4+}) species highly dispersed in the framework, while N{sub 2} adsorption/desorption measurements indicated a high specific surface area. As metal content increased, the mesoporous order and surface area decreased. The synthesized Fe–Ti-MCM-48 with 0.01Fe/Si and 0.01Ti/Si ratio still retained a cubic structure after hydrothermal treatment at 100 °C for 72 h. - Highlights: • Fe–Ti-MCM-48 mesoporous molecular sieves were successfully synthesized. • Bimetallic Fe–Ti-MCM-48 with 0.01Fe/Si and 0.01Ti/Si ratio had highly hydrothermal stability. • The higher titanium content led to the lower specific surface area and hydrothermal stability.

  2. Geological process of the 1997 Sumikawa landslide with hydrothermal explosions and debris avalanche, Akita prefecture; Akitaken Sumikawa onsen ni okeru jisuberi to suijoki bakuhatsu ni tomonau dosha saigai no hassei process

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, H. [Geological Survey of Japan, Tsukuba (Japan)


    Discussions were given on the geological process of the 1997 May Sumikawa landslide with hydrothermal explosions and debris avalanche in Akita Prefecture. Items of time-series information on the event include portent phenomena related to the landslide up to May 10, observation data identifying seismic motions from the landslide and hydrothermal explosions, power failure considered to have been caused by the event, statements of eyewitnesses who have seen the hydrothermal explosions from up in the sky and aerial photographs, witnesses by news reporters, and videos. When these items of information are discussed from the viewpoint of geologists, some anxiety may be applied to future measures against similar disasters. Out of the earth and sand of 500,000 m {sup 3} flown out from the landslide area, the amount flown out as an earth and sand flow is much smaller than the amount flown out as debris avalanche. Debris avalanche moves at much higher speed than that of the earth and sand flow, so that an earth and sand flow detection system using wire sensors may not be capable of warning people of timely evacuation. The debris avalanche induced from such hydrothermal explosion as the present one requires an observation system composed of a real-time long-cycle microtremor detection system and steam amount monitors. 5 refs., 6 figs., 5 tabs.

  3. Enhanced methane production from pig slurry with pulsed electric field pre-treatment. (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar


    Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.

  4. Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries. (United States)

    Garcia-Noguera, Juan; Oliveira, Francisca I P; Weller, Curtis L; Rodrigues, Sueli; Fernandes, Fabiano A N


    The effect of pre-treatments on the colour of freeze-dried strawberries was studied. Strawberries were subjected to different ultrasound and osmotic dehydration conditions followed by freeze-drying. Two concentration levels of sucrose solution (25 and 50 % w/w) and four levels of processing time (from 10 min to 45 min) were studied. Also, ultrasound application without using an osmotic solution was studied. Colour was quantified with a colorimetric analysis (CIE LCh). Sonicated strawberries presented higher lightness (L) and lower hue (h) than fresh and non-treated strawberries (control samples). The sonicated and osmo-sonicated strawberries have presented a more reddish and vivid colour then the control samples.

  5. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Directory of Open Access Journals (Sweden)

    Alexandre Luiz de Souza Pereira


    Full Text Available This work describes a three-step pre-treatment route for processing spent commercial NiMo/Al2O3 catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L-1 sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate.

  6. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Alexandre Luiz de Souza; Silva, Cristiano Nunes da; Afonso, Julio Carlos, E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica; Mantovano, Jose Luiz [Instituto de Engenharia Nuclear (CNEN/IEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares


    This work describes a three-step pre-treatment route for processing spent commercial Ni Mo/Al{sub 2}O{sub 3} catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L{sup -1} sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo) during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate. (author)

  7. Pre-treatment radiotherapy dose verification using Monte Carlo doselet modulation in a spherical phantom

    CERN Document Server

    Townson, Reid W


    Due to the increasing complexity of radiotherapy delivery, accurate dose verification has become an essential part of the clinical treatment process. The purpose of this work was to develop an electronic portal image (EPI) based pre-treatment verification technique capable of quickly reconstructing 3D dose distributions from both coplanar and non-coplanar treatments. The dose reconstruction is performed in a spherical water phantom by modulating, based on EPID measurements, pre-calculated Monte Carlo (MC) doselets defined on a spherical coordinate system. This is called the spherical doselet modulation (SDM) method. This technique essentially eliminates the statistical uncertainty of the MC dose calculations by exploiting both azimuthal symmetry in a patient-independent phase-space and symmetry of a virtual spherical water phantom. The symmetry also allows the number of doselets necessary for dose reconstruction to be reduced by a factor of about 250. In this work, 51 doselets were used. The SDM method mitiga...

  8. Effect of fungal pre-treatment of poplar chips on its paper brightness reversion

    Directory of Open Access Journals (Sweden)

    Esmaeil Rasooly Garmaroody


    Full Text Available Unbleached Kraft pulp made from poplar chips, Pre-treated by Trametes versicolor in 1, 2 and 3 weeks (Bio-Kraft pulp, was used as raw material in this study. Mentioned pulp after each step of bleaching, in ECF method at DED sequence, characterized in the lignin content, and effective groups on the brightness reversion (Carbonyl, carboxyl and Hexenuronic acid. In order to evaluation of brightness reversion, 60 g/m2 standard handsheets made from above pulps treated in thermal and UV ageing and then measured its brightness. Results showed that by increasing in pre-treatment time, in all bleached treatments, lignin content increased excluding D1 step in 3-weeks pre-treatment; Carbonyl groups was the lowest content in 1-week pre-treatment (third step and 2-weeks pre-treatment (first step and carboxyl groups and hexenuronic acid decreased after 3 step sequence bleaching. Effect of thermal pre-treatment ageing on brightness reversion considerably more than UV treatment. Also, paper from pre-treated chips in 1 and 2 weeks had minimum brightness reversion and paper from 3-weeks fungal pre-treatment chips had maximum brightness reversion due to more carbonyl and Hex-A. In this respect, 2-weeks pre-treatment time confirmed for fungal pre-treatment.

  9. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction. (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans


    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synthesis and Antibacterial Activity of Rutile-TiO2 ‎Nano Powder Prepared by Hydrothermal Process


    Rashed T. Rasheed ‎; Sariya ‎ D. Al-Algawi; Zeena R. Rhoomi


    Rutile titanium dioxide (r-TiO2) Nano powder has been synthesized by hydrothermal method in autoclave. The reaction took place between titanium tetrachloride (TiCI4) and mixture solution consisted of deionized water and ethanol, in the ratio (3:7) respectively. The product has been dried and annealed at 400°C. The structure, morphology and the particle size of the Nano powder were investigated by X-ray Diffraction, Scanning Electron Microscopy (SEM), Atomic Force Microscope (AFM), FT-IR and U...

  11. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. (United States)

    Hu, Keshui; Xiao, Xin; Cao, Xiufang; Hao, Rong; Zuo, Xiaoxi; Zhang, Xiaojing; Nan, Junmin


    Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130°C for 24h exhibits a maximum adsorption capability of about 197mg g(-1) in the neutral methylene blue (MB) solution (40mg L(-1)) within 90min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40mg L(-1)) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng


    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  13. Biofouling potential reductions using a membrane hybrid system as a pre-treatment to seawater reverse osmosis. (United States)

    Jeong, Sanghyun; Kim, Lan Hee; Kim, Sung-Jo; Nguyen, Tien Vinh; Vigneswaran, Saravanamuthu; Kim, In S


    Biofouling on reverse osmosis (RO) membranes is the most serious problem which affects desalination process efficiency and increases operation cost. The biofouling cannot be effectively removed by the conventional pre-treatment traditionally used in desalination plants. Hybrid membrane systems coupling the adsorption and/or coagulation with low-pressure membranes can be a sustainable pre-treatment in reducing membrane fouling and at the same time improving the feed water quality to the seawater reverse osmosis. The addition of powder activated carbon (PAC) of 1.5 g/L into submerged membrane system could help to remove significant amount of both hydrophobic compounds (81.4%) and hydrophilic compounds (73.3%). When this submerged membrane adsorption hybrid system (SMAHS) was combined with FeCl(3) coagulation of 0.5 mg of Fe(3+)/L, dissolved organic carbon removal efficiency was excellent even with lower dose of PAC (0.5 g/L). Detailed microbial studies conducted with the SMAHS and the submerged membrane coagulation-adsorption hybrid system (SMCAHS) showed that these hybrid systems can significantly remove the total bacteria which contain also live cells. As a result, microbial adenosine triphosphate (ATP) as well as total ATP concentrations in treated seawater and foulants was considerably decreased. The bacteria number in feed water prior to RO reduced from 5.10E(+06) cells/mL to 3.10E(+03) cells/mL and 9.30E(+03) cells/mL after SMAHS and SMCAHS were applied as pre-treatment, respectively. These led to a significant reduction of assimilable organic carbon (AOC) by 10.1 μg/L acetate-C when SMCAHS was used as a pre-treatment after 45-h RO operation. In this study, AOC method was modified to measure the growth of bacteria in seawater by using the Pseudomonas P.60 strain.

  14. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes

    Directory of Open Access Journals (Sweden)

    Aishu Yin


    Full Text Available Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m2·g−1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35–45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  15. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono


    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  16. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. (United States)

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara


    Performances of mechanical and low-temperature (plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment. (United States)

    Wang, X J; Chen, S L; Gu, X Y; Wang, K Y; Qian, Y Z


    The combination of chemical and biological treatment processes is a promising technique to reduce refractory organics from wastewater. Ozonation can achieve high color removal, enhance biodegradability, and reduce the chemical oxygen demand (COD). The biological technique can further decrease COD of wastewater after ozonation as a pre-treatment. In this study the ozonizing-biological aerated filter processes were used to treat textile washing wastewater for reuse after conventional treatment. The result showed that when the influent qualities were COD about 80 mg/L, color 16 degree and turbidity about 8 NTU, using the combination processes with the dosages of ozone at 30-45 mg/L with the hydraulic retention time (HRT) of biological aerated filter (BAF) at 3-4 hours respectively, gave effluent qualities of COD less than 30 mg/L, color 2 degree and turbidity less than 1NTU. The cost of treatment was less than one yuan/t wastewater, and these processes could enable high quality washing water reuse in textile industry. Copyright IWA Publishing 2008.

  18. Large-Scale Growth of Tubular Aragonite Whiskers through a MgCl2-Assisted Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Changyin Dong


    Full Text Available In this paper, we have developed a facile MgCl2-assissted hydrothermal synthesis route to grow tubular aragonite whiskers on a large scale. The products have been characterized by powder X-ray diffraction (XRD, optical microscopy, and scanning electronic microscopy (SEM. The results show the as-grown product is pure tubular aragonite crystalline whiskers with a diameter of 5–10 mm and a length of 100–200 mm, respectively. The concentration of Mg2+ plays an important role in determining the quality and purity of the products. Furthermore, the method can be extended to fabricate CaSO4 fibers. The high quality of the product and the mild conditions used mean that the present route has good prospects for the growth of inorganic crystalline whiskers.

  19. Synthesis and Antibacterial Activity of Rutile-TiO2 ‎Nano Powder Prepared by Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Rashed T. Rasheed ‎


    Full Text Available Rutile titanium dioxide (r-TiO2 Nano powder has been synthesized by hydrothermal method in autoclave. The reaction took place between titanium tetrachloride (TiCI4 and mixture solution consisted of deionized water and ethanol, in the ratio (3:7 respectively. The product has been dried and annealed at 400°C. The structure, morphology and the particle size of the Nano powder were investigated by X-ray Diffraction, Scanning Electron Microscopy (SEM, Atomic Force Microscope (AFM, FT-IR and UV/visible spectroscopy measurements. The effect of r-TiO2 on gram-negative bacteria Escherichia coli (E. coli and gram-positive bacteria Staphylococcus aurous (S. aureus has been studied. This study showed that rutile TiO2 Nano powder has efficient antibacterial activity, and can use as an antibacterial agent for different purposes

  20. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  1. Preparation of γ-Fe2O3/Ni2O3/FeCl3(FeCl2 Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids

    Directory of Open Access Journals (Sweden)

    Qingmei Zhang


    Full Text Available Using a hydrothermal process in FeCl2 solution, γ-Fe2O3/Ni2O3/FeCl3(FeCl2 composite nanoparticles were obtained from the FeOOH/Ni(OH2 precursor prepared by coprecipitation. The precursor and the as-prepared nanoparticles were investigated by vibrating sample magnetometer (VSM, X-ray diffraction (XRD, energy disperse X-ray spectroscopy (EDX, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM. The experimental results showed that the paramagnetic amorphous precursor, in which Ni(OH2 is formed outside FeOOH, is transformed to ferrimagnetic γ-Fe2O3/Ni2O3 composite when it is processed in FeCl2 solution (0.25, 0.50, 1.00 M in an autoclave at 100°C for 1 hr. In addition, the dismutation reaction of FeCl2 produces FeCl3 and Fe. Some FeCl3 and little FeCl2 can be absorbed to form γ-Fe2O3/Ni2O3/FeCl3(FeCl2 composite nanoparticles in which Ni2O3 forms outside the γ-Fe2O3 core and the outermost layer is FeCl3 (FeCl2. The content of FeCl3 (FeCl2 in the particles increased, and the magnetization of the particles decreased with the concentration of FeCl2 solution increasing in the hydrothermal process. The FeCl3 (FeCl2 surface is chemically passive and nonmagnetic (paramagnetic. Accordingly, the composite nanoparticles are chemically stable, and their aggregation is prevented. The specific saturation magnetization of such composite nanoparticles can get to 57.4–62.2 emu/g and could be very suitable for synthesizing ferrofluids.

  2. Enzymatic Pre-Treatment Increases the Protein Bioaccessibility and Extractability in Dulse (Palmaria palmata

    Directory of Open Access Journals (Sweden)

    Hanne K. Mæhre


    Full Text Available Several common protein extraction protocols have been applied on seaweeds, but extraction yields have been limited. The aims of this study were to further develop and optimize existing extraction protocols and to examine the effect of enzymatic pre-treatment on bioaccessibility and extractability of seaweed proteins. Enzymatic pre-treatment of seaweed samples resulted in a three-fold increase in amino acids available for extraction. Combining enzymatic pre-treatment with alkaline extraction resulted in a 1.6-fold increase in the protein extraction yield compared to a standard alkaline extraction protocol. A simulated in vitro gastrointestinal digestion model showed that enzymatic pre-treatment of seaweed increased the amount of amino acids available for intestinal absorption 3.2-fold. In conclusion, enzymatic pre-treatment of seaweeds is effective for increasing the amount of amino acids available for utilization and may thus be an effective means for increasing the utilization potential of seaweed proteins. However, both the enzymatic pre-treatment protocol and the protein extraction protocol need further optimization in order to obtain optimal cost-benefit and results from the in vitro gastrointestinal digestion model need to be confirmed in clinical models.

  3. Exploring alternatives to reduce economical costs associated with FNA pre-treatment of waste activated sludge. (United States)

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M


    Recent studies have shown the effectiveness of Free Nitrous Acid (FNA) pre-treatment in enhancing sludge biodegradability and improving its methane production potential. FNA is regarded as an environmental friendly pre-treatment which can be easily applied when a source of nitrite is present in wastewater treatment plants. However, when nitrite is not available and needs to be purchased, this treatment can become less attractive due to the costs associated to nitrite. In order to overcome this possible limitation, two different strategies to optimize the use of nitrite during FNA treatment were investigated: i) Recovering NO2(-) after the pre-treatment is completed; and ii) Concentrating the sludge before FNA pre-treatment. Results show that recovering NO2(-) from the pre-treated sludge is not suitable due to the loss of soluble organic matter present in the supernatant after the pre-treatment. However, concentrating the sludge before the pre-treatment seems a good strategy to optimize the use of nitrite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhancement of drying and rehydration characteristics of okra by ultrasound pre-treatment application (United States)

    Tüfekçi, Senem; Özkal, Sami Gökhan


    Effect of ultrasound application prior to hot air drying on drying and rehydration kinetics, rehydration ratio and microstructure of okra slices were investigated. For this purpose, the selected parameters are ultrasound pre-treatment time (10, 20 and 30 min), ultrasound amplitude (55 and 100%) and the temperature of drying air (60 and 70 °C). 5 mm thick cylindrical shaped okra slices were used in the experiments. The samples were immersed in water and ultrasonic pre-treatments were done in water with ultrasonic probe connected to an ultrasonic generator with 20 kHz frequency. Pre-treated samples were dried in a tray drier with a 0.3 m/s air velocity. Ultrasound pre-treatment affected the drying rate of the okra slices significantly. Drying time of okra slices was decreased by the application of ultrasound pre-treatment. Modified Page model found to be the most suitable model for describing the drying characteristics of okra slices. Improvements in rehydration properties of the dried samples were observed due to the ultrasound pre-treatment. The influence of the ultrasound pre-treatment on microstructure was clearly observed through scanning electron microscopy images of the dried samples. As the amplitude of ultrasound increased the changes in structure of the okra tissue increased.

  5. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes (United States)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús


    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  6. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    Directory of Open Access Journals (Sweden)

    Min-Sik Kim


    Full Text Available Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I2D/IG ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I2D/IG ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.

  7. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration. (United States)

    Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin


    At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m-3, which is an improvement compared to the median footprint of 0.75 kWh·m-3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.

  8. Primary Processing

    NARCIS (Netherlands)

    Mulder, W.J.; Harmsen, P.F.H.; Sanders, J.P.M.; Carre, P.; Kamm, B.; Schoenicke, P.


    Primary processing of oil-containing material involves pre-treatment processes, oil recovery processes and the extraction and valorisation of valuable compounds from waste streams. Pre-treatment processes, e.g. thermal, enzymatic, electrical and radio frequency, have an important effect on the oil

  9. Acrylamide reduction under different pre-treatments in French fries

    DEFF Research Database (Denmark)

    Pedreschi, Franco; Kaack, Karl; Granby, Kit


    Acrylamide formation in French fries was investigated in relation under different processing conditions and the content of glucose and asparagine of the strips before frying. Potato strips (0.8 x 0.8 x 5 cm) of Bintje variety were fried at 150, 170 and 190 degrees C until reaching moisture conten...

  10. Improvement of wheat straw anaerobic digestion through alkali pre-treatment: Carbohydrates bioavailability evaluation and economic feasibility. (United States)

    Romero-Güiza, Maycoll Stiven; Wahid, Radziah; Hernández, Verónica; Møller, Henrik; Fernández, Belén


    Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS(-1)of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS(-1)d(-1), being a favourable case for an eventual scale-up of the combined process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. (United States)

    Wang, Liping; Li, Aimin; Chang, Yuzhi


    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Alicja Machnicka


    Full Text Available One of the problems in wastewater treatment technologies is the formation of foam/scum on the surface of bioreactors. The foam elimination/destruction can be carried out by various methods among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation of the foam microorganisms results in phosphates, ammonium nitrogen, magnesium and potassium transferred from the foam solids into the liquid phase. Application of both methods as a hybrid pre-treatment process caused in an increased concentration of phosphates of about 677 mg PO43- L-1, ammonium nitrogen about 41 mg N-NH4+ L-1. The concentration of Mg2+ and K+ in the solution increased from 6.2 to 31.1 mg Mg2+ L-1 and from 22.4 to 102.0 mg K+ L-1, respectively. The confirmation of physicochemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration was IR analysis. It was demonstrated that the disintegration of foam permits removal of a part of nutrients in the form of struvite.

  13. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. (United States)

    Cheison, Seronei Chelulei; Kulozik, Ulrich


    Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.

  14. Combined coagulation flocculation pre treatment unit for municipal wastewater

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Ismail


    Full Text Available The potentials of using the hydraulic technique in combined unit for municipal wastewater treatment were studied. A combined unit in which processes of coagulation, flocculation and sedimentation, has been designed utilizing hydraulic mixing instead of mechanical mixing. A jar test treatability study has been conducted to locate the optimum dose of the coagulants to be used. Alum, ferrous sulfate, ferric sulfate, a mixture of ferric and ferrous sulfates, and mixture of lime and ferrous sulfate were all tested. A pilot unit was constructed in the existing wastewater treatment plant at El Mansoura governorate located in north Egypt. The optimum dose of coagulants used in the combined unit gives removal efficiencies for COD, BOD, and total phosphorous as 65%, 55%, and 83%, respectively.

  15. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Nielson, D.L. (eds.)


    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.


    Directory of Open Access Journals (Sweden)

    Magnos Alan Vivian


    Full Text Available This study aimed to evaluate the effect of pre-treatments on drying rate of uva-do-japão wood (Hovenia dulcis Thunb.. For this, samples of wood species concerned with dimensions of 2,0 x 10,0 x 20,0 cm (E x L x C, were subjected to pre-treatment of soaking in hot water and freezing. The pre- treatments of heating and freezing were conducted in a thermal tank at 85ºC and a freezer at -18ºC, respectively, where the samples remained for 12 and 24 hours for both treatments. After the pre-treatments, the wood samples were dried in an electric oven at temperatures of 60 and 90°C until the final moisture content. Thedrying rate was significantly influenced by pre-treatments, drying temperature and their duration of them. This rate presented a different behavior according to the duration of treatment: the warning was higher with 12hours whereas the freezing, with 24 hours, was more evident. The increasing duration and temperature observed showed that the tendency of the drying rate is to increase.

  17. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy (United States)

    Höhlinger, Michael; Heise, Svenja; Wagener, Victoria; Boccaccini, Aldo R.; Virtanen, Sannakaisa


    The use of Mg alloys as biodegradable implants requires optimizing the surface performance. A high number of surface modification and coating approaches have been previously explored, for instance to make magnesium and its alloys more corrosion resistant. The current study focuses on developing surface pre-treatments as a corrosion protection and primer for further surface modifications by electrophoretic deposition (EPD) of bioadaptive chitosan-bioactive glass coatings. For this, different surface treatments were tested on a WE43 Mg alloy. These treatments include immersion in Dulbecco's Modified Eagle's Medium (DMEM), a calcium phosphate treatment, immersion in hydrofluoric acid, and a hydrothermal procedure in NaOH. The resulting coatings were analyzed in view of the surface morphology and composition by SEM/EDX, as well as in view of their short-term corrosion protection ability by electrochemistry. Finally, the suitability of the different pre-treatments as an interfacial protection layer for subsequent EPD of a chitosan/bioactive glass-coating was explored.

  18. Optimization of hydrothermal pretreatment and membrane filtration processes of various feedstocks to isolate hemicelluloses for biopolymer applications (United States)

    Sukhbaatar, Badamkhand

    Hemicelluloses (HC) are the second most abundant plant polysaccharides after cellulose, constituting 25-30% of plant materials. In spite of their abundance, HC are not effectively utilized. Recently, considerable interest has been directed to HC-based biomaterials because of their high oxygen barrier properties, which has potential in food packaging applications. In this study, HC were extracted from sugarcane bagasse and southern yellow pine using a hydrothermal technique which utilizes hot compressed water without catalyst. The parameters affecting the yield of extracted HC such as temperature, time and pressure, were tested and optimized. Eighty four percent of xylose was extracted from sugarcane bagasse at the optimum condition, 180 °C 30 min and 1 MPa pressure. In the case of southern yellow pine, 79% of the mannose was extracted at 190 °C for 10 min and 2 MPa pressure. Concentration and isolation of HC from bagasse and southern yellow pine HC extract were performed by membrane filtration and freeze drying systems. Isolated HC were characterized by FT-IR and 13C NMR techniques and used as a starting material for film preparation. Films were prepared in 0/100, 50/50, 60/40, 70/30 and 80/20% ratios of HC and sodium carboxymethylcellulose (CMC). Thirty five percent of sorbitol (w/w of HC and CMC weight) was also added as a plasticizer. Films were evaluated by measuring water absorption, water vapor permeability (WVP), tensile property and oxygen barrier capability. At 55% relative humidity (RH) and 25 °C the water absorption of both sugarcane bagasse and southern yellow pine HC-based films tended to increase as HC content increased. The lowest WVP of sugarcane bagasse (3.84e-12 g/Pa h m) and southern yellow pine HC films (2.18e-12 g/Pa h m) were determined in 60/40 HC/CMC films. Tensile test results showed that as HC content increases the Young's modulus decreases, deflection at maximum load and percentage of strain at break increase. It implies that the film

  19. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.


    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  20. SBR treatment of olive mill wastewaters: dilution or pre-treatment? (United States)

    Farabegoli, G; Chiavola, A; Rolle, E


    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  1. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. (United States)

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella


    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dynamics of the Yellowstone hydrothermal system (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.


    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  3. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T


    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrothermal process of coal obtainment from high humidity biomasses - grass, peat, sugar cane bagasse; Processo hidrotermal de obtencao de carvao a partir de biomassas de alta umidade (capim, turfa e bagaco de cana)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarinho, Silvio Benedicto


    To convert biomass of high productivity and high moisture to coal, the author proposes a hydrothermal process. This way, the carbonization proceeds under wet conditions and drying before processing is not needed. Three raw materials have been tested: Pennisetun Purpureum Shum (elephant grass), peat and sugar cane bagasse. The first material has high productivity, the latter two show high moisture, they are easily available and up to now, a good coalification technology has not been developed. This study gives results of the hydrothermal process applied and characterizes some steps of this process in more detail to enhance understanding of process. Tests have been conducted in autoclaves of 1 L capacity with external pressure and temperature control. The range of temperatures used is 180 to 300 deg C and the coalification time has been 5, 15 and 45 minutes. The result of this study shows that during the hydrothermal process, a high quantity of volatile material is retained in the newly formed coal due to working with low temperature and high pressures. This gives a product of high calorific power (about 6,000 kcal/Kg) and high reactivity and mass. The resulting product does not need much grinding to be used by burners. The process partially removes the ashes and the final ash content of the coal is much lower than the one produced by dry coalification. Dewatering is very easily done by mechanical means, filter pressing by example and does not require high amount of energy. (Author)

  5. Controlled retting of hemp fibres: Effect of hydrothermal pre-treatmen tand enzymatic retting on the mechanical properties of unidirectiona lhemp/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Silva, Diogo Alexandre Santos; Fernando, Dinesh


    The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting...... produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08.Traditional...

