Sample records for hydrothermal leaching processes

  1. Leaching of Light Rare Earth Elements from Sichuan Bastnaesite: A Facile Process to Leach Trivalent Rare Earth Elements Selectively from Tetravalent Cerium (United States)

    Shen, Yueyue; Jiang, Ying; Qiu, Xianying; Zhao, Shilin


    The effects of the nitric acid concentration, leaching time, leaching temperature, and solid-to-liquid ratio on leaching efficiency were examined. From those results, a facile process for the selective leaching of trivalent rare earth elements (RE(III)) from tetravalent cerium (Ce(IV)) was proposed. The roasted bastnaesite was used to leach 34.87% of RE(III) and 2.15% of Ce(IV) at 60°C for 0.5 h with an acid concentration of 0.5 mol/L. This selective leaching process can be described by the shrinking-core model that follows the kinetic model 1 - 2/3 α - (1 - α)2/3. Subsequently, the leached slag was hydrothermally treated and followed by thorough leaching with 4.0-mol/L nitric acid. Furthermore, the specific surface area of the final leached slag is 57.7 m2/g, which is approximately 650 times higher than that of raw ore. Finally, selective leaching of RE(III) (>90%) was achieved without using an organic solvent for extraction, whereas lower value Ce(IV)was presented in the leached slag (>92%).

  2. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.


    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  3. Effect of hydrothermal processing on ginseng extract

    Directory of Open Access Journals (Sweden)

    Jebin Ryu


    Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over 140°C, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.

  4. Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas-Pereira, M.B; Nath, B

    , and infra red spectroscopy studies of the clay fraction helped characterize the hydrothermal nature of the sediments. Selective dissolution carried out using HCl has allowed the discrimination between a leach phase (leachable Fe-Mn oxide) and a residue phase...


    Directory of Open Access Journals (Sweden)

    Luciana Harue Yamane


    Full Text Available The application of bacterial leaching in the ore treatment is already known and also can be applied such as treatment of electronic waste to copper recovery. This paper investigates the influence of process parameters (pulp density, inoculums volume, rotation speed and initial concentration of ferrous iron on bacterial leaching of copper from printed circuit board of computers using the bacterium Acidithiobacillus ferrooxidans–LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non-magnetic material used in this study. A shake flask study was carried out on the non-magnetic material using a shaker. The results show that Acidithiobacillus ferrooxidans–LR can leach 99% of copper from printed circuit boards (non–magnetic material under the determined conditions through of the studies.

  6. Applying Softcomputing for Copper Recovery in Leaching Process

    Directory of Open Access Journals (Sweden)

    Claudio Leiva


    Full Text Available The mining industry of the last few decades recognizes that it is more profitable to simulate model using historical data and available mining process knowledge rather than draw conclusions regarding future mine exploitation based on certain conditions. The variability of the composition of copper leach piles makes it unlikely to obtain high precision simulations using traditional statistical methods; however the same data collection favors the use of softcomputing techniques to enhance the accuracy of copper recovery via leaching by way of prediction models. In this paper, a predictive modeling contrasting is made; a linear model, a quadratic model, a cubic model, and a model based on the use of an artificial neural network (ANN are presented. The model entries were obtained from operation data and data of piloting in columns. The ANN was constructed with 9 input variables, 6 hidden layers, and a neuron in the output layer corresponding to copper leaching prediction. The validation of the models was performed with real information and these results were used by a mining company in northern Chile to improve copper mining processes.

  7. Reduction of inorganics from macroalgae Laminaria digitata and spent mushroom compost (SMC) by acid leaching and selective hydrothermal liquefaction

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Jasiunas, Lukas; Xu, Chunbao (Charles)


    Hydrothermal liquefaction (HTL) is a promising route for producing bio-crude from various biomass feedstocks. However, high content of inorganic constituents in biomass like macroalgae Laminaria digitata and spent mushroom compost (SMC) affect the conversion process and the resulting fuel products...

  8. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.


    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  9. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. (United States)

    Hu, Yuyan; Zhang, Pengfei; Li, Jianping; Chen, Dezhen


    In the paper, hydrothermal treatment (HT) of MSWI fly ashes was performed to stabilize and separate heavy metals. Influences of pre-treatment, types of ferric and/or ferrous additives, and subsequent heavy metal stabilization procedure by adding phosphate were investigated. The chemical stability of hydrothermal products was examined by solid waste extraction procedure with acetic acid buffer solution. Mineralogical investigation of selected hydrothermal product was carried out by XRD. FEGE SEM- -EDX was used to study the morphology and surface compositions of the ash particles. Experimental results revealed that HT process facilitated heavy metal exposure to leaching solution. FEGE SEM-EDX images revealed that fly ash particles were re-organized during hydrothermal process and that the minerals with special shapes and containing high levels of heavy metals were formed. A mild acid washing treatment with final pH around 6.20 could remove soluble heavy metals. Therefore, it may be a proper pre- or post-treatment method for fly ash particles for the purpose of reducing heavy metal contents. For the purpose of stabilizing heavy metals, the addition of ferric/ferrous salts in the HT process or phosphate stabilization after HT is recommended. The HT process may be applied to realize the environmentally sound management of MSWI fly ash or to recover and utilize MSWI fly ash. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin


    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  11. Multiphase simulation of mine waters and aqueous leaching processes

    Directory of Open Access Journals (Sweden)

    Pajarre Risto


    Full Text Available Managing of large amounts of water in mining and mineral processing sites remains a concern in both actively operated and closed mining areas. When the mining site with its metal or concentrate producing units is operational, the challenge is to find either ways for economical processing with maximum yields, while minimizing the environmental impact of the water usage and waste salt treatments. For safe closure of the site, the environmental control of possible drainage will be needed. For both challenges, the present-day multiphase process simulations tools can be used to provide improved accuracy and better economy in controlling the smooth and environmentally sound operation of the plant. One of the pioneering studies in using the multiphase thermodynamic software in simulation of hydrometallurgical processes was that of Koukkari et al. [1]. The study covered the use of Solgasmix equilibrium software for a number of practical acid digesters. The models were made for sulfuric acid treatments in titania pigment production and in NPK fertilizer manufacturing. During the past two decades the extensive data assessment has taken place particularly in geochemistry and a new versions of geochemical multiphase equilibrium software has been developed. On the other hand, there has been some progress in development of the process simulation software in all the aforementioned fields. Thus, the thermodynamic simulation has become a tool of great importance in development of hydrometallurgical processes. The presentation will cover three example cases of either true pilot or industrial systems including a South African acid mine water drainage treatment, hydrometallurgical extraction of rare earths from uranium leachate in Russia and a multistage process simulation of a Finnish heap leaching mine with its subsequent water treatment system.

  12. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    Energy Technology Data Exchange (ETDEWEB)

    Enghusen, M.B.


    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant.

  13. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process (United States)

    Li, Li; Zhai, Longyu; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil


    The anticipated significant use of lithium-ion batteries (LIBs) for energy storage applications in electric grid modernization and vehicle electrification shall generate a large quantity of solid waste that could become potential environmental hazards and waste natural resources. Recycling of the major components from spent LIBs is, therefore, considered desirable to prevent environmental pollution and to recycle valuable metals. This study reports on the application of ultrasonic-assisted technology to the leaching of cobalt and lithium from the cathode active materials of spent LIBs. Three acids were tested for the leaching process: two inorganic acids (H2SO4 and HCl) and one organic acid (citric acid, C6H8O7·H2O). The results show that the leaching of Co and Li is more efficient with citric acid than with the two inorganic acids. More than 96% Co and nearly 100% Li were recovered from spent LIBs. The optimal leaching conditions were 0.5 M citric acid with 0.55 M H2O2, a solid-to-liquid ratio of 25 g L-1, a temperature of 60 °C, leaching time of 5 h, and ultrasonic power of 90 W. The high leaching efficiency is mainly ascribed to the unique cavitation action of the ultrasonic waves. This ultrasonic-assisted leaching process with organic acid is not only effective but also environmentally friendly.

  14. Dynamic simulation of the carbon-in-pulp and carbon-in-leach processes

    Directory of Open Access Journals (Sweden)

    L. R. P. de Andrade Lima


    Full Text Available Carbon-in-leach and carbon-in-pulp are continuous processes that use activated carbon in a cascade of large agitated tanks, which have been widely used to recover or concentrate precious metals in gold extraction plants. In the carbon-in-pulp process adsorption occurs after the leaching cascade section of the plant, and in the carbon-in-leach process leaching and adsorption occur simultaneously. In both processes the activated carbon is moved from one tank to another in countercurrent with the ore pulp until the recovery of the loaded carbon in the first tank. This paper presents a dynamic model that describes, with minor changes, the carbon-in-leach, the carbon-in-pulp, and the gold leaching processes. The model is numerically solved and calibrated with experimental data from a plant and used to perform a study of the effect of the activated carbon transfer strategy on the performance of the adsorption section of the plant. Based on the calculated values of the gold loss in the liquid and of the gold recovered in the loaded activated carbon that leaves the circuit, the results indicate that strategies in which a significant amount of activated carbon is held in the first tank and the contact time between the carbon and the pulp is longer are the best carbon transfer strategies for these processes.

  15. Recovery of Iron from Pyrolusite Leaching Slag by a Lab-Scale Circulation Process of Oxalic Acid Leaching and Ultraviolet Irradiation

    Directory of Open Access Journals (Sweden)

    Biao Deng


    Full Text Available Pyrolusite leaching slag is a Fe-containing slag generated from pyrolusite leaching process with SO2. Recovery of iron from the slag not only has economic benefit, but also prevents the secondary pollution to the environment. A novel lab-scale cyclic process for recovering iron from pyrolusite leaching slag was introduced. The process contains two steps: (1 iron was leached with oxalic acid and [Fe(C2O4n](3−2n+ solution was generated; (2 the [Fe(C2O4n](3−2n+ solution was irradiated by ultraviolet and ferrous oxalate precipitation were obtained. The effect of operation parameter on leaching and irradiation process were studied separately. In the leaching process, the optimal solid/liquid ratio, oxalic acid concentration, leaching temperature, stirring rate, and leaching time are 1:50, 0.40 mol/L, 95 °C, 300 r/min, and 3 h, respectively. In the irradiation process, the best irradiation wavelength, Fe/oxalic acid molar ratio and irradiation time are 254 nm, 1:4, and 30 min. Besides, a test of 9 continuous cycles was carried out and the performance and material balance of the combined process were investigated. The results showed that the cyclic process is entirely feasible and prove to be stable producing, and ferrous oxalate of 99.32% purity. Material balance indicated that 95.17% of iron was recovered in the form of FeC2O4·2H2O, and the recovery efficiency of oxalic acid was 58.52%.

  16. Hydrothermal processing of rice husks: effects of severity on product distribution

    NARCIS (Netherlands)

    Vegas, R.; Kabel, M.A.; Schols, H.A.; Alonso, J.L.; Parajo, J.C.


    BACKGROUND: Treatment in aqueous media (hydrothermal or autohydrolysis reactions) is an environmentally friendly technology for fractionating lignocellulosic materials. Rice husks were subjected to hydrothermal processing under a variety of operational conditions to cause the selective breakdown of

  17. Experimental design and process analysis for acidic leaching of metal-rich glass wastes. (United States)

    Tuncuk, A; Ciftci, H; Akcil, A; Ognyanova, A; Vegliò, F


    The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.

  18. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps. (United States)

    Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan


    In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Laboratory development of sludge washing and alkaline leaching processes: Test plan for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, B.M.; Lumetta, G.J.


    The US Department of Energy plans to vitrify (as borosilicate glass) the large volumes of high-level radioactive wastes at the Hanford site. To reduce costs, pretreatment processes will be used to reduce the volume of borosilicate glass required for disposal. Several options are being considered for the pretreatment processes: (1) sludge washing with water or dilute hydroxide: designed to remove most of the Na from the sludge, thus significantly reducing the volume of waste to be vitrified; (2) sludge washing plus caustic leaching and/or metathesis (alkaline sludge leaching): designed to dissolve large quantities of certain nonradioactive elements, such as Al, Cr and P, thus reducing the volume of waste even more; (3) sludge washing, sludge dissolution, and separation of radionuclides from the dissolved sludge solutions (advanced processing): designed to remove all radionuclides for concentration into a minimum waste volume. This report describes a test plan for work that will be performed in FY 1994 under the Sludge Washing and Caustic Leaching Studies Task (WBS 0402) of the Tank Waste Remediation System (TWRS) Pretreatment Project. The objectives of the work described here are to determine the effects of sludge washing and alkaline leaching on sludge composition and the physical properties of the washed sludge and to evaluate alkaline leaching methods for their impact on the volume of borosilicate glass required to dispose of certain Hanford tank sludges.

  20. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.


    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  1. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. (United States)

    Zhang, Ran; Zheng, Shili; Ma, Shuhua; Zhang, Yi


    Bayer red mud (RM) is an alumina refinery waste product rich in aluminum oxides and alkalis which are present primarily in the form of sodium hydro-aluminosilicate desilication product (DSP). A hydrothermal process was employed to recover alumina and alkali from "Fe-rich" and "Fe-lean" RM, the two representative species of RM produced in China. The hydrothermal process objective phase is andradite-grossular hydrogarnet characterized by the isomorphic substitution of Al and Fe. Batch experiments were used to evaluate the main factors influencing the recovery process, namely reaction temperature, caustic ratio (molar ratio of Na(2)O to Al(2)O(3) in sodium solution), sodium concentration and residence time. The results revealed that the Na(2)O content of 0.5 wt% and A/S of 0.3 (mass ratio of Al(2)O(3) to SiO(2)) in leached residue could be achieved with Fe-rich RM under optimal conditions. However, the hydrothermal treatment of Fe-lean RM proved less successful unless the reaction system was enriched with iron. Subsequent experiments examined the effects of the ferric compound's content and type on the substitution ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Recovery Process of Li, Al and Si from Lepidolite by Leaching with HF

    Directory of Open Access Journals (Sweden)

    Gustavo D. Rosales


    Full Text Available This work describes the development of a new process for the recovery of Li, Al and Si along with the proposal of a flow sheet for the precipitation of those metals. The developed process is comprised of lepidolite acid digestion with hydrofluoric acid, and the subsequent precipitation of the metals present in the leach liquor. The leaching operational parameters studied were: reaction time, temperature and HF concentration. The experimental results indicate that the optimal conditions to achieve a Li extraction higher than 90% were: solid-liquid ratio, 1.82% (w/v; temperature, 123 °C; HF concentration, 7% (v/v; stirring speed, 330 rpm; and reaction time, 120 min. Al and Si can be recovered as Na3AlF6 and K2SiF6. LiF was separated from the leach liquor during water evaporation, with recovery values of 92%.

  3. Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model

    Energy Technology Data Exchange (ETDEWEB)

    Kiese, Ralf, E-mail: [Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, IMK-IFU Gramisch-Partenkirchen (Germany); Heinzeller, Christoph [Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, IMK-IFU Gramisch-Partenkirchen (Germany); Department of Geography, Ludwig-Maximilians University Munich (Germany); Werner, Christian [Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, IMK-IFU Gramisch-Partenkirchen (Germany); LOEWE Biodiversity and Climate Research Centre (BIK-F), Frankfurt (Germany); Wochele, Sandra; Grote, Ruediger; Butterbach-Bahl, Klaus [Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, IMK-IFU Gramisch-Partenkirchen (Germany)


    Simulations with the process oriented Forest-DNDC model showed reasonable to good agreement with observations of soil water contents of different soil layers, annual amounts of seepage water and approximated rates of nitrate leaching at 79 sites across Germany. Following site evaluation, Forest-DNDC was coupled to a GIS to assess nitrate leaching from German forest ecosystems for the year 2000. At national scale leaching rates varied in a range of 0->80 kg NO{sub 3}-N ha{sup -1} yr{sup -1} (mean 5.5 kg NO{sub 3}-N ha{sup -1} yr{sup -1}). A comparison of regional simulations with the results of a nitrate inventory study for Bavaria showed that measured and simulated percentages for different nitrate leaching classes (0-5 kg N ha{sup -1} yr{sup -1}:66% vs. 74%, 5-15 kg N ha{sup -1} yr{sup -1}:20% vs. 20%, >15 kg N ha{sup -1} yr{sup -1}:14% vs. 6%) were in good agreement. Mean nitrate concentrations in seepage water ranged between 0 and 23 mg NO{sub 3}-N l{sup -1}. - Highlights: > Forest-DNDC was successfully tested for prediction of annual NO{sub 3} leaching rates. > Coupled to GIS it generated regional estimates of NO{sub 3} leaching for German forests. > At national scale rates varied in a range of 0->80 (mean 5.5) kg NO{sub 3}-N ha{sup -1} yr{sup -1}. > Mean NO{sub 3} concentrations in seepage water were between 0 and 23 mg NO{sub 3}-N l{sup -1}. > Indication of potential risk for groundwater pollution and plant biodiversity. - The Forest-DNDC model is tested on observations at nearly 80 sites and then used to quantify nitrate leaching from German forest ecosystems

  4. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.


    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  5. Printed circuit board recycling: Physical processing and copper extraction by selective leaching. (United States)

    Silvas, Flávia P C; Correa, Mónica M Jiménez; Caldas, Marcos P K; de Moraes, Viviane T; Espinosa, Denise C R; Tenório, Jorge A S


    Global generation of waste electrical and electronic equipment (WEEE) is about 40 million tons per year. Constant increase in WEEE generation added to international legislations has improved the development of processes for materials recovery and sustainability of electrical and electronic industry. This paper describes a new hydrometallurgical route (leaching process) to recycle printed circuit boards (PCBs) from printers to recover copper. Methodology included PCBs characterization and a combined route of physical and hydrometallurgical processing. Magnetic separation, acid digestion and chemical analysis by ICP-OES were performed. On leaching process were used two stages: the first one in a sulfuric media and the second in an oxidant media. The results showed that the PCBs composition was 74.6 wt.% of non-magnetic material and 25.4 wt.% of magnetic one. The metallic fraction corresponded to 44.0 wt.%, the polymeric to 28.5 wt.% and the ceramic to 27.5 wt.%. The main metal was copper and its initial content was 32.5 wt.%. On sulfuric leaching 90 wt.% of Al, 40 wt.% of Zn and 8.6 wt.% of Sn were extracted, whereas on oxidant leaching tests the extraction percentage of Cu was 100 wt.%, of Zn 60 wt.% and of Al 10 wt.%. At the end of the hydrometallurgical processing was obtained 100% of copper extraction and the recovery factor was 98.46%, which corresponds to a 32 kg of Cu in 100 kg of PCB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN


    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  7. A novel sequential heap leach process for treating crushed Platreef ore


    Mwase Malumbo, James(*); Petersen, Jochen(*); Eksteen, Jacques J


    A novel sequential heap leaching process has been identified as a possible alternative to the conventional concentrate–smelt–refine route for processing Platreef ore, a platinum group metals containing ore with palladium predominance. The present study focuses on testing this process on crushed whole ore, after initial experiments conducted on low-grade Platreef flotation concentrate achieved promising results. Two samples of drill core Platreef ore with size distributions of − 25 mm + 1 mm a...

  8. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia

    Directory of Open Access Journals (Sweden)



    Full Text Available Rahmanifarah K, Shabanpour B, Shaviklo AR, Aalami M. 2014. Leaching and heating process as alternative to produce fish protein powder from Kilka (Clupeonella cultiventris caspia. Nusantara Bioscience 6: 1-6. The effect of protein extraction procedures (leached mince and heated suspension on selected properties of fish protein powder (proximate composition, pH, color, density, viscosity, fat adsorption, emulsifying capacity, emulsifying stability, foaming capacity, foaming stability, WBC, protein solubility in water, hygroscopicity, Trichloroacetic acid (TCA-soluble peptides and free sulfhydryl groups was investigated. Results showed that Fish protein powder (FPP produced by leaching mince (LM have higher protein, moisture, ash, pH, L*, viscosity, emulsion capacity, emulsion stability, foam capacity, foam stability, water binding capacity (WBC, protein solubility, hygroscopicity, TCA soluble peptides and free sulfhydryl group content than heated suspension (HS (P0.05. Overall, it was observed that high temperature during heating of suspension in HS method makes possible protein denaturation and aggregation. Consequently, based on functional, chemical and physical properties, extraction of fish protein by leaching process was found to be suitable for the production of fish protein powder.