  6. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)


    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  7. MoMar-Demo at Lucky Strike. A near-real time multidisciplinary observatory of hydrothermal processes and ecosystems at the Mid-Atlantic Ridge (United States)

    Cannat, M.; Sarradin, P.; Blandin, J.; Escartin, J.; Colaco, A.; MoMAR-Demo Scientific Party; Aron, Michael; Aumont, Virginie; Baillard, Christian; Ballu, Valérie; Barreyre, Thibaut; Blandin, Jérôme; Blin, Alexandre; Boulart, Cédric; Cannat, Mathilde; Carval, Thierry; Castillo, Alain; Chavagnac, Valérie; Coail, Jean Yves; Colaço, Ana; Corela, Carlos; Courrier, Christophe; Crawford, Wayne; Cuvelier, Daphné; Daniel, Romuald; Dausse, Denis; Escartin, Javier; Fabrice, Fontaine; Gabsi, Taoufik; Gayet, Nicolas; Guyader, Gérard; Lallier, François; Lecomte, Benoit; Legrand, Julien; Lino, Silva; Miranda, Miguel; Mitard, Emmelyne; Pichavant, Pascal; Pot, Olivier; Reverdin, Gilles; Rommevaux, Céline; Sarradin, Pierre Marie; Sarrazin, Jozée; Tanguy, Virginie; Villinger, Heinrich; Zbinden, Magali


    The MoMAR "Monitoring the Mid-Atlantic Ridge" project was initiated by InterRidge in 1998 to study the environmental instability resulting from active mid-ocean-ridge processes at hydrothermal vent fields south of the Azores. It then developped into a component of the ESONET (European Seafloor Observatory Network) and EMSO (European Multidisciplinary Subsea Observatory) programs, which coordinate eulerian observatory initiatives in the seas around Europe. MoMAR experiments have started in 2006 and address two main questions : What are the feedbacks between volcanism, deformation, seismicity, and hydrothermalism at a slow spreading mid-ocean ridge? and How does the hydrothermal ecosystem couple with these sub-seabed processes? The MoMAR-Demo project started in 2010 with partial support from ESONET. It has been implemented so far by 2 cruises of the RV Pourquoi Pas ? during which we successfully deployed (in 2010), and upgraded (in 2011) a near-realtime buoyed observatory system. The system comprises two Sea Monitoring Nodes (SeaMoN) at the seafloor, which are acoustically linked to a surface relay buoy (BoRel), ensuring satellite communication to a land base station in Brest (France). One SeaMoN node connects to a 3-components seismometer and an hydrophone for seismic event detection, and two pressure probes for geodetic measurements, and the other SeaMoN node connects to a video camera, a dissolved-iron analyzer, and an optode (oxygen and temperature probe) for ecological time studies. The BOREL transmission buoy is equiped with GPS (geodetic experiment and buoy location) and meteo station. Data and/or status signals from these sensors are transmitted every 6 hours, and put on line in compliance with the ESONET-EMSO data policy (temporary access through The MoMAR-Demo system also allows for interactive connections and changes of data transmission rates on demand. It is nested in arrays of autonomous sensors (OBSs

  8. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen


    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mechanical pre-treatment for enzymatically enhanced energy efficient TMP; Mekanisk foerbehandling av flis foer effektiv enzymatisk paaverkan vid energieffektiv TMP tillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Viforr, Silvia


    Thermomechanical pulp (TMP) processes are high energy demanding. This together with the high energy prices of nowadays results in significant costs, why less energy demanding processes are wished. This project has evaluated the potential for energy reductions in a TMP process by a mechanical pre-treatment of the wood chips combined with an enzymatic modification based on a cellulase mixture. The structure of the wood was opened up by the mechanical pre-treatment making it easier for the enzymes to penetrate into the pre-treated wood material. The enzymatic treatment was then run at optimum standard conditions. The EU project - Ecotarget 2004-2008 ( have studied different types of enzymes that could be used for pre-treatment of wood chips in order to save energy during TMP processes. Based on these studies cellulose enzyme was recommended to be used at pre-treatment experiment performed by the Vaermeforsk project. Due to the fact that the Ecotarget-project has also been run during 2008 with activities involving enzymes, the steering board of the Vaermeforsk project took the decision to co-ordinate the experiments from both of the projects. This co-operation increased the funds and also the number of experiments for both of the projects. The experimental results from this project showed that energy reductions at a given tensile index could be achieved if gently mechanical pre-treated wood chips were enzymatically treated. An intensive mechanical pre-treatment gave negative effects on both fibre length and tear index while the light scattering coefficient was promoted, probably due to the fibre shortening. Enzymatic modification of mechanically pre-treated chips showed a favourable modification of the fibres, even regarding the fibre shortening, if compared to mechanical pre-treated chips only. The effects of cellulases was however not as expected, why a high amount of cellulases was used. Other types of enzymes which could attack the primary wall of

  10. Effect of steam explosion and enzymatic pre-treatments on pulping and bleaching of Hesperaloe funifera. (United States)

    Martín-Sampedro, R; Eugenio, M E; Villar, J C


    A non-wood raw material with high potential for pulp and paper applications (Hesperaloe funifera) was subjected to a steam explosion pre-treatment, and the subsequent effect of this pretreatment on biopulping and biobleaching was studied. An increase in the delignification rate, bigger than that reported for autohydrolysis and acid hydrolysis pre-treatments, and a reduction in chemical consumption were found during kraft pulping of the exploded samples. However, biopulping with the laccase-mediator system (LMS) did not lead to a reduction in the kappa number in either non-exploded or exploded unbleached pulps. On the other hand, the steam explosion pretreatment boosted the advantages of the LMS pre-treatment (decrease in kappa number and increase in brightness) favored biobleaching, with a 53.1% delignification rate and a final brightness of 67% ISO. Finally, the steam explosion pre-treatment also improved the color properties of the bleached pulp and reduced the hydrogen peroxide consumption by 24.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of soaking and microwave pre-treatment of cowpea seeds on ...

    African Journals Online (AJOL)

    This study was carried out to determine the effect of soaking and microwave energy pre-treatments on the cooking time, anti-nutritional factors and proximate composition of cowpea seeds. Seeds were soaked (6 h) and exposed to microwaves for 2 and 5 min followed by oven-drying (48 ± 2 o C) to obtain a uniform moisture ...

  12. Influence of surface pre-treatment on the shear stress-strain relationships of structural adhesives

    NARCIS (Netherlands)

    Botter, H.; Berg, A. van den; Soetens, F.; Straalen, IJ.J. van; Vogelesang, L.B.


    Using two types of adhesively bonded aluminium joints, a TAST specimen and a specifically designed stiff double lap joint, experiments show that the (apparent) yield stress, the amount of plastic flow and the occurence of strain hardening is influenced by the surface pre-treatment used for an

  13. The role of pre-treatment proactive coping skills in successful weight management

    NARCIS (Netherlands)

    Vinkers, Charlotte D. W.; Adriaanse, Marieke A.; Kroese, Floor M.; de Ridder, Denise T. D.


    Objectives: Proactive coping encompasses future-oriented self-regulatory skills that help people prepare for future difficulties before they occur, such as planning and monitoring. The aim of the present study was to examine the interplay between pre-treatment proactive coping skills and expected

  14. Pre-treatment anxiety in a dental hygiene recall population: a cross-sectional pilot study. (United States)

    Hofer, Deborah; Thoma, Myriam V; Schmidlin, Patrick R; Attin, Thomas; Ehlert, Ulrike; Nater, Urs M


    Increased levels of anxiety may affect a patient's receptiveness to treatment, health care information and behaviour modification. This study was undertaken to assess pre-treatment anxiety in a dental hygiene recall population maintaining a schedule of regular preventive care appointments. The sample population consisted of 46 consecutive adult recall patients waiting for their regularly scheduled dental hygiene appointment. Pre-treatment state (current) anxiety was assessed using the State-Trait-Anxiety Inventory (STAI), State form; dental anxiety with the Hierarchical Anxiety Questionnaire (HAQ); subjective stress using a visual analogue scale (VAS); and mood/alertness/calmness using the Multidimensional Mood Questionnaire (MDMQ). Two distinct groups, based on state anxiety scores, were formed; one displaying increased levels of pre-treatment anxiety (n = 14), the other low anxiety (n = 32). The HA group was characterized by significantly higher dental anxiety and subjective stress levels prior to treatment; as well as worse mood, lower alertness, and less calmness in the dental office setting. There was no correlation between anxiety level and years in dental hygiene recall. A high level of pre-treatment anxiety was present in about one third of the sample population. The prevalence of this anxiety demonstrates the need for both early recognition and patient management strategies (psychological and pain management) to positively influence their treatment experience.

  15. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues (United States)

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo


    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466

  16. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.


    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After


    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  18. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo; Poulsen, M.


    The anaerobic digestion of outdoor cultivated Rhizoclonium biomass was investigated in this study. The influence of applying mechanical and biological pre-treatment methods prior to the biomass digestion on the overall methane yields was examined. The results show that the application of a combined...

  19. High levels of pre-treatment HIV drug resistance and treatment failure in Nigerian children

    NARCIS (Netherlands)

    Boerma, Ragna S.; Boender, T. Sonia; Sigaloff, Kim C. E.; Rinke de Wit, Tobias F.; van Hensbroek, Michael Boele; Ndembi, Nicaise; Adeyemo, Titilope; Temiye, Edamisan O.; Osibogun, Akin; Ondoa, Pascale; Calis, Job C.; Akanmu, Alani Sulaimon


    Pre-treatment HIV drug resistance (PDR) is an increasing problem in sub-Saharan Africa. Children are an especially vulnerable population to develop PDR given that paediatric second-line treatment options are limited. Although monitoring of PDR is important, data on the paediatric prevalence in

  20. The influence of temperature, light, salinity and seed pre-treatment ...

    African Journals Online (AJOL)

    The germination of Sesbania sesban seeds was studied under controlled environmental conditions. Interactive effects of temperature and light, effects of salinity and effects of different pre-treatments of seeds were studied. Sesbania seeds were placed in Petri dishes with filtration paper and the germination and radical ...

  1. Effect of Pre-Treatment with Plant Powders on the Nutrient ...

    African Journals Online (AJOL)

    Effect of Pre-Treatment with Plant Powders on the Nutrient Composition of Maize Grain Zea Mays Infested by Weevil Sitophilus zeamais Motsch. ... The results showed that the percentage total protein determined by the estimate of total nitrogen content did not decrease much after three months of post infestation.

  2. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen


    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  3. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. (United States)

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel


    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of thermal pre-treatments on solid slaughterhouse waste methane potential. (United States)

    Rodríguez-Abalde, A; Fernández, B; Silvestre, G; Flotats, X


    The effects of thermal pre-treatments on the biogas production potential of two solid slaughterhouse waste types (poultry and piggery slaughterhouse by-products) were assessed by means of batch experiments. Both animal by-products were characterized in terms of fat, protein and carbohydrate concentrations. The selected thermal pre-treatments, pasteurization (70 °C for 60 min) and sterilization (133 °C and 3 bars for 20 min), are included in the current European regulations for the disposal or use of animal by-products. The pre-treatments produced notable improvements in organic matter solubilization, but had different effects on the anaerobic bioavailability of the treated substrates. The methane yield of the initial volatile solids did not increase significantly after pre-treatment when carbohydrate concentration was high, reaching a maximum of 0.48 m(CH4)(3) kg(VS)(-1) for the pasteurized poultry waste. However, this yield increased by up to 52.7% after pasteurization and 66.1% after sterilization for the lower carbohydrate concentration sample (piggery waste), reaching maxima of 0.88 and 0.96 m(CH4)(3) kg(VS)(-1), respectively. The maximum methane production rates, measured as the maximum slope of the accumulated methane production curve, per unit of initial biomass content, were also different. While this rate increased by 52.6% and 211.6% for piggery waste after pasteurization and sterilization, respectively, it decreased by 43.8% for poultry waste after pasteurization with respect to untreated waste. Compounds with low biodegradability that are produced by Maillard reactions during thermal pre-treatment could explain the low bioavailability observed for waste with a high carbohydrate concentration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste. (United States)

    Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K


    This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms

    DEFF Research Database (Denmark)

    Marques, Carlos A. F.; Pospori, Andreas; Demirci, Gökhan


    In this work, fibre Bragg gratings (FBGs) were inscribed in two different undoped poly- (methyl methacrylate) (PMMA) polymer optical fibres (POFs) using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs......) were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process) have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary...... is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which...

  7. Potencial de aplicação do processo foto-fenton/solar como pré-tratamento de efluente da indústria de laticínios Potential application of solar/photo-fenton process for the pre-treatment of wastewater from dairy industry

    Directory of Open Access Journals (Sweden)

    Ricardo Dalla Villa


    Full Text Available Dairy wastewater is characterized by frequent episodes of drastic increases of organic content, giving rise to bulking filamentous bacteria and compromising the biological treatment process. This study reports the reduction of organic content of such wastewater by the application of the solar photo-Fenton process. For a wastewater containing 335, 2627 or 5400 mg C L-1 between 90% and 50% of the organic carbon content were removed after 3.5 h irradiation. The results show that the solar photo-Fenton process can be a good alternative for the abatement of organic content of dairy wastewater, especially in cases of organic content fluctuation, allowing an efficient biological treatment.


    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Pennebaker, F.; Fink, S.


    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  9. Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions


    Kelbert, M.; Romaní, Aloia; Coelho, Eduardo; Pereira, L; Teixeira, J. A.; Domingues, Lucília


    Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hyd...

  10. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study. (United States)

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N


    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants.

  11. Chemical environments of submarine hydrothermal systems (United States)

    Shock, Everett L.


    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  12. [Effect of natural and hydrothermal synthetic goethite on the release of methane in the anaerobic decomposition process of organic matter]. (United States)

    Yao, Dun-Fan; Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo


    The effects of natural goethite (NGt) and synthetic goethite (SGt) on the release of methane in the anaerobic biochemical system consisted of dissimilatory iron-reducing bacteria (DIRB) and methane-producing bacteria (MPB) were investigated through batch tests with sodium acetate as the carbon source. To explore the effects and mechanisms of both mineral materials on the release of methane in the anaerobic decomposition process of organic matter in the presence of DIRB, the main gas components and total organic carbon (TOC) , total inorganic carbon (TIC), and Fe2+ in the aqueous phase of the experimental process were determined and XRD analyses were conducted for the solid-phase product. Moreover, the minerals were analyzed by specific surface area (BET), X-ray diffraction (XRD), X-ray fluorescence (XRF). Modified Gompertz equation was used to fit the cumulative methane and carbon dioxide. Results showed that the maximum cumulative production of methane was brought forward by 60-78 days by the addition of goethite and CO2 was effectively reduced by 30% - 67% compared with the control samples. SGt was more effective than NGt in promoting the release of CH4 and reducing the CO, emission. Furthermore, the analysis of the solid product showed that the addition of goethite can fix part of CO2 by the formation of siderite.

  13. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. (United States)

    Arun, Jayaseelan; Shreekanth, Sivaraman Jayachandran; Sahana, Ravishankar; Raghavi, Meenakshi Sundaram; Gopinath, Kannappan Panchamoorthy; Gnanaprakash, Dhakshinamoorthy


    In this study, liquefaction of Chlorella vulgaris biomass grown in photo-bioreactor using wastewater as source of nutrition was studied and influence of process parameters on the yield of bio-oil was analysed. Different biomass to water ratio (5g/200ml, 10g/200ml, 15g/200ml, and 20g/200ml) was taken and bio-oil yield at various temperatures ranging from 220 to 340°C was studied. Catalyst loading of the range 2.5-8%wt of NaOH was also studied to analyse the influence of catalyst concentration on bio-oil yield. Obtained bio-oil was characterized using Gas Chromatography Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Results showed that maximum bio-oil yield of 26.67%wt was observed at operating conditions of 300°C, 15g/200ml biomass load and 2.5%wt of NaOH at 60min holding time. Fatty acids and other high carbon compounds were detected in the bio-oil obtained through liquefaction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Early Archaean hydrothermal systems (United States)

    de Vries, S. T.; Nijman, W.


    Although many people have written about hydrothermal systems in the early Earth, little real evidence is available. New data from the Barberton greenstone belt (South Africa) and greenstone belts of the East Pilbara (Western Australia), provide proof of the existence and nature of hydrothermal systems in the Early Archaean (around 3.4 Ga). Detailed field relationships between vein systems, host rock and overlying sediments are combined with data from fluid inclusions studies on quartz fills in the sediments. An intimate relationship between chert veins and the overlying sediments has been established (the veins are syn-sedimentary). The salinity and temperature of the fluids in the inclusions shows that these are of hydrothermal origin. Similar types of hydrothermal systems, of approximately the same age, have been found at different locations; in the Barberton greenstone belt and at various locations in the East Pilbara. The setting of these hydrothermal systems is not always identical however. Although a felsic substratum is more common, in the North Pole area (Pilbara) the hydrothermal systems rise from a basaltic substratum. In the Barberton greenstone belt, the systems are closely related to shallow intrusive (felsic) bodies. The study of these ancient hydrothermal systems forms an important framework for studies of early life on Earth. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Foundation Dr. Schürmannfonds.

  15. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.; Herman, Connie C.


    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-based technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.

  16. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.


    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic...... between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pretreatment at 70 degreesC on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pretreatment step showed very positive effect on the methane potential and production rate upon...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...

  17. Pre-treatment of radicular dentin by self-etch primer containing chlorhexidine can improve fiber post bond durability. (United States)

    Zhou, Jianfeng; Yang, Xu; Chen, Li; Liu, Xiaoqiang; Ma, Lin; Tan, Jianguo


    We evaluated whether the pre-treatment of radicular dentin by ED Primer containing different concentrations of chlorhexidine can improve the bond durability of fiber post to radicular dentin. Experimental ED primers containing different concentrations of chlorhexidine (0%, 0.5% and 1.0%) were prepared. Thirty extracted maxillary anterior teeth were divided into 3 groups, each group corresponding to different chlorhexidine concentrations. Fiber posts were cemented in endodontically treated teeth with experimental ED primers and Panavia F. The bonded teeth were transversally sectioned into six slices and then were processed for thin slice push-out test 24 h later or after 18-months water storage. Eighteen-month storage resulted in significant bond strength reduction of all groups (pchlorhexidine into ED primer can extend the bond longevity of fiber post to radicular dentin.

  18. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs (United States)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf


    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  19. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta


    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  20. The effect of lime pre-treatments of date palm leaves on delignification and in vitro rumen degradability

    NARCIS (Netherlands)

    Ghorbani, M.; Ahmadi, F.; Rajaee Rad, A.; Zamiri, M.J.; Cone, J.W.; Polikarpov, I.


    Experiments were conducted to determine the effect of lime pre-treatment on the chemical composition and in vitro rumen degradability of date palm leaves (DPL). Lime pre-treatments, with or without oxygen supply, were applied for 1, 2 and 3 weeks at 25 and 40 °C. Lime was neutralized by the

  1. Meta-analysis: the influence of pre-treatment with a proton pump inhibitor on Helicobacter pylori eradication.

    NARCIS (Netherlands)

    Janssen, M.J.R.; Laheij, R.J.F.; Boer, W.A. de; Jansen, J.B.M.J.


    BACKGROUND: There is much debate about the influence of pre-treatment with a proton pump inhibitor on Helicobacter pylori eradication. The few studies investigating the influence of pre-treatment on triple and quadruple therapies did not find differences in eradication rates. However, the high

  2. Pre-treatment analysis of woody vegetation composition and structure on the hardwood ecosystem experiment research units (United States)

    Michael R. Saunders; Justin E. Arseneault


    In long-term, large-scale forest management studies, documentation of pre-treatment differences among and variability within experimental units is critical for drawing the proper inferences from imposed treatments. We compared pre-treatment overstory and large shrub communities (diameters at breast height >1.5 cm) for the 9 research cores with the Hardwood Ecosystem...

  3. Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems

    DEFF Research Database (Denmark)

    Carlsson, My; Naroznova, Irina; Møller, Jacob


    A need for improvement of food waste (FIAT) pre-treatment methods has been recognized, but few life cycle assessments (LCA) of FIN management systems have considered the pre-treatment with respect to input energy, loss of organic material and nutrients for anaerobic digestion (AD) and/or further...

  4. Pre-treatment Social Anxiety Severity Moderates the Impact of Mindfulness-Based Stress Reduction and Aerobic Exercise


    Jazaieri, Hooria; Lee, Ihno A.; Goldin, Philippe R.; Gross, James J.


    We examined whether social anxiety severity at pre-treatment would moderate the impact of Mindfulness-Based Stress Reduction (MBSR) or Aerobic Exercise (AE) for generalized social anxiety disorder. MBSR and AE produced equivalent reductions in weekly social anxiety symptoms. Improvements were moderated by pre-treatment social anxiety severity.

  5. Effect of sample pre-treatment on the determination of steroid esters in hair of bovine calves

    NARCIS (Netherlands)

    Aqai, P.; Stolker, A.A.M.; Lasaroms, J.J.P.


    The effect of three sample pre-treatment steps, washing, cutting and grinding on the determination of steroid esters in hair is studied. The study is performed by using hair samples obtained after pour-on application of steroid esters to bovine calves. After sample pre-treatment the hair is treated

  6. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. (United States)

    Maiti, Sampa; Gallastegui, Gorka; Suresh, Gayatri; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Drogui, Patrick; LeBihan, Yann; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo


    Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fibrillation of Aspen by Alkaline Cold Pre-treatment and Vibration Milling

    Directory of Open Access Journals (Sweden)

    Kärt KÄRNER


    Full Text Available In this article an attempt to fibrillate aspen bleached chemi-thermo mechanical pulp (BCTMP fibre in an environmentally friendly way is reported. The effects of various NaOH, KOH, urea and ethanol aqueous solutions at lowered temperature were tested for pre-treatment. The pre-treatment was followed by vibration milling aiming to peel off outer cell wall layers and to fibrillate S2 layer of the aspen wood fibre. The effects of the treatments were evaluated by scanning electron microscopy (SEM. The results show that it is possible to fibrillate BCTMP aspen fibres by using alkaline aqueous solutions at low temperatures followed by a mechanical treatment. A strong dependence on fibrillation of cellulose on temperature, time and alkali concentration was established.DOI:

  8. Effect of pre-treatments on solar drying kinetics of red seedless grapes (cv. Monukka

    Directory of Open Access Journals (Sweden)

    Inês Nunes Ramos


    Full Text Available Two different pre-treatments were applied to grapes prior to drying in a mixed mode solar dryer. Grapes were blanched in water and in a 0.1% sunflower oil water emulsion, both at 99oC and for approximately 15 seconds. Several models were tested to fit the experimental data of drying curves but the normalized Newton model gave the best fit results. Samples blanched in hot water or in the 0.1% edible oil emulsion had faster drying rates than untreated samples. Contrary to what was expected, pre-treating with the 0.1% edible oil emulsion did not increase the drying rate to a higher extent than blanching. Pre-treatments did not give a noteworthy difference in the total drying time. However, they had an important role in accelerating initial drying rates, thus preventing moulds and bacterial growth and consequently increasing farmers’ income.

  9. Hydrothermal Conditions and the Origin of Cellular Life. (United States)

    Deamer, David W; Georgiou, Christos D


    The conditions and properties of hydrothermal vents and hydrothermal fields are compared in terms of their ability to support processes related to the origin of life. The two sites can be considered as alternative hypotheses, and from this comparison we propose a series of experimental tests to distinguish between them, focusing on those that involve concentration of solutes, self-assembly of membranous compartments, and synthesis of polymers. Key Word: Hydrothermal systems.

  10. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chengyuan, E-mail: [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Li, Weiguang [School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Lu, Yuxiang; Chen, Menglin; Huang, Zhi [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China)


    Highlights: • Rhein has metabolic or physiological toxicity on methanogens in anaerobic granular sludge. • TCM wastewater containing rhein can be successfully treated by the combined treatment. • The productions of the EPS of granular sludge increased after pre-treatment. • Methanoregula, Methanobacterium, Methanosphaerula were predominant in the DC reactor after pre-treatment. - Abstract: The effect of a heterogeneous Fenton-like pre-treatment on the anaerobic processes, characteristics and microbial community of sludge was investigated for traditional Chinese medicine (TCM) wastewater containing rhein. When the concentrations of rhein were 50 mg/L and 100 mg/L, the toxic effect was physiological toxicity for anaerobic granular sludge. Using a single double circle (DC) reactor for the treatment of TCM wastewater containing rhein at concentrations of 15–20 mg/L, the chemical oxygen demand (COD) removal rate was 69%, and coenzyme F{sub 420} was nearly undetectable in the 3D-excitation-emission matrix (EEM) spectra of soluble microbial products (SMP). The abundances of Methanoregula, Methanobacterium, Methanosphaerula were only 5.57%, 2.39% and 1.08% in the DC reactor, respectively. TCM wastewater containing rhein could be successfully treated by the combination of the heterogeneous Fenton-like pre-treatment and the DC reactor processes, and the COD removal rate reached 95%. Meanwhile, the abundances of Methanoregula, Methanobacterium, Methanosphaerula increased to 22.5%, 18.5%, and 13.87%, respectively. For the bacterial community, the abundance of Acidobacteria-Gp6 decreased from 6.99% to 1.07%, while the abundances of Acidobacteria-Gp1 and Acidobacteria-Gp2 increased from 1.61% to 6.55% and from 1.28% to 5.87%, respectively.

  11. Fenton-like oxidation of azo dye using mesoporous Fe/TiO2 prepared by microwave-assisted hydrothermal process

    Directory of Open Access Journals (Sweden)

    Nešić Jelena


    Full Text Available Fe-doped TiO2 photocatalysts with different content of Fe (0.5, 1.6, 3.4 and 6.4% were synthesized by the microwave-hydrothermal method and characterized by XRD, N2 physisorption at 77 K and DRS. The characterization showed that Fe ions are highly dispersed in the TiO2 lattice. It was found that all the synthesized catalysts had the mesoporous structure and Fe doping increased BET surface areas. The UV-Vis study showed that the absorption spectra shifted to a longer wavelength (red shift with an increase in the dopant concentration. The photocatalytic activity of the samples was evaluated by the decolorization of textile dye Reactive Blue 52 (RB in aqueous solutions under sun-like radiation in the presence of H2O2 (heterogeneous photo-Fenton process. The photocatalyst with 3.4% Fe was found to be the most efficient with H2O2. The effect of the initial pH of the dye solution was assessed and dissolution of iron ions was studied, as a function of pH value. It was concluded that decolorization is more favorable in acidic pH and when pH >4, the releasing of Fe ions in solution was negligible. Photocatalytic degradation of 4-chlorophenol (4-CP was investigated under the optimal conditions and proved that our catalyst was capable to degrade colorless pollutants. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172035

  12. Pre-treatment social anxiety severity moderates the impact of mindfulness-based stress reduction and aerobic exercise. (United States)

    Jazaieri, Hooria; Lee, Ihno A; Goldin, Philippe R; Gross, James J


    We examined whether social anxiety severity at pre-treatment would moderate the impact of mindfulness-based stress reduction (MBSR) or aerobic exercise (AE) for generalized social anxiety disorder. MBSR and AE produced equivalent reductions in weekly social anxiety symptoms. Improvements were moderated by pre-treatment social anxiety severity. Mindfulness-based stress reduction (MBSR) and aerobic exercise (AE) are effective in reducing symptoms of social anxiety. Pre-treatment social anxiety severity can be used to inform treatment recommendations. Both MBSR and AE produced equivalent reductions in weekly levels of social anxiety symptoms. MBSR appears to be most effective for patients with lower pre-treatment social anxiety symptom severity. AE appears to be most effective for patients with higher pre-treatment social anxiety symptom severity. © 2015 The British Psychological Society.

  13. Determination of alkylphenols and alkylphenol ethoxylates in sewage sludge: effect of sample pre-treatment. (United States)

    Fernández-Sanjuan, María; Rigol, Anna; Sahuquillo, Angels; Rodríguez-Cruz, Sonia; Lacorte, Silvia


    A complete characterization of sewage sludge collected from five biological waste water treatment plants was done to determine physico-chemical parameters, heavy metals and alkylphenols, making special emphasis on sampling, homogenization, and sample pre-treatment. Ultrasonic extraction followed by gas chromatrography coupled with mass spectrometry was used to evaluate the effect of sample pre-treatment (untreated sample, freeze-drying, drying at 40 degrees C or drying at 100 degrees C) on the concentration of octylphenol (OP), nonylphenol (NP) and nonylphenol ethoxylates (NP1EO, NP2EO). Untreated samples and samples dried at 100 degrees C gave concentration levels up to 62% and 89% lower, respectively, than freeze-dried samples. In 50% of cases, freeze-dried samples led to significantly higher concentrations than those obtained by drying at 40 degrees C. Thus, freeze-drying is the recommended sample pre-treatment to prevent possible losses of OP, NP, and NP1EO. Using this methodology, concentrations detected were from 3.2 to 199 mg kg(-1) being NP followed by NP1EO found in highest concentration. The total concentration of NP and NP1EO exceeded the limit of 50 mg kg(-1) proposed by the draft European directive on sewage sludge in three out of five samples studied. Contrarily, heavy metals were below the legislated values.

  14. Determination of alkylphenols and alkylphenol ethoxylates in sewage sludge: effect of sample pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Rigol, Anna; Sahuquillo, Angels [University of Barcelona, Department of Analytical Chemistry, Barcelona (Spain); Rodriguez-Cruz, Sonia [University of Barcelona, Department of Analytical Chemistry, Barcelona (Spain); IRNASA-CSIC, Department of Environmental Chemistry and Geochemistry, Salamanca (Spain); Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)


    A complete characterization of sewage sludge collected from five biological waste water treatment plants was done to determine physico-chemical parameters, heavy metals and alkylphenols, making special emphasis on sampling, homogenization, and sample pre-treatment. Ultrasonic extraction followed by gas chromatrography coupled with mass spectrometry was used to evaluate the effect of sample pre-treatment (untreated sample, freeze-drying, drying at 40 C or drying at 100 C) on the concentration of octylphenol (OP), nonylphenol (NP) and nonylphenol ethoxylates (NP{sub 1}EO, NP{sub 2}EO). Untreated samples and samples dried at 100 C gave concentration levels up to 62% and 89% lower, respectively, than freeze-dried samples. In 50% of cases, freeze-dried samples led to significantly higher concentrations than those obtained by drying at 40 C. Thus, freeze-drying is the recommended sample pre-treatment to prevent possible losses of OP, NP, and NP{sub 1}EO. Using this methodology, concentrations detected were from 3.2 to 199 mg kg{sup -1} being NP followed by NP{sub 1}EO found in highest concentration. The total concentration of NP and NP{sub 1}EO exceeded the limit of 50 mg kg{sup -1} proposed by the draft European directive on sewage sludge in three out of five samples studied. Contrarily, heavy metals were below the legislated values. (orig.)

  15. Influence of pre-treatment step on PAHs analyses in contaminated soils. (United States)

    Belkessam, Laurence; Lecomte, Paul; Milon, Véronique; Laboudigue, Agnès


    There is no specific standardization for the pre-treatment of a soil sample for PAHs analyses. The ISO/FDIS 14507 method for soil quality gives a guidance for sample pre-treatment before measurement of organic contaminants in soil. It refers to cryogenic crushing which is not so easy to carry out. So, analysts lead to develop in house methods which can be very different from a laboratory to another and can involve deviations in the pollution quantification. This study has explored different ways of drying, grinding and sieving in order to determine the influence of the soil sample handling on the measured pollutant concentration. It appears that the influence of pre-treatment depends on the soil nature and on the PAHs distribution. As a conclusion, it is advised "light" drying ways like air drying or drying at 40 degrees C in a drying oven instead of more "drastic" ways (freeze-drying, cryogenic crushing) which can induce some losses. Crushing and sieving are also recommended for more reproducible measures.

  16. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Directory of Open Access Journals (Sweden)

    Amelia Kajumulo Kivaisi


    Full Text Available Sisal leaf decortications residue (SLDR is amongst the most abundant agroindustrial residues in Tanzania and is a good feedstock for biogas production. Pretreatment of the residue prior to its anaerobic digestion (AD was investigated using a twostage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VSadded. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR.

  17. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)


    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  18. Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

    Energy Technology Data Exchange (ETDEWEB)

    Hanas, T. [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala 673601 (India); Sampath Kumar, T.S., E-mail: [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Perumal, Govindaraj; Doble, Mukesh [Department of Biotechnology - Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 (India)


    AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO{sub 3} to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO{sub 3} treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359–09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5 ×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO{sub 3} pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. - Highlights: • PCL electrospun coating on HNO{sub 3} pre-treated AZ31 alloy controls biodegradation. • Acid pre-treatment stabilizes the substrate - coating interface. • Electrospun porous coating improves biomineralization. • Coating similar to extracellular matrix enhances cell adhesion.

  19. Effects of Pre-Treatment and Temperature on the Quality and Drying Rate of Tomatoes

    Directory of Open Access Journals (Sweden)

    R.A Iyanda


    Full Text Available The effect of pre-treatment and temperature on the quality and the drying rate of tomatos (Lycopersicon esculentus were studied. A 3× 5 factorial experiment in a randomized complete block (RCBD design was used. Firm and fresh ripe tomatoes were washed and sliced to a uniform thickness of 5mm, pre-treatment by boiling for 3 minutes was given to some of the sliced tomatoes while some were blanched by soaking in water at 90 0C for 3 minutes and the remaining part was dried raw. 200g each of the sample was dried at temperatures of 50, 55, 60, 65, and 70 0C in a cabinet drier until no moisture removal was observed. The moisture removal from the samples in the cabinet was observed and measured on an hourly basis and the vitamin C content of the dried samples was also analyzed. The results obtained for the drying rate and Vitamin C content were statistically analyzed using SPSS software to generate the ANOVA and DNMRT. It was found that samples dried at higher temperatures had higher drying rates irrespective of the pre-treatment. Raw samples and Samples dried at lower temperatures had better quality in terms of vitamin C retention.

  20. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.


    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  1. SU-E-T-148: Benchmarks and Pre-Treatment Reviews: A Study of Quality Assurance Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstein, J; Nguyen, H; Roll, J; Walsh, A; Tailor, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)


    Purpose: To determine the impact benchmarks and pre-treatment reviews have on improving the quality of submitted clinical trial data. Methods: Benchmarks are used to evaluate a site’s ability to develop a treatment that meets a specific protocol’s treatment guidelines prior to placing their first patient on the protocol. A pre-treatment review is an actual patient placed on the protocol in which the dosimetry and contour volumes are evaluated to be per protocol guidelines prior to allowing the beginning of the treatment. A key component of these QA mechanisms is that sites are provided timely feedback to educate them on how to plan per the protocol and prevent protocol deviations on patients accrued to a protocol. For both benchmarks and pre-treatment reviews a dose volume analysis (DVA) was performed using MIM softwareTM. For pre-treatment reviews a volume contour evaluation was also performed. Results: IROC Houston performed a QA effectiveness analysis of a protocol which required both benchmarks and pre-treatment reviews. In 70 percent of the patient cases submitted, the benchmark played an effective role in assuring that the pre-treatment review of the cases met protocol requirements. The 35 percent of sites failing the benchmark subsequently modified there planning technique to pass the benchmark before being allowed to submit a patient for pre-treatment review. However, in 30 percent of the submitted cases the pre-treatment review failed where the majority (71 percent) failed the DVA. 20 percent of sites submitting patients failed to correct their dose volume discrepancies indicated by the benchmark case. Conclusion: Benchmark cases and pre-treatment reviews can be an effective QA tool to educate sites on protocol guidelines and to minimize deviations. Without the benchmark cases it is possible that 65 percent of the cases undergoing a pre-treatment review would have failed to meet the protocols requirements.Support: U24-CA-180803.

  2. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau (United States)

    Wang, Qingfeng; Jin, Huijun; Zhang, Tingjun; Cao, Bin; Peng, Xiaoqing; Wang, Kang; Xiao, Xiongxin; Guo, Hong; Mu, Cuicui; Li, Lili


    Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600 m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650-3700 m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77 cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60 cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14 m of the underlying permafrost were all significantly lower near the LLP on the northern slope of

  3. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo


    down to 14 m, with VpCO2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO2 reservoir. With the 2D profiles we can image up to around 70 m depth: the first 30 m are characterized by features and velocities comparable to those of the 3D profiles, deeper, between 40-60 m depth, were found two low velocity anomalies, that probably indicate a preferential via for fluid degassing. These features are expression of an area located between the Fangaia, which is water saturated and replenished from deep aquifers, and the main fumaroles that are the superficial relief of deep rising CO2 flux. So, the changes in the outgassing rate greatly affects the shallow hydrothermal system, which can be used as a near-surface "mirror" of fluid migration processes occurring at greater depths.

  4. SU-E-T-77: A Statistical Approach to Manage Quality for Pre-Treatment Verification in IMRT/VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Jassal, K [Fortis Memorial Research Institute, Gurgaon, Haryana (India); Sarkar, B [AMRI Cancer Centre and GLA university, Mathura, Kolkata, West Bengal (India); Mohanti, B; Roy, S; Ganesh, T [FMRI, Gurgaon, Haryana (India); Munshi, A [Fortis Memorial Research Institute, Gurgon, Haryana (India); Chougule, A [SMS Medical College and Hospital, Jaipur, Rajasthan (India); Sachdev, K [Malaviya National Institute of Technology, Jaipur, Rajasthan (India)


    Objective: The study presents the application of a simple concept of statistical process control (SPC) for pre-treatment quality assurance procedure analysis for planar dose measurements performed using 2D-array and a-Si electronic portal imaging device (a-Si EPID). Method: A total of 195 patients of four different anatomical sites: brain (n1=45), head & neck (n2=45), thorax (n3=50) and pelvis (n4=55) were selected for the study. Pre-treatment quality assurance for the clinically acceptable IMRT/VMAT plans was measured with 2D array and a-Si EPID of the accelerator. After the γ-analysis, control charts and the quality index Cpm was evaluated for each cohort. Results: Mean and σ of γ ( 3%/3 mm) were EPID γ %≤1= 99.9% ± 1.15% and array γ %<1 = 99.6% ± 1.06%. Among all plans γ max was consistently lower than for 2D array as compared to a-Si EPID. Fig.1 presents the X-bar control charts for every cohort. Cpm values for a-Si EPID were found to be higher than array, detailed results are presented in table 1. Conclusion: Present study demonstrates the significance of control charts used for quality management purposes in newer radiotherapy clinics. Also, provides a pictorial overview of the clinic performance for the advanced radiotherapy techniques.Higher Cpm values for EPID indicate its higher efficiency than array based measurements.

  5. Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes

    Directory of Open Access Journals (Sweden)

    Reyhaneh Zeynali


    Full Text Available Ultrasonic pre-treatment has been considered as an environmentally friendly process for enhancing the biodegradability of organic matter in anaerobic digestion. However the consumed energy during the pre-treatment is a matter of challenge especially where energy generation is the main purpose of a biogas plant. The aim of the present work was to study the efficiency of ultrasonic pre-treatment in enhancement of biogas production from fruits and vegetable wholesale market waste. Three sonication times (9, 18, 27 min operating at 20 kHz and amplitude of 80 μm were used on the substrate. The highest methane yield was obtained at 18 min sonication (2380 kJ kg−1 total solids while longer exposure to sonication led to lower methane yield. This amount of biogas was obtained in 12 d of batch time. The energy content of the biogas obtained from this reactor was two times of the input energy for sonication.

  6. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield. (United States)

    Cuetos, M J; Gómez, X; Otero, M; Morán, A


    Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment

    DEFF Research Database (Denmark)

    Manns, Dirk; Andersen, Stinus K.; Saake, Bodo


    of lamina having decreasing average surface area (100–0.1 mm2) with increased milling severity. Higher milling severity (lower rotating disc distance) also induced higher spontaneous carbohydrate solubilization from the material. Due to the seaweed material consisting of flat blades, the milling did...... not increase the overall surface area of the seaweed material, and size diminution of the laminas by milling did not improve the enzymatic glucose release. Milling was thus not required for enzymatic saccharification because all available glucose was released even from unmilled material. Treatment...

  8. Organization of industrial application of academic research on biocatalytic pre-treatment processes of cotton

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Warmoeskerken, M.M.C.G. (Marijn)


    A lot of research effort is put in developing enzymatic treatment of textiles by focusing on the performance of enzymes on lab-scale. Despite all this work upgrading of these developments from lab-scale to industrial scale has not been really successful. Companies are nowadays confronted with rapid

  9. Biocatalytic pre-treatment processes of cotton : Industrial application of academic research

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Brinks, G.J. (Ger); Warmoeskerken, van M.M.C.G. (Marijn); Warmoeskerken, van M.M.C.G. (Marijn)


    Much research effort is invested in developing enzymatic treatments of textiles by focusing on the performance of enzymes at the laboratory scale. Despite all of this work, upgrading these developments from the laboratory scale to an industrial scale has not been very successful.Nowadays,companies

  10. Analgesic Efficacy and Transdermal Penetration of Topical Gabapentin Creams: Finding an Optimal Dose and Pre-treatment Time. (United States)

    Heustess, Allie; Spigener, Shuler; Sweitzer, Sarah; Romero-Sandoval, Alfonso; Asbill, Scott


    Many patients with chronic neuropathic pain continue to suffer despite traditional pharmacotherapy. As a result, pharmacists commonly compound gabapentin into creams, gels, and ointments as an alternative treatment option. In this study, various concentrations (1%, 5%, and 10%) of topical gabapentin compounded in Lipoderm were applied at various pre-treatment times (30 minutes, 1 hour, and 4 hours) to investigate what gabapentin concentration and pre-treatment time best attenuates formalin-induced nociceptive behaviors in a rodent model. A 30-minute pre-treatment with 5% gabapentin demonstrated maximum attenuation of nociceptive behaviors in this in vivo preclinical pain model. Nociceptive behaviors unexpectedly increased when gabapentin concentration or pre-treatment time was increased, suggesting both antinociceptive and pronociceptive effects of transdermal gabapentin administration. Gabapentin permeation into the skin and deeper tissues of the hindpaw was measured following the in vivo study. Skin and deep tissue permeation of gabapentin was both dose and time-dependent. Maximum deep-tissue permeation occurred within 30 minutes of topical application. Skin concentrations increased with a longer 1-hour pre-treatment. Minimal skin and deeper tissue levels were found following a 4-hour pre-treatment. These results suggest that topical gabapentin may be antinociceptive in a rodent formalin model at specific doses and pre-treatment intervals.

  11. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS (United States)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges


    The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite "lava flows" formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive

  12. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær


    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...

  13. Correlates of pre-treatment drop-out among persons with marijuana dependence. (United States)

    Vendetti, Janice; McRee, Bonnie; Miller, Michael; Christiansen, Kenneth; Herrell, James


    Our objective was to identify client characteristics and other factors associated with pre-treatment drop-out by people with marijuana dependence. Data from the Marijuana Treatment Project's screening assessment were used to examine correlates of pre-treatment drop-out. Information from all eligible study participants (n = 813) (i.e. those who were interested in receiving treatment for their marijuana dependence and were determined to be eligible for the randomized treatment efficacy trial) was used to examine differences between the 450 participants who initiated treatment (by enrolling in the trial) and the 363 individuals who declined enrollment. The study was conducted at three community-based outpatient treatment facilities in Farmington, CT, Seattle, WA and Miami, FL. The information gathered in the screening interview included demographic characteristics, residential stability variables, employment and education history and referral source. Substance use variables included the number of days and the number of times per day marijuana was used, self-perceived dependence on marijuana, alcohol or other drugs, other drug use history and current treatment (i.e. substance abuse, medical, psychiatric) situation. Stepwise logistic regression was conducted to confirm variables associated with treatment initiation in bivariate analyses. Pre-treatment drop-out was associated with being younger, unmarried, unemployed, less educated and Asian American or Native American. It was also associated with self-perceived dependence on marijuana and use of other drugs. By recognizing demographic and substance use factors that may serve as barriers for individuals accessing treatment for marijuana dependence, clinicians may target clients with these characteristics proactively to encourage treatment initiation and subsequent attendance.

  14. Acute antioxidant pre-treatment attenuates endothelial microparticle release after decompression. (United States)

    Chrismas, Bryna Cr; Midgley, Adrian W; Taylor, Lee; Vince, Rebecca V; Laden, Gerard; Madden, Leigh A


    The hyperbaric and hyperoxic effects of a dive have been demonstrated to elicit changes in oxidative stress, endothelial function and microparticle (MP) release. Endothelial MP, which are small membrane vesicles shed from the endothelium, have been suggested as a valid in vivo marker of endothelial function. Furthermore, recent research has shown an increase in CD105 MP post-dive to be associated with a decline in endothelial function. The aim of this study was to ascertain whether antioxidant (AOX) pre-treatment can attenuate increased CD105 MP release post-dive. Five healthy, male, pressure-naive subjects completed two simulated dives (control and intervention) breathing compressed air to a depth of 18 metres' sea water for 80 min. For the intervention dive, all subjects received a commercially available AOX pill containing vitamins C and E, selenium and beta-carotene 2 h pre-dive. CD105 MP, total antioxidant capacity (TAC) and thiobarbituric reactive substances assay (TBARS) were determined pre-dive, at depth, immediately and 4 h post-dive. In the control dive, there was a significant increase in CD105 MP immediately post-dive when compared with at depth (P < 0.001) and pre-dive (P = 0.039) values. Antioxidant pre-treatment significantly attenuated this release of CD105 MP post-decompression (P = 0.002). There were no significant changes in TBARS or TAC. These results may provide evidence of the potential use of AOX pre-treatment as an effective endothelial pre-conditioner for divers.

  15. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano


    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  16. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham


    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  17. Ferritin and bile acid levels during the intrauterine pre-treatment of gastroschisis by serial amnioexchange (United States)

    Demir, Namık; Canda, Mehmet Tunç; Kuday, Şamil; Öztürk, Cengiz; Sezer, Orçun; Danaoğlu, Nihal


    We present a case of gastroschisis managed with serial amnioex-changes. Marked decreases were detected in both ferritin and bile acid levels following the procedure. The bowels were not severely affected, as expected. After delivery, single primary closure of the defect was performed. Early enteral feeding and shorter hospital stay were the main outcome measures. Intrauterine pre-treatment of gastroschisis by serial amnioexchange may provide benefits by decreasing the levels of inflammatory products in the amniotic fluid in order to lower the possible risk of bowel damage, and this may help to achieve better surgical and postnatal outcomes. PMID:24592073

  18. Barley Seed Germination/Root Elongation Toxicity Test For Evaluation Of Sludge Pre-Treatment

    DEFF Research Database (Denmark)

    Eriksson, Eva; Kusk, Kresten Ole; Barrett Sørensen, Mie

    Application of sludge from wastewater treatment plants (WWTPs) on agricultural land is an approach for nutrient recycling that rise challenges due to recalcitrant and harmful pollutants. In this study we assessed the feasibility of a seed germination test to evaluate sludge ecotoxicity and compared...... germination responses from two test parameters, root elongation and seed germination (sprouts elongation) of the barley (Hordeum vulgare). 2nd objective was to evaluate sewage sludge pre-treatments at batch-scale of sludge samples from two WWTPs using anaerobic digestion, and thermal and ozonation pre...

  19. Evaluation of pre-treatments for inhibiting bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus


    This study compared several pre-treatment methods for inhibiting BrO3- formation during ozonation of tap water, from the DTU campus, including H2O2 addition (perozone), pH-depression, NH4+ and Cl2/NH4+ addition. At the same time, the inhibition of atrazine and carbamazepine removal was evaluated...... close to the 10 μg/L limit, however atrazine removal did not exceed 75%. Carbamazepine was completely removed under all the tested experimental conditions with the 3.5 mg/L O3 dose....

  20. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo


    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  1. The Lassen hydrothermal system (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.


    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  2. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate (United States)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.


    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  3. Hydrothermal energy development projects (United States)

    Dibello, E. G.

    The development of hydrothermal energy for direct heat applications is being accelerated by twenty-two demonstration projects that are funded on a cost sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of hydrothermal resources in the United States. Engineering and economic data for the projects are summarized. The data and experience being generated by these projects will serve as an important basis for future direct heat development.

  4. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C


    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  5. Effect of pre-treatment and nickel layer thickness on nickel silicide/silicon carbide contact (United States)

    Cao, Yu; Nyborg, Lars; Jelvestam, Urban; Yi, Danqing


    This investigation deals with the impact of pre-treatment and Ni thickness on the reactions of Ni-silicide/SiC contact fabrication. The specimens have been prepared by sputter depositing 3-100 nm Ni layer on 4H-SiC wafer followed by annealing at 800 °C in vacuum for 20 min. The results by means of XPS show as follows: among the chemical cleaning procedures which have been tested, the recipe NH4OH:H2O2:H2O = 1:1:5, 85 °C, 5 min; HF 10%, 80 °C, 2 min; boiling water 10 min is the most effective for SiC substrates. However, due to short time exposure in the air before experiment, certain contamination re-occurs. After annealing, the dominant silicide formed is Ni2Si, whereas C on the surface is graphite. Argon ion etching before the Ni deposition helps the formation of multi-layer structure. For the samples without pre-treatment or with chemical cleaning procedure, there is more C agglomerated at the surface and no multi-layer structure formed. Under the action of Ar ion etching, SiC decomposes more quickly and Ni diffuses faster. This effect together with limited C diffusivity in the formed silicide is a probable reason for the formation of the multi-layer structure. The silicides formed at the interface are dependent on the Ni layer thickness and substrate surface condition.

  6. Glutathione cycle in diquat neurotoxicity: Assessed by intrastriatal pre-treatment with glutathione reductase

    Directory of Open Access Journals (Sweden)

    Đurđević Dragan


    Full Text Available Diquat (DQ neurotoxicity mechanisms are unknown, although, it's systemic toxicity is mediated by free radical reactions. The role of glutathione cycle was assessed by glutathione reductase (GR applied in the pre-treatment of DQ poisoning. Wistar rats were used and tested compounds were administered intrastriatally (i.s. in one single dose. Total glutathione (tGSH, glutathione disulfide (GSSG and glutathione peroxidase (GPx were measured in the vulnerable brain regions (VBRs (striatum, hippocampus and cortex, at 30 minutes, 24 hours and 7 days post treatment. Results from the intact and the sham operated groups were not statistically different. Rapid spatial spreading of oxidative stress was confirmed in the examined VBRs. Mortality (30-40%, within 24hrs and signs of lethargy were observed in the DQ group. Activity of GPx activity was elevated and GSSG/GSH was higher in the examined VBRs during the experiment, compared to the controls. The i.s. pre-treatment with GR achieved neuroprotective role against DQ induced neurotoxicity, based on animal survival, absence of lethargy and decreased GPx activity and GSSG/GSH in the examined VBRs during the experiment, compared to the DQ group. Our results confirmed that oxidation of GSH was the reason for the reduced antioxidative defense against DQ neurotoxicity. [Projekat Ministarstva nauke Republike Srbije, br. III41018

  7. The role of pre-treatment proactive coping skills in successful weight management. (United States)

    Vinkers, Charlotte D W; Adriaanse, Marieke A; Kroese, Floor M; de Ridder, Denise T D


    Proactive coping encompasses future-oriented self-regulatory skills that help people prepare for future difficulties before they occur, such as planning and monitoring. The aim of the present study was to examine the interplay between pre-treatment proactive coping skills and expected difficulties during weight loss in determining successful weight management. Obese and overweight Dutch adults (N=119) who enrolled in a weight management intervention reported their level of proactive coping skills and expected difficulties at the start of intervention. Two months later, weight loss was assessed via self-report. The results show that the detrimental effects of a low level of proactive coping skills were compensated by the expectation that many difficulties would accompany the weight loss attempt. Also, pre-treatment proactive coping skills did not predict weight loss success above and beyond self-efficacy and socio-demographic factors (e.g., gender). It is concluded that future-oriented self-regulatory skills and beliefs about impending difficulties at the start of intervention may have predictive value for subsequent success in weight management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Social Pre-treatment Modulates Attention Allocation to Transient and Stable Object Properties

    Directory of Open Access Journals (Sweden)

    Katalin Oláh


    Full Text Available Increasing evidence suggests that ostensive-communicative signals in social learning situations enable observers to focus their attention on the intrinsic features of an object (e.g. color at the expense of ignoring transient object properties (e.g. location. Here we investigated whether off-line social cues, presented as social primes, have the same power to modulate attention allocation to stable and transient object properties as on-line ostensive-communicative cues. The first part of the experiment consisted of a pre-treatment phase, where adult male participants either received intensive social stimulation or were asked to perform non-social actions. Then, they participated in a change detection test, where they watched pairs of pictures depicting an array of five objects. On the second picture, a change occurred compared to the first picture. One object changed either its location (moving forward or backward or was replaced by another object, and participants were required to indicate where the change had happened. We found that participants detected the change more successfully if it had happened in the location of the object; however, this difference was reduced following a socially intense pre-treatment phase. The results are discussed in relation to the claims of the natural pedagogy theory.

  9. The effect of pre-treatments to the nickel limonite leaching using dissolved gaseous SO2-air (United States)

    Wulandari, W.; Soerawidjaja, T. H.; Alifiani, D.; Rangga, D. A.


    Nickel limonite leaching has been subjected to a number of studies, one of the method is by using dissolved gaseous SO2-air. The selectivity of nickel over iron extracted from leaching using dissolved gaseous SO2-air is advantageous, however the nickel that can be recovered is limited. This paper studies pre-treatments that is applied to the nickel ore prior leaching in order to increase the recovery of dissolved nickel from nickel limonite ore. There two pre-treatments that were carried out in this research, roasting and alkali-roasting using Na2CO3. The extraction was carried out for 180 min with pH 2, 3, 4, and 5 and temperature 30, 55, and 80 °C. It is found that the highest yield is achieved at pH 2 and 80 °C with nickel recovery of 61.39%. At pH 2, for alkali-roasting pre-treatment, the nickel yield raised from 28.17% to 100% and for roasting pre-treatment the nickel yield increased from 20.42% to 61.39%. However, at pH 2, the nickel to iron selectivity decreased from 96272 to 534 for roasting pre-treatment and from 1.8 to 1 for alkali-roasting pre-treatment.

  10. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.


    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  11. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    Directory of Open Access Journals (Sweden)

    Jacques Livage


    Full Text Available A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment.

  12. Ultrasonic transducer for the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bornmann, Peter; Hemsel, Tobias [University of Paderborn, Paderborn (Germany); Littmann, Walter [ATHENA Technologie Beratung GmbH, Paderborn (Germany); Ageba, Ryo; Kadota, Yoishi; Morita, Takeshi [University of Tokyo, Kashiwa (Japan)


    Direct ultrasound irradiation is advantageous for increasing the efficiency of the hydrothermal method, which can be used to produce piezoelectric thin films and lead-free piezoelectric ceramics. To apply ultrasound directly to the process, transducer prototypes were developed regarding the boundary conditions of the hydrothermal method. LiNbO{sub 3} and PIC 181 were proven to be feasible materials for high-temperature-resistant transducers ({>=} 200 .deg. C). The resistance of the transducer's horn against a corrosive mineralizer was achieved by using Hastelloy C-22. The efficiency of the ultrasound-assisted hydrothermal method depends on the generated sound field.The impedance and the sound field measurements have shown that the sound field depends on the filling level and on the position and design of the transducer.