  9. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.


    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  10. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  11. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  12. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben


    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Kinetics of the Leaching Process of an Australian Gibbsitic Bauxite by Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Aichun Zhao


    Full Text Available Gibbsitic bauxite from Australia was leached by hydrochloric acid in this work. Analysis on kinetics for the extraction of Al2O3 was quantitatively studied. It was concluded that the hydrochloric acid leaching process of gibbsitic bauxite was controlled by chemical reaction. Moreover, the mechanism for the dissolution followed the equation, ln⁡k=39.44-1.66×104(1/T, with an apparent activation energy of 137.90 kJ/mol, according to the equation of k=Ae-Ea/RT. This work aims to provide a good theory support for the process control by using a new method of alumina production from the low grade bauxite.

  14. Assessing a two-stage heap leaching process for Platreef flotation concentrate


    Mwase Malumbo, James(*); Petersen, Jochen(*); Eksteen, Jacques J


    Samples of low-grade flotation concentrate derived from Platreef ore were treated with a two-stage heap leach process to determine the potential to run this process parallel to the convential concentrate–smelt–refine process for extracting platinum group metals, thereby adding value to the convential process via economic treatment of low-grade materials. Using bench-scale columns, a first stage bioleach achieved extractions of 91.1% Cu, 98.5% Ni and 83.5% Co in a space of 88 days at a tempera...

  15. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process (United States)

    Jung, Myungwon; Mishra, Brajendra


    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  16. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process (United States)

    Jung, Myungwon; Mishra, Brajendra


    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  17. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. (United States)

    Navarro, R; Guzman, J; Saucedo, I; Revilla, J; Guibal, E


    In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.

  18. Optimization of a chemical leaching process for decontamination of CCA-treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada); Blais, Jean-Francois, E-mail: [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada); Mercier, Guy, E-mail: [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada); Drogui, Patrick, E-mail: [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada)


    Increasing volumes of discarded Chromated Copper Arsenate (CCA)-treated wood require the development of new treatment and recycling options to avoid the accumulation of wood wastes in landfill sites, resulting in dispersion of contaminants in the environment. The aim of this study is to design an economic chemical leaching process for the extraction of arsenic, chromium and copper from CCA-treated wood. Choice of chemical reagent, reagent concentration, solid-to-liquid ratio, temperature, reaction time and wood particle size are parameters which have been optimized. Sulphuric acid was found to be the cheapest and most effective reagent. Optimum operation conditions are 75 deg. C with 0.2N H{sub 2}SO{sub 4} and 150 g wood L{sup -1}. Under these conditions, three leaching steps lasting 2 h each allowed for 99% extraction of arsenic and copper, and 91% extraction of chromium. Furthermore, arsenic concentration in TCLP leachate is reduced by 86% so the environmental hazard is reduced. Decontamination process cost is estimated to 115 US$ per ton of treated wood. These results demonstrate the feasibility of chemical remediation and that sulphuric acid leaching is a promising option for CCA-treated wood waste management.

  19. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A., E-mail: [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Paiva, A.P., E-mail: [Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Oliveira, P.C. [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Costa, M.C., E-mail: [Centro de Ciências do Mar, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, A.M. Rosa da, E-mail: [Centro de Investigação em Química do Algarve, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal)


    Highlights: • A new leaching process based on Cu{sup 2+}/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu{sup 2+} concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu{sup 2+} concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu{sup 2+}] = 0.3 M)

  20. Structure–property tuning in hydrothermally stable sol–gel-processed hybrid organosilica molecular sieving membranes

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Dral, Albertine Petra


    Supported microporous organosilica membranes made from bridged silsesquioxane precursors by an acid-catalyzed sol–gel process have demonstrated a remarkable hydrothermal stability in pervaporation and gas separation processes, making them the first generation of ceramic molecular sieving membranes

  1. Soil spreading of liquid olive mill processing wastes impacts leaching of adsorbed terbuthylazine. (United States)

    Aharonov-Nadborny, R; Raviv, M; Graber, E R


    Olive mill waste water (OMWW) is a major byproduct of the three phase olive oil production process. OMWW has high acidity (pH ∼ 4-5), high salt content (EC ∼ 5-10 mS cm(-1)), extremely high biological and chemical oxygen demand (BOD and COD up to 100,000 and 220,000 mg L(-1), respectively), and also high concentrations of organic compounds such as phenols and polyphenols. As a result, OMWW cannot be freely discharged into domestic wastewater treatment plants, but on-site treatment is very expensive and not sufficiently effective. Uses for OMWW such as agricultural recycling and co-composting were found to be impractical or expensive. Thus, OMWW is frequently spread on agricultural land for disposal. However, excessive or uncontrolled spreading of such organic-rich and saline wastewater could have many deleterious effects on soil quality, including salinization, phytotoxicity, or contaminant movement. The impact of OMWW on the leaching of adsorbed terbuthylazine, a soil-applied herbicide, was tested in four soils of varying physical and chemical properties. Although terbuthylazine solubility in OMWW is significantly higher than in water, leaching of adsorbed terbuthylazine from OMWW-treated soils was less than from control treatments. Low soil organic carbon and clay contents were major factors that contributed to reduced terbuthylazine leaching after soil treatment with OMWW. Copyright © 2016. Published by Elsevier Ltd.

  2. Recovering Y and Eu from Waste Phosphors Using Chlorination Roasting—Water Leaching Process

    Directory of Open Access Journals (Sweden)

    Mingming Yu


    Full Text Available Recovering Y and Eu from waste phosphors using chlorination roasting followed by a water leaching process was investigated in this study. Firstly, by chlorination roasting and water leaching, Y and Eu elements present in waste phosphors were efficiently extracted into a leach solution. Secondly, the majority of the impurities in the solution can be removed by adjusting the pH to 4.5 using a Na2S and NH3·H2O solution. Thirdly, the rare earths can be precipitated afterwards by adding a H2C2O4 solution and adjusting the pH to 2.0. Then rare earth oxides (REOs can be obtained after calcining at 800 °C for 1 h. The characterization study of the waste phosphors and the rare earth oxide products was performed by XRD, XRF, and SEM-EDS analysis to determine the phase and morphological features. Influences of the factors, such as roasting temperatures and time, the addition of ammonium chloride on the roasting of waste phosphors, as well as the pH and the amount of oxalates on the precipitation of Y and Eu, were investigated. The maximum grade (99.84% of mixed rare earth oxides and recovery rate (87.35% of Y and Eu were obtained at the optimized conditions.

  3. Relevance of hydro-mechanical-chemical processes involved in the construction and operation of copper heap leach pads


    Tincopa Heredia, Mayu Alberto


    Heap leaching in the mining industry had become a fairly sophisticated practice at least 500 years ago. It is defined as a mineral processing technology whereby large piles of crushed Run-of–Mine (ROM) rock are leached with various chemical solutions to extract the valuable minerals. The main goal of this work is to contribute to the understanding of the behavior of a heap leach pad by using coupled Hydro-Mechanical-Chemical (HMC) simulations and optimize its design by improving the pad st...

  4. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa


    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  5. Leaching tendencies of uranium and regulated trace metals from the Hanford Site 300 Area North Process Pond sediments

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; LeGore, V.L.; Mattigod, S.V.


    Data are presented that address the leaching tendencies and the total chemical composition of metals in feed materials and soil-washed fines generated by Alternative Remediation Technology, Inc. during a pilot-scale soil physical separation test performed at the 300 Area North Process Pond (Facility 316-2) on the Hanford Site in the spring of 1994. Four 300 Area North Process Pond sediments and one sediment from outside the pond`s fenced area were leach-tested using the Toxicity Characteristic Leach Procedure (TCLP) and other modified US Environmental Protection Agency and American Society for Testing and Materials protocols. Finally, leachate from the most contaminated sediment was used to load the Hanford sediment obtained outside the facility to evaluate the potential for contaminant adsorption onto natural sediments. The sediment characterization, leach, and adsorption results will be used in the evaluation of remedial alternatives in the 300-FF-1 Operable Unit Remedial Investigation/Feasibility Study.

  6. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production

    Directory of Open Access Journals (Sweden)

    Liz M Díaz-Vázquez


    Full Text Available Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR Spectroscopy, Energy Dispersive Spectroscopy (EDS, Scanning Electron Microscopy (SEM, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment, was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5-21 MPa. Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46% to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4±0.1 % and 22.2±0.1 % (ash free dry basis, respectively.

  7. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest


    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...

  8. Hydrothermal processing of biomass from invasive aquatic plants (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt


    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  9. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost. (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng


    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process. (United States)

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e


    A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium-niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by X-ray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO(2) and Nb(2)O(5) formed on the TiNb alloy surface and hydrated to Ti(OH)(4) and Nb(OH)(5), respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 degrees C for 12 h. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  11. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid. (United States)

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S


    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues. 2010 Elsevier B.V. All rights reserved.

  12. Stoppage of leaching processes and rehabilitation of tailings in mining areas. Blockierung von Laugungsprozessen und Sanierung von Halden in Bergbaugebieten

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, F.; Ondruschka, J.


    Studies on how to stop the growth of microorganisms in suspension and colomn leaching processes were performed using biocidal agents such as fluor-spar, surfactant E 30, the biocide kathon. The aim was to bring the microbial oxid ation process in tailings to a halt so as to minimize the effects of this natural leaching process and to reduce the cost of treating drainage water. In a 2000 t uranium dump tests for stopping the leaching process by means of fluoride and surfactant E 30 were successfully concluded. The drainage water was kept free of fluoride by means of a pH shift. Surfactant E 30 and the biocide kathon are biodegradable. In none of the 3 cases were the resistivity phenomena known from chemical industry applied to environmental rehabilitation. (orig.)

  13. Mobility of rare earth element in hydrothermal process and weathering product: a review (United States)

    Lintjewas, L.; Setiawan, I.


    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  14. Chlorflurenol-methyl in soil: degradation, leaching, and effects on microbiological processes. (United States)

    Eichler, D; Heupt, W; Anderson, J P; Domsch, K H; Jagnow, G


    Tests were conducted with the synthetic growth regulator chlorflurenol-methyl to investigate its rate of degradation in soil, leaching behavior, and possible side-effects on the soil microflora and on soil physiological processes. With two sandy soils (Ct = 1.0 and 2.58%) which were treated with 11.35 mg kg-1 chlorflurenol-methyl (congruent to 2.8 kg a.i. ha-1), over 90% of the compound disappeared within 4 to 8 days. The degradation products were 2-chloro-9-hydroxyfluorene-9-carboxylic acid and 2-chlorofluorenone, which undergo further decomposition. In leaching tests with three sandy soils (Ct = 0.69, 1.0 and 2.58%), chlorflurenol-methyl was not washed from the soil; however, with one soil (0.69% C), very small residues were observed in the effluent identified as 2-chlorofluorenone. In side-effects experiments with a parabrown (Ct = 1.26%) and a chernozem soil (Ct = 2.3%), which were treated with 1 and 10 mg kg-1 chlorflurenolmethyl, no persistent inhibition of anaerobic or aerobic nitrogen fixation (C2H2-reduction) was detected. Ammonification, nitrification, and mineralization of soluble starch were also not influenced. The mineralization of cellulose in compost soil (Ct = 13.59%) was temporarily delayed; however, this delay was later compensated for by a higher mineralization rate. The colonization density of fungi on soil particles and the numbers of bacteria, actinomycetes, and fungi were not negatively influenced. Chlorflurenol-methyl does not significantly influence these microbiological processes and populations in the soil.

  15. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki


    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  16. Improving the circular economy via hydrothermal processing of highdensity waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    . This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical......Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  17. Improving the circular economy via hydrothermal processing of high-density waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  18. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process. (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae


    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)


    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  20. Modelling of leaching and geochemical processes in an aged MSWIBA subbase layer

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David; Suer, Pascal; Sloot, Hans van der; Kosson, David; Flyhammar, Peter


    In a previous project, the accumulated effects of leaching and aging in a subbase layer of bottom ash in a test road were investigated. The test road were constructed in 1987 in Linkoeping, Sweden, and was in use until the start of the Vaendoera Q4-241 study in September 2003. The overall objective of the present study is to bring the evaluation of the previous project (Q4-241) further by taking advantage of the existing data, perform complementary laboratory experiments on four composite samples reflecting different degree of exposure to atmosphere and leaching. The specific objectives were to investigate: (i) what processes and mineral phases that govern leaching of macro- and trace elements and DOC in the bottom ash after 16 years (1987- 2003) of aging under field conditions. (ii) how the hydrologic conditions, infiltration of water and leachate production has evolved with time. The following tests were performed on the composite samples: pH-stat test, column test, Fe/Al oxide extraction and TOC fractioning. Geochemical and hydrological modelling where performed with LeachXS/Orchestra and Hydrus 2-D. Daily precipitation data from the Swedish Meteorological and Hydrological Institute (SMHI) from the Malmslaett (Linkoeping) measurement station was used in the hydrological modelling of January 1988 to the 1st of september 2003. The hydraulic modeling results show that the bottom ash subbase layer endure seasonal wet and dry cycles. The results confirm that, depending on the boundary conditions along the shoulders the capillary potential may drive moisture either in or out of the road body. The water retention parameters for bottom ash were crucial in the hydraulic modeling and the capillary forces in bottom ash were found to be significant with a water retention curve close to silt. This explains the observed depletion of easily soluble salts in the test road. The results showed that the accumulated LS ratio for the bottom ash subbase layer reached about LS:10 in

  1. Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield

    NARCIS (Netherlands)

    Ramos-Tercero, E.A.; Bertucco, A.; Brilman, Derk Willem Frederik


    In this work, the effect of recycling the process water (PW) of hydrothermal liquefaction (HTL) to the HTL reactor was investigated, with the objective being to recover carbon from the organic content of the PW and to develop a solvent-free process. When recycling twice the PW at 220, 240, and 265

  2. Crud treatment with 3 phase centrifuge in heap leach uranium process

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, T., E-mail: [GEA Westfalia Separator Process GmbH, Oelde (Germany)


    The presence of crud represents a permanent challenge for solvent extraction in the hydro-metal Uranium industry. The crud forms in the settlers of SX extraction. The crud is a stable emulsion which slowly spreads along the phase boundary between the aqueous and organic phase. Spreading of this intermediate phase is determined by the following influencing factors. Wind blows dust into the open settlers, some suspended solids coming with the pregnant leach solution (PLS) and wrong design of the mixers cause stable emulsions. Metallic solid residue is likewise responsible for the growth rate of the crud at the above-mentioned phase boundary. The crud can significantly impair the efficiency of hydro-metal extraction because the phase boundary between the aqueous and organic phases assumes substantial proportions, and the settlers cannot react flexibly. In a chain reaction, all settlers connected in series become infected with crud. The transfer of organic phase to the electrowinning (EW) cell can cause 'cathode burn'. The entrainment of electrolyte into the extraction stage can result in loss of pH control in the extraction circuit which will cause a drop in extraction efficiency. On the other hand, entrainment of the organic in the raffinate will result in organic losses to the leach circuit. Continuous treatment of the crud is extremely effective and reliable with a 3-phase separating solid bowl centrifuge. All three phases are separated distinctly from one another. All associated process steps exhibit a steady uniform efficiency. The main benefit for the customer is that process fluctuations in the extraction process will no longer occur. The 3-phase separating solid bowl centrifuge consists of an axial solid-wall bowl. The solid-wall bowl has a cylindrical section for simultaneous separation and clarification of the aqueous and organic liquid phase and a conical section for efficient solids dewatering. The 3-phase feed suspension is fed into the solid

  3. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters. (United States)

    Nogueira, C A; Paiva, A P; Oliveira, P C; Costa, M C; da Costa, A M Rosa


    The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu(2+) concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4h, [HCl] = 6M, [Cu(2+)] = 0.3M). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon


    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: Process design and economic evaluation


    Oudenhoven, S.R.G.; van der Ham, A.G.J.; H. Van den Berg; Westerhof, R.J.M.; Kersten, S.R.A.


    Removing alkali and alkaline earth metals (AAEMs) from biomass, with pyrolytic acids, before pyrolysis leads to increased organic oil and sugar yields. These pyrolytic acids are produced and concentrated within the pyrolysis process itself. The purpose of this paper was to evaluate under which conditions acid leaching of pinewood, bagasse and straw can improve the technical and economic feasibility of a pyrolysis process. Therefore, a preliminary process design for the implementation of acid ...

  6. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2-HF leaching and hydrolyzing process. (United States)

    Zheng, Fuqiang; Guo, Yufeng; Qiu, Guanzhou; Chen, Feng; Wang, Shuai; Sui, Yulei; Jiang, Tao; Yang, Lingzhi


    A novel process to prepare titanium dioxide from Ti-bearing electric furnace slag by NH4HF2-HF leaching and hydrolyzing process has been developed. In this present study, the effects of [NH4+]/[F] mXolar ratio, leaching temperature, [F] concentration, liquid/solid mass ratio, leaching time on the Ti extraction, and the phase transformations have been investigated to reveal the leaching mechanism of Ti-bearing electric furnace slag in NH4HF2-HF solution. In the NH4HF2-HF leaching process, the MgTi2O5 and Al2TiO5 are converted to TiF62- and Mg-Al-bearing precipitate. Ti extraction rate reached 98.84% under the optimal conditions. In addition, 98.25% iron ions can be removed in the presence of NaCl prior to hydrolysis process. The effects of pH and temperature on the selective hydrolysis of TiF62- during hydrolysis process were also studied. In the hydrolysis process, the TiF62- is converted to (NH4)2TiOF4. By calcination, high grade TiO2 powder with its purity of 99.88% was obtained, using which the products, well crystallized anatase and rutile, were obtained through roasting at 800°C and 1000°C, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli


    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  8. Numerical Study of Usage Efficiency of Multistage Filters on Mineral Leaching Process (United States)

    Inkarbekov, Medet; Kuljabekov, Alibek; Alibayeva, Karlygash; Kaltayev, Aidarkhan


    The numerical study of the usage efficiency of the multistage filters setting technology is carried out on the basis of mathematical simulation. And its application on in-situ mineral leaching process is considered. So long as mineral bearing sandstone in deposit mostly is separated by interbedded layers of sands and clays, it's expedient to use multistage filters setting technology at the mineral extraction. A comparison of the extraction degree at single and multistage filters is implemented. The results of calculations show that the distribution of flow (inflow) on well height is not uniform. In the calculations the well accepted as high-permeability channel, depending on the construction of the filter. Obtained results for a multistage filters setting qualitatively conform to the experimental findings. Wellbore is considered as a surface with a constant reduced pressure in the bottomhole formation zone. But such assumption does not show a qualitative picture of the fluid flow in the bottomhole zone [Brovin K.G., Grabovnikov V.A., 1997]. To construct an accurate mathematical model it's necessary to use Navier-Stokes equation for the interior of a vertical wellbore, and the filtration law for modeling the filtration in the reservoir. Strictly speaking, it would have had to sew two laws on the contact surface of a rock and filter. Such review requires enormous computing, as far as computational grid must be sufficiently thick to cover the interior of the wellbore.