  13. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric


    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  14. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. (United States)

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B


    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  15. Pre-treatment of desalination feed seawater by Jordanian Tripoli, Pozzolana and Feldspar: batch experiments

    Directory of Open Access Journals (Sweden)



    Full Text Available In this research, composites of layered double hydroxide (LDH with three Jordanian natural raw materials: Tripoli (T, Pozzolana (P and Feldspar (F were prepared by co-precipitation and have been used for feed seawater pre-treatment. The data reveals that percent adsorption decreased with increase in initial concentration, but the actual amount of adsorbed ions per unit mass of LDH/T-P-F increased with increase in metal ion concentrations. The values of ΔG were negative and within 21 to 26 kJ/mol, while the values of and ΔS were positive, with ΔH within the range of 0.1 to 25 kJ/mol. The values of ΔH, ΔS and ΔG indicate the favorability of physisorption and show that the LDH/T-P-F composites have a considerable potential as adsorbents for the removal of ions from seawater.

  16. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Summerscales, John


    methods have been used for centuries for removal of non-cellulosic components from fibrous plant stems including from hemp, but carries a risk of reducing the mechanical properties of the fibres via damaging the cellulose. For NFCs new targeted fibre pre-treatment methods are needed to selectively...... composite matrix material. Targeted modification of natural fibres for NFCs must also be targeted to optimize the fibre surface properties. Consequently, improved interfacial bonding between fibres and hydrophobic polymers, reduced moisture uptake, increased microbial degradation resistance, and prolonged...... durability of NFCs can be achieved. This review, using hemp bast fibres as an example, critically and comprehensively assesses the targeted pretreatment technologies and data available for producing well separated cellulose bast fibres having optimal chemical and physical properties for maximizing...

  17. Correlation between pre-treatment quasispecies complexity and treatment outcome in chronic HCV genotype 3a.

    LENUS (Irish Health Repository)

    Moreau, Isabelle


    Pre-treatment HCV quasispecies complexity and diversity may predict response to interferon based anti-viral therapy. The objective of this study was to retrospectively (1) examine temporal changes in quasispecies prior to the start of therapy and (2) investigate extensively quasispecies evolution in a group of 10 chronically infected patients with genotype 3a, treated with pegylated alpha2a-Interferon and ribavirin. The degree of sequence heterogeneity within the hypervariable region 1 was assessed by analyzing 20-30 individual clones in serial serum samples. Genetic parameters, including amino acid Shannon entropy, Hamming distance and genetic distance were calculated for each sample. Treatment outcome was divided into (1) sustained virological responders (SVR) and (2) treatment failure (TF). Our results indicate, (1) quasispecies complexity and diversity are lower in the SVR group, (2) quasispecies vary temporally and (3) genetic heterogeneity at baseline can be use to predict treatment outcome. We discuss the results from the perspective of replicative homeostasis.

  18. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma


    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  19. Ultrasonic-assisted hydrothermal synthesis and catalytic behavior of a novel SAPO-34/Clinoptilolite nanocomposite catalyst for high propylene demand in MTO process (United States)

    Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa


    SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.

  20. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  1. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. (United States)

    Wagner, Andreas Otto; Schwarzenauer, Thomas; Illmer, Paul


    Trichoderma viride is known as a potent cellulose decomposer and was successfully used to improve and accelerate the decomposition process of aerobic composting. In contrast, the role of fungi as pre-treatment organisms for anaerobic digestion is not clear, since the fast aerobic decomposition is thought to be responsible for a rapid depletion of easily available nutrients, leading to a lack of these for the anaerobic community. In the present study carried out in lab-scale, the application of T. viride for the aerobic pre-incubation of organic matter derived from the inlet port of a 750,000 L anaerobic digester led to an increase in total gas and methane production in a subsequent anaerobic digestion step. A high cellulase activity caused by the addition of T. viride seemed to be responsible for a better nutrient availability for anaerobic microorganisms. Therefore, aerobic pre-incubation of organic residues with T. viride for subsequent anaerobic digestion is a promising approach in order to increase methane yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Urea pre-treatment of N2-annealed transition metal oxides for low cost and efficient counter electrodes in dyesensitized solar cell (United States)

    Elbohy, Hytham

    Photovoltaic cells have shown great promise as an alternative to fossil fuel-based energy sources. Dye-sensitized solar cells (DSSCs) have shown potential as low-cost replacement to silicon solar cells owing to their reduced material costs and simple fabrication techniques. Platinum (Pt) was used as a catalyst in the counter electrode for DSSCs. Metal oxides have been used as an alternative material to Pt. The introduction of oxygen vacancies inside metal oxides helps to facilitate electron transport to the electrolyte to enhance the reduction process of triiodide ions. Annealing n-type metal oxides under a reducing agent gas such as hydrogen (H2) at temperature ≥400 °C helps to introduce more oxygen vacancies. In this dissertation, a novel method was developed to convert the electro-catalytically inactive commercial n-type WO3, SnO2-x and ZnO1-x SnO2, and ZnO into highly active WO3-x as counter electrodes (CEs) for DSSCs. These new metal oxides replaced Pt by controlling the number of introduced oxygen vacancies. All the metal oxides including WO3 annealing under N2, SnO2, and ZnO were pre-treated with urea at different wt% before environment at 470 °C for 2 hr. At high temperatures (e.g., 300-400 °C), urea easily decomposes to ammonia which then decomposes to H2 Higher wt% of urea leads to more reducing H2 and N2 gas and hence helps to create more oxygen vacancies. The urea treatment significantly improved the catalytic activity of all metal oxides, and solar cell power conversion efficiency (PCE) of DSSCs was increased by urea pre-treatment. All other characterizations including SEM, EDS, and Mott-Schottky performed for urea pre-treatment of WO3, SnO2 and ZnO support the hypothesis that urea treatment helps create oxygen vacancies (shallow defects states) in metal oxides. These oxygen vacancies facilitate the redox process in the iodide/triiodide electrolyte. The density of these oxygen vacancies can be engineered by controlling the urea wt% during


    Directory of Open Access Journals (Sweden)

    Ergün GÜNTEKİN, Samim YAŞAR, Beyhan KARAKUŞ, Mustafa Burak ARSLAN


    Full Text Available This study examined the effects of some pre-treatments on some physical and mechanical properties of particleboard manufactured from vine pruning. Chips that were produced from vine pruning were subjected to some pre-treatments namely cold water, 1 % sodium hydroxide, and 1 % acetic acid in order to improve their performance in particleboard manufacturing. One-layer experimental particleboards with density of 0.5 g/cm3 were manufactured from vine pruning using 6,8,10 % percent of urea formaldehyde (UF adhesive. Modulus of elasticity (MOE, modulus of rupture (MOR, internal bond strength (IB, thickness swelling (TS and water absorption properties of the boards were evaluated, and a statistical analysis was performed in order to evaluate effects of pre-treatments on physical and mechanical properties. The results have shown that pre-treatments increase bending and internal bond strength of the boards while no significant effects has been observed on modulus of elasticity. The results also indicate that pre-treatments have significant effects on water absorption values of the boards but not on thickness swelling of the boards. This study demonstrates that vine pruning can be more efficiently used in particleboard manufacturing.


    Directory of Open Access Journals (Sweden)

    Nusirat Aderinsola SADIKU


    Full Text Available The influence of three pre-treatment methods on the hydration characteristics of Portland cement in combination with three tropical hardwood species was investigated. The maximum hydration temperature and time to reach maximum hydration temperature were analysed for the wood-cement-water mixtures of the three species after removing inhibitory extractives of wood samples by extraction with 5% Sodium hydroxide (NaOH, cold and hot water after removing inhibitory extractives of wood samples. There were differences in the hydration reaction of the wood species with Portland cement using the different pre-treatment methods. The compatibility of the wood species with Portland cement improved following pre-treatment. Sodium hydroxide pre-treatment had the most significant effect followed by hot water. Terminalia ivorensis (Idigbo, and Antiaris africana (Oriro species showed considerable improvement in their compatibility with Portland cement at 5% Sodium hydroxide pre-treatment with maximum hydration temperature of 65oC where Arere had 60.5oC where both cold and hot water were unable to raise the hydration temperature beyond 55.5oC . This study shows that the wood species requires more than cold and hot water extraction to make them suitable for wood cement composite materials as extraction with sodium hydroxide (1% solution was found to be the most effective treatment for the wood species under investigation.

  5. Comparative effects of biomass pre-treatments for direct and indirect transesterification to enhance microalgal lipid recovery

    Directory of Open Access Journals (Sweden)

    Forough eGhasemi Naghdi


    Full Text Available Microalgal lipid recovery for biodiesel production is currently considered suboptimal, but pre-treatment of algal biomass, the use of solvent mixtures and the positioning of transesterification can lead to increased yields. Here, the effect of various reportedly successful pre-treatments and solvent mixtures were directly compared to each other and combined with direct and indirect transesterification methods using the oleaginous microalga Tetraselmis sp. M8. Microwave and thermal pre-treatments were applied and the total lipid and fatty acid methyl ester (FAME recoveries were investigated. The application of pre-treatments increased FAME recovery through indirect transesterification when a Soxhlet system was used but they had no significant effect for direct transesterification. Gravimetric analyses of total lipids revealed that lipid recovery was highest when utilizing the chloroform-based Bligh and Dyer extraction method; however FAME yield was the highest when applying a Soxhlet system utilizing a solvent mixture of hexane-ethanol (3:1. Total lipid recovery did not necessarily correlate with the recovery of FAMEs. The highest FAME recovery was achieved from thermal or microwave pre-treated biomass followed by indirect transesterification through Soxhlet extraction. FAME recovery could be more than doubled (increase of up to 171% under these conditions. We conclude that a simple thermal pre-treatment (80°C for 10 min in combination with solvent mixture extraction through indirect transesterification may present a cost-effective and scalable option for large-scale lipid extraction from microalgae.

  6. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology. (United States)

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E; Bontempi, Elza


    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce "green composites". In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste.

  7. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    Directory of Open Access Journals (Sweden)

    Laura Benassi


    Full Text Available A new technology was recently developed for municipal solid waste incineration (MSWI fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA, an agricultural byproduct material (COSMOS-RICE project. The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste.

  8. Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms (United States)

    Marques, Carlos A. F.; Pospori, Andreas; Demirci, Gökhan; Çetinkaya, Onur; Gawdzik, Barbara; Antunes, Paulo; Bang, Ole; Mergo, Pawel; André, Paulo; Webb, David J.


    In this work, fibre Bragg gratings (FBGs) were inscribed in two different undoped poly- (methyl methacrylate) (PMMA) polymer optical fibres (POFs) using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs) were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process) have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology. PMID:28420216

  9. Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms

    Directory of Open Access Journals (Sweden)

    Carlos A. F. Marques


    Full Text Available In this work, fibre Bragg gratings (FBGs were inscribed in two different undoped poly- (methyl methacrylate (PMMA polymer optical fibres (POFs using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology.

  10. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance (United States)

    Feng, Libang; Zhu, Yali; Wang, Jing; Shi, Xueting


    Superhydrophobic surfaces can exhibit anti-corrosion, anti-fogging, and self-cleaning performance due to their high water repellence. It is significant for industrial fabricating of superhydrophobic surface with a simple and environment-friendly method. Herein, a facile, environment-friendly, and cost-effective one-step hydrothermal route is proposed to fabricate the superhydrophobic surface on magnesium alloy. The as-prepared superhydrophobic magnesium alloy surface presents the rough and hierarchical micro/nano- structure grafted with long hydrophobic alkyl chains via covalent bonds. Both electrochemical corrosion test and long term immersion in 3.5 wt.% of NaCl solution demonstrate that the superhydrophobic surface greatly improves the corrosion resistance of magnesium alloy. Meanwhile, the superhydrophobic magnesium alloy exhibits excellent self-cleaning performance. It is supposed that this facile method and remarkable properties of resultant superhydrophobic magnesium alloys have a promising future in expanding the application of magnesium alloys.

  11. Morphology controlled hydrothermal synthesis processes and emission near 2 {mu}m of Tm{sup 3+}-doped Lu{sub 2}O{sub 3}nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Concepcion; Esteban-Betegon, Fatima; Zaldo, Carlos [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz, 3 28049 Cantoblanco, Madrid (Spain)


    Hydrothermal syntheses at 185 C for 24 h yield pure cubic Ia anti 3 nanocrystalline Tm{sup 3+}-doped Lu{sub 2}O{sub 3} materials, whose morphologies are controlled through the conditions of the reaction. Chloride reagents under mild conditions produce rods of {proportional_to}15 {mu}m length x 90 nm diameter size. These nanorods exhibit photoluminescence at {proportional_to}1.95 {mu}m, and fluorescence lifetime {tau} = 976 {mu}s has been measured for {sup 3}F{sub 4} in the 2% mol Tm{sup 3+}-doped Lu{sub 2}O{sub 3} sample (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels


    Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...... xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis...

  13. Prognostic Role of Pre-Treatment Serum AFP-L3% in Hepatocellular Carcinoma: Systematic Review and Meta-Analysis (United States)

    Zhang, Yingjun; Liu, Xi; Li, Muxing; Wu, Zheng; Liu, Zhengwen; Lv, Yi; Wang, Bo


    Background Serum lens culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3%) has been widely used for HCC diagnosis and follow-up surveillance as tumor serologic marker. However, the prognostic value of high pre-treatment serum AFP-L3% in patients with hepatocellular carcinoma (HCC) remains controversial. We therefore conduct a meta-analysis to assess the relationship between high pre-treatment serum AFP-L3% and clinical outcome of HCC. Methods Eligible studies were identified through systematic literature searches. A meta-analysis of fifteen studies (4,465 patients) was carried out to evaluate the association between high pre-treatment serum AFP-L3% and overall survival (OS) and disease-free survival (DFS) in HCC patients. Sensitivity and subgroup analyses were also conducted in this meta-analysis. Results Our analysis results showed that high pre-treatment serum AFP-L3% implied poor OS (HR: 1.65, 95%CI: 1.45–1.89 p<0.00001) and DFS (HR: 1.80, 95% CI: 1.49–2.17 p<0.00001) of HCC. Subgroup analysis revealed that there was association between pre-treatment serum AFP-L3% and endpoint (OS and DFS) in low AFP concentration HCC patients (HR: 1.96, 95% CI: 1.24–3.10, p = 0.004; HR: 2.53, 95% CI: 1.09–5.89, p = 0.03, respectively). Conclusion The current evidence suggests that high pre-treatment serum AFP-L3% levels indicated a poor prognosis for patients with HCC and AFP-L3% may have significant prognostic value in HCC patients with low AFP concentration. PMID:24498011

  14. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jiwen Cheng

    Full Text Available BACKGROUND: Serum lens culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3% has been widely used for HCC diagnosis and follow-up surveillance as tumor serologic marker. However, the prognostic value of high pre-treatment serum AFP-L3% in patients with hepatocellular carcinoma (HCC remains controversial. We therefore conduct a meta-analysis to assess the relationship between high pre-treatment serum AFP-L3% and clinical outcome of HCC. METHODS: Eligible studies were identified through systematic literature searches. A meta-analysis of fifteen studies (4,465 patients was carried out to evaluate the association between high pre-treatment serum AFP-L3% and overall survival (OS and disease-free survival (DFS in HCC patients. Sensitivity and subgroup analyses were also conducted in this meta-analysis. RESULTS: Our analysis results showed that high pre-treatment serum AFP-L3% implied poor OS (HR: 1.65, 95%CI: 1.45-1.89 p<0.00001 and DFS (HR: 1.80, 95% CI: 1.49-2.17 p<0.00001 of HCC. Subgroup analysis revealed that there was association between pre-treatment serum AFP-L3% and endpoint (OS and DFS in low AFP concentration HCC patients (HR: 1.96, 95% CI: 1.24-3.10, p = 0.004; HR: 2.53, 95% CI: 1.09-5.89, p = 0.03, respectively. CONCLUSION: The current evidence suggests that high pre-treatment serum AFP-L3% levels indicated a poor prognosis for patients with HCC and AFP-L3% may have significant prognostic value in HCC patients with low AFP concentration.

  15. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.


    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. Sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre-treatment, but inhibition was reduced...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  16. Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum. (United States)

    Caporgno, M P; Olkiewicz, M; Torras, C; Salvadó, J; Clavero, E; Bengoa, C


    Several characteristics make Phaeodactylum tricornutum potential candidate for biofuels production such as methane and biodiesel. For this reason, some alternatives are evaluated in this manuscript to improve the conversion of this microalgae into methane. One of these alternatives is the addition of sewage sludge to Phaeodactylum tricornutum for anaerobic co-digestion. Although the co-digestion resulted in lack of synergy, the absence of inhibition indicated that both substrates could be co-digested under certain circumstances, for example if microalgae are cultivated for wastewater treatment purposes. The extraction of lipids using organic solvents has been evaluated for biodiesel production but also as a pre-treatment for anaerobic digestion. The results revealed that the type of solvent influences lipid and biodiesel yields. The high polarity of the mixture methanol/hexane increased the lipid and the biodiesel yields from 10 ± 1 to 53 ± 2 gLipids/100 gVS and from 7 ± 1 to 11 ± 1 gBiodiesel/100 gVS compared with hexane. However, none of these solvents affected the composition of biodiesel. Regarding the methane production after the extraction, it yielded 257 ± 8 and 180 ± 6 mLCH4/gVS from lipid-extracted P. tricornutum using hexane and methanol/hexane respectively. The methane production from the raw microalga was 258 ± 5 mLCH4/gVS in the same experiment. The difference in methane production, mainly after the extraction with methanol/hexane, was a consequence of the changes in the composition of the microalgae after extraction. The extraction did not influence the biodegradability. The ultrasonic pre-treatment prior anaerobic digestion completely disrupted the microalgae cells, but the solubilisation of the organic fraction was scarce (<9.5%). The methane production from pre-treated samples was barely 10-11% higher than the obtained from non pre-treated samples, indicating that the refractory nature of the organic fraction in P

  17. The role of pre-treatment MRI in established cases of slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Tins, Bernhard [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, Shropshire SY 10 7 AG (United Kingdom)], E-mail:; Cassar-Pullicino, Victor; McCall, Iain [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, Shropshire SY 10 7 AG (United Kingdom)


    Background: Slipped capital femoral epiphysis (SCFE) often results in functional impairment and premature osteoarthritis despite surgical treatment. Treatment decisions are commonly based on the clinical history and radiographic appearance. This study assesses the pre-treatment features of SCFE and correlates them to the clinical history to: (1) define the underlying pathological mechanisms; (2) correlate the morphological hip abnormalities with the clinical classifications; (3) identify specific magnetic resonance imaging (MRI) features that could carry prognostic implications for treatment approach and outcome. Methods: Clinical history and pre- and posttreatment radiographs and pre-treatment MRIs of 14 patients with 15 affected hips were reviewed. Alignment, impingement, fulcrum formation, remodelling, osteopenia, synovitis, joint effusion, bone marrow and soft tissue oedema and status of the physis and the periosteal sleeve were assessed and related to the clinical history, in particular history of trauma, duration of clinical symptoms and ability to bear weight. Results: Bone marrow oedema around the growth plate and joint effusion occurred in all patients. Synovitis occurred in 13/15 patients. 6 patients had a fall before presenting with SCFE. 5/6 had periarticular soft tissue oedema, complete disruption of the physis and partial periosteal sleeve disruption. 9 patients had no fall prior to presentation, physis and periost were intact in 7/9; periarticular oedema was not seen. 14/15 showed evidence of chronic remodelling. Despite an acute clinical history remodelling was present. A fulcrum-like alignment, impingement of the epiphysis on the metaphysis with a small area of physical contact, was seen in 8 patients, 6/8 had a prior fall. There was no case of avascular necrosis. Spontaneous reduction of SCFE occurred in 1 case, the only case without chronic remodelling. With MRI as gold standard radiographs underestimate the severity of SCFE. Conclusion

  18. Mineralisation of (14)C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. (United States)

    Tian, Lili; Kolvenbach, Boris; Corvini, Nora; Wang, Songfeng; Tavanaie, Nasrin; Wang, Lianhong; Ma, Yini; Scheu, Stefan; Corvini, Philippe François-Xavier; Ji, Rong


    Large amounts of polystyrene (PS), one of the most widely used plastics in the world, end up in the environment through industrial discharge and littering, becoming one of the major components of plastic debris. Such plastics, especially the small-sized microplastics and nanoplastics, have received increasing concerns in terms of their potential environmental risks. Feasible approaches for the degradation of PS in waste materials and in the environment are highly desirable. Physicochemical pretreatments of PS may be applied to enhance biological degradation. In the present study, we synthesized (14)C-labelled PS polymers, either uniformly labelled on the ring ([U-ring-(14)C]-PS) or labelled at the β-carbon position of the alkyl chain ([β-(14)C]-PS), and investigated the mineralisation of the (14)C-PS polymers by the fungus Penicillium variabile CCF3219 as well as the effect of ozonation as a physico-chemical pre-treatment on the mineralisation by the fungi. Biodegradation of the (14)C-PS polymers was studied in liquid medium (pH 7.5, without additional carbon substrate) with P. variabile for 16 weeks. During the incubation time, (14)CO2 was captured to calculate the mineralisation of (14)C-PS and the remaining polymers were analysed by means of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrometry and gel-permeation chromatography (GPC). The results showed that the fungi mineralised both labelled polymers, and that the [U-ring-(14)C]-PS with a lower molecular weight led to a higher mineralisation rate. Ozonation pre-treatment strongly enhanced mineralisation of [β-(14)C]-PS. SEM analysis showed that the surface of the ozonated [β-(14)C]-PS became uneven and rough after the incubation, indicating an attack on the polymer by P. variabile. FT-IR analysis showed that ozonation generated carbonyl groups on the [β-(14)C]-PS and the amount of the carbonyl groups decreased after incubation of the [β-(14)C]-PS with P. variabile. GPC

  19. The chemistry of hydrothermal magnetite: a review (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John


    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  20. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)


    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  1. The Biological Activity of Citrus Pectin, Succinate of Chitosan, and Their Derivates as Film-Forming Components of the Composition for Seed Pre-Treatment

    Directory of Open Access Journals (Sweden)

    Bazunova Marina Viktorovna


    Full Text Available The article deals with the possibility of using pectin and chitosan, and their water-soluble derivatives as film-forming compositions for pre-treatment of seed crops. The authors of the present research investigate the different methods of destructing the watersoluble polysaccharides of natural origin – citrus pectin and succinate of chitosan – (by means of acid gydrolysis and radical-chain destruction for receiving low-molecular homologues. It is revealed that the dynamic viscosity of the solutions of pectin and succinate of chitosan in case of acid hydrolysis, and in case of radical-chain degradation, is reduced drastically in the first 60-70 minutes of the process. It is shown that 0,001 % solutions of pectin and succinate of chitosan degradation products have a positive impact on the energy growth of Ekada-70 and Bashkirskaya wheat seed varieties. The optimum concentration of degradation products of citrus pectin and chitosan succinate as part of film-forming composition for seed pre-treatment is 0,001 %.

  2. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment. (United States)

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen


    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Pre-treatment with antibiotics and Escherichia coli to equalize the gut microbiota in conventional mice. (United States)

    Linninge, Caroline; Ahrné, Siv; Molin, Göran


    The composition of the gut microbiota can vary widely between individual mice of the same batch and thereby affect the resulting outcome in experimental studies. Therefore, an efficient method is needed to equalize the gut microbiota prior to the start of critical experiments. In order to minimize variations in gut microbiota between animals and provide the animals with a Gram-negative flora exposing lipopolysaccharides in the cell-walls, C57BL/6 mice were given a mixture of ampicillin, metronidazole and clindamycin in the drinking water for 3 days and then Escherichia coli for two additional days. Treatment with antibiotics alone or with antibiotics in combination with E. coli was well tolerated by all animals. Body weight and liver weight were not affected, although higher hepatic fat content was found in treated animals (p diversity of the gut microbiota was strongly reduced in animals treated with antibiotics and antibiotics in combination with E. coli (p microbiota between different treatment groups. The described treatment efficiently equalized the gut microbiota and provided the animals with a strong abundance of Enterobacteriaceae without changing the total load of bacteria. This is a straightforward, lenient and efficient method of pre-treatment to equalize the gut microbiota of mice as a starting procedure of animal studies.

  4. Pre-treatment shyness mindset predicts less reduction of social anxiety during exposure therapy. (United States)

    Valentiner, David P; Jencius, Simon; Jarek, Eva; Gier-Lonsway, Stephanie L; McGrath, Patrick B


    This study examined the moderating role of shyness mindset on the reduction of social anxiety during exposure-based treatment. Participants (N=60) in an intensive outpatient program for anxiety disorders were assessed at pre- and post-treatment. Social performance anxiety decreased dramatically during treatment, but the amount of decrease differed as a function of pre-treatment shyness mindset. At one standard deviation above the mean on both the social performance anxiety and shyness mindset measures, an average reduction of 15 points on the social performance anxiety measure was observed. At one standard deviation above the mean on the social performance anxiety measure and one standard deviation below the mean on the shyness mindset measure, an average reduction of 27 points on the social performance anxiety measure was observed. These results suggest that targeting shyness mindset during exposure-based treatments for social anxiety disorder might increase the effectiveness of treatment for individuals with a high shyness mindset. Published by Elsevier Ltd.

  5. Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. (United States)

    López González, Lisbet Mailin; Pereda Reyes, Ileana; Dewulf, Jo; Budde, Jörn; Heiermann, Monika; Vervaeren, Han


    Sugarcane press mud was pretreated by liquid hot water (LHW) at different temperatures (140-210 °C) and pre-treatment times (5-20 min) in order to assess the effects on the chemical oxygen demand (COD) solubilisation, inhibitors formation and methane yield. The experimental results showed that a high degree of biomass solubilisation was possible using LHW. Higher methane yields were obtained at lower severities (log(Ro) = 2.17-2.77) with (i) mild temperatures (140-150 °C) and long contact times (12.5 min, 20 min) or (ii) mild temperatures (175 °C) with short contact time (2 min). The highest increase in methane yield (up to 63%) compared to the untreated press mud was found at 150 °C for 20 min. At temperatures of 200 °C and 210 °C, low methane efficiency was attributed to the possible formation of refractory compounds through the Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimisation of Fenton's reagent usage as a pre-treatment for fermentation brines. (United States)

    Rivas, Francisco J; Beltrán, Fernando J; Gimeno, Olga; Alvarez, Pedro


    Pre-treatment of fermentation brines from green olives has been carried out by the Fe(II)/Fe(III)/H(2)O(2) system. Reagent concentration exerted a positive influence on chemical oxygen demand (COD) removal. Hydrogen peroxide uptake showed values in the range 0.3-1.6mol of COD eliminated per mol of H(2)O(2) consumed depending on operating conditions. The optimum working pH was found to be in the interval 2.0-3.5. Reaction temperature increased the COD degradation rate, although similar COD conversion values were obtained after 5h of treatment regardless of the value of this parameter. An analysis of the biodegradability of this type of effluent demonstrated the beneficial effect of the chemical pre-oxidation. According to the experimental results, it is suggested that there is an inhibitory effect of the wastewater due to its COD content and nature rather than attributable to the presence of high amounts of sodium chloride. Biodegradation efficiency increased as temperature was raised up to 30 degrees C. A further increase of this parameter up to 40 degrees C resulted in the death of the microorganisms.

  7. Potential of filter-vermicomposter for household wastewater pre-treatment and sludge sanitisation on site. (United States)

    Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R


    Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.

  8. Evaluation of pre-treatment technologies for phosphorous removal from drinking water to mitigate membrane biofouling (United States)

    Frolova, M.; Tihomirova, K.; Mežule, L.; Rubulis, J.; Gruškeviča, K.; Juhna, T.


    Membranes are widely used for the treatment of various solutions. However, membrane fouling remains the limiting factor for their usage, setting biofouling as the most severe type of it. Therefore, the production of biologically stable water prior to membranes is important. Since lack of phosphorus may hinder the growth of microorganisms, the aim of this research is to evaluate the effect of microbially available phosphorus (MAP) removal via affordable water pre-treatment methods (adsorption, biofiltration, electrocoagulation) on bacterial growth. Four cylindrical reactors were installed at an artificially recharged groundwater station. Further temperature influence and carbon limitation were tested for biofiltration technology. The amount of MAP and total cell count was measured by flow cytometry. The results showed that at lower temperatures electrocoagulation performed the best, resulting in complete MAP removal (detection limit 6.27x10-3μg P l-1). Sorbent demonstrated MAP removal of 70-90%. Biomass did not have any noteworthy results at +8°C, however, at +19°C MAP removal of around 80% was achieved. Main conclusions obtained within this study are: (i) tested technologies effectively eliminate MAP levels; (ii) temperature has a significant effect on MAP removal in a bioreactor, (iii) multi-barrier approach might be necessary for better P limitation that might prolong operating time of a membrane.

  9. Evaluation of surface roughness and bond strength of quartz fiber posts after various pre-treatments. (United States)

    Akin, Gulsah E; Akin, Hakan; Sipahi, Cumhur; Piskin, Bulent; Kirmali, Omer


    Debonding at the post-adhesive interface is a major problem for quartz fiber posts. The objective of this study was to evaluate surface roughness and bond strength of quartz fiber posts after various surface treatments. Sixty-six quartz fiber posts were randomly divided into six experimental groups (n = 11) including group C, untreated (control); group SB, sandblasted; group SC, silica coated; group HF, hydrofluoric acid-etched; group N, Nd:YAG laser irradiated; group E, Er:YAG laser irradiated. Surface roughness of the posts was measured before and after pre-treatment. They were then bonded to resin cement and tensile bond strength was determined in a universal testing machine. Furthermore, two-way ANOVA and post hoc comparison tests (α = 0.05) were performed on all data. The highest mean force value was observed in group SB and followed by group E. Tukey's HSD test showed that there was no statistical difference between group SB and group E (p = 0.673). The highest mean roughness value was observed in group SB and a significant difference was found between group SB and all other groups (p quartz fiber posts and resin cement. Sandblasting or Er:YAG laser-irradiation of the surface of the quartz fiber post before cementation is recommended for increasing retention.

  10. Effect of pomegranate juice pre-treatment on the transport of carbamazepine across rat intestine

    Directory of Open Access Journals (Sweden)

    D Adukondalu


    Full Text Available "n  "nBackground and the purpose of the study: Many drug substances along with a variety of naturally occurring dietary or herbal components interact with the CYP enzyme system.The present study was aimed to investigate the effect of pomegranate juice pre-treatment on the transport of carbamazepine across the rat intestine "nMethods: The transport of carbamazepine across different parts of rat intestine was studied by everted and non-everted sac methods. The control and pomegranate juice (10 ml Kg-1 for 7 days pre-treated rats were sacrificed and isolated the intestine. The sacs of intestine were prepared, treated with carbamazepine solution and then placed in dulbeccos buffer. Samples were collected periodically and the drug content was estimated using HPLC. Results and conclusion: The results show that there was a significant (p<0.05 difference in the transport of carbamazepine from the intestinal sacs of pretreated with pomegranate juice and control. It seems that pomegranatejuice might have induced CYP3A4enzymes and hence drug is extensively metabolized.

  11. Wet oxidation pre-treatment of woody yard waste: Parameter optimization and enzymatic digestibility for ethanol production

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.


    Woody yard waste with high lignin content (22% of dry matter (DM)) was subjected to wet oxidation pre-treatment for subsequent enzymatic conversion and fermentation. The effects of temperature (185-200 degreesC), oxygen pressure (3-12 bar) and addition of sodium carbonate (0-3.3 g per 100 g DM bi...

  12. Amphibian and reptile response to prescribed burning and thinning in pine-hardwood forests: pre-treatment results (United States)

    William B. Sutton; Yong Wang; Callie J. Schweitzer


    Analysis of pretreatment data is essential to determine long-term effects of forest management on amphibians and reptiles. We present pre-treatment amphibian and reptile capture data from April 2005 to May 2006 for a long-term study on herpetofaunal response to prescribed burning and tree thinning in the William B. Bankhead National Forest, AL, United States....

  13. Influence of pre-treatment on enzymatic degumming of apocynum venetum bast fibers in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Gao Shi-Hui


    Full Text Available Pre-treatment of apocynum venetum bast fibers in supercritical carbon dioxide can improve the efficiency of enzymatic degumming of apocynum venetum bast fiber. This paper studies experimentally effect of pressure and degumming time on degradation rate, the results can be used for optimal design of degumming.

  14. Pre-treatment child and family characteristics as predictors of outcome in cognitive behavioural therapy for youth anxiety disorders

    DEFF Research Database (Denmark)

    Lundkvist-Houndoumadi, Irene; Hougaard, Esben; Thastum, Mikael


    BACKGROUND: Cognitive behavioural therapy (CBT) has been found to be effective for children and adolescents (6-18 years) with anxiety disorders, but the non-response rate is high-a fact that may argue for the importance of studies on pre-treatment characteristics of children and their families...

  15. Predicting Dropout from a Residential Programme for Adolescent Sexual Abusers Using Pre-Treatment Variables and Implications for Recidivism (United States)

    Edwards, Rachel; Beech, Anthony; Bishopp, Daz; Erikson, Matt; Friendship, Caroline; Charlesworth, Lucy


    This study addresses the prediction that dropout from a UK specialized residential treatment program for adolescent sexual abusers can be determined from pre-treatment variables. Participants were 49 adolescents aged 12-16 years, who had sexually abused children, peers/adults or both. Of the variables examined, 25 showed a significant association…

  16. The importance of pre-treatment haemoglobin level in inoperable non-small cell lung carcinoma treated with radical radiotherapy.

    NARCIS (Netherlands)

    Langendijk, H.; Jong, de J.; Wanders, R; Lambin, P; Slotman, B.J.


    BACKGROUND AND PURPOSE: The purpose of this study was to evaluate the prognostic significance of the pre-treatment haemoglobin level among patients with inoperable non-small cell lung carcinoma (NSCLC) treated with definitive radiotherapy with regard to loco-regional tumour control (LC) and overall

  17. The importance of pre-treatment haemoglobin level in inoperable non-small cell lung carcinoma treated with radical radiotherapy.

    NARCIS (Netherlands)

    Langendijk, H.; de Jong, J.; Wanders, R; Lambin, P; Slotman, B.J.


    Background and purpose: The purpose of this study was to evaluate the prognostic significance of the pre-treatment haemoglobin level among patients with inoperable non-small cell lung carcinoma (NSCLC) treated with definitive radiotherapy with regard to loco-regional tumour control (LC) and overall

  18. Pre-treatment with Aloe vera juice does not enhance the in vitro permeation of ketoprofen across skin. (United States)

    Ballam, L; Heard, C M


    The potential of pre-treating skin with Aloe vera juice as a penetration enhancer was evaluated in vitro using ketoprofen as model permeant. To excised porcine skin mounted in Franz diffusion cells was applied either: (1) commercial Aloe vera; (2) commercial Aloe vera followed by massaging; (3) previously boiled commercial Aloe vera; (4) water (negative control); (5) tea tree oil (positive control). After 1 h, the pre-treatment was removed and the skin dosed with a saturated solution of ketoprofen in polyethylene glycol 400; the appearance of drug in the receptor phase was then monitored by HPLC. No statistically significant differences in the transdermal delivery of ketoprofen were observed between water and all the Aloe vera pre-treatments (p > 0.05). The tea tree oil pre-treatment was significantly different to all others (p Aloe vera appears to have no value as a penetration enhancer when used as a pre-treatment, although the data indirectly support the mechanism of action proposed previously, work when used 'within-vehicle'. Handling household products containing Aloe vera appears not to leave the user at elevated risk of subsequent absorption of exogenous chemicals. (c) 2009 S. Karger AG, Basel.

  19. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. (United States)

    Rattanachueskul, Natthanan; Saning, Amonrada; Kaowphong, Sulawan; Chumha, Nawapong; Chuenchom, Laemthong


    Sugarcane bagasse, an agricultural waste, was successfully converted into novel magnetic carbon composites by low temperature hydrothermal carbonization at 230°C for 24h, followed by heat treatment at 400°C for only 1h in air. Effects of NaOH and iron loading on the chemical properties of the composites were studied. In addition, various techniques were employed to investigate the physicochemical properties of the composites. Adsorption kinetics and isotherms were investigated with tetracycline (TC) for the magnetic composites. The magnetic carbon composite exhibited 48.35mg/g maximum adsorption capacity and was highly stable chemically and mechanically, with also good magnetic properties. The adsorption of TC by the magnetic adsorbent was mainly attributed to H-bonds and π-π interactions. The results indicate that waste sugarcane bagasse from the sugar industries can be efficiently transformed to a magnetic adsorbent for TC removal via a facile environmentally friendly method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters

    Directory of Open Access Journals (Sweden)

    Claudia Antonetti


    Full Text Available The hydrothermal conversion of giant reed (Arundo donax L. to furfural (FA and levulinic acid (LA was investigated in the presence of dilute hydrochloric acid. FA and LA yields were improved by univariate optimization of the main reaction parameters: concentration of the acid catalyst, solid/liquid ratio of the reaction mixture, hydrolysis temperature, and reaction time. The catalytic performances were investigated adopting the efficient microwave (MW irradiation, allowing significant energy and time savings. The best FA and LA yields were further confirmed using a traditionally heated autoclave reactor, giving very high results, when compared with the literature. Hydrolysis temperature and time were the main reaction variables to be carefully optimized: FA formation needed milder reaction conditions, while LA more severe ones. The effect of the crop management (e.g., harvest time on FA/LA production was discussed, revealing that harvest time was not a discriminating parameter for the further optimization of both FA and LA production, due to the very high productivity of the giant reed throughout the year. The promising results demonstrate that giant reed represents a very interesting candidate for a very high contemporary production of FA and LA of up to about 70% and 90% of the theoretical yields, respectively.

  1. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull. (United States)

    Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim


    The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

  2. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: systematic review and meta-analysis. (United States)

    Cheng, Jiwen; Wang, Wanli; Zhang, Yingjun; Liu, Xi; Li, Muxing; Wu, Zheng; Liu, Zhengwen; Lv, Yi; Wang, Bo


    Serum lens culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3%) has been widely used for HCC diagnosis and follow-up surveillance as tumor serologic marker. However, the prognostic value of high pre-treatment serum AFP-L3% in patients with hepatocellular carcinoma (HCC) remains controversial. We therefore conduct a meta-analysis to assess the relationship between high pre-treatment serum AFP-L3% and clinical outcome of HCC. Eligible studies were identified through systematic literature searches. A meta-analysis of fifteen studies (4,465 patients) was carried out to evaluate the association between high pre-treatment serum AFP-L3% and overall survival (OS) and disease-free survival (DFS) in HCC patients. Sensitivity and subgroup analyses were also conducted in this meta-analysis. Our analysis results showed that high pre-treatment serum AFP-L3% implied poor OS (HR: 1.65, 95%CI: 1.45-1.89 pAFP-L3% and endpoint (OS and DFS) in low AFP concentration HCC patients (HR: 1.96, 95% CI: 1.24-3.10, p = 0.004; HR: 2.53, 95% CI: 1.09-5.89, p = 0.03, respectively). The current evidence suggests that high pre-treatment serum AFP-L3% levels indicated a poor prognosis for patients with HCC and AFP-L3% may have significant prognostic value in HCC patients with low AFP concentration.

  3. Pre-treatment Symptom Cluster in Breast Cancer Patients is Associated with Worse Sleep, Fatigue and Depression during Chemotherapy (United States)

    Liu, Lianqi; Fiorentino, Lavinia; Natarajan, Loki; Parker, Barbara A.; Mills, Paul J; Sadler, Georgia Robins; Dimsdale, Joel E.; Rissling, Michelle; He, Feng; Ancoli-Israel, Sonia


    Objective The concept of symptom clusters is relatively new in cancer patients' symptom management. This study, which spanned four cycles of chemotherapy, combined three commonly seen pre-treatment symptoms in cancer patients (i.e., sleep disturbances, fatigue and depression) into one symptom cluster, to explore the associations between pre-treatment cluster categories and longitudinal profiles of these same symptoms during chemotherapy. Methods This was a prospective study. Seventy-six women with newly diagnosed stage I–III breast cancer, scheduled to receive at least four cycles of adjuvant or neoadjuvant anthracycline-based chemotherapy participated. Data were collected at seven time points before and during treatment. Sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI). Fatigue was measured with the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF). Depressive symptoms were measured with the Center of Epidemiological Studies-Depression (CES-D). Patients were divided into three groups based on the number of symptoms they experienced before the start of chemotherapy (i.e., no symptoms, 1–2 symptoms or all three symptoms) and a symptom cluster index (SCI) was computed. Results All women reported worse sleep, more fatigue and more depressive symptoms during treatment compared to baseline (all p's <0.01); however, those women with a higher symptom cluster index (i.e., more symptoms pre-treatment) continued to experience worse symptoms during treatment compared to those who began with fewer symptoms (all p's <0.01). Conclusions A higher clinically relevant-based pre-treatment symptom cluster was associated with more sleep disturbances, greater fatigue and more depressive symptoms during chemotherapy. Specific interventions for these pre-treatment symptoms may improve the frequency and severity of these same symptoms during chemotherapy, when they are most severe and most disruptive to quality of life. PMID:18677716

  4. Powering hydrothermal activity on Enceladus (United States)

    Tobie, Gabriel; Choblet, Gael; Sotin, Christophe; Behounkova, Marie; Cadek, Ondrej; Postberg, Frank; Soucek, Ondrej


    A series of evidence gathered by the Cassini spacecraft indicates that the intense activity at the South Pole of Saturn's moon Enceladus is related to a subsurface salty water reservoir associated with seafloor hydrothermal activity (Hsu et al. 2015, Waite et al. 2017). The observation of an elevated libration implies that this reservoir is global with a thin ice shell (20-25 km in average (Thomas et al. 2016) and power and a mechanism to focus the release of heat in the SPT, unexplained by previous models. Here we investigate heat generation by tidal friction in the porous core and simulate heat transport by water flow for core porosities consistent with Cassini gravity data (Iess et al. 2014). We demonstrate that, for effective viscosity and permeability values typical of water-saturated terrestrial rock analogues, more than 20 GW can be generated in the core, which can maintain a global liquid ocean and power hydrothermal activity at the seafloor. By performing 3D simulations of water flow in a tidally-heated porous rock matrix, we show that heat is extracted from the core in the form of focused outflows of hot water (> 90 °C) mostly in the polar regions, explaining strongly localized ice shell thinning. Owing to strong dissipation in Saturn (Lainey et al. 2017), we show that circulation of hot waters in the core may last at least 20-25 million years and that 10 to 100% of the oceanic volume may be processed in the core at temperature higher than 90°C on this timescale. Whether this has been sufficient for the emergence of life can be explored by future spacecraft missions (Mitri et al., this meeting; Lunine et al. 2017).

  5. Effect of a Shot Peening Pre Treatment on the Fatigue Behaviour of Hard Chromium on Electroless Nickel Interlayer Coated AISI 4340 Aeronautical Steel

    Directory of Open Access Journals (Sweden)

    Nascimento Marcelino P.


    Full Text Available Multiple layer systems of coatings are considered to have larger resistance to crack propagation in comparison to coatings with simple layer. With regard to fatigue, it is possible to improve the resistance of a component with the application of shot peening treatment, whose compressive residual stresses delay or eliminate the initiation and propagation of fatigue cracks. The aim of this study is to analyse the effects on rotating bending fatigue behaviour of hard chromium fraction three-quarters electroless nickel multilayer system coated AISI 4340 high strength steel submitted to shot peening pre treatment. Results indicated that the interaction between the shot peening process with the multilayer system was not satisfactory, resulting in intense delamination. Fracture surface analysis by SEM was performed toward to identify the fatigue crack origin, as well as the coating-substrate delamination process.

  6. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study. (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques


    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. (United States)

    Radhakrishnan, Ramalingam; Khan, Abdul Latif; Lee, In-Jung


    In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.

  8. A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges

    Energy Technology Data Exchange (ETDEWEB)

    Audronis, M., E-mail: [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Hinder, S.J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Mack, P. [ThermoFisher Scientific Ltd, Imberhorne Lane, East Grinstead, Sussex, RH19 1UB (United Kingdom); Bellido-Gonzalez, V. [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Bussey, D.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Baker, M.A. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom)


    PET web samples have been treated by magnetically enhanced glow discharges powered using either medium frequency pulse direct current (p-DC) or low frequency high power pulse (HIPIMS) sources. The plasma pre-treatment processes were carried out in an Ar-O{sub 2} atmosphere using either Cu or Ti sputter targets. XPS, AFM and sessile drop water contact angle measurements have been employed to examine changes in surface chemistry and morphology for different pre-treatment process parameters. Deposition of metal oxide onto the PET surface is observed as a result of the sputter magnetron-based glow discharge web treatment. Using the Cu target, both the p-DC and HIPIMS processes result in the formation of a thin CuO layer (with a thickness between 1 and 11 nm) being deposited onto the PET surface. Employing the Ti target, both p-DC and HIPIMS processes give rise to a much lower concentration of Ti (< 5 at.%), in the form of TiO{sub 2} on the PET treated surface. The TiO{sub 2} is probably distributed as an island-like distribution covering the PET surface. Presence of Cu and Ti oxide constituents on the treated PET is beneficial in aiding the adhesion but alone (i.e. without oxygen plasma activation) is not enough to provide very high levels of hydrophilicity as is clear from sessile drop water contact angle measurements on aged samples. Exposure to the plasma treatments leads to a small amount of roughening of the substrate surface, but the average surface roughness in all cases is below 2.5 nm. The PET structure at the interface with a coating is mostly or wholly preserved. The oxygen plasma treatment, metal oxide deposition and surface roughening resulting from the HIPIMS and p-DC treatments will promote adhesion to any subsequent thin film that is deposited immediately following the plasma treatment.

  9. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E


    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Hydrothermal treatment for preparation of europium-lanthanum phosphates and exploration of their fluorescence properties

    Directory of Open Access Journals (Sweden)

    Hiroaki Onoda


    Full Text Available Europium-substituted lanthanum phosphates (Eu; 5 mol% were prepared from lanthanum nitrate, europium nitrate, and sodium polyphosphate solutions by a hydrothermal process at 120 and 160 °C up to 8 h. The obtained phosphates were studied using XRD, IR spectroscopy, TG–DTA, and SEM. UV–vis absorbance and reflectance, as well as fluorescence, were estimated as functional properties of these phosphate materials. We found that samples prepared without hydrothermal treatment were amorphous (as indicated by their XRD patterns, whereas those prepared by a hydrothermal treatment contained peaks corresponding to lanthanum orthophosphate, indicating that the hydrothermal process caused the polyphosphate(s to decompose into orthophosphate(s. The TG–DTA curves of the samples prepared by a hydrothermal treatment were different from those of the samples prepared without hydrothermal treatment. All samples reported herein had no specified shape despite using prolonged hydrothermal treatment times. Although the samples prepared without hydrothermal treatment showed only weak fluorescence peaks, those prepared by a hydrothermal treatment showed strong peaks at 556, 590, 615, and 690 nm. These peaks corresponded to transitions from 5D0 to 7F0, 7F1, 7F2, and 7F4, respectively. Collectively, these results indicate that the hydrothermal treatment is a useful method of obtaining europium-substituted lanthanum phosphates with fluorescence properties.

  11. Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. (United States)

    Surra, Elena; Bernardo, Maria; Lapa, Nuno; Esteves, Isabel; Fonseca, Isabel; Mota, José Paulo


    In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above

  12. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland (United States)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.


    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua


    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  14. Inhibition of bleomycin-induced pulmonary fibrosis through pre-treatment with collagen type V. (United States)

    Braun, Ruedi K; Martin, Alicia; Shah, Shivanee; Iwashima, Makio; Medina, Melissa; Byrne, Kathryn; Sethupathi, Periannan; Wigfield, Christopher H; Brand, David D; Love, Robert B


    Tolerance to collagen structures has been shown to inhibit the progression of autoimmune scleroderma and rheumatoid arthritis. More recently, tolerance induction to collagen type V (colV) in experimental models of lung transplantation was shown to ameliorate the complex pathology known as "chronic rejection." The link between colV autoimmunity and progressive graft dysfunction and subsequent development of bronchiolitis obliterans syndrome (BOS) has been established in human lung transplant recipients. We hypothesized that intravenous injection of colV inhibits development of lung fibrosis in a bleomycin-induced lung injury mouse model. Experimental animals were injected intravenously with saline or colV 10 days before intratracheal instillation of bleomycin. Pulmonary inflammation was monitored and quantified for the presence of cells in the bronchoalveolar lavage (BAL) fluid by flow cytometry and histology of lung tissue. ColV-pre-treated animals showed a significant reduction in lung inflammation compared with non-treated animals, according to histology and morphometry. The number of inflammatory cells in the BAL fluid was significantly reduced and associated with a lower proportion of gammadelta T cells and CD4(+) T cells in the colV-pre-treated group. Matrix metalloproteinase-2 and -9 (MMP-2 and -9; also known as gelatinase A and gelatinase B, respectively) levels in the BAL fluid were significantly reduced in colV-pre-treated mice compared with the non-treated mice. In addition, intravenous injection of colV was associated with a significant reduction in the relative expression of interleukin (IL)-6, IL-17 and IL-22 in cells present in BAL fluid at 7 and 14 days after bleomycin instillation. Pre-treatment by intravenous injection of colV inhibits bleomycin-induced pulmonary fibrosis by inhibiting IL-6 and IL-17 production. Fibrosis treatment in this context therefore should target induction of colV tolerance and Th17 development. Copyright (c) 2010

  15. High levels of pre-treatment HIV drug resistance and treatment failure in Nigerian children

    Directory of Open Access Journals (Sweden)

    Ragna S Boerma


    Full Text Available Introduction: Pre-treatment HIV drug resistance (PDR is an increasing problem in sub-Saharan Africa. Children are an especially vulnerable population to develop PDR given that paediatric second-line treatment options are limited. Although monitoring of PDR is important, data on the paediatric prevalence in sub-Saharan Africa and its consequences for treatment outcomes are scarce. We designed a prospective paediatric cohort study to document the prevalence of PDR and its effect on subsequent treatment failure in Nigeria, the country with the second highest number of HIV-infected children in the world. Methods: HIV-1-infected children ≤12 years, who had not been exposed to drugs for the prevention of mother-to-child transmission (PMTCT, were enrolled between 2012 and 2013, and followed up for 24 months in Lagos, Nigeria. Pre-antiretroviral treatment (ART population-based pol genotypic testing and six-monthly viral load (VL testing were performed. Logistic regression analysis was used to assess the effect of PDR (World Health Organization (WHO list for transmitted drug resistance on subsequent treatment failure (two consecutive VL measurements >1000 cps/ml or death. Results: Of the total 82 PMTCT-naïve children, 13 (15.9% had PDR. All 13 children harboured non-nucleoside reverse transcriptase inhibitor (NNRTI mutations, of whom seven also had nucleoside reverse transcriptase inhibitor resistance. After 24 months, 33% had experienced treatment failure. Treatment failure was associated with PDR and a higher log VL before treatment initiation (adjusted odds ratio (aOR 7.53 (95%CI 1.61–35.15 and 2.85 (95%CI 1.04–7.78, respectively. Discussion: PDR was present in one out of six Nigerian children. These high numbers corroborate with recent findings in other African countries. The presence of PDR was relevant as it was the strongest predictor of first-line treatment failure. Conclusions: Our findings stress the importance of implementing fully

  16. The association of pre-treatment HPV subtypes with recurrence of VIN. (United States)

    Bogani, Giorgio; Martinelli, Fabio; Ditto, Antonino; Signorelli, Mauro; Taverna, Francesca; Lombardo, Claudia; Chiappa, Valentina; Leone Roberti Maggiore, Umberto; Recalcati, Dario; Scaffa, Cono; Perotto, Stefania; Sabatucci, Ilaria; Indini, Alice; Lorusso, Domenica; Raspagliesi, Francesco


    To assess whether pre-treatment HPV types are associated with recurrence of high-grade vulvar intraepithelial neoplasia (VIN2+). Data of consecutive patients with pretreatment HPV DNA test undergoing treatment for VIN2+ were retrospectively collected. Risk factors promoting the risk of VIN2+ persistence and recurrence were analyzed using Kaplan-Meier and Cox hazard proportional models. 64 patients had pretreatment vulvar-vaginal HPV DNA test. Two were excluded due to the presence of synchronous vulvar cancer, thus leaving 62 patients for the final analysis. HPV16, HPV18, HPV31 and HPV33 were the most common HPV genotype detected, occurring in 15 (24.2%), 4 (6.5%), 8 (12.9%) and 5 (8.0%) patients, respectively. HPV was not detected in 19 (30.6%) patients. During a mean (SD) follow up of 56.7 (±26.7) months, 10 (16.1%) patients had VIN2+ persistence/recurrence. Mean (SD) lesion-free interval was 51.7 (±31.4) months. Via multivariate analysis, pretreatment infection from HPV31 (HR:46.7(95%CI:4.21,518.4); p=0.02) and HPV33 (HR:77.0(95%CI:6.73,881.9); pVIN2+ persistence/recurrence. Additionally, we observed that patients undergoing surgical excision followed by LASER ablation experienced a trend towards lower recurrence rate than patients undergoing other surgical or medical treatments (HR:0.20(95%CI:0.03,1.09); p=0.05). Two (3.2%) patients developed progression to vulvar cancer. Owing to the inherent biases of the retrospective study design and the small sample size, our data have to be corroborated by larger and prospective studies. HPV31 and HPV33 have a potential role in predicting VIN2+ persistence/recurrence. These findings will be paramount, owing to the implementation of new immunization programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stable light isotope biogeochemistry of hydrothermal systems. (United States)

    Des Marais, D J


    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2.

  18. Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Macossay, Javier


    In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method f...