  9. Improving the circular economy via hydrothermal processing of high-density waste plastics. (United States)

    Helmer Pedersen, Thomas; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Availability and leaching of polycyclic aromatic hydrocarbons. Controlling processes and comparison of testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Roskam, G.D. [ECN Biomass, Coal and Environment, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Comans, R.N.J. [Wageningen University, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen (Netherlands)


    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (R16 US-EPA PAHs 3412 mg/kg) and gasworks soil (RPAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  11. Availability and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods. (United States)

    Roskam, Gerlinde D; Comans, Rob N J


    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  12. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process. (United States)

    Bojinova, Darinka; Teodosieva, Ralitsa


    The solid industrial wastes generated from thermal power plants (TPPs) can be considered as renewable secondary sources for recovery of valuable metals. This study presents the results from investigations that integrated a thermo-hydro-metallurgical method for treatment of bottom ash obtained from the Enel Maritsa East 3 TPP in Bulgaria. Leaching was performed with 20, 30 and 40 wt% sulphuric acid, respectively, in an autoclave at 100(o)C, 120(o)C and 140(o)C for 120, 240, 360 and 480 min, at a constant value of the liquid/solid ratio. After autoclaving, the samples (suspensions) were diluted with a constant value of water and stirring at 50(o)C for 60 min. On the basis of the experimental data the leaching efficiency (α) of the elements in the liquid phase after filtration was estimated. The leaching of aluminium increases significantly with increasing of the temperature, reaching the maximum value of 70 wt%. The highest leaching efficiency values for the other elements are as follows: Fe (86.4%), Ca (86.6%), Na (86.6%), Ni (83.3%) and Zn (83.3%). The maximum value of leaching for Mg, K, Mn, Cu and Cr is in the interval of 46-70%. © The Author(s) 2016.

  13. Prospects for energy recovery during hydrothermal and biological processing of waste biomass. (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L


    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Solvent extraction of uranium from leach solutions obtained in processing of Polish low-grade ores. (United States)

    Kiegiel, Katarzyna; Abramowska, Anna; Biełuszka, Paweł; Zakrzewska-Kołtuniewicz, Grażyna; Wołkowicz, Stanisław


    Solvent extraction of uranium from acidic and alkaline post-leaching liquors that were obtained by leaching of Polish ores is reported in this paper. The stripping of uranium from organic to aqueous phase was also studied. The synergistic mixture of 2-diethylhexylphosphoric acid (D2EHPA) and tri-n-butylphosphate (0.2 M:0.2 M) was found as a good extracting agent for uranium. Recovery of uranium was reached even 98 %. The effect of such parameters like uranium concentration and concentration of reagents used in the experiments was evaluated in advance by using a model uranium solutions.

  15. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process


    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé


    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  16. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков


    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  17. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong, E-mail: [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024 (China); Yang, Dechao [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian 116024 (China); Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)


    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  18. Variation law of gas holdup in an autoclave during the pressure leaching process by using a mixed-flow agitator (United States)

    Tian, Lei; Liu, Yan; Tang, Jun-jie; Lü, Guo-zhi; Zhang, Ting-an


    The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas-liquid-solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ɛ = 4.54 × 10-11 n 3.65 T 2.08 P g 0.18. It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator.

  19. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ


    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  20. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail:; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail:; Lee, Chan Gi; Hong, Hyun Seon, E-mail:


    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  1. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge (United States)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.


    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  2. Characterization of Particles Created By Laser-Driven Hydrothermal Processing (United States)


    sample and tektite sample J71 Sangiran Java [19]......................................................................................28 Table 5...relationship between the material characteristics and its process history [1]. Analysis methods require techniques that collect the material without...of Australasian tektite from Java (Note: FeO was used in this table to compare the sample with the reference, future chemical compositions will use

  3. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid. (United States)

    Takata, Eri; Tsutsumi, Ken; Tsutsumi, Yuji; Tabata, Kenji


    The production of monosaccharides from napier grass was investigated in the presence of acid catalysts using the hydrothermal process. When the napier grass was treated with 3 wt.% phosphoric acid at 160°C for 15min, the xylose yield reached 10.3 wt.%, corresponding to 72.0% of the xylan in it, whereas glucose was hardly obtained. A combined process was then conducted using an 85 wt.% phosphoric acid treatment at 60 °C for 1h followed by a hydrothermal treatment with 3 wt.% phosphoric acid. In the initial treatment with concentrated phosphoric acid the most of xylan was hydrolyzed to xylose, and the crystalline cellulose was converted to its amorphous form. The hydrolysis of cellulose to glucose was significantly enhanced during the following hydrothermal process with 3 wt.% phosphoric acid at 200 °C for 8 min. Consequently, 77.2% yield of xylose and 50.0% yield of glucose were obtained from the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. (United States)

    Behnamfard, Ali; Salarirad, Mohammad Mehdi; Veglio, Francesco


    A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5M HCl, 1V% H2O2, 10V% NaClO at 336K for 3h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Kim Yong-Jin


    Full Text Available Abstract Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property.

  6. Caustic leach-electrowin process for treating electric arc furnace baghouse dust. Final report. 2 volumes

    Energy Technology Data Exchange (ETDEWEB)


    This report investigates the feasibility of one method of removing zinc and lead from electric arc furnace baghouse dust on a laboratory scale. Recent studies and literature are reviewed with attention being given to the formation and characterization of dust. Alternative treatment and disposal options are briefly described. Caustic leach-electrowin testwork is reported. Based on the results of the testwork, flowsheets and material balances are derived and used for the conceptual design of a slave plant to treat 15,000 tonnes per year of dust to produce zinc metal. Target economics, comprising preliminary estimates of capital and operating costs and revenues using somewhat optimistic assumptions, are calculated based on recycling of leach residue to the electric arc furnaces. Economic, commercial and other considerations pertaining to treating dust at a slave plant as compared to a centralized facility are discussed. Conclusions and recommendations for further work are enumerated. 10 figs., 14 tabs.

  7. Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A.; Blanchard, David L.


    Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed.

  8. Preparation of tourmaline nano-particles through a hydrothermal process and its infrared emission properties. (United States)

    Xue, Gang; Han, Chao; Liang, Jinsheng; Wang, Saifei; Zhao, Chaoyue


    Tourmaline nano-particles were successfully prepared via a hydrothermal process using HCl as an additive. The reaction temperature (T) and the concentration of HCI (C(HCl)) had effects on the size and morphology of the tourmaline nano-particles. The optimum reaction condition was that: T = 180 degrees C and C(HCl) = 0.1 mol/l. The obtained nano-particles were spherical with the diameter of 48 nm. The far-infrared emissivity of the product was 0.923. The formation mechnism of the tourmaline nano-particles might come from the corrosion of grain boundary between the tourmaline crystals in acidic hydrothermal conditions and then the asymmetric contraction of the crystals.

  9. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties (United States)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi


    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  10. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco


    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios (United States)

    Pierson-Wickmann, Anne-Catherine; Aquilina, Luc; Weyer, Christina; Molénat, Jérôme; Lischeid, Gunnar


    In natural river systems, the chemical and isotopic composition of stream- and ground waters are mainly controlled by the geology and water-rock interactions. The leaching of major cations from soils has been recognized as a possible consequence of acidic deposition from atmosphere for over 30 years. Moreover, in agricultural areas, the application of physiological acid fertilizers and nitrogen fertilizers in the ammonia form may enhance the cation leaching through the soil profile into ground- and surface waters. This origin of leached cations has been studied on two small and adjacent agricultural catchments in Brittany, western France. The study catchments are drained by two first-order streams, and mainly covered with cambisoils, issued from the alteration and weathering of a granodiorite basement. Precipitations, soil water- and NH 4 acetate-leachates, separated minerals, and stream waters have been investigated. Chemical element ratios, such as Ba/Sr, Na/Sr and Ca/Sr ratios, as well as Sr isotopic ratios are used to constrain the relative contribution from potential sources of stream water elements. Based on Sr isotopic ratio and element concentration, soil water- and NH 4 acetate leaching indicates (1) a dominant manure/slurry contribution in the top soil, representing a cation concentrated pool, with low 87Sr/ 86Sr ratios; (2) in subsoils, mineral dissolution is enhanced by fertilizer application, becoming the unique source of cations in the saprolite. The relatively high weathering rates encountered implies significant sources of cations which are not accessory minerals, but rather plagioclase and biotite dissolution. Stream water has a very different isotopic and chemical composition compared to soil water leaching suggesting that stream water chemistry is dominated by elements issued from mineral and rock weathering. Agriculture, by applications of chemical and organic fertilizers, can influence the export of major base cations, such as Na +. Plagioclase

  12. Effects of hydrothermal processing on nutritional value of Canavalia ensiformis and its utilization by Clarias gariepinus (Burchell, 1822 fingerlings

    Directory of Open Access Journals (Sweden)

    V.T. Okomoda


    Full Text Available Jack bean (Canavalia ensiformis is one of the underutilized legumes in animal feed production partly because of its high antinutritional factors. This study investigated the nutritional value of C. ensiformis seed subjected to hydrothermal processing in the diet of the African catfish Clarias gariepinus. Five batches of C. ensiformis seeds were hydrothermally processed in boiling water (100 °C for 0, 10, 20, 30 and 40 min, respectively. Proximate composition of the seed showed no significant effect of hydrothermal processing on protein and fat content of C. ensiformis. However, all essential amino acids were significantly affected. The anti-nutritional factor canavanine was not markedly reduced even at 40 min hydrothermal processing. Fifty fingerlings of C. gariepinus (1.07 ± 0.01 g were stocked in 15 hapas measuring 1 × 1 × 1m3, labeled in triplicate according to five isonitrogenous diets (35% CP formulated using the processed C. ensiformis seed at an inclusion level of 27%. The highest body weight gain (2.73 g, specific growth rate (2.26gday−1, feed conversion efficiency (34.11% and protein efficiency ratio (0.078 were observed at hydrothermal treatment of 30 and 40 min. Hydrothermal processing of C. ensiformis up to 40 min could be exploited in the commercial and on-farm production of catfish diet at 27% level of inclusion.

  13. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples. (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis


    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.


    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  15. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems. (United States)

    Uhm, Joo Tae; Yoon, Won Byong


    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  16. Development of a leaching process of manganese concentrate in molten salts


    Maria José de Sousa Ferreira da Silva; Maria José Marques; Cláudio Patrício Ribeiro Jr


    The NaCl- KCl system as fused-salt solvent for leaching has shown to have some advantages over traditional solvents. In this work the solubility of copper, nickel and cobalt oxide in this system, as impurities in manganese concentrate, was studied. The euthetic mixture of NaCl - KCl at 700ºC was used at several fusion times and the dissolved metals were determined by Atomic Absorption Spectrometry. The results have shown that in these conditions only copper was solubilized.

  17. Up-gradation of MoO{sub 3} and separation of copper, iron, zinc from roasted molybdenum ore by a leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Young, Lee; Jyothi Rajesh, Kumar; Ho-Seok, Jeon; Joon-Soo, Kim, E-mail:, E-mail: [Extractive Metallurgy Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) (Korea, Republic of)


    The present research paper deals with the oxidation process of molybdenum ore. The main target of the present study is the up-gradation of MoO{sub 3} from roasted molybdenum ore by a leaching process without waste generation. The most important application of hydrometallurgical processing is the leaching process of the ore and it is the primary process to make pure metal from ore. The present investigations optimize the following experimental parameters to improve the concentration of MoO{sub 3} as well as the separation of copper, iron and zinc in roasted molybdenum ore: effect of acid concentration, temperature, pulp density and leaching time were studied systematically. The temperature study was carried out at 550-595 Degree-Sign C for the oxidation process. The XRD result shows that oxidation process of molybdenum ore and SEM pictures were taken for particles before and after the oxidation process at 585 Degree-Sign C for 360 min. (author)

  18. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa


    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  19. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films. (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A


    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  20. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique. (United States)

    Barik, S P; Park, K H; Nam, C W


    A process for recovering V(V) and Ni(II) from an industrial solid waste using sulfuric acid leaching, solvent extraction, precipitation and crystallization has been developed. The leaching parameters investigated were time, temperature and H2SO4 concentration. To quantify the linear and interaction coefficients a 2(3) full factorial experimental design was used. Regression equations for the extraction of V(V) and Ni(II) were determined and the adequacy of these equations was tested by Student's t-Test. More than 98% of both V(V) and Ni(II) were extracted in 90 min using 1.35 M H2SO4 at 40 °C. In addition, solvent extraction of V(V) with LIX 84-I in kerosene from the acidic leach liquor bearing 10.922 g/L V(V) and 18.871 g/L of Ni(II) was investigated. V(V) was extracted selectively using 40% LIX 84-I followed by stripping with NH4OH solution. McCabe-Thiele plots at O:A = 2:3 with 40% LIX 84-I and O:A = 3:1 with 15% (v/v) NH4OH showed two and three theoretical stages are needed for quantitative extraction and stripping of V(V), respectively. Ni(II) was selectively recovered from the V(V) free raffinate by adding ammonium oxalate at 60 °C. The purity of different products such as ammonium vanadate, nickel oxalate and nickel oxide obtained during the processes were analyzed and confirmed from the XRD studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen


    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry (United States)

    Deng, Xiao-Dong; Li, Jian-Wei; Luo, Tao; Wang, Hong-Qiang


    Andradite-rich garnet is a common U-bearing mineral in a variety of alkalic igneous rocks and skarn deposits, but has been largely neglected as a U-Pb chronometer. In situ laser ablation-inductively coupled plasma mass spectrometry U-Pb dates of andradite-rich garnet from a syenite pluton and two iron skarn deposits in the North China craton demonstrate the suitability and reliability of the mineral in accurately dating magmatic and hydrothermal processes. Two hydrothermal garnets from the iron skarn deposits have homogenous cores and zoned rims (Ad86Gr11 to Ad98Gr1) with 22-118 ppm U, whereas one magmatic garnet from the syenite is texturally and compositionally homogenous (Ad70Gr22 to Ad77Gr14) and has 0.1-20 ppm U. All three garnets have flat time-resolved signals obtained from depth profile analyses for U, indicating structurally bound U. Uranium is correlated with REE in both magmatic and hydrothermal garnets, indicating that the incorporation of U into the garnet is largely controlled by substitution mechanisms. Two hydrothermal garnets yielded U-Pb dates of 129 ± 2 (2 σ; MSWD = 0.7) and 130 ± 1 Ma (2 σ; MSWD = 0.5), indistinguishable from zircon U-Pb dates of 131 ± 1 and 129 ± 1 Ma for their respective ore-related intrusions. The magmatic garnet has a U-Pb age of 389 ± 3 Ma (2 σ; MSWD = 0.6), consistent with a U-Pb zircon date of 388 ± 2 Ma for the syenite. The consistency between the garnet and zircon U-Pb dates confirms the reliability and accuracy of garnet U-Pb dating. Given the occurrence of andradite-rich garnet in alkaline and ultramafic magmatic rocks and hydrothermal ore deposits, our results highlight the potential utilization of garnet as a powerful U-Pb geochronometer for dating magmatism and skarn-related mineralization.

  3. Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. (United States)

    Guo, Hanzheng; Guo, Jing; Baker, Amanda; Randall, Clive A


    Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.

  4. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira


    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  5. Preparation of titanium phosphates with additives in hydrothermal process and their powder properties for cosmetics. (United States)

    Onoda, Hiroaki; Yamaguchi, Taisuke


    In this study, titanium phosphates were prepared from titanium chloride and phosphoric acid, sodium pyrophosphate and sodium triphosphate solutions with water retention compounds in hydrothermal process as a novel white pigment for cosmetics. Their chemical composition, powder properties, photo catalytic activity, water retention and smoothness were studied. The addition of glycerin in the preparation from sodium pyrophosphate has the useful method to obtain homogenized spherical particles of titanium phosphate pigments for the cosmetics. These titanium phosphates had less photo catalytic activity to protect the sebum on the skin. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Study of the effect of hydrothermal process conditions on pasta quality


    Maache-Rezzoug, Zoulikha; Allaf, Karim


    International audience; The effect of hydrothermal treatment on the pasting, hydration properties and colour quality of commercial fresh pasta were studied following an Instantaneous Controlled Pressure Drop treatment. This hydrothermal procedure involves a physical modification at high temperature (

  7. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. (United States)

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S


    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGa

  8. Chemical properties and hydrothermal processes on the first two directly sampled deep-sea eruptions (Invited) (United States)

    Butterfield, D. A.; Resing, J. A.; Roe, K. K.; Christensen, M.; Embley, R. W.; Lupton, J. E.; Chadwick, W.


    To understand the effects of deep-sea volcanic eruptions on oceanic chemistry, on the ecology of hydrothermal vent communities, on microbial communities in the sub-seafloor biosphere, and on the alteration of oceanic lithosphere requires direct observation and sampling of active eruption sites. Known mid-ocean ridge eruptions have so far been too brief to observe and sample, but a nearly continuous eruption at NW Rota-1 submarine volcano in the Mariana arc (2004-2009) and a potentially long-term eruption at West Mata volcano in the NE Lau Basin (detected Nov. 2008) have provided unprecedented access to magma degassing and rapid water-rock reaction processes that may typify active submarine arc volcanism. How closely this resembles the hydrothermal processes associated with mid-ocean ridge volcanism remains to be seen. NW Rota-1 has a significantly higher output of a free gas phase, but based on initial observations of fluid chemistry and venting types, NW Rota-1 and W Mata have much in common. Active hydrothermal venting was found within a depth horizon encompassing the top 100 meters of the summit peak on both volcanoes (520 m at Rota; 1200 m at Mata). The dominant particulate and chemical plumes originate at active volcanic vents. The hydrothermal chemistry of these volcanic vents is dominated by the condensation of magmatic sulfur dioxide gas, its dissolution into seawater, and subsequent acid attack on volcanic rock. Disproportionation of SO2 to elemental sulfur, H2S, and sulfuric acid occurs. Percolation of hot, acidic fluids through volcaniclastic deposits results in rapid uptake of iron, aluminum, and other metals into solution. Chemical compositions and models indicate that continued water/rock reaction, cooling, and sub-surface mixing with seawater result in rising pH and precipitation of sulfur, alunite, anhydrite, iron sulfides, and iron oxyhydroxides (in order of increasing pH and decreasing temperature). Venting fluids sampled directly out of the

  9. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study. (United States)

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv


    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.


    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  11. Hydrothermal processing of duckweed: effect of reaction conditions on product distribution and composition. (United States)

    Duan, Peigao; Chang, Zhoufan; Xu, Yuping; Bai, Xiujun; Wang, Feng; Zhang, Lei


    Influences of operating conditions such as temperature (270-380 °C), time (10-120 min), reactor loading (0.5-5.5 g), and K2CO3 loading (0-50 wt.%) on the product (e.g. crude bio-oil, water soluble, gas and solid residue) distribution from the hydrothermal processing of duckweed were determined. Of the four variables, temperature and K2CO3 loading were always the most influential factors to the relative amount of each component. The presence of K2CO3 is unfavorable for the production of bio-oil and gas. Hydrothermal processing duckweed produces a bio-oil that is enriched in carbon and hydrogen and has reduced levels of O compared with the original duckweed feedstock. The higher heating values of the bio-oil were estimated within the range of 32-36 MJ/kg. Major bio-oil constituents include ketones and their alkylated derivatives, alcohols, heterocyclic nitrogen-containing compounds, saturated fatty acids and hydrocarbons. The gaseous products were mainly CO2 and H2, with lesser amounts of CH4 and CO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Phases' characteristics of poultry litter hydrothermal carbonization under a range of process parameters. (United States)

    Mau, Vivian; Quance, Julie; Posmanik, Roy; Gross, Amit


    The aim of this work was to study the hydrothermal carbonization of poultry litter under a range of process parameters. Experiments were conducted to investigate the effect of HTC of poultry litter under a range of operational parameters (temperature, reaction time, and solids concentration) on the formation and characteristics of its phases. Results showed production of a hydrochar with caloric value of 24.4MJ/kg, similar to sub-bituminous coal. The gaseous phase consisted mainly of CO2. However, significant amounts of H2S dictate the need for (further) treatment. The process also produced an aqueous phase with chemical characteristics suggesting its possible use as a liquid fertilizer. Temperature had the most significant effect on processes and product formation. Solids concentration was not a significant factor once dilution effects were considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Study on the formation of heterogeneous structures in leached layers during the corrosion process of glass

    Directory of Open Access Journals (Sweden)

    Willemien Anaf


    Full Text Available Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO42. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Glass that corrodes under natural conditions often shows heterogeneities in the leached layer, such as a lamellar structure or inclusions of MnO2 or Ca3(PO42. The formation of these heterogeneities is still not well understood. By means of experiments under laboratory conditions, our aim was to artificially generate specific structures. Therefore, glass samples were immersed in metal-rich solutions. The experimental results were compared with theories describing glass corrosion from a molecular point of view.