  19. Pre-Treatment of Human Mesenchymal Stem Cells with Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium

    NARCIS (Netherlands)

    M.J.C. Leijs (Maarten J.C.); G.M. van Buul (Gerben); J.A.N. Verhaar (Jan); M.J. Hoogduijn (Martin); P.K. Bos (Koen); G.J.V.M. van Osch (Gerjo)


    textabstractBackground: Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Hypothesis: Pre-treatment of MSCs with inflammatory

  20. Comparison of lime powder and caustic soda as a pre-treatment for ammonia-nitrogen removal from a scheduled waste leachate (United States)

    Nurul Hanira M., L.; Hasfalina C., M.; Sani, A.; Rashid, M.


    Studies on leachate taken from scheduled waste landfill are limited. This might be due to the complex characteristics of the leachate from scheduled waste landfill compared to other types of landfills. Leachate is known as a strong wastewater in terms of its organic matter and ammonia content. In this study, a pre-treatment on the removal of ammonia-nitrogen (NH3-N) by coagulation on a leachate sample taken from a Scheduled Waste Landfill (SWL) is reported. The coagulation was performed using lime (Ca (OH)2), and caustic soda (NaOH) with varying pH and amount of coagulant. A different dosage of Ca (OH)2, and NaOH was applied and the removal efficiency using both coagulants were investigated to find the most optimum dosage for NH3-N removal. Results showed that the percentage of NH3-N removal was relatively the same for both Ca (OH)2 and NaOH which was up to 45% and 48%, respectively. The optimum pH and dosage of coagulant for the removal process using Ca (OH)2 was pH=12.40±0.02 and 6gL-1, respectively while with NaOH was pH=12.83±0.02 and 8 gL-1, respectively. A small difference in the removal of NH3-N with a less dosage of coagulant used in the study suggests that lime (Ca(OH)2), is a better choice for the pre-treatment process.

  1. Radiopaque marker motion during pre-treatment CBCT as a predictor of intra-fractional prostate movement

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Agergaard, Søren N; Brink, Carsten


    of the prostate during the pre-treatment CBCT and investigate whether this motion is correlated with the intra-fractional movement of the prostate. Material and methods. Pre- and post-treatment CBCT scans were made during a number of the fractions (average 11 range 8-12) for 13 prostate cancer patients during......The intra-fractional movement of the prostate constitutes a hindrance for the reduction of the planning target volume margin for prostate cancer patients. Monitoring the movement of the prostate during treatment is a promising but in most centres not feasible solution. However, the projection...... the projection images. This motion was generally small and uncorrelated with the subsequent intra-fractional movement of the prostate. The correlation coefficients were 20.05, 0.07, and 20.05 in the LR, AP, and CC direction, respectively. Conclusion. It is tempting to exploit the pre-treatment CBCT to predict...

  2. Ozonation and thermal pre-treatment of municipal sewage sludge – Implications for toxicity and methane potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    The aim of this study was to determine the effects on the methane potential and the overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 °C). In general both treatments gave an increased methane potential. The thermal...... treatment resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. The sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre......-treatment, but the inhibition was reduced by ozone treatment and digestion. No statistical significant reduction in concentrations of the included pharmaceuticals could be seen....

  3. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Jansen, J.l.C.; Davidsson, Å.


    -treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor......Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced...... by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder + magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre...

  4. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada


    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre......-treatment, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested...... oxygen demand and total and soluble phosphorus, regardless of the type of mechanical pre-treated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits for small- and medium...

  5. Facile hydrothermal synthesis of CeO2 nanopebbles

    Indian Academy of Sciences (India)


    Ostwald ripening and oriented attachment process, res- pectively. In the hydrothermal process after the nuclea- tion stage, where the small nanocrystals are dissolved or re-precipitated to grow the larger crystals by the Ostwald ripening process, resulting in the formation of CeO2 nanopebbles.24 Figure 2f shows the ...

  6. Effect of Pre-treatment Education Programs on the Anxiety of Patients Receiving Radiotherapy: An Integrative Literature Review

    Directory of Open Access Journals (Sweden)

    Fatemeh Heshmati Nabavi


    Full Text Available Background: Stress and anxiety in cancer patients are caused by disease diagnosis, unfamiliar experiences, and therapy-related problems. In addition to the short duration of radiotherapy, receiving and understanding of the information about this treatment could be difficult for patients due to anxiety, fatigue, and mental pressure. Training of cancer patients about radiotherapy via educational programs could reduce pre-treatment anxiety. Aim: This systematic review aimed to integrate the information regarding the effects of pre-treatment educational training on the level of anxiety and distress symptoms of cancer patients receiving RT. Method: This systematic review was conducted to identify the studies comparing different methods of pre-treatment patient education before radiotherapy via searching in databases such as MEDLINE, PsycINFO, Web of Science, ClinicalKey, ProQuest, and PubMed. Selected studies included clinical reports on the effects of educational interventions on the anxiety of patients receiving radiotherapy. Excluded samples were commentaries and studies without intervention. Results: In total, we reviewed eight articles assessing the effect of educational interventions before radiotherapy on the anxiety of cancer patients. Educational interventions used in these studies included face-to-face consultation with a radiotherapist, group instructions with routine individual training using visual materials (e.g., brochures, booklets, videotapes, and PowerPoint presentations, group discussions, electronic instructions, written materials, and phone contact with a nurse. Implications for Practice: According our findings, pre-treatment education could reduce the anxiety of cancer patients before radiotherapy. These educational programs could be performed using written, visual, electronic, or face-to-face instructions. However, considering the condition of cancer patients and their treatment, selection of the appropriate training method

  7. Effects of music listening on pre-treatment anxiety and stress levels in a dental hygiene recall population


    Thoma, Myriam V.; Zemp, Martina; Kreienbühl, Lea; Hofer, Deborah; Schmidlin, Patrick R.; Attin, Thomas; Ehlert, Ulrike; Nater, Urs M.


    BACKGROUND: Waiting for a medical procedure can exert significant feelings of state anxiety in patients. Music listening has been shown to be effective in decreasing anxiety levels. No study so far examined the potential anxiety and stress-reducing effect of a music intervention on pre-treatment anxiety and stress in patients waiting for dental hygiene treatment. Knowing whether the anxiety-reducing effect of music would also be detectible in the context of preventive routine medical procedur...

  8. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil. (United States)

    Kaushik, Rajni; Parshetti, Ganesh K; Liu, Zhengang; Balasubramanian, Rajasekhar


    Food waste was subjected to enzymatic hydrolysis prior to hydrothermal treatment to produce hydrochars and bio-oil. Pre-treatment of food waste with an enzyme ratio of 1:2:1 (carbohydrase:protease:lipase) proved to be effective in converting food waste to the two products with improved yields. The carbon contents and calorific values ranged from 43.7% to 65.4% and 17.4 to 26.9 MJ/kg for the hydrochars obtained with the enzyme-assisted pre-treatment, respectively while they varied from 38.2% to 53.5% and 15.0 to 21.7 MJ/kg, respectively for the hydrochars obtained with no pre-treatment. Moreover, the formation of carbonaceous microspheres with low concentrations of inorganic elements and diverse surface functional groups was observed in the case of enzyme-assisted food waste hydrochars. The enzymatic pre-treatment also facilitated the formation of the bio-oil with a narrow distribution of organic compounds and with the highest yield obtained at 350 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of ultrasound pre-treatment of hemp (Cannabis sativa L.) seed on supercritical CO2 extraction of oil. (United States)

    Da Porto, C; Natolino, A; Decorti, D


    Ultrasound pre-treatment of intact hemp seeds without any solvent assistance was carried out for 10, 20 and 40 min prior to SCCO2 extraction at 40 °C, 300 bar and 45 kg CO2/kg feed. Sonication time effect on SC-CO2 extraction was investigated by the extraction kinetics. The maximum extraction yield was estimated to be 24.03 (% w/w) after 10 min of ultrasonic pre-treatment. The fatty acid compositions of the oils extracted by SC-CO2 without and with ultrasound pre-treatments was analyzed using gas chromatography. It was shown that the content of linoleic, α-linolenic and oleic acids (the most abundant unsaturated fatty acids) of the hemp seed oils were not affected significantly by the application of ultrasound. UV spectroscopy indices (K232 and K268) and antiradical capacity were used to follow the quality of oils. Significant were the changes in their antiradical capacity due to ultrasound treatment. A comparison with the oil extracted by Soxhlet was also given.

  10. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun


    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  11. Effect of Pre-treatment Methods on the Color Changes during Drying of Red Chilli (Capsicum frutescens L.

    Directory of Open Access Journals (Sweden)

    Saengrayap Rattapon


    Full Text Available Chilli was dried using conventional tray dryer with 3 different drying conditions, i.e., 60°C, 80°C and 2-stage drying (80°C and 60°C. The effects of pre-treatment methods were evaluated by soaking chilli in pre-treatment solutions prior to drying. In terms of drying characteristics, the drying time found to be shortest at 80°C. It was also found that the drying rate of pre-treated chilli increased compared with non-treated one. The modified Page’s model was suitable for describing drying characteristics at all conditions (R2 = 0.97-0.99. Furthermore, the color change during drying was investigated using image analysis methods. It was found that the pre-treatment methods prevented the color change. The combined kinetic model was the best model for predicting the change of color during drying (R2 = 0.98-0.99. A pre-treated chilli soaking in a mixed solution of 0.3% (w/w Na2S2O5 and 1% (w/w CaCl2 showed the better quality. In addition, the combined kinetics model could describe the change of L* a* and b* values in all conditions.

  12. Effect of Pre-treatment with Moringa oleifera (Drumstick Leaves on Diabetogenesis Produced by Alloxan in Rats

    Directory of Open Access Journals (Sweden)

    Shamsun Nahar


    Full Text Available Background: Medicinal plants constitute an important source of potential therapeutic agents for diabetes. Objective: In the study, we aimed to investigate the pre-treatment effect or preventive effects of Moringa oleifera (MO leaves on blood sugar of rats. Materials and method: This experimental study was carried out in the department of Pharmacology and Therapeutics of Sir Salimullah Medical College in collaboration with Bangladesh Council of Scientific and Industrial Research (BCSIR, Dhaka. A total 24 long Evans rats were included in this study and divided in to four groups. Hyperglycemia was induced on rats using alloxan (100 mg/kg body weight, intraperitioneally. Blood sample was collected from tail vein by tail tipping method. Pre-treatment effect or preventive role of Moringa oleifera (drumstick leaf powder on diabetogenesis produced by Alloxan in rats was tested by giving 50 mg/rat/day Moringa oleifera leaf powder for 14 days orally as pre-treatment along with standard rat feed. Then alloxan was administered intraperitoneally on 15th day of the experiment and 50mg/rat/day Moringa oleifera leaf powder was given for 7 days as post-treatment. Results: No significant effect of MO on blood glucose level was observed on normal rats and non significant hypoglycaemic effect was found in rats that were pretreated with MO. Conclusion: The present study suggests that Moringa oleifera leaf powder did not produce any significant protective effect in diabetogenesis produced by alloxan though it has hypoglycaemic effect.

  13. Replacement of 5% of OPC by fly ash and APC residues from MSWI with electrodialytic pre-treatment

    DEFF Research Database (Denmark)

    Magro, Cátia; Kirkelund, Gunvor Marie; Guedes, Paula


    as pre-treatment prior to incorporation in mortar, aiming to stabilize and remove HM and chlorides. Eight ED experiments were performed for 7 days with a L/S ratio of 3.5. The number of compartments (2 or 3) and current density (0.1 or 1.0 mA cm-2) varied. After ED treatment the heavy metals left...... in the ash were not leached to the same extent as in the original ash. In mortar 5% of Ordinary Portland Cement was replaced by FA and APC residues (raw and ED upgraded). The studied parameters: compressive strength, HM leachability, and Cl content. The ED pre-treatment resulted in a decrease in both...... leaching of HM and the Cl content. The compressive tests presented comparable values to the reference mortars. This study suggests that the characteristics of FA and APC residues from MSWI after pre-treatment allows them to be reused in building materials, giving a new edge to waste management....

  14. A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID (United States)

    McCowan, P. M.; Asuni, G.; van Beek, T.; van Uytven, E.; Kujanpaa, K.; McCurdy, B. M. C.


    This study reports the development and validation of a model-based, 3D patient dose reconstruction method for pre-treatment quality assurance using EPID images. The method is also investigated for sensitivity to potential MLC delivery errors. Each cine-mode EPID image acquired during plan delivery was processed using a previously developed back-projection dose reconstruction model providing a 3D dose estimate on the CT simulation data. Validation was carried out using 24 SBRT-VMAT patient plans by comparing: (1) ion chamber point dose measurements in a solid water phantom, (2) the treatment planning system (TPS) predicted 3D dose to the EPID reconstructed 3D dose in a solid water phantom, and (3) the TPS predicted 3D dose to the EPID and our forward predicted reconstructed 3D dose in the patient (CT data). AAA and AcurosXB were used for TPS predictions. Dose distributions were compared using 3%/3 mm (95% tolerance) and 2%/2 mm (90% tolerance) γ-tests in the planning target volume (PTV) and 20% dose volumes. The average percentage point dose differences between the ion chamber and the EPID, AcurosXB, and AAA were 0.73  ±  1.25%, 0.38  ±  0.96% and 1.06  ±  1.34% respectively. For the patient (CT) dose comparisons, seven (3%/3 mm) and nine (2%/2 mm) plans failed the EPID versus AAA. All plans passed the EPID versus Acuros XB and the EPID versus forward model γ-comparisons. Four types of MLC sensitive errors (opening, shifting, stuck, and retracting), of varying magnitude (0.2, 0.5, 1.0, 2.0 mm), were introduced into six different SBRT-VMAT plans. γ-comparisons of the erroneous EPID dose and original predicted dose were carried out using the same criteria as above. For all plans, the sensitivity testing using a 3%/3 mm γ-test in the PTV successfully determined MLC errors on the order of 1.0 mm, except for the single leaf retraction-type error. A 2%/2 mm criteria produced similar results with two more additional detected

  15. A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID. (United States)

    McCowan, P M; Asuni, G; van Beek, T; van Uytven, E; Kujanpaa, K; McCurdy, B M C


    This study reports the development and validation of a model-based, 3D patient dose reconstruction method for pre-treatment quality assurance using EPID images. The method is also investigated for sensitivity to potential MLC delivery errors. Each cine-mode EPID image acquired during plan delivery was processed using a previously developed back-projection dose reconstruction model providing a 3D dose estimate on the CT simulation data. Validation was carried out using 24 SBRT-VMAT patient plans by comparing: (1) ion chamber point dose measurements in a solid water phantom, (2) the treatment planning system (TPS) predicted 3D dose to the EPID reconstructed 3D dose in a solid water phantom, and (3) the TPS predicted 3D dose to the EPID and our forward predicted reconstructed 3D dose in the patient (CT data). AAA and AcurosXB were used for TPS predictions. Dose distributions were compared using 3%/3 mm (95% tolerance) and 2%/2 mm (90% tolerance) γ-tests in the planning target volume (PTV) and 20% dose volumes. The average percentage point dose differences between the ion chamber and the EPID, AcurosXB, and AAA were 0.73  ±  1.25%, 0.38  ±  0.96% and 1.06  ±  1.34% respectively. For the patient (CT) dose comparisons, seven (3%/3 mm) and nine (2%/2 mm) plans failed the EPID versus AAA. All plans passed the EPID versus Acuros XB and the EPID versus forward model γ-comparisons. Four types of MLC sensitive errors (opening, shifting, stuck, and retracting), of varying magnitude (0.2, 0.5, 1.0, 2.0 mm), were introduced into six different SBRT-VMAT plans. γ-comparisons of the erroneous EPID dose and original predicted dose were carried out using the same criteria as above. For all plans, the sensitivity testing using a 3%/3 mm γ-test in the PTV successfully determined MLC errors on the order of 1.0 mm, except for the single leaf retraction-type error. A 2%/2 mm criteria produced similar results with two more additional detected

  16. Hydrothermal treatments in the development of isoflavone aglycones in soybean (Glycine max (L. Merrill grains

    Directory of Open Access Journals (Sweden)

    Mercedes C. Carrão-Panizzi


    Full Text Available Studies were carried out to enhance the development of isoflavone aglycones in soybean. Grains of two soybean cultivars, BR 36 and IAS 5, 115 and 278 mg/100g of total isoflavone, respectively, were treated hydrothermalyl at 45, 60 and 85° C for 5, 30 and 60 minutes. Pre-treatments of grains at 60° C for 60 minutes allowed a considerable increase of the isoflavone aglycones. Non-treated grains of BR 36 and IAS 5 showed 1.2 mg/100g of genistein, after hydrothermal treatments,which increased to 12 and 53 mg/100g, in each variety, respectively. At higher temperature (85 ° C there was a decrease of the aglycones due to inactivation of beta-glycosidases. Malonyl compounds were also reduced at higher temperatures. In processing functional soybean foods, hydrothermal treatments of the soybean grains, as well as high isoflavone content soybean cultivars will enhance development of aglycone forms.Estudos foram conduzidos para aumentar isoflavonas agliconas (compostos mais biodisponíveis e mais efetivos na prevenção de doenças crônicas em grãos de soja. Pré-tratamentos hidrotérmicos dos grãos foram conduzidos a 45, 60 e 85 ºC por 5, 30, e 60 minutos. Duas cultivares de soja BR 36 e IAS 5 (115, e 278 mg/100g de isoflavonas totais, respectivamente, foram usadas nos experimentos. Pré-tratamentos dos grãos a 60 ºC por 60 minutos permitiram um considerável aumento das isoflavonas agliconas. Grãos não tratados de BR 36 e IAS 5 apresentaram 1,2 mg/100g de genisteína. Depois dos tratamentos hidrotérmicos, este composto aumentou para 12 e 53 mg/100g, em cada variedade, respectivamente. Em altas temperatures (85 ºC houve diminuição das agliconas devido a inativação das enzimas beta-glicosidases. Os compostos malonil (térmicamente instáveis, também foram reduzidos sob altas temperaturas. No processamento de alimentos funcionais de soja, pré-tratamentos hidrotérmicos dos grãos, bem como a utilização de cultivares com alto teor de

  17. Numerical simulation of magmatic hydrothermal systems (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.


    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  18. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  19. KONVERSI LIMBAH TANDAN KOSONG KELAPA SAWIT MENJADI GLUKOSA DENGAN PROSES HIDROTERMAL TANPA MELALUI PROSES PRETREATMENT - (Conversion of Waste Palm Oil Empty Fruit Bunches into Glucose using Hydrothermal Process without Pretreatment

    Directory of Open Access Journals (Sweden)

    Rakhman Sarwono


    Full Text Available Palm oil empty fruit bunch (EFB is a waste from palm oil industry and commonly used as compost for soil breeding. EFB could be hydrolized into glucose using hydrothermal process with hydrochloric acid as catalyst.  Eight gram of EFB in particle sizes (–30+40 mesh were hydrolyzed with HCl 10% 80 mL in a tube reactor. Reaction time were 2, 3 and 4 hours in temperature range 140-240oC. EFB decomposition did not increase despite of higher temperature while reaction time influenced the process significantly. EFB conversion was 47% in 4 hours and 240oC while in 3 hours resulted 34% same with 2 hours in 210oC. EFB decomposition did not influence glucose yield which was 23% in 2 hours  170oC, 24% in 3 hours 160oC and 6% in 4 hours 150oC. The optimum conditions of conversion were 2 and 3 hours with temperature range 150-170oC.Keywords: conversion, EFB, glucose, hydrothermal, pretreatment ABSTRAKLimbah tandan kosong kelapa sawit (TKKS merupakan hasil samping dari industri minyak sawit dan terdapat dalam jumlah banyak. Sampai saat ini belum termanfaatkan dengan baik, biasanya dipakai sebagai kompos untuk pemuliaan tanah perkebunan sawit. Persentase TKKS sebesar 23% dari tandan buah segar (TBS dengan komponen utama berupa selulosa, hemi-selulosa dan lignin. TKKS bisa dihidrolisis menjadi gula atau glukosa dengan proses hidrotermal menggunakan katalis asam klorida. TKKS  seberat 8 g dengan ukuran partikel (–30+40 mesh dikonversi secara hidrotermal pada reaktor tabung dengan penambahan 80 ml HCl 10% sebagai katalis, waktu reaksi 2, 3 dan 4 jam, suhu reaksi dari 120–240oC. Proses peruraian TKKS tidak menunjukkan kenaikan yang berarti walaupun suhu reaksi semakin tinggi. Waktu reaksi memberi pengaruh yang lebih besar terhadap peruraian TKKS dimana peruraian paling tinggi sebesar 47% pada suhu 240oC dan waktu reaksi 4 jam. Pada waktu reaksi 3 jam dihasilkan peruraian TKKS paling tinggi sebesar 34%, sama dengan hasil pada waktu 2 jam dan suhu 210o

  20. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control. (United States)

    Ma, Min; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui


    A novel Mn(VII)-Fe(II) pre-treatment was proposed to simultaneously enhance the removal of Microcystis aeruginosa by aluminum chloride (AlCl3) coagulation and enabled lowering the dose of Al as effective coagulation can be achieved only by Al, however, at higher doses. In this process, permanganate [Mn(VII)] and ferrous sulfate [Fe(II)] were dosed sequentially prior to Al. The application of Fe(II) not only avoids the extensive oxidation of M. aeruginosa by Mn(VII) but also introduces Fe(III) formed in situ into the system. Results show that, at Al doses of 83.3-108.3 μM, Mn(VII)-Fe(II) pretreatment (Mn(VII) dose: 8.3-16.7 μM; Fe(II) dose: 39.5 μM) is capable of enhancing M. aeruginosa removal by 73.4-81.4%. In contrast, only 0-65.4% and 2.7-8.2% increase in M. aeruginosa removal is achieved by Mn(VII) and Fe(II) pre-treatment, respectively. The ESI-MS spectrum shows that the freshly formed Fe(III) hydrolyzes much more slowly than pre-formed Fe(III) does, and this effect results in its higher efficiency towards the removal of M. aeruginosa. Moreover, in the co-existing system, Fe tends to hydrolyze preferentially and the presence of Fe salts improves the precipitation of Al and vice versa. Thus, the use of Fe and Al as dual-coagulants is practically valuable to control the residual level of coagulant(s) besides its improvement on the removal of M. aeruginosa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments. (United States)

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao


    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib


    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...

  3. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis


    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  4. Pre-treatment with GnRHa or ulipristal acetate prior to laparoscopic and laparotomic myomectomy: A systematic review and meta-analysis. (United States)

    de Milliano, Inge; Twisk, Moniek; Ket, Johannes C; Huirne, Judith A; Hehenkamp, Wouter J


    Myomectomy has potential risks of complications. To reduce these risks, medical pre-treatment can be applied to reduce fibroid size and thereby potentially decrease intra-operative blood loss, the need for blood transfusion and emergency hysterectomy. The aim of this systematic review and meta-analysis is to study the effectiveness of medical pre-treatment with Gonadotropin-releasing hormone agonists (GnRHa) or ulipristal acetate prior to laparoscopic or laparotomic myomectomy on intra-operative and post-operative outcomes. We performed an extensive search in, Wiley/Cochrane Library and PubMed in accordance with the Prisma guidelines. All studies published as full papers in peer reviewed journals using GnRHa or ulipristal acetate as medical pre-treatment independent of route of administration or dosage before laparotomic or laparoscopic myomectomy were included. The primary outcome was duration of surgery. Secondary outcomes were duration of enucleation, blood loss, degree of difficulty of surgery, identification of cleavage planes, proportion of vertical incisions, conversion rate, frequency of blood transfusions, post-operative complications, duration of hospital stay, frequency of recurrence of fibroids, frequency of uterine adhesions, recovery time and quality of life. No language restrictions were applied. Meta-analysis were performed where possible. Twenty-three studies were included. In laparotomic myomectomy, pre-treatment with GnRHa decreases intra-operative blood loss with 97.39ml (95% CI -111.80 to -82.97) compared to no pre-treatment or placebo. Pre-treatment with GnRHa before laparoscopic myomectomies also shows a reduction in intra-operative blood loss by 23.03ml (95% CI -40.79 to -5.27) and in the frequency of blood transfusions (OR 0.17, 95% CI 0.05 to 0.55) compared to no pre-treatment. Only two retrospective cohort studies reported on pre-treatment with ulipristal acetate compared to no pre-treatment before laparoscopic myomectomy

  5. Pre-treatment with GnRHa or ulipristal acetate prior to laparoscopic and laparotomic myomectomy: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Inge de Milliano

    Full Text Available Myomectomy has potential risks of complications. To reduce these risks, medical pre-treatment can be applied to reduce fibroid size and thereby potentially decrease intra-operative blood loss, the need for blood transfusion and emergency hysterectomy. The aim of this systematic review and meta-analysis is to study the effectiveness of medical pre-treatment with Gonadotropin-releasing hormone agonists (GnRHa or ulipristal acetate prior to laparoscopic or laparotomic myomectomy on intra-operative and post-operative outcomes.We performed an extensive search in, Wiley/Cochrane Library and PubMed in accordance with the Prisma guidelines. All studies published as full papers in peer reviewed journals using GnRHa or ulipristal acetate as medical pre-treatment independent of route of administration or dosage before laparotomic or laparoscopic myomectomy were included. The primary outcome was duration of surgery. Secondary outcomes were duration of enucleation, blood loss, degree of difficulty of surgery, identification of cleavage planes, proportion of vertical incisions, conversion rate, frequency of blood transfusions, post-operative complications, duration of hospital stay, frequency of recurrence of fibroids, frequency of uterine adhesions, recovery time and quality of life. No language restrictions were applied. Meta-analysis were performed where possible.Twenty-three studies were included. In laparotomic myomectomy, pre-treatment with GnRHa decreases intra-operative blood loss with 97.39ml (95% CI -111.80 to -82.97 compared to no pre-treatment or placebo. Pre-treatment with GnRHa before laparoscopic myomectomies also shows a reduction in intra-operative blood loss by 23.03ml (95% CI -40.79 to -5.27 and in the frequency of blood transfusions (OR 0.17, 95% CI 0.05 to 0.55 compared to no pre-treatment. Only two retrospective cohort studies reported on pre-treatment with ulipristal acetate compared to no pre-treatment before laparoscopic

  6. Effect of Acetylene Black Content to Half Cells Li-ion Battery Performance Based on Li4Ti5O12 using Li2CO3 as Lithium Ion Source with Hydrothermal Mechanochemical Process (United States)

    Priyono, B.; Faizah; Syahrial, A. Z.; Subhan, A.