  14. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju


    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  15. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.


    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  16. Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process

    Energy Technology Data Exchange (ETDEWEB)

    Straeuber, Heike; Kleinsteuber, Sabine [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy; UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Environmental Microbiology; Schroeder, Martina [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy


    Biogas production from lignocellulosic feedstock not competing with food production can contribute to a sustainable bioenergy system. The hydrolysis is the rate-limiting step in the anaerobic digestion of solid substrates such as straw. Hence, a detailed understanding of the metabolic processes during the steps of hydrolysis and acidogenesis is required to improve process control strategies. The fermentation products formed during the acidogenic fermentation of maize silage as a model substrate in a leach-bed process were determined by gas and liquid chromatography. The bacterial community dynamics was monitored by terminal restriction fragment length polymorphism analysis. The community profiles were correlated with the process data using multivariate statistics. The batch process comprised three metabolic phases characterized by different fermentation products. The bacterial community dynamics correlated with the production of the respective metabolites. In phase 1, lactic and acetic acid fermentations dominated. Accordingly, bacteria of the genera Lactobacillus and Acetobacter were detected. In phase 2, the metabolic pathways shifted to butyric acid fermentation, accompanied by the production of hydrogen and carbon dioxide and a dominance of the genus Clostridium. In phase 3, phylotypes affiliated with Ruminococcaceae and Lachnospiraceae prevailed, accompanied by the formation of caproic and acetic acids, and a high gas production rate. A clostridial butyric type of fermentation was predominant in the acidogenic fermentation of maize silage, whereas propionic-type fermentation was marginal. As the metabolite composition resulting from acidogenesis affects the subsequent methanogenic performance, process control should focus on hydrolysis/acidogenesis when solid substrates are digested. (orig.)

  17. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.


    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support

  18. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. (United States)

    Volpe, Maurizio; Goldfarb, Jillian L; Fiori, Luca


    Opuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.07-0.30) on chars produced via hydrothermal carbonization. Multivariate linear regression demonstrated that the three process parameters are critically important to hydrochar solid yield, while B/W drives energy yield. Heating value increased together with temperature and reaction time and was maximized at intermediate B/W (0.14-0.20). Microscopy shows evidence of secondary char formed at higher temperatures and B/W ratios. X-ray diffraction, thermogravimetric data, microscopy and inductively coupled plasma mass spectrometry suggest that calcium oxalate in the raw biomass remains in the hydrochar; at higher temperatures, the mineral decomposes into CO2 and may catalyze char/tar decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. (United States)

    Waite, J Hunter; Glein, Christopher R; Perryman, Rebecca S; Teolis, Ben D; Magee, Brian A; Miller, Greg; Grimes, Jacob; Perry, Mark E; Miller, Kelly E; Bouquet, Alexis; Lunine, Jonathan I; Brockwell, Tim; Bolton, Scott J


    Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO 2 in Enceladus' ocean. Copyright © 2017, American Association for the Advancement of Science.

  20. Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis

    Directory of Open Access Journals (Sweden)

    Michela Lucian


    Full Text Available In this paper, a hydrothermal carbonization (HTC process is designed and modeled on the basis of experimental data previously obtained for two representative organic waste materials: off-specification compost and grape marc. The process accounts for all the steps and equipment necessary to convert raw moist biomass into dry and pelletized hydrochar. By means of mass and thermal balances and based on common equations specific to the various equipment, thermal energy and power consumption were calculated at variable process conditions: HTC reactor temperature T: 180, 220, 250 °C; reaction time θ: 1, 3, 8 h. When operating the HTC plant with grape marc (65% moisture content at optimized process conditions (T = 220 °C; θ = 1 h; dry biomass to water ratio = 0.19, thermal energy and power consumption were equal to 1170 kWh and 160 kWh per ton of hydrochar produced, respectively. Correspondingly, plant efficiency was 78%. In addition, the techno-economical aspects of the HTC process were analyzed in detail, considering both investment and production costs. The production cost of pelletized hydrochar and its break-even point were determined to be 157 €/ton and 200 €/ton, respectively. Such values make the use of hydrochar as a CO2 neutral biofuel attractive.

  1. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, C.; Samori, C.; van der Spek, J.J.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik


    The hydrothermal treatment (HTT) technology is evaluated for its potential as a process to convert algae and algal debris into a liquid fuel, within a sustainable algae biorefinery concept in which, next to fuels (gaseous and liquid), high value products are coproduced, nutrients and water are

  2. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)


    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  3. Demonstration Plant Equipment Design and Scale-Up from Pilot Plant of a Leaching and Solvent Extraction Process

    Directory of Open Access Journals (Sweden)

    Fátima Arroyo


    Full Text Available Germanium recovery from coal fly ash by hydrometallurgical procedures was studied at the pilot scale (5 kg of fly ash/h. Results were used to design the equipment of a demonstration-sized plant (200 kg of fly ash/h. The process is based on hydrometallurgical operations: firstly a germanium extraction from fly ash by leaching and a consequent Ge separation from the other elements present in the solution by solvent extraction procedures. Based on the experimental results, mass balances and McCabe-Thiele diagrams were applied to determine the number of steps of the solvent extraction stage. Different arrangements have been studied and a countercurrent process with three steps in extraction and six steps in elution was defined. A residence time of 5 min was fixed in both the extraction and elution stages. Volumetric ratios in extraction and stripping were: aqueous phase/organic phase = 5 and organic phase/stripping phase = 5, so a concentration factor of 25 is achieved. Mixers and decanters were completely defined. The maximum extracted and eluted germanium was estimated and a global efficiency of 94% was achieved. The cost-effectiveness of the equipment was estimated using the Lang factors.

  4. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewska-Koltuniewicz, Grażyna, E-mail: [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Herdzik-Koniecko, Irena [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Cojocaru, Corneliu [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Chajduk, Ewelina [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)


    Highlights: • The experimental design for optimization of leaching process of uranium from low-grade ores was applied. • Multi-objective optimization method based on desirability approach was employed. • The recovery of associated metals like vanadium, molybdenum and lanthanides was considered. • The effects of factors were identified by 3-D surface plots. • The optimum condition for valuable metals: P = 5 bar, T = 120 °C and t = 90 min has been determined. - Abstract: The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P = 5 bar, T = 120 °C and t = 90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th)

  5. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Qu, Wenjie; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil


    A hydrometallurgical method involving natural organic acid leaching has been developed for recovery of lithium and cobalt from the cathode active materials in spent lithium-ion batteries. Succinic acid is employed as leaching agent and H2O2 as reductant. The cobalt and lithium contents from the succinic acid-based treatment of spent batteries are determined by inductively coupled plasma-optical emission spectroscopy to calculate the leaching efficiency. The spent LiCoO2 samples after calcination and the residues after leaching are characterized by X-ray diffraction and scanning electron microscopy. The results show that nearly 100% of cobalt and more than 96% of lithium are leached under optimal conditions: succinic acid concentration of 1.5 mol L-1, H2O2 content of 4 vol.%, solid-to-liquid ratio of 15 g L-1, temperature of 70 °C, and reaction time of 40 min. Results are also given for fitting of the experimental data to acid leaching kinetic models.

  6. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.


    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  7. Recovery of palladium, cesium, and selenium from heavy metal alkali borosilicate glass by combination of heat treatment and leaching processes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail:; Nishimura, Fumihiro; Yonezawa, Susumu


    Highlights: • A separation technique of both noble and less noble metal from glass is studied. • Via reductive heat treatment, 80% of palladium is extracted in liquid bismuth. • Sodium–potassium-rich materials with cesium and selenium are phase separated. • From the materials, over 80% of cesium and selenium are extracted in water. - Abstract: Reductive heat-treatment and leaching process were applied to a simulated lead or bismuth soda-potash-borosilicate glass with palladium, cesium, and selenium to separate these elements. In the reductive heat treatment, palladium is extracted in liquid heavy metal phase generated by the reduction of the heavy metal oxides, whereas cesium and selenium are concentrated in phase separated Na–K-rich materials on the glass surface. From the materials, cesium and selenium can be extracted in water, and the selenium extraction was higher in the treatment of the bismuth containing glass. The chemical forms of palladium in the glass affected the extraction efficiencies of cesium and selenium. Among the examined conditions, in the bismuth glass treatment, the cesium and selenium extraction efficiencies in water were over 80%, and that of palladium in liquid bismuth was over 80%.

  8. Fabrication of carbon/SiO2 composites from the hydrothermal carbonization process of polysaccharide and their adsorption performance. (United States)

    Li, Yinhui; Li, Kunyu; Su, Min; Ren, Yanmei; Li, Ying; Chen, Jianxin; Li, Liang


    In this work, carbon/SiO2 composites, using amylose and tetraethyl orthosilicate (TEOS) as raw materials, were successfully prepared by a facial hydrothermal carbonization process. The carbon/SiO2 composites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), transmission electron microscope (TEM), N2 adsorption and Thermogravimetric (TG) analysis. The composites, which were made up of amorphous SiO2 and amorphous carbon, were found to have hierarchical porous structures. The mass ratios of amylose and SiO2 and the hydrothermal carbonization time had significant effects on the morphology of the composites, which had three shapes including monodispersed spheres, porous pieces and the nano-fibers combined with nano-spheres structures. The adsorption performance of the composites was studied using Pb(2+) as simulated contaminants from water. When the mass ratio of amylose and SiO2 was 9/1, the hydrothermal time was 30h and the hydrothermal temperature was 180°C, the adsorption capacity of the composites achieved to 52mg/g. Experimental data show that adsorption kinetics of the carbon/SiO2 composites can be fitted well by the Elovich model, while the isothermal data can be perfectly described by the Langmuir adsorption model and Freundlich adsorption model. The maximum adsorption capacity of the carbon/SiO2 composites is 56.18mgg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Leaching Behavior of Circulating Fluidised Bed MSWI Air Pollution Control Residue in Washing Process

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen


    Full Text Available In this study, air pollution control (APC residue is conducted with water washing process to reduce its chloride content. A novel electrical conductivily (EC measurement method is proposed to monitor the dynamic change of chloride concentrations in leachate as well as the chloride content of the residue. The method equally applies to various washing processes with different washing time, liquid/solid ratio and washing frequency. The results show that washing effectively extracts chloride salts from APC residues, including those from circulating fluidized bed (CFB municipal solid waste incineration (MSWI. The most appropriate liquid/solid ratio and washing time in the first washing are found to be around 4 L water per kg of APC residue and 30 min, respectively, and washing twice is required to obtain maximum dissolution. The pH value is the major controlling factor of the heavy metals speciation in leachate, while chloride concentration also affects the speciation of Cd. Water washing causes no perceptible transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs from the APC residue to leachate. The chloride concentration is strongly related with electrical conductivity (EC, as well as with the concentrations of calcium, sodium and potassium of washing water. Their regression analyses specify that soluble chloride salts and EC could act as an indirect indicator to monitor the change of chloride concentration and remaining chloride content, thus, contributing to the selection of the optimal washing conditions.

  10. The effect of feed rate and recycle rate variable on leaching process of Na2Zro3 with HCl in continuous stirred tank reactor (CSTR) series (United States)

    Palupi, Bekti; Supranto, Sediawan, Wahyudi Budi; Setyadji, Moch.


    This time, the natural resources of zircon sand is processed into several zirconium products which is utilized for various industries, such as ceramics, glass industry, metal industry and nuclear industry. The process of zircon sand into zirconium products through several stages, one of them is leaching process of Na2ZrO3 with HCl. In this research, several variations of recycle-rate/feed-rate had been done to determine the effect on leaching process. The leaching was processed at temperature of 90°C, ratio of Na2ZrO3:HCl = 1g:30mL, and 142 rotary per minute of stirring speed for 30 minutes with variation of recycle-rate/feed-rate such as 0.478, 0.299, 0.218, 0.171 and 0.141. The diameter size of Na2ZrO3 powder that used are 0.088 to 0.149 mm. This process was carried out in Continuous Stirred Tank Reactor (CSTR) series with recycle. Based on this research, the greater of the recycle-rate/feed-rate variable, the obtained Zr recovery decreased. The correlation between recycle-rate/feed-rate and Zr recovery is shown by the equation y = -146.91x + 103.51, where y is the Zr recovery and x is the recycle-rate/feed-rate. The highest Zr recovery was 90.52% obtained at recycle-rate/feed-rate 0.141. The mathematical modeling involving the probability model P(r) = 2β2r2 exp(-βr2) can be applied to this leaching process with Sum of Squared Errors (SSE) values in the range of 6×10-7 - 7×10-6.

  11. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis (United States)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  12. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)


    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  13. Characterization of yellow rice and development of instant flours by hydrothermal process. (United States)

    Martínez-Bustos, F; Delgado, L L; Victorio, M G; Morales, S E


    Commercial brown and yellow milled rice submitted to inappropriate storage conditions were characterized and utilized to develop instant flours that were used in the preparation of atoles. The grains were classified as long-thin; the average size was 2.13 x 6.79 mm. The milling yields obtained in laboratory with paddy rice were 70% brown rice and 60% milled rice. Brown rice and yellow milled rice had similar amylose contents, 22.5 and 25.6% respectively. Gel consistency was soft with low gelatinization temperature (63-68 degrees C) for both samples. Field fungi, such as Helminthosporium oryzae, and storage fungi, such as Aspergillus spp, were present in paddy, yellow milled and commercial rice. The fungus Helminthosporium oryzae, Aspergillus spp, and Penicillum spp were not present in instant flours. Instant flours were prepared by soaking the grain in water, and then steaming, drying and milling it. The highest values for water absorption index were obtained from yellow milled instant rice flour. The color of yellow milled instant rice flour varied from white ("L") to pale yellow (lesser values of "b"). The lower viscosity of the instant flours indicates the breakdown of polymers and reveals that unintact starch granules were not present in instant flours. Protein and ash contents of brown and milled rice were unaffected by hydrothermal process, and the lipid content showed only little changes. Sensory analyses carried out on the atoles prepared with instant flours considered them acceptable, specially for products made from milled yellow rice.

  14. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing (United States)

    Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.


    Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.

  15. Hydrothermal processing of hydrogen titanate/anatase-titania nanotubes and their application as strong dye-adsorbents. (United States)

    Harsha, N; Ranya, K R; Babitha, K B; Shukla, S; Biju, S; Reddy, M L P; Warrier, K G K


    The nanotubes of pure hydrogen titanate and anatase-titania have been synthesized via hydrothermal treatment of as-received anatase-titania particles. The formation mechanism of anatase-titania nanotubes via hydrothermal has been discussed in detail in view of the finger-prints produced by characterizing the intermediate and end products using various microscopic and spectroscopic techniques such as scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, Brunauer, Emmett, and Teller specific surface-area measurement, Fourier transform infrared spectroscope, diffuse reflectance, photoluminescence, thermal gravimetric and differential thermal analyses. The obtained results strongly support the rollup mechanism, involving multiple nanosheets, for the formation of anatase-titania nanotubes with the formation of different intermediate hydrothermal products having various morphologies such as sodium titanate having aggregated rectangular block-like structures, hydrogen sodium titanate and pure hydrogen titanate having highly aggregated unresolved fine-structures containing nanotubes, and finally, the pure anatase-TiO2 nanotubes. It is demonstrated that, during the hydrothermal treatment, the nanotubes of pure hydrogen titanate are formed first coinciding with the stable solution-pH during washing, indicating the completion of ion-exchange process, and a drastic increase in the specific surface-area of the hydrothermal product. The anatase-titania nanotubes are then derived from the pure hydrogen titanate nanotubes via thermal treatment. The use of pure hydrogen titanate and anatase-titania nanotubes for an organic textile dye-removal, from an aqueous solution under the dark condition, via surface-adsorption mechanism has been demonstrated. It is shown that, the specific surface-area and the surface-charge govern the maximum dye-absorption capacity of the anatase-TiO2 nanotubes under the dark condition.

  16. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.


    Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.

  17. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. (United States)

    Parthiban, S Prakash; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara


    Double-step hydrothermal processing is a process where powder compacts of calcium phosphates are exposed to vapor of solvent solution, followed by being immersed in the solution. In the present study, we investigated the effects of ammonium carbonate on formation of calcium-deficient hydroxyapatite (CDHA) through double-step hydrothermal processing. The synthesized CDHA has high crystallinity when the solution has relatively low concentration of the ammonium carbonate ranging from 0.01 to 0.25 mol dm(-3). Carbonate content in the prepared samples were distinctly increased with increasing the concentration of ammonium carbonate to indicate formation of carbonate-containing calcium-deficient hydroxyapatite (CHAp) with low crystallinity. Morphology of the CHAp formed on the compacts varied progressively from rods and rosette-like shape to irregular shape with increase in the initial concentration of the ammonium carbonate in the solution. Application of ammonium carbonate in the double-step hydrothermal processing allows fabrication of irregular-shaped CDHA containing carbonate ions in both phosphate and hydroxide site, with low crystallinity, when the initial concentration of ammonium carbonate was 0.5 mol dm(-3) and more.

  18. Nanocoral architecture of TiO{sub 2} by hydrothermal process: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mali, Sawanta S.; Shinde, Pravin S. [Thin film materials laboratory, Department of Physics, Shivaji University, Kolhapur, 416 004 (India); Betty, C.A.; Bhosale, Popatrao N. [Chemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai (India); Lee, Won J. [Nanohybrid and Energy Materials Research Center, Korea Electrotechnology Research Institute (KERI), 641-120 (Korea, Republic of); Patil, Pramod S., E-mail: [Thin film materials laboratory, Department of Physics, Shivaji University, Kolhapur, 416 004 (India)


    TiO{sub 2} thin films with novel nanocoral-like morphology were successfully grown directly onto the glass and conducting fluorine doped tin oxide coated glass substrates via multi-step hydrothermal (MSH) process. Titanium chloroalkoxide [TiCl{sub 2} (OEt){sub 2} (HOEt){sub 2})] precursor was used in an aqueous saturated NaCl in presence of 1 mM HCl catalyst and HNO{sub 3} peptizer at 120 deg. C. Reaction time varied from 3 to 12 h. The morphological features and physical properties of TiO{sub 2} films were investigated by field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Fourier transform IR spectroscopy, Fourier transform Raman spectroscopy, room temperature photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The surface morphology revealed the formation of TiO{sub 2} corals having nanosized (30-40 nm) polyps. The photoelectrochemical properties of the TiO{sub 2} nanocoral electrodes were investigated in 0.1 M NaOH electrolyte under UV illumination. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via controlled thickness of TiO{sub 2} nanocorals and (ii) the substantial increase in short circuit photocurrent (J{sub sc}) due to the improved charge transport through TiO{sub 2} nanocorals prepared via MSH process. This approach would be quite useful for the fabrication of nanocoral architecture that finds key applications in photocatalysis, dye-sensitized solar cells and hybrid solar cells.

  19. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment. (United States)

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting


    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process. Graphical abstract ᅟ.

  20. The effect of stirring in the hydrothermal process to convert the mixed municipal solid waste into uniform solid fuel (United States)

    Prawisudha, P.; Mu'min, G. F.; Yoshikawa, K.; Pasek, A. D.


    An innovative waste treatment technology has been developed in Indonesia to treat the mixed municipal solid waste into a solid fuel by employing the hydrothermal process. A mixture of organic and plastic waste was treated in a 2.5 L reactor using saturated steam in the temperature range of 120 to 180 °C. Two modes of operation were employed to achieve two different goals, i.e. without stirring (NS mode) and with stirring (WS mode). It was observed that both modes resulted in increasing density of product up to twofold of the raw MSW. In NS mode, the processed mixed MSW was converted into two different products; however, in WS mode the bulky plastic was converted into small granules, producing a uniform product. The results suggest that by hydrothermal treatment, the organic fibers in the organic parts are trapped into the plastic, and the stirring breaks the bulky plastics, producing uniform granules suitable as solid fuel. Therefore, the stirring during the hydrothermal process can be a solution to treat the MSW as it is, without any separation, to produce a clean and renewable energy source.

  1. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A. (United States)

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.


    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  2. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.


    of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.

  3. Shape-controlled synthesis and properties of manganese sulfide microcrystals via a biomolecule-assisted hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jinghui; Yu Runnan; Zhu Jianyu; Yi Ran; Qiu Guanzhou [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu Xiaohe, E-mail: [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)


    An effective biomolecule-assisted synthetic route has been successfully developed to prepare {gamma}-manganese sulfide (MnS) microtubes under hydrothermal conditions. In the synthetic system, soluble hydrated manganese chloride was employed to supply Mn source and L-cysteine was used as precipitator and complexing reagent. Sea urchin-like {gamma}-MnS and octahedron-like {alpha}-MnS microcrystals could also be selectively obtained by adjusting the process parameters such as hydrothermal temperature and reaction time. The phase structures, morphologies and properties of the as-prepared products were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and photoluminescence spectra (PL). The photoluminescence studies exhibited the correlations between the morphology, size, and shape structure of MnS microcrystals and its optical properties. The formation mechanisms of manganese sulfide microcrystals were discussed based on the experimental results.

  4. Controllable Growth of Bi2MoO6 Nanoplates by Citric Acid Assisted Hydrothermal Process and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Wang Yi


    Full Text Available Bi2MoO6 nanoplates with different sizes have been controllably fabricated by citric acid (CA assisted hydrothermal process. The effects of CA on the morphology of Bi2MoO6 nanoplates have also been investigated. It is found that CA has a critical role in the crystallinity and size of Bi2MoO6 nanoplates. On the basis of XRD analysis and SEM observation of the products, the mechanism for CA assisted hydrothermal synthesis of the Bi2MoO6 nanoplates is discussed. The photocatalytic activity of as-prepared Bi2MoO6 was evaluated by the degradation of RhB dye in water, and the sample prepared when the amount of CA was 2.5mmol exhibited the highest photocatalytic activity.

  5. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)


    REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.

  6. Study of controlled leaching process of steel slag in Soxhlet extractor aiming employment in pavements; Estudo do processo de lixiviacao controlada da escoria de aciaria em extrator Soxhlet visando emprego em pavimentos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Kissyla Avila; Guimaraes, Antonio Carlos Rodrigues; Reis, Marcelo de Miranda; Santana, Claudeny Simone Alves, E-mail:, E-mail:, E-mail:, E-mail: [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)


    This work addresses the characterization of physical, chemical and mechanical properties of steel slag as an alternative aggregation before and after leaching testing controlled Soxhlet extractor. The material it was characterized before going through the natural leaching process and after controlled leaching in different periods of 24, 56, 96, 120 hours. The steel slag was subjected in the laboratory to simulate the precipitation in Soxhlet equipment to evaluate its physical, chemical and mechanical properties after each period described. The study of the process of leaching in steel slag searched to understand the influence of the washing process in a slag behavior in such a process. The physical characterization occurred through traditional testing of coarse aggregates, the chemical characterization through the testing of Scanning Electron Microscopy (SEM) completed by Dispersive Spectroscopy Energy (DSE) and X- ray diffraction and the mechanical characterization through testing of standardized expansion and adapted. The sample virgin, without receiving process of stabilization by controlled leaching, showed satisfactory results in the physics characterization when compared to conventional aggregates, the chemical characterization proved to be a steel slag with high contents of CaO, MgO and FeO, the mechanical characterization demonstrated that, although the degree of expansibility of the slag is low demonstrated that this should not be disregarded in the paving work. After controlled leaching the steel slag showed no significant loss of its physical properties. As the mechanical testing of expansion had decreased the potential of expansibility after leaching periods. It is concluded that the leaching process in a Soxhlet extractor is of importance in the study the properties of steel slag, once covering several days of leaching was reduced potential for expansion, limiting feature in the use of steel slag for paving. (author)

  7. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336. (United States)

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu


    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal


    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  9. Hydrothermally processed 1D hydroxyapatite: mechanism of formation and biocompatibility studies (United States)

    Stojanović, Zoran S.; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan


    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  10. Direct Acid Leaching of Vanadium from Stone Coal (United States)

    Zhang, Bo; Gao, Zhaoguo; Liu, Hongzhao; Wang, Wei; Cao, Yaohua


    This paper focused on optimizing the process conditions of direct acid leaching process to enhance the leaching efficiency of leaching vanadium from the stone coal. Orthogonal experiments and single factor experiments were conducted to investigate the effect of the influential factors of direct acid leaching on vanadium leaching ratio. The results showed that the vanadium leaching ratio reached the maximum value of 89.22 % under the optimal process conditions of CaF2 dosage 5 mass%, H2SO4 dosage 40 mass%, leaching temperature 95 °C and leaching time 10 h. Furthermore, the reaction mechanisms of the main influencing factors were analyzed. Finally, the two-stage counter-current leaching process was adopted to decrease the consumption of sulfuric acid and neutralizer, and the results indicated that the consumption of sulfuric acid decreased 12.50 % as well as neutralizer decreased 35.80 %.

  11. Large-scale fabrication of In2S3 porous films via one-step hydrothermal process. (United States)

    Chen, Fei; Deng, Dan; Lei, Yinlin


    Large-scale indium sulfide (In2S3) porous films were fabricated via a facile one-step and non-template hydrothermal process using L-cysteine as a capping agent. The impact of reaction conditions such as reaction time, temperatures, and capping agents on the synthesis of the In2S3 porous films were studied. The morphology, structure, and phase composition of In2S3 porous films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The formation process and the optical property of the In2S3 porous films were also evaluated.

  12. Hydrothermal oxidation of waste lipids, protein, and starch from New Zealand meat- and vegetable-processing plants. (United States)

    Richardson, Michael J; Johnston, James H; Northcote, Peter T


    Disposal of organic waste materials from the meat- and vegetable-processing industries historically has been undertaken by dumping, drying followed by combustion, or biological oxidation. As a result of higher intensity processing rates and increasingly stringent legislation, these are no longer economical. Hydrothermal oxidation, also referred to as "wet" oxidation, has been used to lower the chemical and biological oxygen demand of waste samples from the above two industries. The starch-based wastes were readily oxidized without a catalyst. For the lipid and protein-based wastes, the use of copper calcium silicate and nitrate catalysts provided a significant reduction in oxygen demand at 230 degrees C.


    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Pennebaker, F.; Fink, S.


    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  14. Excess nitrogen leaching and C/N decline in the Tillingbourne catchment, southern England: INCA process modelling for current and historic time series

    Directory of Open Access Journals (Sweden)

    P. G. Whitehead


    Full Text Available Measurements of nitrate deposition and streamwater chemistry in the Tillingbourne Catchment, in Southern England, made in 1979-1982 and 1999-2001 show a 216% increase in Nitrogen leaching despite a reduction in N inputs. Both the historical and current data sets have been modelled using the Integrated Nitrogen Model in Catchments (INCA. The process-based model is shown to reproduce the historical patterns of N release from the catchment. However, modelling the increased leaching of N during recent years required an increase of the mineralisation control parameter in the model, suggesting enhanced mineralisation rates. Comparing historic and current soils data for C/N ratios shows that there has been a reduction in C/N from 38 to 26% in the humus layer and a reduction from 33 to 26% in the mineral soil horizon. This significant fall in C/N is consistent with the increase in N saturation in the H and Ah horizons of the major catchment soil. Keywords: acid deposition, recovery, nitrogen, Carbon-Nitrogen ratios, Tillingbourne, Thames, catchment studies, nutrient leaching, modelling

  15. Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Raju [Department of Advanced Material Science and Engineering, Mokpo National University, Chonnam 534-729 (Korea, Republic of); Sohn, Seong Ho [Korea Institute of Industrial Technology, Incheon Technology Service Centre, 7-47, Songdo-dong, Incheon 406-840 (Korea, Republic of); Lee, Man Seung, E-mail: [Department of Advanced Material Science and Engineering, Mokpo National University, Chonnam 534-729 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer Separation of Mo and Co from HCl solution was investigated by solvent extraction. Black-Right-Pointing-Pointer The solution was synthetic leaching solution of spent HDS catalysts. Black-Right-Pointing-Pointer Extraction with TOPO led to complete separation of Mo. Black-Right-Pointing-Pointer Alamine 308 can separate Co from the Mo free raffinate. Black-Right-Pointing-Pointer Recovery percentage of both metals was higher than 99%. - Abstract: The separation and recovery of Mo and Co from the synthetic chloride leach liquors of petroleum refining catalyst has been investigated by employing TOPO and Alamine 308 as extractants. The synthetic leach liquor contained Mo 394 mg/L, Al 1782 mg/L, Co 119 mg/L in 3 M HCl. The separation of Mo from Co and Al was achieved with 0.05 M TOPO in Escaid 110 and complete stripping of Mo was attained with combination of 0.1 M NH{sub 4}OH and 0.05 M (NH{sub 4}){sub 2}CO{sub 3}. After separation of molybdenum, cobalt can be selectively extracted by Alamine 308 from Mo free raffinate after adjusting the concentration of chloride ion to 5 M by adding AlCl{sub 3}. The back-extraction of cobalt was obtained easily from loaded Alamine 308 with acidified water (pH = 1.0). McCabe-Thiele diagrams were constructed from the extraction and stripping experiments of each element (Mo and Co). From the batch simulation of the counter-current extraction and stripping experiments, it was confirmed that Mo and Co recovery of 99.4% and 99.1% respectively was obtained from the synthetic leach liquor of the chloride solutions. Finally a hydrometallurgical process flow sheet was developed.

  16. Mineralization and leaching process in the Jian copper deposit, northeastern Fars province: Application of petrography and stable isotopes

    Directory of Open Access Journals (Sweden)

    Farid Moore


    Full Text Available Introduction One of the first principles in the formation of a reserve is mineralogical, construction and mineral textures studies and investigation of paragenetic relations in the ore minerals. In addition, to petrographic studies, isotopic investigates have wide applications in economic geology. In general, copper isotope variability in primary (high temperature mineralization forms a tight cluster, in contrast to secondary mineralization, which has a much larger isotope range. A distinct pattern of heavier copper isotope signatures is evident in supergene samples, and a lighter signature characterizes the leached cap and oxidation-zone minerals. This relationship has been used to understand oxidation–reduction processes (Hoefs, 2009. Also for a better understanding of the origin of the Jian Cu deposit, this research focuses on the origin and composition of the fluid and elucidation of its evolution during the mineralization process. In order to achieve this end, field observations, vein petrography, microthermometry of fluid inclusions and stable isotope analyses of veins and minerals were investigated. The present study also compares high and low temperature sulfide samples in an attempt to document and explain diagnostic δ65Cu ranges in minerals from the Jian deposit. Materials and methods The samples were taken from different depths to measure Cu isotope variations within each reservoir. Mineralogical composition was determined using X-ray diffractometry. In addition, chromatographic separation was carried out on all samples (except for native Cu samples in a clean lab and was conducted as outlined in Mathur et al. (Mathur et al., 2009. These samples were measured into a Multicollector Inductively-Coupled-Plasma Mass Spectrometer (MC-ICPMS, the Micro mass Isoprobe at the University of Arizona in low resolution mode using a microconcentric nebulizer to increase sensitivity for the samples with lower concentrations of copper. Preparation

  17. Sustainable Management of Calcareous Saline-Sodic Soil in Arid Environments: The Leaching Process in the Jordan Valley

    Directory of Open Access Journals (Sweden)

    Mufeed Batarseh


    Full Text Available A leaching experiment of calcareous saline-sodic soil was conducted in Jordan Valley and aimed to reduce the soil salinity ≤ 4.0 dS m−1. The quantification of salt removal from the effective root zone was done using three treatment scenarios. Treatment A contained soil amended with gypsum leaching with fresh water (EC = 1.1 dS m−1. Treatments B and C contained nonamended soil, but B was leached with fresh water only while treatment C’s soil was washed with saline agricultural drainage water (EC = 8 dS m−1 at the start of the experiment and continued with fresh water to reach the desired soil salinity. All treatments were able to reduce the soil salinity to the desired level at the end of the experiment; however, there were clear differences in the salt removal efficiencies among the treatments which were attributed to the presence of direct source of calcium ion. The soil amended with gypsum caused a substantial decline in soil salinity and drainage water’s electrical conductivity and drained the water twice as fast as the nonamended soil. It was found that utilizing agricultural drainage water and gypsum as a soil amendment for calcareous saline-sodic soil reclamation can beneficially contribute to sustainable agricultural management in the Jordan Valley.

  18. Quantitative geochemical modelling using leaching tests: application for coal ashes produced by two South African thermal processes. (United States)

    Hareeparsad, Shameer; Tiruta-Barna, Ligia; Brouckaert, Chris J; Buckley, Chris A


    The present work focuses on the reactivity of coal fly ash in aqueous solutions studied through geochemical modelling. The studied coal fly ashes originate from South African industrial sites. The adopted methodology is based on mineralogical analysis, laboratory leaching tests and geochemical modelling. A quantitative modelling approach is developed here in order to determine the quantities of different solid phases composing the coal fly ash. It employs a geochemical code (PHREEQC) and a numerical optimisation tool developed under MATLAB, by the intermediate of a coupling program. The experimental conditions are those of the laboratory leaching test, i.e. liquid/solid ratio of 10 L/kg and 48 h contact time. The simulation results compared with the experimental data demonstrate the feasibility of such approach, which is the scope of the present work. The perspective of the quantitative geochemical modelling is the waste reactivity prediction in different leaching conditions and time frames. This work is part of a largest research project initiated by Sasol and Eskom companies, the largest South African coal consumers, aiming to address the issue of waste management of coal combustion residues and the environmental impact assessment of coal ash disposal on land. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems (United States)

    Gysi, A. P.


    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH peralkaline granitic systems is the formation of a fluid-buffered subsystem providing the acids and ligands required for REE and Zr mobilization.

  20. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes (United States)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie


    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH district). The complex textures that are commonly encountered in these systems are the result of hydrothermal fluids interacting with their host-rocks in a heterogeneous and dynamic physical and chemical environment.

  1. Biomarker analysis is used in reading soil archives, but do biomarkers survive processes as leaching and digestion? (United States)

    vanmourik, Jan; Jansen, Boris; Westerveld, Joke


    In previous studies (1,2) we showed that biomarker analysis, i.e. the use of preserved molecular fingerprints indicative of e.g. past vegetation cover or soil organic matter input, is a useful additional technique to read the soils archives in combination with palynology and absolute dating techniques. In these studies we compared biomarker spectra with fossil pollen spectra, using the premise that biomarkers are always released from onsite decomposing plant species and pollen can originate from onsite as well as offsite species. However, compared with pollen analysis, biomarker analysis is a juvenile technique and before it can grow into an established method, some fundamental questions must be answered. In the study of palaeo-Podzols (1) we used firstly pollen spectra to indicate the broad suite of plant species involved in the dynamics of drift sand landscapes. Secondly, we used biomarker spectra to separate onsite from offsite plant species, in order to select the species responsible for landscape stabilization and soil organic carbon sequestration. In this study we interpreted pollen and biomarker spectra from (buried) humic horizons, but we did not explicitly address the sensitivity of biomarkers for possible selective corrosion by soil processes as leaching and transport. Therefore, we analyzed (pollen as well as biomarkers) of samples from the Ah and Bh horizon of (buried) Podzols to investigate the sensitivity of biomarkers for soil processes as podzolation. In the study of plaggic Anthrosols (2) we used biomarkers to indicate stable fillings used to produce plaggic manure. Pollen of Calluna was observed in all the spectra of the plaggic horizon, biomarkers of Calluna only in the youngest spectrum. Consequently, we concluded that only in the last phase of the development of the plaggic horizon the farmers applied sods of the Calluna heath. However, sheep grazing occurred at least since the early Middle Ages and that means that sheep droppings were always

  2. Metal extraction from ores by heap leaching (United States)

    Bartlett, Robert W.


    Heap leaching low-grade ores has become a major contributor to the extraction of economically important metals, notably copper and gold. The state-of-the-art in heap leaching is reviewed with emphasis on process engineering. Rock leaching, including rock pore diffusion and mineral kinetics, solution flow, and retention in ore heaps during percolation leaching, and bio-oxidation of sulfidic ores are covered. Oxygen transport into heaps by gaseous diffusion, natural convection, and forced air ventilation is discussed. Strategies for optimizing heap leaching include ore crushing, ore agglomeration, low-cost air ventilation of sulfide ore heaps undergoing bio-oxidation using fans, and the use of aggregate metal extraction rate constants in making metallurgical business decisions about heap leaching.

  3. Conceptual Biorefinery Design and Research Targeted for 2022: Hydrothermal Liquefacation Processing of Wet Waste to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seiple, Timothy E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The Department of Energy Bioenergy Technologies Office (BETO) invests in research and development of new pathways for commercially viable conversion of biomass into drop-in ready transportation fuels, fuel blendstocks and products. The primary emphasis has been on terrestrial and algae feedstocks, but more recently BETO has begun to explore the potential of wet wastes for biofuel production, with focus on wastewater residuals, manure, food waste, and fats, oils and grease. A recent resource analysis estimates that 77 million dry tons per year of these wastes are generated annually, 65% of which are underutilized for any beneficial purpose. Approximately 14 million dry tons of the total resource is wastewater residuals (sludge and biosolids) generated at the nation’s wastewater treatment plants (WWTPs). Conversion of this resource into transportation fuels could significantly contribute to the creation of a new domestic bioenergy and bioproduct industry, while providing an economically and environmentally sustainable alternative for current waste disposal practices. Hydrothermal liquefaction (HTL) is a process that uses hot, pressurized water in the condensed phase to convert biomass to a thermally stable oil product, also known as “biocrude”, which can then be thermo-catalytically upgraded to hydrocarbon fuel blendstocks. HTL is conceptually simple, has a high carbon efficiency, and can be applied to a wide range of wet feedstocks at similar processing conditions. The purpose of this report is to document the conceptual design, economics and supporting data for a sludge-to-fuel pathway via HTL and biocrude upgrading. The configuration includes a HTL plant that is co-located with a WWTP and a larger scale biocrude upgrading plant for production of hydrocarbon fuel blendstocks. Experimental data from bench scale testing of a 1:1 mixture of primary:secondary sludges are used to establish the economic and technical assumptions for the analysis. The design

  4. Lab scale study on electrocoagulation defluoridation process optimization along with aluminium leaching in the process and comparison with full scale plant operation. (United States)

    Gwala, Poonam; Andey, Subhash; Mhaisalkar, Vasant; Labhasetwar, Pawan; Pimpalkar, Sarika; Kshirsagar, Chetan


    An excess or lack of fluoride in drinking water is harmful to human health. Desirable and permissible standards of fluoride in drinking water are 1.0 and 1.5 mg/L, respectively, as per Indian drinking water quality standards i.e., BIS 10500, 1991. In this paper, the performance of an electro-coagulation defluoridation batch process with aluminium electrodes was investigated. Different operational conditions such as fluoride concentration in water, pH and current density were varied and performance of the process was examined. Influence of operational conditions on (i) electrode polarization phenomena, (ii) pH evolution during electrolysis and (iii) the amount of aluminium released (coagulant) was investigated. Removal by electrodes is primarily responsible for the high defluoridation efficiency and the adsorption by hydroxide aluminium floc provides secondary effect. Experimental data obtained at optimum conditions that favored simultaneous mixing and flotation confirmed that concentrations lower than 1 mg/L could be achieved when initial concentrations were between 2 and 20 mg/L. pH value was found to be an important parameter that affected fluoride removal significantly. The optimal initial pH range is between 6 and 7 at which effective defluoridation and removal efficiencies over 98% were achieved. Furthermore, experimental results prominently displayed that an increase in current density substantially reduces the treatment duration, but with increased residual aluminium level. The paper focuses on pilot scale defluoridation process optimization along with aluminium leaching and experimental results were compared with a full-scale plant having capacity of 600 liter per batch.