    Lithium titanate (Li4Ti5O12)/LTO is a promising candidate to be used as anode electrode in Li-ion battery, to replace graphite in Li-ion battery application. Crystal structure of lithium titanate/LTO is more stable or undergoes less strain than graphite during intercalation and de-intercalation process Li+ ions. However, although lithium titanate has good stability, the material has low electrical conductivity and lithium ion diffusion. The purpose of this research is to synthesis the spinel LTO using combinated hydrothermal and mechanochemical processes from xerogel TiO2. Then, to increase the conductivity, in the half-cell battery assembly process it was added acetylene black conductive (AB) additive with various from 10%, to 15% in wt. The LTO obtained were characterized using scanning electron microscope (SEM), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET). The XRD showed a rutile as minor phase, while SEM showed homogeneous distribution of particle with an average particle size of 0.35 μm. The BET showed that the surface area of LTO formed is 2.26 m2/g. The assembled coin half cells used this Li4Ti5O12 as a cathode and lithium metal foil as the anode were tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). The conductivity value obtained from EIS corresponds to the contents of AB. Meanwhile, the CV and CD testing showed that higher percentage of AB causing the decrease of battery specific capacity. The highest specific capacity at the rate of 10C is obtained at the mixture of 10wt% AB with the value of 40.91 mAh/g.

  7. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken


    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  8. Geochemistry and strontium isotopic composition of mineralforming solutions of hydrothermal systems of southern Kamchatka

    Energy Technology Data Exchange (ETDEWEB)

    Pampura, V.D.; Plyusnin, G.S.; Sandimirova, G.P.


    In order to understand the genesis of hydrothermal systems in the regions of recent volcanism, the chemical composition of hydrothermal waters was studied. In addition, the behavior of strontium in the process of hydrothermal alteration of volcanic aquifers was considered. The data on strontium isotopy for thermal waters, effusives and volcanic-sedimentary rocks of the Pauzhetka hydrothermal region are given. For depth-derived sodium-chloride hydrothermal waters /sup 87/Sr//sup 86/Sr values lie within the range of 0.7033 to 0.7056. Significant differences of /sup 87/Sr//sup 86/Sr values in seawater and sodium-chloride hydrothermal waters at all levels of their geochemical metamorphism were noted. This is considered to be evidence of the absence of seawater in the chemical composition of hydrothermal waters of the Pauzhetka type. To determine the cause of low /sup 87/Sr//sup 86/Sr values of depth-derived sodium-chloride hydrothermal waters, the strontium isotopy of country rocks was studied and /sup 87/Sr//sup 86/Sr = 0.702 to 0.705 have been determined. The data indicate the possibility that recent hydrothermal waters inherited a ratio of /sup 87/Sr//sup 86/Sr = 0.703 to 0.704 at the aquifer level.

  9. Prostate cancer-specific death in brachytherapy treated high-risk patients stratified by pre-treatment PSA (United States)

    Galbreath, Robert W.; Butler, Wayne M.; Fiano, Ryan; Adamovich, Edward


    Purpose To evaluate prostate-cancer specific mortality (PCSM) in a cohort of high-risk patients treated with a permanent prostate brachytherapy approach, stratified by pre-treatment PSA. Material and methods 448 high-risk patients (NCCN criteria) underwent permanent prostate brachytherapy. High risk patients were stratified by pre-treatment PSA (≤ 10.0, 10.1-20, and > 20 ng/ml). Biochemical failure (BF), prostate cancer-specific mortality (PCSM), distant failure (DM), and overall mortality (OM) were assessed as a function of prognostic group. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on outcome. Results The 10-year OM, BF, and PCSM for the entire cohort were 28.5%, 13.3%, and 4.9%, respectively. At 10 years, PCSM was 2.5%, 10.7%, and 4.5% in the PSA ≤ 10, 10.1-20, and > 20 ng/ml groups, respectively. No statistically significant differences in BF or overall survival (OS) were noted when stratified by pre-treatment PSA. DF was the most common in the 10.1-20 ng/ml cohort (8.6% at 10 years). In multivariate analysis, PCSM was most closely related to percent positive biopsies (p = 0.001) and tobacco (p = 0.042). Conclusions High-risk prostate cancer treated with permanent prostate brachytherapy and supplemental external beam radiotherapy resulted in excellent long-term biochemical control and PCSM. Overall, PCSM was low in all cohorts but highest in the intermediate PSA group (10.1-20 ng/ml). PMID:28951747

  10. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion.

    Directory of Open Access Journals (Sweden)

    Carolina Ganss

    Full Text Available For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+ increases bond strength of the adhesive Clearfil SE (Kuraray, the aim of the present study was to investigate whether pre-treatment with different Sn(2+/F(- solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group were freed of smear layer (0.5% citric acid, 10 s, treated (15 s either with no solution (control, aminefluoride (AmF, 500 ppm F(-, pH 4.5, SnCl2 (800/1600 ppm Sn(2+; pH 1.5, SnCl2/AmF (500 ppm F(-, 800 ppm Sn(2+, pH 1.5/3.0/4.5, or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+, pH 4.5; GABA International, then rinsed with water (15 s and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80. As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+/F(- solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine.

  11. Factors which influence on force of boxers` and footballers` shots on the stage of base pre-treatment

    Directory of Open Access Journals (Sweden)

    Nikitenko S.A.


    Full Text Available On the stage of base pre-treatment factors which influence on force of shots the hands of boxers and feet of footballers as a criterion of competition activity efficiency are certain. Connections are certain between force of shots by hands and feet. The objective test of the specialized sense determination of boxers` and footballers` shots is offered. It is recommended to develop maximal and explosive force of all parts of sportsman body at implementation preparatory exercises with the further transfer of physical qualities on implementation of the special exercises.

  12. Vertically-aligned graphene flakes on nanoporous templates: morphology, thickness, and defect level control by pre-treatment. (United States)

    Fang, Jinghua; Levchenko, Igor; Kumar, Shailesh; Seo, Donghan; Ostrikov, Kostya Ken


    Various morphologies of the vertically-aligned graphene flakes were fabricated on the nanoporous templates treated with metal ions in solutions, as well as coated with a thin gold layer and activated in the low-temperature Ar plasma. The thickness and level of structural defects in the graphene flakes could be effectively controlled by a proper selection of the pre-treatment method. We have also demonstrated that various combinations of the flake thickness and defect levels can be obtained, and the morphology and density of the graphene pattern can be effectively controlled. The result obtained could be of interest for various applications requiring fabrication of large graphene networks with controllable properties.

  13. Protection of reinforcement steel corrosion by phenylphosphonic acid pre-treatment PART II: Tests in mortar medium


    Etteyeb, Naceur; Dhouibi, L.; Takenouti, Hisasi; Triki, E.


    International audience; A pre-treatment of steel reinforcement in mortar by a 72 h immersion in 0.1 M phenyl-phosphonic acid(C6H5P(O)(OH)2; PPA) was investigated. Then effectiveness of this procedure for protection against thecorrosion of steel bars embedded in pre- or post-addition of sodium chloride mortar was evaluated byelectrochemical impedance spectroscopy, visual inspection, SEM, and EDS analyses.The results showed that for non-treated steel reinforcement, the charge transfer resistanc...

  14. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.


    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  15. Predictive modelling of vegetable firmness after thermal pre-treatments and steaming

    NARCIS (Netherlands)

    Dekker, M.; Dekkers, E.; Jasper, A.; Baár, C.; Verkerk, R.


    Texture is an important product property that strongly affects the quality evaluation of processed vegetables by consumers. The rate of texture decrease is dependent on the processing temperature and the type of vegetable. A large data set on instrumental texture measurements of carrot and broccoli

  16. Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression

    NARCIS (Netherlands)

    Jacquard, C.; Mazeyrat-Gourbeyre, F.; Devaux, P.; Boutilier, K.A.


    Microspore embryogenesis (ME) is a process in which the gametophytic pollen programme of the microspore is reorientated towards a new embryo sporophytic programme. This process requires a stress treatment, usually performed in the anther or isolated microspores for several days. Despite the

  17. Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky


    Ojha, K. Shikha; Kerry, Joseph P.; Tiwari, Brijesh K.


    Low Frequency-Nuclear Magnetic Resonance (LF-NMR) was employed to elucidate changes in water distribution in cultured (Lactobacillus sakei) and uncultured beef jerky samples subjected to ultrasound pre-treatment. Ultrasound pre-treatment at frequencies of 25, 33 and 45 kHz for 30 min, followed by marination (18 h) was carried out for both cultured and uncultured jerky samples. Among the various kinetic models assessed, the Wang and Singh model provided the closest fit to the drying experiment...

  18. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kita, K.; Okada, S.; Sekino, H.; Imou, K.; Yokoyama, S. [Laboratory of Biological and Mechanical Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Amano, T. [Technology Research Institute, Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045 (Japan)


    Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons. In this study, wet microalgae harvest was thermally pretreated to enhance hydrocarbon recovery using a solvent extraction process. Samples containing a mixture of B. braunii and water were kept below 100 C for 10 min. The observed hydrocarbon recovery was 97.8% at 90 C. The extraction results suggest that the energy-intensive concentration and drying processes of the harvest could be eliminated. The proposed thermal pretreatment would revolutionize the conventional downstream processes. (author)

  19. Patients' pre-treatment interpersonal problems as predictors of therapeutic alliance in long-term psychodynamic psychotherapy. (United States)

    Ollila, Pekka; Knekt, Paul; Heinonen, Erkki; Lindfors, Olavi


    Information on how the patient's interpersonal problems predict alliance development during long-term therapy is lacking. The aim of this study was to explore how the patient's pre-treatment interpersonal problems predict the development of alliance in long-term psychotherapy. Altogether 128 adult outpatients experiencing mood or anxiety disorder were assigned to long-term psychodynamic psychotherapy in the Helsinki Psychotherapy Study. The Inventory of Interpersonal Problems (IIP) total score and the eight octant scores, assessed at baseline, were used as predictors. The trajectories of change in patient- and therapist-rated Working Alliance Inventory (WAI) were used as outcome measures at 7, 12, and 36 months of follow-up after baseline. Study of the changes by time showed that the patient-rated alliance was significantly improved by the 36-month follow-up, i.e. the most usual end-point of therapy, in persons with higher pre-treatment level of the IIP total score. Low total IIP score and low to moderate level of hostile type problems showed no slope of improvement of patient-rated alliance during follow-up. The therapist-rated alliance showed a similar course as the patient-rated alliance with the exception of a faster improvement for higher IIP scores. In conclusion, a higher level of patients' interpersonal problems predicted favorable alliance development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka


    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  1. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge. (United States)

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise


    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

  2. Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste. (United States)

    Jiang, Jianguo; Gong, Changxiu; Wang, Jiaming; Tian, Sicong; Zhang, Yujing


    This paper describes a series of studies on the effects of food waste disintegration using an ultrasonic generator and the production of volatile fatty acids (VFAs) by anaerobic hydrolysis. The results suggest that ultrasound treatment can significantly increase COD [chemical oxygen demand], proteins and reducing sugars, but decrease that of lipids in food waste supernatant. Ultrasound pre-treatment boosted the production of VFAs dramatically during the fermentation of food waste. At an ultrasonic energy density of 480W/L, we treated two kinds of food waste (total solids (TS): 40 and 100g/L, respectively) with ultrasound for 15min. The amount of COD dissolved from the waste increased by 1.6-1.7-fold, proteins increased by 3.8-4.3-fold, and reducing sugars increased by 4.4-3.6-fold, whereas the lipid content decreased from 2 to 0.1g/L. Additionally, a higher VFA yield was observed following ultrasonic pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Adhesion between glass fiber posts and resin cement: evaluation of bond strength after various pre-treatments. (United States)

    Sipahi, Cumhur; Piskin, Bulent; Akin, Gulsah E; Bektas, Ozden Ozel; Akin, Hakan


    To evaluate surface roughness and bond strength of glass fiber posts to a resin cement after various surface treatments. Sixty individually formed glass fiber posts with a diameter of 1.5 mm and a length of 20 mm were used for this study. They were randomly assigned to six groups of pre-treatment (n = 10/group): Group C, untreated (control); Group SB, sandblasted; Group SC, silica coated; Group HF, hydrofluoric acid-etched; Group N, Nd:YAG laser irradiated; Group E, Er:YAG laser irradiated. Surface roughness of the posts was measured before and after pre-treatment. The posts were then bonded to resin cement and tensile bond strengths were determined in a universal testing machine. For statistical analysis, two-way ANOVA and post-hoc comparison tests (α = 0.05) were performed. The highest bond strength value was observed in group HF, followed by group SC. There was a statistically significant difference in bond strength between group C and groups HF, SC and E (p Posts of group SB and group N showed the highest surface roughness. The findings of the present study reveal that hydrofluoric acid-etching, silica coating and Er:YAG laser irradiation provided a significant increase in bond strength between glass fiber posts and resin cement.

  4. Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary l-tryptophan. (United States)

    Höglund, Erik; Sørensen, Christina; Bakke, Marit Jørgensen; Nilsson, Göran E; Overli, Oyvind


    The general consensus is that brain serotonin (5-HT) inhibits feed intake in teleost fishes and other vertebrates. Dietary manipulations with the 5-HT precursor tryptophan (TRP) have, however, yielded contradictory effects on feed intake, while studies of the endocrine response to stress indicate that the effects of TRP-enriched feed are context dependent. A characteristic behavioural response to stress is a reduction in feed intake, and in the present study we investigated whether pre-treatment with TRP-enriched feed affected stress-induced changes in feeding behaviour in brown trout (Salmo trutta). After acclimatisation in observation aquaria, isolated fish were fed control or TRP-supplemented feed for 7 d, whereupon they were transferred to a novel environment, in which all fish were fed control feed. Transfer to a new environment resulted in decreased feeding in both the TRP pre-treated and the control-treated group. However, this decrease was more pronounced in the control-treated group. Previous experiments have concluded that stimulation of brain 5-HT systems by TRP enhancement does not affect feed intake in salmonid fishes, but in these studies food intake was observed in unstressed animals only. The present study suggests that pre-treatment with dietary TRP attenuates stress-induced anorexia. Hence, it appears that the effect of dietary manipulations of TRP on feeding behaviour is dependent on the stress levels experienced by experimental animals. These behavioural data are discussed in the context of the involvement of 5-HT in appetite regulation.

  5. Evidence for Hesperian Impact-Induced Hydrothermalism on Mars (United States)

    Marzo, Giuseppe A.; Davila, Alfonso F.; Tornabene, Livio L.; Dohm, James M.; Fairen, Alberto G.; Gross, Christoph; Kneissl, Thomas; Bishop, Janice L.; Roush, Ted L.; McKay, Chris P.


    Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.

  6. The hydrothermal exploration system on the 'Qianlong2' AUV (United States)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.


    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  7. Shot peening as a pre-treatment to anodic oxidation coating process of AW 6082 aluminum for fatigue life improvement

    Czech Academy of Sciences Publication Activity Database

    Hadzima, B.; Nový, F.; Trško, L.; Pastorek, F.; Jambor, M.; Fintová, Stanislava


    Roč. 93, 9-12 (2017), s. 3315-3323 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Fatigue life * AW 6082 aluminum alloy * Anodizing * Shot peening * Ultrasonic fatigue testing Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.209, year: 2016

  8. Conversation on data mining strategies in LC-MS untargeted metabolomics: pre-processing and pre-treatment steps

    CSIR Research Space (South Africa)

    Tugizimana, F


    Full Text Available ” extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC...

  9. Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel. (United States)

    Vallecillos, Laura; Pocurull, Eva; Borrull, Francesc


    Musk compounds are widely used as fragrances in personal care products. On account of their widespread use and their low biodegradation, they can be found in environmental samples. In our study two extraction methodologies were compared and different clean-up strategies were also studied in order to develop a reliable analytical method, with minimum matrix effect and good detection limits, to determine synthetic musk fragrances- six polycyclic musks, three nitro musks and the degradation product of one polycyclic musk- in fish and mussel samples. The first extraction technique involves a QuEChERS extraction, a consolidate extraction methodology in the field of food analysis of growing interest over recent years, followed by a dispersive solid-phase extraction (dSPE) as clean-up strategy. The second extraction technique consists of a conventional pressurised liquid extraction (PLE) with dichloromethane and an in-cell clean-up to decrease the matrix effect and remove the undesired components(⁎)present in PLE extracts. Large volume injection (LVI) followed by gas chromatography-ion trap-tandem mass spectrometry (GC-IT-MS/MS) was chosen as the separation and detection technique. Validation parameters, such as method detection limits and method quantification limits were found at ng g(-1) levels for both fish and mussel matrices. Good levels of intra-day and inter-day repeatabilities were obtained analysing fish and mussel samples spiked at 50 ng g(-1) (d.w.) (n=5, RSDsmussel samples from the local market in Tarragona and fish samples from the Ebro River. The results showed the presence of galaxolide (2.97-18.04 ng g(-1) (d.w.)) and tonalide (1.17-8.42 ng g(-1) (d.w.)) in all the samples analysed, while the remaining polycyclic musks such as cashmeran, celestolide and phantolide, were only detected in some of the fish samples analysed. None of the samples analysed contained detectable traces of the nitro musks studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. (United States)

    Houtmeyers, Sofie; Degrève, Jan; Willems, Kris; Dewil, Raf; Appels, Lise


    Anaerobic digestion is a well-known technique for the recovery of energy from waste sludge. Pre-treatment methods are useful tools to improve the biodegradability of the sludge and to enhance the digestion efficiency. In this study, an ultrasound (US) and a microwave (MW) pre-treatment were compared in a long-term digestion experiment, using 3 small pilot scale semi-continuous digesters (SRT=20 days). A specific energy of 96 kJ/kg sludge was applied, hence enabling to compare the effectiveness of both pre-treatment methods towards sludge solubilisation and biogas production enhancement. Total and volatile solids (TS and VS), COD, carbohydrates and proteins were monitored throughout the digestion experiment. It was seen that US was most effective in COD solubilisation. The average biogas increment was 20% for the microwave pre-treatment and 27% for the ultrasonic pre-treatment. However, this additional biogas production did not outweigh the energy consumed by the pre-treatment, leading to a negative energy balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown (United States)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo


    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  12. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. (United States)

    Karray, Raida; Hamza, Manel; Sayadi, Sami


    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hydrothermal Synthesis of Leaf-Shaped Ferric Oxide Particles


    Keqiang Ding


    For the first time, leaf-shaped ferric oxide particles were prepared from an aqueous solution of potassium ferricyanide [K3Fe(CN)6] by hydrothermal process. Images obtained from SEM (scanning electron microscope) revealed that leaf-shaped ferric oxides (around 1.5 μm in length) were clearly exhibited when the hydrothermal tempreature was 150 °C, while as the temperature was increased to 200 °C leaf-shaped ferric oxide particles with larger size were observed. XRD (X-ray diffraction) patterns ...

  14. Study on hydrothermal synthesis dynamics of nanoscale xonotlite fibers (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.


    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Hydrothermal synthesis dynamics of nanoscale xonotlite fibers was explored by masterly measuring the electrical conductivities and the calcium concentrations of product slurries synthesized at various reaction temperature in this paper. The results indicated that the calculated values of the products’ quality at various reaction temperatures were consistent with the measured values. Based on chemical reaction kinetic, using fourth-order Runge-Kutta method, spline interpolation and least-squares fitting method, the dynamic relationship of xonotlite fibers synthesized via hydrothermal synthesis process is of -{dc}A/{dt}={kc}A4/5.

  15. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.


    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  16. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    methods, hydrothermal synthesis allows excellent control over particle size, shape, distribution and crystallinity of the material. Synthesis is conducted in a ... terns were recorded on Tecnai G2 S-twin transmission elec- tron microscope with field emission gun operating at 200 kV. Samples for TEM measurements were ...

  17. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures. (United States)

    Xing, Yan; Zhang, Hongjie; Song, Shuyan; Feng, Jing; Lei, Yongqian; Zhao, Lijun; Li, Meiye


    Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.

  18. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.


    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  19. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries: Hydrothermal Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland WA USA; Tao, Ling [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Wyman, Charles E. [Chemical and Environmental Engineering Department and Center for Environmental Research and Technology, Bourns College of Engineering, University of California at Riverside, CA, USA, BioEnergy Science Center (BESC), Oak Ridge National Laboratory, TN USA


    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of the entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Thus, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.

  20. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail:


    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  1. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs). (United States)

    Bachér, J; Mrotzek, A; Wahlström, M


    The recycling of Waste Electrical and Electronic Equipment (WEEE) has attracted a notable amount of interest during the last few decades due to the high metal concentrations and substantial increase in the growth rate of WEEE. In addition, higher recovery and recycling rates required by the European Union demand more comprehensive treatment of WEEE. However, complex product design and the presence of harmful substances together with low concentrations of special metals present challenges for processing. This study examines the effect of mechanical treatment of mobile phones on metal concentrations in the printed circuit assembly (PCA) fraction compared to manual dismantling. The designed mechanical treatment process including crushing, sieving, magnetic-, eddy current- and sensor-based separation was able to separate plastics, ferrous metals, PCA and stainless steel for further treatment. The process separated PCA with an efficiency of 85%. However, the quality of the separated PCAs was poor compared with "pure" manually dismantled PCAs. The primary crushing of mobile phones destroys PCAs thus resulting in the loss of especially precious metals used in the connector coatings and in the surface-mounted components. As a result, the theoretical value of the produced PCA fraction is only half compared to using manual dismantling. However, high labour costs in western countries and low capacity may hinder the feasibility of hand dismantling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. SU-F-T-351: Establishing a Workflow for IMRT Pre-Treatment Reviews for NRG-GY006 Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T [Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Li, N; Moore, K; Mell, L [University of California, San Diego, San Diego, CA (United States); Curry, K [MIM Software, Inc., Clevealand, OH (United States); Leath, C [University of Alabama at Birmingham, Birmingham, AL (United States); Kunos, C [Northeastern Ohio University College, Clevealand, OH (United States); Xiao, Y [University of Pennsylvania, Philadelphia, PA (United States)


    Purpose: To establish a workflow for NRG-GY006 IMRT pre-treatment reviews, incorporating advanced radiotherapy technologies being evaluated as part of the clinical trial. Methods: Pre-Treatment reviews are required for every IMRT case as part of NRG-GY006 (a randomized phase II trial of radiation therapy and cisplatin alone or in combination with intravenous triapine in women with newly diagnosed bulky stage I B2, stage II, IIIB, or IVA cancer of the uterine cervix or stage II-IVA vaginal cancer. The pretreatment review process includes structures review and generating an active bone marrow(ABM)- to be used as an avoidance structure during IMRT optimization- and evaluating initial IMRT plan quality using knowledgeengineering based planning (KBP). Institutions will initially submit their simulation CT scan, structures file and PET/CT to IROC QA center for generating ABM. The ABM will be returned to the institution for use in planning. Institutions will then submit an initial IMRT plan for review and will receive information back following implementation of a KBP algorithm, for use in re-optimization, before submitting the final IMRT used for treatment. Results: ABM structure is generated using MIM vista software (Version 6.5, MIM corporation, Inc.). Here, the planning CT and the diagnostic PET/CT are fused and a sub threshold structure is auto segmented above the mean value of the SUV of the bone marrow. The generated ABM were compared with those generated with other software system (e.g. Velocity, Varian) and Dice coefficient (reflects the overlap of structures) ranged between 80 – 90% was achieved. A KBP model was built in Varian Eclipse TPS using the RapidPlan KBP software to perform plan quality assurance. Conclusion: The workflow for IMRT pretreatment reviews has been established. It represents a major improvement of NRG Oncology clinical trial quality assurance and incorporates the latest radiotherapy technologies as part of NCI clinical trials. This project

  3. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification. (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin


    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films (United States)

    Kaur, Jasmeet; Gadipelly, Thirupathi; Singh, R.


    The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H)) whereas the M(H) plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  5. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park (United States)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.


    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  6. P2Y12 Inhibitor Pre-Treatment in Non-ST-Elevation Acute Coronary Syndrome: A Decision-Analytic Model

    Directory of Open Access Journals (Sweden)

    James Gunton


    Full Text Available Current guidelines recommend initiation of a P2Y12 inhibitor for all patients with non-ST-elevation acute coronary syndrome (NSTE-ACS at the time of diagnosis (pre-treatment; however, there are no randomized trials directly comparing pre-treatment with initiation at the time of angiography to support this practice. We explore clinical and institutional parameters potentially associated with benefit with this strategy in a decision-analytic model based on available evidence from randomised trials. A decision analysis model was constructed comparing three P2Y12 inhibitors in addition to aspirin in patients with NSTE-ACS. Based on clinical trial data, the cumulative probability of 30 day mortality, myocardial infarction (MI and major bleeding were determined, and used to calculate the net clinical benefit (NCB with and without pre-treatment. Sensitivity analysis was performed to assess the relationship between NCB and baseline ischemic risk, bleeding risk, time to angiography and local surgical revascularization rates. Pre-treatment with ticagrelor and clopidogrel was associated with a greater than 50% likelihood of providing a >1% increase in 30 day NCB when baseline estimated ischemic risk exceeds 11% and 14%, respectively. Prasugrel pre-treatment did not achieve a greater than 50% probability of an increase in NCB regardless of baseline ischemic risk. Institutional surgical revascularization rates and time to coronary angiography did not correlate with the likelihood of benefit from P2Y12 pre-treatment. In conclusion, pre-treatment with P2Y12 inhibition is unlikely to be beneficial to the majority of patients presenting with NSTE-ACS. A tailored assessment of each patient’s individual ischemic and bleeding risk may identify those likely to benefit.

  7. Emissions of polycyclic aromatic hydrocarbons from thermal pre-treatment of waste hydrodesulfurization catalysts. (United States)

    Lai, Yi-Chieh; Lee, Wen-Jhy; Huang, Kuo-Lin; Huang, Hong-Hsin


    Despite increasing environmental concerns and stringent limitations on the sulfur content in fuels, many waste hydrodesulfurization (HDS) catalysts containing Co, Mo, Ni and V are generated in the petroleum refining process. To recover valuable metals in the waste HDS catalysts via hydrometallurgy, thermal treatment is usually performed first to remove contaminants (residual oil, carbon and sulfur) present on the surface of catalysts. In this study, the mass partitions of polycyclic aromatic hydrocarbons (PAHs) in different media (aqueous, particulate and gaseous) were quantified in order to determine the efficiency of three different air pollution control devices, cooling unit, filter and glass cartridge, on PAH removal. An afterburner and two furnace temperatures were used to observe the effect on the PAH contents of the treated residues. Results show that total-PAH content in treated residues decreased with the pyrolysis temperature of the primary furnace, while those generated in flue gases were destroyed by the afterburner at an efficiency of approximately 95%. In addition, the thermal process converts high molecular weight PAHs to low molecular weight PAHs, and the afterburner temperature involved (1200 degrees C) was high enough to prohibit the generation of high molecular weight PAHs (HM-PAHs), leading to the domination of low molecular weight PAHs (LM-PAHs) in flue gases, while treated residues were dominated by HM-PAHs. Finally, information on metal contents and their concentrations in the Toxicity Characteristic Leaching Procedure in waste HDS catalyst and thermal treated residues are examined as an index of the potential for metal recovery.