  5. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas


    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  6. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    , radon etc. to locate active venting site 4. Seabed sampling for rocks and minerals looking for indications of hydrothermal mineralization 5. TV and still Photographic surveys with real- time imaging on board 6. Submersible/ROVs for direct... thriving in this unique environments. However, the study of hydrothermal systems is still relatively young, and there are many fundamental questions that remain to be addressed in the forthcoming years. Suggested reading 1. Seafloor hydrothermal...

  7. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia (United States)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.


    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  8. Formation and Photocatalytic Activity of BaTiO3 Nanocubes via Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Xinrun Xiong


    Full Text Available We reported a facile hydrothermal approach to synthesize BaTiO3 nanocubes with controlled sizes for degradation of methylene blue (MB. The nanocubes with reaction time of 48 hours exhibited the highest photocatalytic efficiency, owing to their narrower size distribution and better crystallinity compared to those of 24 hours and, at the meantime, smaller particle size than those of 72 hours. This work also demonstrated the degradation of methylene orange (MO using BaTiO3 nanocubes synthesized for 48 hours. Compared with the removal of MB, BaTiO3 had lower photocatalytic activity on MO, mainly due to the poorer absorption behavior of MO on the surface of BaTiO3 nanocubes. The degradation efficiency for each photocatalytic reaction was calculated. The possible mechanism of the photocatalytic decomposition on MB has been addressed as well.

  9. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  10. Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing (United States)

    Kim, Sojin; Kang, Hyon Chol


    We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger's vectors of 1.45 nm.

  11. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes


    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  12. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization. (United States)

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación


    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-Resolution Studies of Oceanic Spreading Center Volcanic and Hydrothermal Features and Processes - New Insights from Ridge 2000 Program Experiments (United States)

    Fornari, D. J.


    During the past 60 years of research on mid-ocean ridges (MORs) we have exponentially increased our understandings one of the planet's most fundamental features and the myriad processes associated with the transfer of energy from the mantle to the hydrosphere that is focused along accretionary plate boundaries. The past decade's research, implemented by a broad community of scientists in numerous disciplines has yielded a watershed of information that has helped to make both temporal and spatial connections between processes that store and deliver magma to the crust and seafloor, and the consequent hydrothermal and biological phenomena that derive from that energy transfer. Ridge 2000 Program research at each of the three Integrated Study Sites (ISSs) - East Pacific Rise 8-10N, Juan de Fuca - Endeavour Segment, and Eastern Lau Spreading Center - provided an opportunity to coordinate field experiments, laboratory studies and modeling that has lead to new concepts of oceanic spreading center processes. In particular, the latest generation of near-bottom seafloor mapping and sampling systems and a new array of deep submergence vehicles, which include remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs), as well more traditional human occupied vehicles (HOVs) like Alvin, have yielded important new views of MOR seafloor. These systems have allowed us to resolve the sub-meter topography of specific volcanic and hydrothermal features and relate them to distributions of hydrothermal communities, chemical variations among hydrothermal chimneys and their fluid effluent, and to axial structures that are surface manifestations of tectonic processes. In situ chemical, biological and microbial studies carried out during the past decade have increasingly shown how tightly linked chemical and biological processes are within MOR hydrothermal communities. Previous hypotheses concerning frequency of magmatism and volcanic eruptions that have related

  14. Surficial Expressions of Deeper Processes- Ridge 2000 Spurs Understanding of Mantle-Hydrothermal Connections and the Role of Crustal Processes at Oceanic Spreading Centers (United States)

    Blackman, D. K.


    A decade ago the Ridge 2000 (R2K) program began implementing the Integrated Studies Site (ISS) strategy as a means to advance understanding of the linked magmatic/tectonic/hydrothermal systems that dictate the structure and ecosystems observed in young crust along the spreading axis. Through comparison amongst ISSs and other well-studied sites, where controlling factors such as spreading rate or tectonic/thermal setting differ, a number of new insights have been gained. I will review progress on 3 aspects, emphasizing R2K contributions but also noting a few other recent results: the pattern of magma supply, along and across axis; ridge segmentation and crust/mantle interplay; threshold behavior and limiting processes that are manifested in crustal properties. The results are derived from petrological/geochemical, seismic (imaging, seismicity, compliance), electromagnetic, modeling, and mapping investigations, so I will touch on each of these types of constraint. The breadth of the melt supply zone is an example where R2K results document that influx to at least the lower crust can extend out several km beyond the axial graben. Such knowledge addresses a fundamental problem in Earth Sciences- how magmatism and faulting interact and the potential for hydrothermal circulation to both influence, and be influenced by, their distributions. In addition to briefly summarizing work already completed, I will highlight efforts on the mantle portions of the Juan de Fuca and Lau ISS that are currently underway, using data/modeling from the final phase of R2K, to tease out further connections between mantle processes and crustal structure, within which the now-known-to-be-ubiquitous hydrothermal systems develop.

  15. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures


    mehdi amini


    In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers) and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solu...

  16. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Daniel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butcher, Mark G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Drennan, Corinne [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  17. Development of leaching tests for non-volatile organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Roskam, G.D.; Comans, R.N.J. [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands)


    The objective of our research was to investigate the processes that control the leaching of polycyclic aromatic hydrocarbons (PAHs), a group of organic contaminants with an aqueous solubility that varies over more than 5 orders of magnitude. The obtained insight in the leaching processes is used as the basis for an ''availability'' leaching test that is intended to indicate the maximum amount of the organic contaminants that can be leached from soil or waste materials. This presentation is largely based on work performed in the framework of two EU projects on the development of leaching tests for organic contaminants, and on groundwater risk assessment at contaminated sites. (orig.)

  18. Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes (United States)

    Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.


    In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two active vent fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker vents. Distinct microbial mats were abundantly present and located in close vicinity to the hydrothermal vent sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community activities, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered hydrothermal vent communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ≥ 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group actively expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an

  19. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. (United States)

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B


    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  20. Recovery of uranium from low concentration leach liquor of acid in-situ leaching (United States)

    Wen, Zhenqian; Niu, Yuqing


    For problems of environment protection and cost in uranium recycle, the process flows of ion exchange and Eluex, which recovered uranium from low concentration leach liquor of acid in-situ leaching, were studied. Although the flow sheet of ion exchange process was simple, the Eluex process had an advantage over it due to large quantity of effluent and high processing cost in ion exchange process by comparative studies.

  1. The use of a sequential leaching procedure for heavy metal fractionation in green liquor dregs from a causticizing process at a pulp mill. (United States)

    Nurmesniemi, Hannu; Pöykiö, Risto; Perämäki, Paavo; Kuokkanen, Toivo


    A five-stage sequential leaching procedure was used to fractionate heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Ni, Co, As, V, Ba and Ti) in green liquor dregs into the following fractions: (1) water-soluble fraction (H2O), (2) exchangeable fraction (CH3COOH), (3) easily reduced fraction (HONH3Cl), (4) oxidizable fraction (H2O2 + CH3COONH4), and (5) residual fraction (HF + HNO3 + HCl). The green liquor dregs were derived from a causticizing process at a pulp mill at Kemi, Northern Finland. According to the leaching studies, the leachability of heavy metals in the water-soluble fraction varied between 0.5 and 2 mg kg(-1) expressed on a dry weight (d.w.) basis, indicating relatively low bioavailability of the metals. However, the concentration of Mn (2065 mg kg(-1); d.w.) showed a strong and of Zn (17.6 mg kg(-1); d.w.), Ni (39.7 mg kg(-1); d.w.) and Ba (32.0 mg kg(-1); d.w.) slightly tendency to be extracted in the exchangeable fraction. In addition, Zn, Mn, Ni, Co, V and Ba showed clear leachability in the easily reduced fraction, as well as Cd, Cu, Cr, Zn, Mn, As and Ba in the oxidizable fraction. For Cd, Cu, Cr, Zn, Mn, Ni, Co, Ba and Ti, the sum of leachable heavy metal concentrations in fractions 1-5 agreed relatively well with the "total" heavy metal concentrations. Recoveries of the sum of fractions 1-5 were 84-56% of those obtained by the US EPA method 3052 (i.e. concentrations obtained after microwave oven digestion with a mixture of HF and HNO3).

  2. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze


    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. (United States)

    Sabio, E; Álvarez-Murillo, A; Román, S; Ledesma, B


    In this work, the influence of the variables temperature, residence time, and biomass/water ratio on the hydrothermal carbonization (HTC) of tomato peel was investigated. The implementation of a Design of Experiments - Response Surface Methodology approach allowed to identify the importance of each variable, as well as their interactions, in both the reactivity (solid yield) and energy densification (increase in higher heating value). The HTC residence time and specially temperature had a major effect on the process, increasing the solid yield and promoting energy densification. Ratio had a minor effect although under certain temperature and time conditions, it was a decisive parameter. Solid yields in the range 27.6% and 87.7% with corresponding high heating values 23.6-34.6 MJ kg(-1) were obtained. From the statistical processing of the experimental data obtained pseudo-second order models were developed. It was proven that these approaches envisaged the hydrochar final characteristics successfully. From the elemental analysis and the FTIR spectra, it was possible to investigate the HTC pathway, which was defined as a combination of several processes; considering dehydration and decarboxylation reactions and especially lignin depolimerization reactions, which lead to the formation of monomeric radicals. Moreover, the surface morphology of selected hydrochars by Scanning Electron Microscopy (SEM) showed the original structure scaffold, with minor changes between hydrochars prepared under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy). (United States)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono


    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  5. Leaching of Uranium and Vanadium from Korean Domestic Ore (United States)

    Kim, Joon Soo; Chung, Kyeong Woo; Lee, Hoo In; Lee, Jin-Young; Kumar, J. Rajesh

    Countries like Korea having very limited uranium resources and founded deposits having low grade metal values. Uranium is the main source to generate the nuclear power as cheap and more quantity of the electricity will generate. For this reasons the upcoming researchers in developed/developing countries are establishing more research and development on extraction and separation technologies for uranium. The present scientific study focused on leaching process of Korean domestic ore. The following experiments are carryout for optimization of the leaching process. Acid influence on leaching process was tested and noted that 2.0 M sulfuric acid concentration is the optimized conditions for present study. The time influence on leaching process was observed and its optimized 2 h for complete leaching process. The temperature influence tested and optimized the 80°C for complete leaching process and pulp density is 50% (wt %).

  6. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, F; Watanabe, Y; Kishita, A; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579 (Japan); Kishida, H [Environmental Systems Headquarters, Environmental Research and Development Center Hitachi Zosen Corporation, Kyoto 625-8501 (Japan)], E-mail:


    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300 deg. C, 1 min for the first step, and 300 deg. C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  7. Co-extraction of soluble and insoluble sugars from energy sorghum based on a hydrothermal hydrolysis process. (United States)

    Yu, Qiang; Tan, Xuesong; Zhuang, Xinshu; Wang, Qiong; Wang, Wen; Qi, Wei; Zhou, Guixiong; Luo, Yu; Yuan, Zhenhong


    A process for co-extraction of soluble and insoluble sugars from energy sorghum (ES) was developed based on hydrothermal hydrolysis (HH). Two series of ES were investigated: one (N) with a high biomass yield displayed a higher recalcitrance to sugar release, whereas the second (T) series was characterized by high sugar extraction. The highest total xylose recoveries of 87.2% and 98.7% were obtained for N-11 and T-106 under hydrolysis conditions of 180°C for 50min and 180°C for 30min, respectively. Moreover, the T series displayed higher enzymatic digestibility (ED) than the N series. The high degree of branching (arabinose/xylose ratio) and acetyl groups in the hemicellulose chains of T-106 would be expected to accelerate sugar release during the HH process. In addition, negative correlations between ED and the lignin content, crystallinity index (CrI) and syringyl/guaiacyl (S/G) lignin ratio were observed. Furthermore, finding ways to overcome the thickness of the cell wall and heterogeneity of its chemical composition distribution would make cellulose more accessible to the enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer (United States)

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.


    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  9. Synthesis and Characterization of Flower-Like Bundles of ZnO Nanosheets by a Surfactant-Free Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Jijun Qiu


    Full Text Available Flower-like bundles of ZnO nanosheets have been prepared by using preheating hydrothermal process without any surfactants. The flower-like bundles consist of many thin and uniform hexagonal-structured ZnO nanosheets, with a thickness of 50 nm. The selected area electronic diffraction (SAED and high-resolution transmission electron microscope (HRTEM images indicate that the ZnO nanosheets are single crystal in nature. The growth mechanism of the flower-like bundles of ZnO nanosheets is discussed based on the morphology evolution with growth times and reaction conditions. It is believed that the formation of flower-like bundles of ZnO nanosheets is related to the shielding effect of OH− ions and the self-assembly process, which is dominated by a preheating time. Room temperature photoluminescence spectra results show that the annealing atmosphere strongly affects the visible emission band, which is sensitive to intrinsic and surface defects, especially oxygen interstitials, in flower-like bundles of ZnO nanosheets.

  10. Hydrothermal processes related to some Triassic and Jurassic submarine basaltic complexes in northeastern Hungary, the Dinarides and Hellenides

    National Research Council Canada - National Science Library

    Gabriella B Kiss; Ferenc Molnár; Ladislav A Palinkas


      Comparative studies on hydrothermal alteration of submarine peperitic basalt occurrences related to the Triassic early rifting of the Neotethys were carried out in various parts of the Dinarides and Hellenides...

  11. Identification of Cr-magnetite in Neoproterozoic serpentinites resulting of Cr-Spinel alteration in a past hydrothermal system: Aït Ahmane ultramafic unit (Bou Azzer ophiolite, Anti Atlas, Morocco) (United States)

    Hodel, Florent; Macouin, Mélina; Carlut, Julie; Triantafyllou, Antoine; Berger, Julien; Trindade, Ricardo; Ennih, Nasser; Rousse, Sonia


    If magnetite is a common serpentinization product, centimetric, massive and almost pure magnetite veins are rarely observed in serpentinites. Unique examples of these, in the Aït Ahmane ultramafic unit (Bou Azzer Neoproterozoic ophiolite, Anti-Atlas, Morocco), offer the opportunity to assess the hydrothermal processes that prevailed at the end of the Precambrian. Pseudomorphic lizardite/chrysotile texture of unaltered serpentinites suggests an oceanic-like first serpentinization stage, under static and low temperature conditions (T CrM/M ratio providing a quantification of the Cr-magnetite contribution to the magnetic susceptibility, relatively to the pure magnetite one. This CrM/M ratio increases drastically with the hydrothermal alteration of serpentinites and Cr-spinels, attesting of a change of the magnetic mineralogy. Combined with petrography, mineral and bulk chemistry, these magnetic data allow us to propose that a Cl-rich acidic hydrothermal event, involving temperatures below 350 °C, appears to have been responsible of an intense magnetite leaching in host serpentinite and an advanced Cr-spinel alteration in ferritchromite and Cr-magnetite. Iron provided by this leaching may have conducted to the unique magnetite veins formation in the Aït Ahmane ultramafic unit. Two different settings are proposed concerning the nature of the hydrothermal event: (1) a continental hydrothermal system as advanced for the Co-Ni-As ores in the Bou Azzer inliers or (2) an oceanic black smoker type hydrothermal vent field on the Neoproterozoic sea-floor.

  12. Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value. (United States)

    Ciccoritti, Roberto; Terracciano, Giovanna; Cammerata, Alessandro; Sgrulletta, Daniela; Del Frate, Viviana; Gazza, Laura; Nocente, Francesca


    This work describes a process for producing durum wheat flour fractions with high potential nutritional value using grain pre-milling hydrothermal treatment and ultra-fine grinding (micronization), coupled with air classification. The difference of bioactive value of the flour fractions in relation to dietary fibre and phenolic compounds was monitored on four durum wheat cultivars by analysing total arabinoxylans, water extractable arabinoxylans and 5- n-alkylresorcinols. The extractability of the analysed compounds was most significantly affected by hydrothermal treatment. On average, the hydrothermally treated kernels compared with the untreated ones presented a marked increase of water extractable arabinoxylans and alkylresorcinols (about 25 and 48%, respectively), whereas slightly lower total arabinoxylans content (about 9%) was detected. The air classification applied on micronized kernels produced two flour fractions, coarse and fine, with the last showing, irrespective of the hydrothermal treatment, an increment of alkylresorcinols (24 and 22% in untreated and treated samples) and of total arabinoxylans (13 and 20% in untreated and treated samples) in comparison with the coarse one. The fine fraction (particles ≤ 120 µm), resulting richer in bioactive compounds, provides an interesting raw material to enrich traditional semolina in which, due to the removal of the external layers, the losses of total arabinoxylans and of alkylresorcinols were more than 60 and 90% alkylresorcinols, respectively, if compared with whole wheat grain.

  13. Hydrothermal Biogeochemistry (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.


    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  14. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. (United States)

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B


    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics. (United States)

    Wang, Liping; Zhang, Lei; Li, Aimin


    Dewatering is very important for excess sludge treatment and disposal. Hydrothermal treatment coupled with mechanical expression is a novel technology, in which a conventional pressure dewatering is combined with hydrothermal effect to realize an improved liquid/solids separation with low energy consumption. In this study, the process was performed by way of that the excess sludge was hydrothermally treated first and then the mechanical expression was employed immediately at increased temperature in two separate cells respectively. The results demonstrated that the mechanical expression employed at increased temperature showed a significant advantage than that at room temperature, given a further reduction of 19-47% of the moisture content. The dewatering process at room temperature was mostly depended on the effect of mechanical expression. Hydrothermal process, more importantly than mechanical effect at increased temperatures, seemed to govern the extent to which the dewatering process occurred. The dewatering began to show a positive effect when the temperature was exceeded the threshold temperature (between 120 and 150 °C). The residence time of 30 min promoted a substantial conversion in the sludge surface properties. After dewatering at temperatures of 180-210 °C, the moisture content decreased from 52 to 20% and the corresponding total water removal as filtrate was between 81 and 93%. It was observed that the moisture content of filter cake correlated with surface charge (Rp = -0.93, p < 0.05) and relative hydrophobicity (Rp = -0.99, p < 0.05). The calculated energy balance suggested that no additional external energy input is needed to support the dewatering process for excess sludge. The dewatering process needs an obviously lower energy input compared to thermal drying and electro-dewatering to produce a higher solids content cake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sergio León-Ríos


    Full Text Available We have successfully synthesised one-dimensional single crystals of monoclinic phase titanium dioxide nanostructures (TiO2-B, prepared by a hydrothermal process. Morphological characterization was carried out by atomic force and scanning and transmission electron microscopy techniques. In order to study the crystalline structure, samples were calcined at 500°C in an air-filled chamber. X-ray diffraction results indicated that as-prepared samples presented diffraction patterns of hydrate hydrogen titanate and those calcined at 500°C exhibited the TiO2-B and anatase phases, confirmed by Raman spectroscopy. Scanning electron microscopy results showed that the one-dimensional nanostructures had high contrast and uniform widths for those synthesised and calcined, indicating the formation of a phase of monocrystals. Besides, a proof of the antibacterial effect was carried out of the monoclinic phase of TiO2-B on Escherichia coli pure cultures, where the viability of the bacterium decreases in presence of TiO2-B nanostructures plus UV illumination. Monocrystals did not change after photocatalytic tests, suggesting a possible application as long-term antibacterial protection.

  17. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  18. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid (United States)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl


    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  19. Thermal stability and field assisted sintering of cerium-doped YSZ ceramic nanoparticles obtained via a hydrothermal process

    Directory of Open Access Journals (Sweden)

    Dragut Dumitru V.


    Full Text Available Owing to its extraordinary range of properties, yttria-doped zirconia holds a unique place among the ceramic oxide systems. To improve the properties for some specific custom design applications, co-doping with other rare earth oxides such as ceria is needed. The aim of this paper is to identify the correlations between the phase composition evolution with increasing thermal treatment temperature in order to establish the thermal stability in connection with the ceria content and how does it influence the yttria-stabilised zirconia microstructure. The ZrO2–3Y2O3–nCeO2 (n = 3, 6 and 9 wt.% samples were obtained by a hydrothermal process and submitted to a thermal treatment up to 1600 °C. Intensive characterization was performed via X-ray powder diffraction and EDX analysis. It was found that up to 400 °C, a monophasic structure was formed. At higher temperatures tetragonal zirconia is formed as a major phase with the presence of secondary monoclinic and cubic phases, depending on the Ce content and thermal treatment temperature. Sintered compacts with densities up to 99.5% from the theoretical density were obtained starting from the 6%CeO2–3%Y2O3–ZrO2-nanostructured powders using a special field-assisted (FAST sintering process. With increasing CeO2 content to 9% only, tetragonal zirconia with 6–9 nm crystallite sizes is formed during the FAST sintering process.

  20. Low-Temperature Synthesis of Vertically Align ZnO Layer on ITO Glass: The Role of Seed Layer and Hydrothermal Process (United States)

    Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri


    ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.

  1. A mathematical model for isothermal heap and column leaching


    Lima L.R.P. de Andrade


    Leaching occurs in metals recovery, in contaminated soil washing, and in many natural processes, such as fertilizer dissolution and rock weathering. This paper presents a model developed to simulate the transient evolution of the dissolved chemical species in the heap and column isothermal leaching processes. In this model, the solid bed is numerically divided into plane layers; the recovery of the chemical species, the enrichment of the pregnant leach solution, and the residual concentration...

  2. Chemo-Mechano Coupling Processes Inducing Evolution of Rock Permeability under Hydrothermal and Stressed Conditions (Invited) (United States)

    Yasuhara, H.; Takahashi, M.; Kishida, K.; Nakashima, S.


    Coupled thermo-hydro-mechano-chemo (THMC) processes prevailing within fractured rocks are of significant importance in case of a long-term geo-sequestration of anthropogenic wastes of high level radioactive materials and carbon dioxide, and an effective recovery of energy from petroleum and geothermal reservoirs typically located in deep underground. The THMC processes should change the mechanical, hydraulic, and transport properties of the host rocks. Under even moderate pressure and temperature conditions, geochemical processes such as mineral dissolution should be active and may induce the change of those properties. Therefore, the effects should be examined in detail. In this work, a suite of long-term permeability experiments using granite, sandstone, and mudstone with or without a single fracture has been conducted under moderate confining pressures ranging 3 - 15 MPa and temperatures of 20 and 90 °C, and monitors the evolution in rock permeability and effluent chemistry throughout the experimental periods. Under net reduction or augmentation of pore/fracture volumes, the net permeability should alternatively increase or decrease with time, depending on the prevailing mechanical and geochemical processes. In granite samples, At 20 °C the observed fracture permeabilities monotonically reduce and reach quasi-steady state in two weeks, but after the temperature is increased to 90 °C those resume decreasing throughout the rest of experiments - the ultimate reductions are roughly two orders of magnitude within 40 days. In mudstone samples, similar results to those in granite samples are obtained (i.e., monotonic reduction and subsequent quasi-steady state). In contrast, in sandstone samples, a monotonic augmentation in permeability has been observed throughout the experiments. A chemo-mechanical model that accounts for temperature-dependent mineral dissolutions at contacting areas and free walls of pore spaces is applied to replicating the experimental

  3. Hydrothermal treatment of rough rice: effect of processing conditions on product attributes. (United States)

    Bello, Marcelo O; Loubes, María A; Aguerre, Roberto J; Tolaba, Marcela P


    A method involving hydration, tempering and heating steps is presented to process rough rice as alternative to traditional parboiling with pressure steam. The effects of temperature (66-84 °C), tempering time (60-420 min) and heating time (30-180 min) on gelatinization degree and milling yield were analyzed by response surface method (RSM). A maximum value of gelatinization degree (37.0 %) and milling yield of 67.7 % were reached with a process temperature of 84 °C using tempering and heating times of 178 and 104 min respectively. A slight reduction of crystallinity (14 %) and a significant improvement of nutritional value with increments of 150 and 60 % in riboflavin and calcium contents were obtained in comparison with control (untreated rice). Hardness and adhesiveness of processed rice were intermediate between those of control and completely gelatinized rice. The proposed method, with lower temperature requirements than traditional parboiling, is presented to obtain an alternative product, expanding consumer choices.

  4. Volcanic Centers in the East Africa Rift: Volcanic Processes with Seismic Stresses to Identify Potential Hydrothermal Vents (United States)

    Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.


    The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.

  5. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling (United States)


    saturated with high temperature hot water during the 30 minutes the waste travels through the hydrolyzer. The waste exits the hydrolyzer in small batches ...cost Processing system (hydrolyser, two shredders, grinder, convey- ers, drier , metal removal) 1.00 20-year life $3,000,000.00 $150,000.00 Fabric...hydro- lyser, two shredders, grinder, conveyers, drier , metal removal) 1.00 20-year life $3,000,000.00 $150,000.00 Fabric shelter 1.00 10-year life

  6. Investigation of Copper Ammonia Leaching from Smelter Slags: Characterization, Leaching and Kinetics (United States)

    Bidari, Ehsan; Aghazadeh, Valeh


    Although ammonia leaching of copper from slags has been reported generally as a part of copper slag utilization methods, but no detailed studies have been reported in the literature. In this research, we tried to investigate the effect of different parameters on ammonia leaching of copper from copper smelting slag by identifying different copper-bearing phases and following them during leaching time. Mineralogical characterization of the smelting slag (1.7 pct Cu) was done using X-ray fluorescence, X-ray diffraction, optical microscopy, diagnostic leaching tests, and scanning electron microscopy. The characterization studies indicated that main copper-bearing species are soluble copper oxides and chalcocite along with minor amount of covellite, bornite, blister copper particles, and chalcopyrite. It was also found that only approximately 0.2 pct Cu was present in the insoluble bulk silicate phases. These results suggest that approximately 88 pct of the total copper of slag could be extracted by ammonia sulfide leaching. Leaching tests were carried out and the effects of various parameters, namely pH, ammonia concentration, temperature, presence of oxygen, stirring speed, and pulp density were examined on copper leaching. The temperature and stirring speed had the most pronounced effect on the copper leaching, whereas ammonia affected the leaching yield at low concentrations of ammonia. It was found that 78 pct of Cu could be extracted within 4 hours and under optimum conditions: T = 343 K (70 °C), 2M ammonia, pH 10.5, stirring speed = 900 rpm, pulp density = 10 pct ( w s/ v). The kinetic data were analyzed with the shrinking core models, and it was found that the leaching process is controlled by both the interfacial transfer and diffusion across the product layer and the activation energy is calculated to be 49.4 kJ mol-1.

  7. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications (United States)

    Hemley, J.J.; Hunt, J.P.


    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  8. Recovery of algal oil from marine green macro-algae Enteromorpha intestinalis by acidic-hydrothermal process. (United States)

    Jeong, Gwi-Taek; Hong, Yong-Ki; Lee, Hyung-Ho; Kong, In-Soo; Kim, Joong Kyun; Park, Nam Gyu; Kim, Sung-Koo; Park, Don-Hee


    In this study, the recovery of algal oil from Enteromorpha intestinalis based on an acidic-hydrothermal reaction was investigated. Overall, the algal oil yield after the acidic-hydrothermal reaction was increased under the conditions of high reaction temperature, high catalyst concentration, and long reaction time within the tested ranges. Significantly, catalyst concentration, compared with reaction temperature and time, less affected algal oil recovery. The optimal acidic-hydrothermal reaction conditions for production of algal oil from E. intestinalis were as follows-200 °C reaction temperature, 2.92 % catalyst concentration, 54 min reaction time. Under these conditions, an 18.6 % algal oil yield was obtained. By increasing the combined severity factor, the algae oil recovery yield linearly increased.

  9. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste. (United States)

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina


    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones. (United States)

    Gajda, Dorota; Kiegiel, Katarzyna; Zakrzewska-Koltuniewicz, Grazyna; Chajduk, Ewelina; Bartosiewicz, Iwona; Wolkowicz, Stanislaw

    The recovery of uranium and other valuable metals from Polish Peribaltic sandstones were examined. The solid-liquid extraction is the first stage of the technology of uranium production and it is crucial for the next stages of processing. In the laboratory experiments uranium was leached with efficiencies 71-100 % by acidic lixiviants. Satisfactory results were obtained for the alkaline leaching process. Almost 100 % of uranium was leached with alkaline carbonate solution. In post leaching solutions only uranium and small amounts of vanadium were present.

  11. Studies on Leaching of Oxidized Copper Ore from South America (United States)

    Zhu, Deqing; Wu, Tengjiao; Guo, Zhenqi; Pan, Jian; Li, Ziyun

    A leaching study was conducted on South America oxidized copper ore assaying 3.10% Cu, and the process parameters were optimized, including leaching temperature, leaching time, acid consumption, liquid-solid ratio and stirring rate. The results show that copper leaching rate of 92.02% were achieved under the optimized conditions as follows: raw ore crushed to 100% passing 1mm, leaching by sulfuric acid at 70°C for 1.5h with a sulfuric acid consumption of 150kg/t, liquid-solid ratio of 2:1, stirring rate of 300r/min. The leaching solution is a good feed for the subsequent extraction-electrowinning processes due to its high copper concentration and low contents of impurities like calcium and iron ions.

  12. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes (United States)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.


    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  13. Hydrothermal conversion of biomass


    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  14. Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by a Hydrothermal Process

    NARCIS (Netherlands)

    Sun, Y.; Liu, H.; Wang, X.; Kong, X.; Zhang, H.


    Abstract: Strong visible emissions of Er3+ resulting from two-photon absorption and energy transfer from the host YVO4 were observed in nanocrystalline Er3+-doped YVO4, which was prepared by a hydrothermal method using a citrate-yttrium-vanadate complex as the precursor. The nanocrystals were

  15. Geothermal energy for copper dump leaching

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.


    This report evaluates the possibility of using geothermal energy to heat a sulfuric acid leaching solution for the purpose of faster and more efficient copper recovery from copper-containing minerals. Experimental studies reported in the literature have shown that this technique can be economically feasible for the extraction of copper from low-grade dump ores. Its main advantage appears to be the considerable reduction in long-term leaching periods; it could also be less expensive than other conventional processing operations if an economical geothermal resource were provided. However, this process has some pitfalls which might restrict the extent of geothermal energy use. Nevertheless, the process is still technologically sound, especially if groundwaters are used directly in the leaching operation.

  16. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)


    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  17. Hydrothermal synthesis of fine oxide powders

    Indian Academy of Sciences (India)

    The authors describe. hydrothermal decomposition,; hydrothermal metal oxidation,; hydrothermal reaction,; hydrothermal precipitation and hydrothermal hydrolysis,; hydrothermal electrochemical,; reactive electrode submerged arc,; hydrothermal microwave,; hydrothermal sonochemical,. etc and also ideal and real powders ...

  18. Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. (United States)

    Riggio, S; Torrijos, M; Debord, R; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R


    Spent animal bedding is a valuable resource for green energy production in rural areas. The properties of six types of spent bedding collected from deep-litter stables, housing either sheeps, goats, horses or cows, were compared and their anaerobic digestion in a batch Leach-Bed Reactor (LBR) was assessed. Spent horse bedding, when compared to all the other types, appeared to differ the most due to a greater amount of straw added to the litter and a more frequent litter change. Total solids content appeared to vary significantly from one bedding type to another, with consequent impact on the methane produced from the raw substrate. However, all the types of spent bedding had similar VS/TS (82.3-88.9)%, a C/N well-suited to anaerobic digestion (20-28, except that of the horse, 42) and their BMPs were in a narrow range (192-239NmLCH4/gVS). The anaerobic digestion in each LBR was stable and the pH always remained higher than 6.6 regardless of the type of bedding. In contrast to all the other substrates, spent goat bedding showed a stronger acidification resulting in a methane production lag phase. Finally, spent bedding of different origins reached, on average, (89±11)% of their BMP after 60days of operation. This means that this waste is well-suited for treatment in LBRs and that this is a promising process to recover energy from dry agricultural waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 331 Scientists


    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 331 drilled into the Iheya North hydrothermal system in the middle Okinawa Trough in order to investigate active subseafloor microbial ecosystems and their physical and chemical settings. We drilled five sites during Expedition 331 using special guide bases at three holes for reentry, casing, and capping, including installation of a steel mesh platformwith valve controls for postcruise sampling of fluids. At Site C0016, drilling at the base of the North Big Chimney (NBCmound yielded low recovery, but core included the first Kuroko-type black ore ever recovered from the modern subseafloor. The other four sites yielded interbedded hemipelagic and strongly pumiceous volcaniclastic sediment, along with volcanogenic breccias that are variably hydrothermally altered and mineralized. At most sites, analyses of interstitial water and headspace gas yielded complex patterns withdepth and lateral distance of only a few meters. Documented processes included formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, potential microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, and methanogenesis. Shipboard analyses have found evidence for microbial activity in sediments within the upper 10–30 m below seafloor (mbsf where temperatures were relativelylow, but little evidence in the deeper hydrothermally altered zones and hydrothermal fluid regime.

  20. Mapping Ground water Vulnerability to Pesticides Leaching with Process-based Metamodel of EuroPEARL: The Molignée catchment case, Belgium (United States)

    Bah, B. B.; Vanclooster, M.; Noël, S.; Buffet, D.; Oger, R.


    Diffuse pollution of water resources due to pesticide uses is a major environmental issue in the European Union, regulated by specific legislations: the Water Framework Directive (Directive 2000/60/EC) and the Thematic Strategy on the Sustainable Use of Pesticides. To support these EU policies, indicators of pesticide leaching, at the local scale (agricultural parcel level) and regional scale are required. This paper presents the use of a metamodel of the spatially distributed pesticide leaching model EuroPEARL [Tiktak et al., 2006] to assess pesticide leaching to Ground water in the Molignée Catchment (Belgian Condroz region). EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides in the soil-root system. The EuroPEARL metamodel is based on an analytical expression that describes the mass fraction of pesticide leached in terms of easy available and sensitive soil, climate, land use and pesticide properties. The input parameters of the metamodel are pesticides properties (degradation rate and organic matter-water partition coefficients), soil parameters (organic matter content, dry bulk density and volume fraction of water) and the volume flux of water (hydraulic parameter). These parameters are available in soil databases (Aardewerk and Réquasud) or are derived from pedotransfer functions. The digital soil map of Wallonia is used for the spatial representation, by using the fourteen (23 for the whole Wallonia) main soil types encountered in the catchment, as simulation units. Simulations were also carried out by taking into account four groups of pesticides with different properties (Focus, 2000). The quality of the results obtained will be assessed by comparing the spatial patterns of estimated pesticide leaching with data obtained from existing water monitoring stations.

  1. Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2 (United States)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.


    Volcanism and post-magmatism contribute significant annual methane (CH4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH4 (as well as carbon dioxide (CO2) and other gases), but the ultimate sources of this CH4 flux have not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4 sampled from ten high-temperature geothermal pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ13C and δ2H values of CH4 emitted from hot springs (26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ13CCH4 and δ13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH4, or with equilibration of CH4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ13CCH4 and δ13CCO2 ranged from 250-350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ2HH2O of the thermal springs and the measured δ2HCH4 values are consistent with equilibration between the source water and the CH4 at the formation temperatures. Though the ultimate origin of the CH4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C1/C2 + composition of the gases is more consistent with abiotic origins for most of the samples. Thus, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH4 flux from the Yellowstone National Park volcanic system.

  2. The submarine hydrothermal system of Panarea (Southern Italy: biogeochemical processes at the thermal fluids - sea bottom interface

    Directory of Open Access Journals (Sweden)

    T. Maugeri


    Full Text Available Among the submarine hydrothermal systems located offshore the volcanic archipelago of the Aeolian Islands (Southern Italy, the most active is located off the coasts of Panarea island. Thermal waters, gases and sulfur deposits coexist at the sea bottom where hydrothermal fluids are released from both shallow and deep vents. The chemical and isotopic composition of the fluid phase shows the presence of a significant magmatic component and the physico-chemical conditions of the geothermal reservoir allow the release of reduced chemical species that are microbially mediated towards the production of organic carbon as a form of biochemical energy. Microorganisms inhabiting this environment possess nutritional requirements and overall metabolic pathways ideally suited to such ecosystem that represents a clear example of the close connection between geosphere and biosphere. Microscopic examination of the white mat attached to rock surfaces showed the presence of Thiothrix-like filamentous bacteria. Moderately thermophilic heterotrophic isolates were identified as strains of the genus Bacillus. Although the hydrothermal system of Panarea has to be considered a “shallow” system, it shows many characteristics that make it similar to the “deep” oceanic systems, giving a unique opportunity for improving our knowledge on such an unexplored world by working at this easily accessible site.

  3. Synthesis of Fe-Ti-MCM-48 from silatrane precursor via sol-gel process and its hydrothermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Maneesuwan, Hussaya; Chaisuwan, Thanyalak; Wongkasemjit, Sujitra, E-mail:


    A series of bimetallic Fe–Ti-MCM-48 materials was successfully synthesized via sol–gel method using cetyltrimethylammonium bromide (CTAB) as a template and silatrane, iron (III) chloride, and titanium (IV) isopropoxide as silica, iron, and titanium sources, respectively. Scanning electron microscopy (SEM) showed the truncated octahedron morphology of Fe–Ti-MCM-48.X-ray diffraction (XRD) patterns showed well-defined, order cubic mesoporous structures. X-ray fluorescence (XRF) revealed the total metal content of the final product. UV–visible absorption spectra confirmed both iron (Fe{sup 3+}) and cerium (Ti{sup 4+}) species highly dispersed in the framework, while N{sub 2} adsorption/desorption measurements indicated a high specific surface area. As metal content increased, the mesoporous order and surface area decreased. The synthesized Fe–Ti-MCM-48 with 0.01Fe/Si and 0.01Ti/Si ratio still retained a cubic structure after hydrothermal treatment at 100 °C for 72 h. - Highlights: • Fe–Ti-MCM-48 mesoporous molecular sieves were successfully synthesized. • Bimetallic Fe–Ti-MCM-48 with 0.01Fe/Si and 0.01Ti/Si ratio had highly hydrothermal stability. • The higher titanium content led to the lower specific surface area and hydrothermal stability.