  8. Effectiveness of a pre-treatment snack on the uptake of mass treatment for schistosomiasis in Uganda

    DEFF Research Database (Denmark)

    Muhumuza, Simon; Olsen, Annette; Katahoire, Anne


    -treatment snack on uptake of mass treatment.Methods and Findings:In a cluster randomized trial carried out in Jinja district, Uganda, 12 primary schools were randomized into two groups; one received education messages for schistosomiasis prevention for two months prior to mass treatment, while the other......, in addition to the education messages, received a pre-treatment snack shortly before mass treatment. Four weeks after mass treatment, uptake of praziquantel was assessed among a random sample of 595 children in the snack schools and 689 children in the non-snack schools as the primary outcome. The occurrence...... of side effects and the prevalence and mean intensity of Schistosoma mansoni infection were determined as the secondary outcomes. Uptake of praziquantel was higher in the snack schools, 93.9% (95% CI 91.7%-95.7%), compared to that in the non-snack schools, 78.7% (95% CI 75.4%-81.7%) (p = 0...

  9. Predicting Dropout from Intensive Outpatient Cognitive Behavioural Therapy for Binge Eating Disorder Using Pre-treatment Characteristics: A Naturalistic Study. (United States)

    Vroling, Maartje S; Wiersma, Femke E; Lammers, Mirjam W; Noorthoorn, Eric O


    Dropout rates in binge eating disorder (BED) treatment are high (17-30%), and predictors of dropout are unknown. Participants were 376 patients following an intensive outpatient cognitive behavioural therapy programme for BED, 82 of whom (21.8%) dropped out of treatment. An exploratory logistic regression was performed using eating disorder variables, general psychopathology, personality and demographics to identify predictors of dropout. Binge eating pathology, preoccupations with eating, shape and weight, social adjustment, agreeableness, and social embedding appeared to be significant predictors of dropout. Also, education showed an association to dropout. This is one of the first studies investigating pre-treatment predictors for dropout in BED treatment. The total explained variance of the prediction model was low, yet the model correctly classified 80.6% of cases, which is comparable to other dropout studies in eating disorders. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  10. Influence of pre-treatment on yield chemical and antioxidant properties of a Nigerian okra seed (Abelmoschus esculentus moench) flour. (United States)

    Adelakun, O E; Oyelade, O J; Ade-Omowaye, B I O; Adeyemi, I A; Van de Venter, M; Koekemoer, T C


    Okra seeds are reported to be limited to re-generational purpose in Nigeria while majority are discarded as unfit for this purpose. Studies were carried out to evaluate the effect of soaking and blanching on the yield, proximate composition and antioxidant activity of okra seed flour. Pre-treatment by soaking and blanching were found to increase yield which was time dependent. The range mean obtained for protein, fat, ash and fiber contents were 46.10-38.99, 28.08-25.08, 3.95-3.15 and 3.76-3.10, respectively. Slight but significant DPPH radical scavenging activity increase was observed in soaked samples at 18th-h while blanching resulted into progressive decrease.

  11. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Heinz J.


    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  12. Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. (United States)

    Morel, Jerome; Hargreaves, Iain; Brealey, David; Neergheen, Viruna; Backman, Janne T; Lindig, Sandro; Bläss, Marcus; Bauer, Michael; McAuley, Daniel F; Singer, Mervyn


    Statins may offer protective effects in sepsis through anti-inflammatory, mitochondrial protection and other actions. We thus evaluated the effects of simvastatin on survival, organ and mitochondrial function, tissue and plasma ubiquinone levels and liver transcriptomics in a 3-day rat model of sepsis. Comparisons of rat plasma simvastatin and ubiquinone levels were made against levels sampled in blood from patients with acute lung injury (ALI) enrolled into a trial of statin therapy. Animals received simvastatin by gavage either pre- or post-induction of faecal peritonitis. Control septic animals received vehicle alone. Seventy-two-hour survival was significantly greater in statin pre-treated animals (43.7%) compared with their statin post-treated (12.5%) and control septic (25%) counterparts (Psimvastatin pre- and post-treatment prevented the fall in mitochondrial oxygen consumption in muscle fibres taken from septic animals at 24 h. This beneficial effect was paralleled by recovery of genes related to fatty acid metabolism. Simvastatin pre-treatment resulted in a significant decrease in myocardial ubiquinone. Patients with ALI had a marked variation in plasma simvastatin acid levels; however, their ubiquinone/low-density lipoprotein (LDL) cholesterol ratio did not differ regardless of whether they were receiving statin or placebo. In summary, despite protective effects seen with statin treatment given both pre- and post-insult, survival benefit was only seen with pre-treatment, reflecting experiences in patient studies. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. Effects of Music Listening on Pre-treatment Anxiety and Stress Levels in a Dental Hygiene Recall Population. (United States)

    Thoma, Myriam V; Zemp, Martina; Kreienbühl, Lea; Hofer, Deborah; Schmidlin, Patrick R; Attin, Thomas; Ehlert, Ulrike; Nater, Urs M


    Waiting for a medical procedure can exert significant feelings of state anxiety in patients. Music listening has been shown to be effective in decreasing anxiety levels. No study so far examined the potential anxiety and stress-reducing effect of a music intervention on pre-treatment anxiety and stress in patients waiting for dental hygiene treatment. Knowing whether the anxiety-reducing effect of music would also be detectible in the context of preventive routine medical procedures in healthy individuals would widen the area of application of music from the hospital or clinical environment to medical offices in general. Waiting for a medical treatment can induce anxiety and may lead to the experience of stress. We set out to examine the effect of music on pre-treatment anxiety in a healthy patient sample waiting for a dental treatment. In a randomized controlled clinical trial, 92 consecutive volunteer patients (mean age, 57 years) waiting for their scheduled dental hygiene treatment were randomly allocated to either an experimental (n = 46, listening to music for 10 min) or a control group (n = 46, waiting in silence). State and habitual anxiety, subjective stress, and mood measures were assessed before and after music listening or silence, respectively. State anxiety levels in the music group decreased significantly after intervention as compared to the control group (F(1/90) = 8.06; p = 0.006). Participants' trait anxiety and dental anxiety were not found to moderate this effect. Listening to music prior to dental hygiene treatment decreases anxiety levels to a greater extent than waiting in silence.

  14. Pittsburgh response to endovascular therapy score as a pre-treatment prognostic tool: External validation in Trevo2. (United States)

    Ali Raza, Syed; Xiang, Bin; Jovin, Tudor G; Liebeskind, David S; Shields, Ryan; Nogueira, Raul G; Rangaraju, Srikant


    Background Optimal patient selection is needed to maximize the therapeutic benefit of endovascular therapy for large vessel occlusion stroke. Aims To validate the Pittsburgh response to endovascular therapy (PRE) score in a randomized controlled trial (Trevo2) comparing stent retriever (Trevo) to the Merci device. Methods Trevo2 participants with internal carotid, M1 and M2 middle cerebral artery occlusions with prospectively collected baseline stroke severity (NIHSS), degree of hypodensity (CT ASPECTS), and three-month modified Rankin Scale (mRS) were included. Multivariable regression was used to confirm association between PRE score variables (age, NIHSS, and ASPECTS), medical comorbidities, randomization arm, and reperfusion status (mTICI2B/3) with good outcome (three-month modified Rankin Scale 0-2). Predictive power (area under the receiver operating characteristic curve) for good outcome of pre-treatment prognostic scores (PRE, THRIVE, HIAT2) was compared. Rates of good outcome were compared between successfully reperfused (mTICI2B/3) and non-reperfused (mTICI0-2A) patients across previously identified PRE score risk groups. Results Age, NIHSS, ASPECTS, reperfusion status, and randomization arm were independent predictors of good outcome. PRE score had moderate predictive power (AUC = 0.75) for good outcome and was comparable to other pre-treatment scores. Reperfusion resulted in maximal treatment benefit in patients with PRE score 0-24 (60% vs. 12.5%, p = 0.002) but not in those with PRE ≥50 (11.8% vs. 0.0%, p = 0.49). Conclusion The PRE score is a validated predictor of functional outcome and a tool for patient selection for endovascular therapy in anterior large vessel occlusion stroke. Our finding of limited benefit of reperfusion in patients with PRE score ≥50 needs to be prospectively validated.

  15. Effect of sample pre-treatment on the determination of steroid esters in hair of bovine calves. (United States)

    Aqai, P; Stolker, A A M; Lasaroms, J J P


    The effect of three sample pre-treatment steps, washing, cutting and grinding on the determination of steroid esters in hair is studied. The study is performed by using hair samples obtained after pour-on application of steroid esters to bovine calves. After sample pre-treatment the hair is treated with a mild reducing agent [tris(2-carboxyethyl)phosphine hydrochloride] to extract the steroid esters. After a solid-phase extraction clean-up step the extracts are analysed by using liquid chromatography combined with triple-quadrupole mass spectrometric detection. For the washing step the use of non-organic washing solvents like (warm) water and a solution of 0.1% sodium dodecyl phosphate and organic solutions containing different percentages of methanol are tested. By using the non-organic solvents and the organic solvents with a percentage of methanol hair. Cutting the hair samples increases the analyte recoveries of incurred steroid esters by 20% compared to the non-cut hair. The analyte recoveries of cut hair samples are about 60-80% that of ground hair samples. The obtained surface expansion of hair samples by grinding proves to be necessary in order to achieve the highest possible analyte yields. Finally the use of pressurised liquid extraction (PLE) for the extraction of steroid esters from plain (no washing, cutting or grinding) hair is investigated. The first results show lower (up to 40%) extraction recoveries in comparison with the classical solvent extraction procedures. If the limit of detection requirement is met, PLE may be an alternative for extracting large numbers of hair samples due to the short sample treatment procedure involved.

  16. Microwave Processing of Materials (United States)


    reactions in sol-gel processing, gas-phase synthesis , solution evaporation/decomposition, or hydrothermal reactions. Each of these, and other powder... synthesis methods, will be described next. Sol-Gel Decomposition/Drying Microwaves have been used in several of the processing stages to synthesize BaTiO3 ...high surface areas (10-700 m2/g). Hydrothermal Reactions Microwave- hydrothermal processing has been utilized in catalyzing the synthesis of crystalline

  17. Full utilization of silt density index (SDI) measurements for seawater pre-treatment

    KAUST Repository

    Wei, Chunhai


    In order to clarify the fouling mechanism during silt density index (SDI) measurements of seawater in the seawater reverse osmosis (SWRO) desalination process, 11 runs were conducted under constant-pressure (207kPa) dead-end filtration mode according to the standard protocol for SDI measurement, in which two kinds of 0.45μm membranes of different material and seawater samples from the Mediterranean including raw seawater and seawater pre-treated by coagulation followed by sand filtration (CSF) and coagulation followed by microfiltration (CMF) technologies were tested. Fouling mechanisms based on the constant-pressure filtration equation were fully analyzed. For all runs, only t/(V/A)∼t showed very good linearity (correlation coefficient R 2>0.99) since the first moment of the filtration, indicating that standard blocking rather than cake filtration was the dominant fouling mechanism during the entire filtration process. The very low concentration of suspended solids rejected by MF of 0.45μm in seawater was the main reason why a cake layer was not formed. High turbidity removal during filtration indicated that organic colloids retained on and/or adsorbed in membrane pores governed the filtration process (i.e., standard blocking) due to the important contribution of organic substances to seawater turbidity in this study. Therefore the standard blocking coefficient k s, i.e., the slope of t/(V/A)∼t, could be used as a good fouling index for seawater because it showed good linearity with feed seawater turbidity. The correlation of SDI with k s and feed seawater quality indicated that SDI could be reliably used for seawater with low fouling potential (SDI 15min<5) like pre-treated seawater in this study. From both k s and SDI, the order of fouling potential was raw seawater>seawater pre-treated by CSF>seawater pre-treated by CMF, indicating the better performance of CMF than CSF. © 2012 Elsevier B.V.

  18. Effect of pre-treatment on in vitro gastric digestion of quinoa protein (Chenopodium quinoa Willd.) obtained by wet and dry fractionation. (United States)

    Opazo-Navarrete, M; Schutyser, M A I; Boom, R M; Janssen, A E M


    Quinoa protein was isolated from quinoa seeds using wet fractionation that resulted in a protein isolate (QPI) with a high protein purity of 87.1% (w/dw) and a protein yield of around 54%, and a dry fractionation method delivered a quinoa protein concentrate (QPC) with a purity of 27.8% (w/dw) and yield of around 47%. The dry fractionation process only involves milling and sieving and keeps the protein in its natural, native state. The aim was to study the in vitro gastric digestibility of both protein. Attention was paid to thermal pre-treatment of QPI and QPC. QPC showed significantly higher (p < .05) digestibility than QPI samples. The results were interpreted with a simple double exponential model. The fraction of easily digested protein in QPC is higher than for QPI. The better digestibility of the QPC was explained by the prevention of the formation of large aggregates during pre-heating of the protein.

  19. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate. (United States)

    Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier


    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.

  20. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.


    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  1. Selective Electroless Nickel Plating on PMMA using Chloroform Pre-Treatment (United States)

    Sipes, Nicholas

    In the past 5 years, we have discovered that chloroform promotes the adhesion of thin gold films to Poly(methyl methacrylate) surfaces. Based on this new understanding of the interaction of chloroform with PMMA and metal atoms, we were curious to see if chloroform would promote the adhesion of Nickel to PMMA deposited by electroless plating. My goal was to selectively electroless plate Nickel onto PMMA. Chloroform was spun-cast onto 1 inch square PMMA substrates. I used electrical tape to shield one half of the PMMA from the chloroform during spin-casting; this allowed for a direct comparison of treated vs. untreated. The samples were then put through hydrochloric acid and a series of baths provided by Transene Company Inc. to electrolessly deposit nickel on the sample. After many trials, there was a clear distinction in the adhesion strength of the Nickel to the plain PMMA surface vs. the chloroform pre-treated surface. Showing that it is possible to create chloroform sites via spin-casting for electroless nickel plating on PMMA opens up the challenge to better understand the chemistry taking place and to perfect the electroless plating process.

  2. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. (United States)

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene


    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica


    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided......-ponents such as carbohydrates; lignin, protein and fat, and each of them produce distinct groups of compounds when processed individually. When processed to-gether in different ratios, they will most likely cross-influence each other and thus the composition of the product. Processing conditions including temperature, pres......-sure, residence time, catalyst, and type of solvent are important for the bio-oil yield and product quality....

  4. Hydrothermal decomposition of liquid crystal in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xuning [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Shanghai Cooperative Centre for WEEE Recycling, Shanghai Second Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209 (China); He, Wenzhi, E-mail: [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)


    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H{sub 2}O{sub 2} supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment.

  5. The effect of ribose pre-treatment of cortical bone on γ-irradiation sterilization effectiveness. (United States)

    Attia, Tarik; Tupy, Jindra; Asker, Dalal; Hatton, Benjamin; Grynpas, Marc; Willett, Thomas


    Reconstruction of large skeletal defects is a significant and challenging issue. Tissue banks often use γ-irradiation (15-35 kGy) to sterilize bone allografts, which, however, drastically impairs the post-yield mechanical properties. In previous studies, we reported the development of a method that protects human bone collagen connectivity through ribose crosslinking while still undergoing γ-irradiation. Given these promising results, the next step was to determine if the presence of ribose within the bone tissue would interfere with the effectiveness of the γ-irradiation sterilization against bacteria. This study had two stages. The aim of the first stage was to assess the protective effect of ribose in solution using a Bacillus pumilus spore strip model. The aim of the second stage was to assess the protective effect of ribose (R) on spores within a human cortical bone model in comparison to conventionally irradiated bone (I). Treatment of B. pumilus spore strips with ribose in solution led to temperature-dependent effects on spore viability versus spore strips treated with PBS alone. Ribose solution at 60 °C led to a notable two logs decrease in spore count relative to PBS at 60 °C. In the human bone model, the number of spores in the I and R groups were greatly decreased in comparison to the non-irradiated N group. No spore colonies were detected in the R group (n = 4) whereas two of the four plates of group I formed colonies. This study provides evidence that the method of pre-treating bone with ribose crosslinking prior to irradiation sterilization, while improving irradiation sterilized bone allograft quality, also may improve the effectiveness of the sterilization process.

  6. Hydrothermal stability of zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.Y. [Daelim College of Technology, Anyang (Korea); Gogotsi, G.A. [National Academy of Sciences of Ukraine, Kiev (Uzbekistan); Kim, D.J. [Korea Institute of Science and Technology, Seoul (Korea); Park, N.J. [Kumho National University of Technology, Kumi (Korea)


    3 mol% Y{sub 2}O{sub 3} partially-Stabilized Zirconia single Crystals (PSZCs) containing a small quantity (<0.5%) of rare-earth oxides (CeO{sub 2}, Tb{sub 2}O{sub 3}) were prepared by using a direct high-frequency skull melting technique to evaluate hydrothermal stability in an autoclave. Pole figure measurements indicate that both CeO{sub 2} and Tb{sub 2}O{sub 3} containing specimens prepared by the skull melting are single crystals. PSZCs exhibited no t{yields}m phase transformation during aging for 5 h at temperatures from 150 to 250 deg. C and 4 MPa water vapor pressure in an autoclave, resulting in excellent hydrothermal stability. (author). 19 refs., 1 tab., 4 figs.

  7. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup


    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  8. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Directory of Open Access Journals (Sweden)

    Cheryl Jaworowski


    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system’s total energy output. Area is a key parameter for calculating the hydrothermal system’s heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.

  9. Facile and green synthesis of (La0.95Eu0.05)2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. (United States)

    Wang, Xuejiao; Li, Ji-Guang; Zhu, Qi; Li, Xiaodong; Sun, Xudong; Sakka, Yoshio


    This study presents a facile and green route for the synthesis of (La0.95Eu0.05)2O2S red phosphors of controllable morphologies, with the sulfate-type layered hydroxides of Ln2(OH)4SO4·2H2O (Ln = La and Eu) as a new type of precursor. The technique takes advantage of the fact that the precursor has had the exact Ln:S molar ratio of the targeted phosphor, thus saving the hazardous sulfurization reagents indispensable to traditional synthesis. Controlled hydrothermal processing at 120 °C yielded phase-pure Ln2(OH)4SO4·2H2O crystallites in the form of either nanoplates or microprisms, which can both be converted into Ln2O2S phosphor via a Ln2O2SO4 intermediate upon annealing in flowing H2 at a minimum temperature of ∼ 700 °C. The nanoplates collapse into relatively rounded Ln2O2S particles while the microprisms retain well their initial morphologies at 1 200 °C, thus yielding two types of red phosphors. Photoluminescence excitation (PLE) studies found two distinct charge transfer (CT) excitation bands of O2- → Eu3+ at ∼ 270 nm and S2- → Eu3+ at ∼ 340 nm for the Ln2O2S phosphors, with the latter being stronger and both significantly stronger than the intrinsic intra-f transitions of Eu3+. The two types of phosphors share high similarities in the positions of PLE/PL (photoluminescence) bands and both show the strongest red emission at 627 nm (5D0 → 7F2 transition of Eu3+) under S2- → Eu3+ CT excitation at 340 nm. The PLE/PL intensities show clear dependence on particle morphology and calcination temperature, which were investigated in detail. Fluorescence decay analysis reveals that the 627 nm red emission has a lifetime of ∼ 0.5 ms for both types of the phosphors.

  10. Facile and green synthesis of (La0.95Eu0.052O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence

    Directory of Open Access Journals (Sweden)

    Xuejiao Wang


    Full Text Available This study presents a facile and green route for the synthesis of (La0.95Eu0.052O2S red phosphors of controllable morphologies, with the sulfate-type layered hydroxides of Ln2(OH4SO4centerdot2H2O (Ln = La and Eu as a new type of precursor. The technique takes advantage of the fact that the precursor has had the exact Ln:S molar ratio of the targeted phosphor, thus saving the hazardous sulfurization reagents indispensable to traditional synthesis. Controlled hydrothermal processing at 120 °C yielded phase-pure Ln2(OH4SO4centerdot2H2O crystallites in the form of either nanoplates or microprisms, which can both be converted into Ln2O2S phosphor via a Ln2O2SO4 intermediate upon annealing in flowing H2 at a minimum temperature of ~ 700 °C. The nanoplates collapse into relatively rounded Ln2O2S particles while the microprisms retain well their initial morphologies at 1 200 °C, thus yielding two types of red phosphors. Photoluminescence excitation (PLE studies found two distinct charge transfer (CT excitation bands of O2− → Eu3+ at ~ 270 nm and S2− → Eu3+ at ~ 340 nm for the Ln2O2S phosphors, with the latter being stronger and both significantly stronger than the intrinsic intra-f transitions of Eu3+. The two types of phosphors share high similarities in the positions of PLE/PL (photoluminescence bands and both show the strongest red emission at 627 nm (5D0 → 7F2 transition of Eu3+ under S2− → Eu3+ CT excitation at 340 nm. The PLE/PL intensities show clear dependence on particle morphology and calcination temperature, which were investigated in detail. Fluorescence decay analysis reveals that the 627 nm red emission has a lifetime of ~ 0.5 ms for both types of the phosphors.

  11. The immune response of rainbow trout to Flavobacterium psychrophilum following immersion-challenge model with and without hydrogen peroxide pre-treatment

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Madsen, Lone; Kania, P. W.


    , no commercial vaccine is currently available and the disease is treated with antibiotics. Injection-based challenges with F. psychrophilum are standardized but the route of infection does not reflect a natural situation. Therefore, we established an immersion-based model investigating if hydrogen peroxide (H2O2......) pre-treatment could elevate infection and mortality. The model consisted of four groups: 1) Un-exposed control, 2) H2O2 exposure, 3) F. psychrophilum immersion and 4) H2O2 + F. psychrophilum. Pre-treatment with H2O2 increased mortality two-fold if fish also were exposed to F. psychrophilum after...... and FoxP3. A pro-inflammatory response was indicated, but only a weak indication of an adaptive response was recorded (most evident in the F. psychrophilum group). Further, pre-treatment with H2O2 affected the correlation gene expression and pathogen load in several cases. Morphological changes...

  12. Sustainable conversion of waste biomass using hydrothermal carbonization method


    Petrović, Jelena T.; Mihajlović, Marija L.; Mirjana D. Stojanović; Stanojević, Marija R.; Petrović, Marija S.; Milojković, Jelena; Lačnjevac, Časlav M.


    Hydrothermal carbonization represents a process for converting a wet organic material at elevated temperature and pressure in hydro char, coal-like product. The resulting hydro char, depending on the nature of biomass, can be used as a substitute for fossil coal, adsorbent of various pollutants, soil fertility supplement and others. This paper provides insight into the reaction mechanisms, as well as the influence of process parameters. It also highlighted the importance and advantage of the ...

  13. Entropy Production in Convective Hydrothermal Systems (United States)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan


    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  14. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas H.; Grigoras, Ionela F.; Hoffmann, Julia


    Hydrothermal liquefaction is a promising technology for the conversion of a wide range of bio-feedstock into a biocrude; a mixture of chemical compounds that holds the potential for a renewable production of chemicals and fuels. Most research in hydrothermal liquefaction is performed in batch type...... reactors, although a continuous and energy-efficient operation is paramount for such process to be feasible. In this work an experimental campaign in a continuous bench scale unit is presented. The campaign is based on glycerol-assisted hydrothermal liquefaction of aspen wood carried out with the presence...

  15. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.


    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  16. New insights into the Kawah Ijen hydrothermal system from geophysical data (United States)

    Caudron, Corentin; Mauri, G.; Williams-Jones, Glyn; Lecocq, Thomas; Syahbana, Devy Kamil; de Plaen, Raphael; Peiffer, Loic; Bernard, Alain; Saracco, Ginette


    Volcanoes with crater lakes and/or extensive hydrothermal systems pose significant challenges with respect to monitoring and forecasting eruptions, but they also provide new opportunities to enhance our understanding of magmatic–hydrothermal processes. Their lakes and hydrothermal systems serve as reservoirs for magmatic heat and fluid emissions, filtering and delaying the surface expressions of magmatic unrest and eruption, yet they also enable sampling and monitoring of geochemical tracers. Here, we describe the outcomes of a highly focused international experimental campaign and workshop carried out at Kawah Ijen volcano, Indonesia, in September 2014, designed to answer fundamental questions about how to improve monitoring and eruption forecasting at wet volcanoes.

  17. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Mohammad Waseem

    Full Text Available Oxaliplatin (Oxa treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel, could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm, resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin's protective effects may prove successful in eliciting pathways to further alter the neurotoxic

  18. Hydrothermal carbonization of tobacco stalk for fuel application. (United States)

    Cai, Jiaxiao; Li, Bin; Chen, Chaoying; Wang, Jing; Zhao, Min; Zhang, Ke


    Tobacco stalks are an abundant biomass resource which are otherwise treated as waste. In this work, the effect of hydrothermal carbonization temperature and time on the structures, chemical compositions and combustion characteristics of hydrochars obtained from tobacco stalks were evaluated. The carbon content, higher heating value, and energy yield increased with accompanying decrease in hydrogen and oxygen contents with the increase of treatment temperature and time. The evolution of the H/C and O/C atomic ratios indicated dehydration and devolatilization processes occurred during hydrothermal carbonization. The weight loss, combustion range and characteristic temperatures of tobacco stalks were significantly modified after hydrothermal carbonization, resulting in higher ignition temperatures and higher energy density. The kinetics model, Coats-Redfern method revealed the activation energy of hydrochars in zone 2 and 3 were among 43.7-74.8kJ/mol and 46.7-85.8kJ/mol, respectively. Our results show that hydrothermal carbonization reaction can facilitate transforming tobacco stalks into energy-rich solid fuel. Copyright © 2016. Published by Elsevier Ltd.

  19. IMAA (Integrated Measurements of Aerosol in Agri valley) campaign: Multi-instrumental observations at the largest European oil/gas pre-treatment plant area (United States)

    Calvello, Mariarosaria; Caggiano, Rosa; Esposito, Francesco; Lettino, Antonio; Sabia, Serena; Summa, Vito; Pavese, Giulia


    A short-term intensive multi-instrumental measurement campaign (Integrated Measurements of Aerosol in Agri valley - IMAA) was carried out near the largest European oil and gas pre-treatment plant (Centro Olio Val d'Agri - COVA) in a populated area, where, so far, ample characterization of aerosol loading is missing. As such, between the 2 and 17 July in 2013, using a number of instruments analyses were carried out on physical, chemical, morphological and optical properties of aerosol at this distinctive site, at both ground and over the atmospheric column, including the investigation of the mixing and transformation of particles. The observation of slag silicates with a rough surface texture is consistent with the presence of oil-related activities which represent the only industrial activity in the area. Desulfurization/sulfur liquefaction processes occurring at COVA can explain the peculiar morphology of calcium-sodium-aluminum particles. The common COVA source was associated with high concentrations of sulfur, nickel and zinc, and with significant correlations between zinc-sulfur and zinc-nickel. The Optical Particle Sizer (OPS) data, hygroscopicity and optical properties of atmospheric aerosol are consistent with the typical oil-derived gaseous emissions (e.g. sulfur dioxide and methane) that strongly influence the mixing state of particles and their size distributions. Continuous combustion processes at COVA were found to be responsible for Equivalent Black Carbon (EBC) concentrations from their relevant contribution to the total number of fine particles. The expected significant contribution of WS (water soluble) and BC (Black Carbon) components to the total Aerosol Optical Depth (AOD) are consistent with the results from the radiometric model especially for July 3 and 16.

  20. Hydrothermal Synthesis of Dicalcium Silicate Based Cement (United States)

    Dutta, N.; Chatterjee, A.


    It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.