  4. Geological process of the 1997 Sumikawa landslide with hydrothermal explosions and debris avalanche, Akita prefecture; Akitaken Sumikawa onsen ni okeru jisuberi to suijoki bakuhatsu ni tomonau dosha saigai no hassei process

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, H. [Geological Survey of Japan, Tsukuba (Japan)


    Discussions were given on the geological process of the 1997 May Sumikawa landslide with hydrothermal explosions and debris avalanche in Akita Prefecture. Items of time-series information on the event include portent phenomena related to the landslide up to May 10, observation data identifying seismic motions from the landslide and hydrothermal explosions, power failure considered to have been caused by the event, statements of eyewitnesses who have seen the hydrothermal explosions from up in the sky and aerial photographs, witnesses by news reporters, and videos. When these items of information are discussed from the viewpoint of geologists, some anxiety may be applied to future measures against similar disasters. Out of the earth and sand of 500,000 m {sup 3} flown out from the landslide area, the amount flown out as an earth and sand flow is much smaller than the amount flown out as debris avalanche. Debris avalanche moves at much higher speed than that of the earth and sand flow, so that an earth and sand flow detection system using wire sensors may not be capable of warning people of timely evacuation. The debris avalanche induced from such hydrothermal explosion as the present one requires an observation system composed of a real-time long-cycle microtremor detection system and steam amount monitors. 5 refs., 6 figs., 5 tabs.

  5. Assessment of Leaching of some Heavy Metals from Domestic ...

    African Journals Online (AJOL)

    The aim of this study is to assess the possible leaching of heavy metals from ceramic wares into different solutions. Ceramic spoon, pot, soup bowl, plate, mug and cup were leached in batch process using hot water and 4 % solutions of glacial acetic acid, HCl acid, NaOH and Na2CO3 respectively. Chromium, manganese ...

  6. Kinetics of Leaching Calcium from Dolomite

    Directory of Open Access Journals (Sweden)

    Azizi, A.


    Full Text Available Magnesia is obtained from magnesite ore and the production process applied should remove accompanying minerals that reduce its refractoriness. Given that magnesite reservoirs are more exploited and largely exhausted, there is a growing need for production of magnesia on the basis of other magnesium minerals. Dolomite is a promising source of magnesia because it forms large deposits, is easy to exploit, and generally contains a small quantity of impurities.The kinetics of calcium leaching from dolomite by magnesium-nitrate solution has been studied. The research program included the influence of temperature, mass fraction of magnesium nitrate in solution, dolomite particle size and leaching time. Time dependence of calcium leaching is described by relevant kinetic equations. Rate coefficients, their temperature dependence and Arrhenius activation energy have been determined.

  7. The processes of packing, silicification and leaching in terrigeneous collectors and their role in the formation of the barren space in an example of the oil deposits of the Tatar Autonomous SSR

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, T.Ye.


    The processes of packing and silicification in oil saturated rocks are described and an attempt is made to evaluate their intensity using the rock density parameter (P, in grams per cubic centimeter). The change in the collector properties of different rocks with an increase in packing and silicification is shown. The different forms of leaching of the quartz in the oil saturated rocks are described. The existence is stressed of processes in the rocks which take place in different directions which explains the absence of a gradual shift in the structure of the pore space from collector to noncollector and the spotty nature of the oil saturation of the transitional differences.

  8. The effect of sulphide minerals on uranium oxidation state in in-situ leaching (United States)

    Pastukhov, A. M.; Skripchenko, S. Yu.


    The thermodynamic model of uranium in-situ leaching process at the stages of acidification and active leaching were investigated. It was demonstrated that in the frontal zone of acid leaching solutions reduction of uranium(VI) up to uranium(IV) was possible due to the nature of redox processes involving hydrogen sulfide. At the same time uranium was precipitated as U(OH)4. In order to eliminate the negative influence of sulfide minerals and hydrogen sulfide, artificial oxidizers were proposed to be used at the both stages of in-situ leaching process, i.e. active leaching and acidification of new process cells.

  9. Synthesis and Antibacterial Activity of Rutile-TiO2 ‎Nano Powder Prepared by Hydrothermal Process


    Rashed T. Rasheed ‎; Sariya ‎ D. Al-Algawi; Zeena R. Rhoomi


    Rutile titanium dioxide (r-TiO2) Nano powder has been synthesized by hydrothermal method in autoclave. The reaction took place between titanium tetrachloride (TiCI4) and mixture solution consisted of deionized water and ethanol, in the ratio (3:7) respectively. The product has been dried and annealed at 400°C. The structure, morphology and the particle size of the Nano powder were investigated by X-ray Diffraction, Scanning Electron Microscopy (SEM), Atomic Force Microscope (AFM), FT-IR and U...

  10. Dissolution Model of Multiple Species: Leaching of Highly Soluble Minerals (United States)

    Moreno, Luis; Ordóñez, Javier I.; Cisternas, Luis A.


    Dissolution of multi-species from a solid matrix is widely extended in different processes such as leaching of minerals; however, its modeling is often focused on a single species. A model for the simultaneous dissolution of soluble species was developed, which considers different solubilities and dissolution rates and considers that particle collapses when the rapidly soluble species is depleted. The collapsed matter is formed by inert material and a fraction of the soluble species with lower dissolution rate that has not dissolved yet. The model is applied to the leaching of a water-soluble mineral (caliche) with two soluble species dissolving simultaneously with different rates. Measured outlet concentrations of nitrate and magnesium were used to validate the model. Results showed that the model reproduced adequately the leaching of species with rapid and intermediate dissolution rate. Effect of the operating and kinetic parameters on the leaching process is also shown using the actual conditions of heap leaching for caliche mineral.

  11. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. (United States)

    Hu, Keshui; Xiao, Xin; Cao, Xiufang; Hao, Rong; Zuo, Xiaoxi; Zhang, Xiaojing; Nan, Junmin


    Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130°C for 24h exhibits a maximum adsorption capability of about 197mg g(-1) in the neutral methylene blue (MB) solution (40mg L(-1)) within 90min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40mg L(-1)) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng


    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  13. Influence of Mechanical Activation on the selectivity of Bornite Leaching

    Directory of Open Access Journals (Sweden)

    Peter Baláž


    Full Text Available Sulfidic mineral bornit Cu5FeS4 was exposed to the selective leaching of copper in H2SO4 solution. Surface changes of the mechanically activated sulphide were investigated before and after leaching using the infrared spectroscopy and the scanning electron microscopy. The mechanical activation of the mineral resulted in the mechanochemical surface oxidation and in the formation of the carbonates and sulphates. Furthermore, the specific area and the disordering of the mineral crystal structure increased. These aspects influence the kinetic and selectivity of acid leaching of bornite.Acid leaching of mechanically activated bornite follows through the two stages. In the first, rapid stage of leaching, the simple dissolution of products occurs (iron carbonate, copper and iron sulphate, which are situated in the surface layer of mechanically activated bornite. A relatively high iron recovery is due to the dissolution of hematite which is a minor component of bornite. The second, slow stage of leaching represents leaching of minerals. Iron do not practically underlies to the leaching and the recovery of copper increases gradually.The leaching selectivity of bornite is defined by the ratio Cu/Fe and increases with the growing time of mechanical activation, but only to 10 minutes. Subsequently, an additional increase of the time of mechanical activation tends to decrease the selectivity what is probably caused by the effect of the reduction of reaction surface processes due to agglomeration effects pending the milling and the formation of sulphur on the surfaces of particles which restricted the access of reagents to the remaining mineral. Moreover, this fact was observed by the SEM analysis of bornite. The interdependence between the leaching selectivity of bornite and specific surface area indicates a direct effect of the surface deformation of mechanically activated bornite on the selectivity of leaching.

  14. Leaching of nutrient salts from fly ash from biomass combustion

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Vu, Duc Thuong; Stenby, Mette


    Methods to selectively leach nutrient salts from fly ash, while leaving cadmium un-dissolved were studied. Temperature, pH, water to fly ash ratio are all expected to influence the kinetics and the equilibrium boundaries for this process. Three different leaching methods were investigated...... moving bed process with agitation/centrifugation. It was found that a satisfactory leaching of the nutrient salts could be achieved with the third method using only two or three stages, depending on the water to fly ash ratio. It is an advantage to perform the process at temperatures above 50°C...

  15. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos


    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  16. Soil column leaching of pesticides. (United States)

    Katagi, Toshiyuki


    persistence (DT50) of the pesticide, and its sorption/desorption(Koc) characteristics. These parameters may vary for the same pesticide from geographic site-to-site and with soil depth. The interactions that normally occur between pesticides and dissolved organic matter (DOM) or WDC are yet other factors that may complicate pesticide leaching behavior.The soil mobility of pesticides is normally tested both in the laboratory and in the field. Lab studies are initially performed to give researchers a preliminary appraisal of the relative mobility of a pesticide. Later, field lysimeter studies can be performed to provide more natural leaching conditions that emulate the actual field use pattern. Lysimeter studies give the most reliable information on the leaching behavior of a pesticide under field conditions, but these studies are time-consuming and expensive and cannot be performed everywhere. It is for this reason that the laboratory soil column leaching approach is commonly utilized to profile the mobility of a pesticide,and appraise how it behaves in different soils, and relative to other pesticides.Because the soil structure is chemically and physically heterogenous, different pesticide tests may produce variable DT50 and Koc values; therefore, initial pesticide mobility testing is undertaken in homogeneously packed columns that contain two or more soils and are eluted at constant flow rates. Such studies are done in duplicate and utilize a conservative tracer element. By fitting an appropriate mathematical model to the breakthrough curve of the conservative tracer selected,researchers determine key mobility parameters, such as pore water velocity, the column-specific dispersion coefficient, and the contribution of non equilibrium transport processes. Such parameters form the basis for estimating the probable transport and degradation rates that will be characteristic of the tested pesticide. Researchers also examine how a pesticide interacts with soil DOM and WDC, and

  17. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.


    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  18. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes

    Directory of Open Access Journals (Sweden)

    Aishu Yin


    Full Text Available Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m2·g−1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35–45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  19. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono


    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  20. Large-Scale Growth of Tubular Aragonite Whiskers through a MgCl2-Assisted Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Changyin Dong


    Full Text Available In this paper, we have developed a facile MgCl2-assissted hydrothermal synthesis route to grow tubular aragonite whiskers on a large scale. The products have been characterized by powder X-ray diffraction (XRD, optical microscopy, and scanning electronic microscopy (SEM. The results show the as-grown product is pure tubular aragonite crystalline whiskers with a diameter of 5–10 mm and a length of 100–200 mm, respectively. The concentration of Mg2+ plays an important role in determining the quality and purity of the products. Furthermore, the method can be extended to fabricate CaSO4 fibers. The high quality of the product and the mild conditions used mean that the present route has good prospects for the growth of inorganic crystalline whiskers.

  1. Synthesis and Antibacterial Activity of Rutile-TiO2 ‎Nano Powder Prepared by Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Rashed T. Rasheed ‎


    Full Text Available Rutile titanium dioxide (r-TiO2 Nano powder has been synthesized by hydrothermal method in autoclave. The reaction took place between titanium tetrachloride (TiCI4 and mixture solution consisted of deionized water and ethanol, in the ratio (3:7 respectively. The product has been dried and annealed at 400°C. The structure, morphology and the particle size of the Nano powder were investigated by X-ray Diffraction, Scanning Electron Microscopy (SEM, Atomic Force Microscope (AFM, FT-IR and UV/visible spectroscopy measurements. The effect of r-TiO2 on gram-negative bacteria Escherichia coli (E. coli and gram-positive bacteria Staphylococcus aurous (S. aureus has been studied. This study showed that rutile TiO2 Nano powder has efficient antibacterial activity, and can use as an antibacterial agent for different purposes

  2. Influence of chalcopyrite structure on their leaching by sodium nitrate in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Miroslav Sokić


    Full Text Available During the chalcopyrite leaching by sodium nitrate and sulfuric acid solution, leaching rate decreases with increasing the time and a part of chalcopyrite mineral grains remains in the leach residue. In chalcopyrite concentrate, 95.5 % of chalcopyrite mineral occurs as in liberated grains, and the rest is in association with gangue minerals, which is very favorably from the aspect of hydrometallurgical treatment. Complex forms, like impregnations and complex intergrowths, do not exist. After experiments carried out, leaching of copper achieved 84 % at temperature 80 o C and time 240 min. In the all leach residues, 97 % chalcopyrite mineral grains occur as liberated with highly corroded surfaces. Therefore, the structural assembly of chalcopyrite grains is favorable and no reason to reduce the leaching rate in the final stage of reaction. Reason for this is elemental sulfur, which was formed during the reaction, precipitated at the particle surfaces, and slowed down the leaching rate in the final stage of leaching process.

  3. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF) (United States)

    This report presents examples of the relationships between the results of laboratory leaching tests, as defined by the Leaching Environmental Assessment Framework (LEAF) or analogous international test methods, and leaching of constituents from a broad range of materials under di...

  4. A mathematical model for isothermal heap and column leaching

    Directory of Open Access Journals (Sweden)

    Lima L.R.P. de Andrade


    Full Text Available Leaching occurs in metals recovery, in contaminated soil washing, and in many natural processes, such as fertilizer dissolution and rock weathering. This paper presents a model developed to simulate the transient evolution of the dissolved chemical species in the heap and column isothermal leaching processes. In this model, the solid bed is numerically divided into plane layers; the recovery of the chemical species, the enrichment of the pregnant leach solution, and the residual concentration of the leaching agent are calculated by interactions among the layers. The solution flow in the solid bed is assumed as unidirectional without dispersion, and the solid-fluid reaction is described by a diffusive control model that is integrated analytically for each time step. The data set used in the model include physical-chemical, geometrical, and operational variables, such as: leachable chemical species content, leaching agent flow rate and concentration, particles size distribution, solution residence time in the solid bed, and solid bed length, weight and irrigated area. The results for two case studies, namely, an industrial gold heap leaching and a pilot column copper acid leaching, showed that the model successful predict the general features of the process time evolution.

  5. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  6. Implementation of the Leaching Environmental Assessment ... (United States)

    LEAF provides a uniform and integrated approach for evaluating leaching from solid materials (e.g., waste, treated wastes such as by solidification/stabilization, secondary materials such as blast furnace slags, energy residuals such as coal fly ash, soil, sediments, mining and mineral processing wastes). Assessment using LEAF applies a stepwise approach that considers the leaching behavior of COPCs in response to chemical and physical factors that control and material properties across a range of plausible field conditions (US EPA, 2010). The framework provides the flexibility to tailor testing to site conditions and select the extent of testing based on assessment objectives and the level of detailed information needed to support decision-making. The main focus will be to discuss the implementation of LEAF in the US and the How to Guide that has recently been completed. To present the How To Guide for the implementation of the leaching environmental assessment framework to an international audience already familiar with comparable leaching tests in use in Europe. Will be meeting with European colleagues on their interest in expanding methods to include organics.

  7. Preparation of γ-Fe2O3/Ni2O3/FeCl3(FeCl2 Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids

    Directory of Open Access Journals (Sweden)

    Qingmei Zhang


    Full Text Available Using a hydrothermal process in FeCl2 solution, γ-Fe2O3/Ni2O3/FeCl3(FeCl2 composite nanoparticles were obtained from the FeOOH/Ni(OH2 precursor prepared by coprecipitation. The precursor and the as-prepared nanoparticles were investigated by vibrating sample magnetometer (VSM, X-ray diffraction (XRD, energy disperse X-ray spectroscopy (EDX, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM. The experimental results showed that the paramagnetic amorphous precursor, in which Ni(OH2 is formed outside FeOOH, is transformed to ferrimagnetic γ-Fe2O3/Ni2O3 composite when it is processed in FeCl2 solution (0.25, 0.50, 1.00 M in an autoclave at 100°C for 1 hr. In addition, the dismutation reaction of FeCl2 produces FeCl3 and Fe. Some FeCl3 and little FeCl2 can be absorbed to form γ-Fe2O3/Ni2O3/FeCl3(FeCl2 composite nanoparticles in which Ni2O3 forms outside the γ-Fe2O3 core and the outermost layer is FeCl3 (FeCl2. The content of FeCl3 (FeCl2 in the particles increased, and the magnetization of the particles decreased with the concentration of FeCl2 solution increasing in the hydrothermal process. The FeCl3 (FeCl2 surface is chemically passive and nonmagnetic (paramagnetic. Accordingly, the composite nanoparticles are chemically stable, and their aggregation is prevented. The specific saturation magnetization of such composite nanoparticles can get to 57.4–62.2 emu/g and could be very suitable for synthesizing ferrofluids.

  8. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu


    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  9. Process Simulation and Cost Analysis for Removing Inorganics from Wood Chips using Combined Mechanical and Chemical Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongqiang; Westover, Tyler L.; Cherry, Robert; Aston, John E.; Lacey, Jeffrey A.; Thompson, David N.


    Naturally occurring and introduced inorganic species (ash) in biomass feedstocks negatively impact thermochemical energy conversion processes such as pyrolysis, hydrothermal liquefaction, gasification and combustion to biopower. As such, it is desirable to better understand the cost:benefit ratios of various ash reduction processes. Here, a novel process simulation model was developed using AspenPlus to reduce the ash content of Loblolly logging residues using both air classification and a dilute-acid leaching process. For costing purposes, a throughput of 25 tons/hour was selected. At this scale, the process cost for a standalone air classification process was $3 per ton for a biomass feedstock. Ash reduction via dilute –acid leaching was simulated based on experimentally determined kinetics of ion diffusion at an acid concentration of 0.5% H2SO4 and temperature of 75°F. The total estimated processing cost for leaching at these conditions was approximately $14/ton of dry biomass. Sensitivity analysis of three parameters on mineral reduction in the leaching process revealed that increasing leaching temperature was not economically feasible, while it was viable to apply a longer retention time in leaching for higher ash removal or achieve a lower water content in final products with reasonable extra costs. In addition, scenarios combining air classification with leaching were examined. A whole process cost of approximately $16/ton of biomass at a biomass feedstock rate of 25 ton/hour considering a 9% of biomass classified as light fraction to be leached. The leaching operating costs constituted 75% of this amount, of which the heating costs of dryer was 44%. This suggests that the process costs would be substantially reduced if more efficient drying methods are applied in future.

  10. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes (United States)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús


    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  11. PEP Support Laboratory Leaching and Permeate Stability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Buchmiller, William C.


    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in

  12. Leaching mechanism of semiconducting minerals a historical note

    Directory of Open Access Journals (Sweden)

    Habashi F.


    Full Text Available mechanism of leaching of semiconducting minerals such as CuS, ZnS, UO2, etc., has been the subject of intensive speculation by hydrometallurgy researchers in the early 1950s who assumed the formation of intermediate surface complexes that could be neither separated nor identified by physico-chemical techniques. The electrochemical theory of leaching introduced in the late 1960s resolved this problem by comparing the leaching process to a corrosion phenomenon similar to the corrosion of metals. A historical summary of these proposals is presented.

  13. Ligand Selection Model for Leaching of Low Grade Zinc Oxide Ores (United States)

    Yang, Tianzu; Rao, Shuai; Zhang, Duchao; Chen, Lin; Liu, Weifeng

    A new ligand selection model is proposed for leaching of low grade zinc oxide ores. The model demonstrates that the formation constant between ligand and zinc ions plays a significant role in the leaching process. A series of leaching experiments with different ligand concentration are conducted to assess the selection model. The results show that when nitrilotriacetic acid is used as the leaching agent, the highest zinc extraction is obtained. The zinc leaching rate is 84.33% in the presence of 0.4 mol/L nitrilotriacetic acid and liquid-solid ratio of 10 mL/g.

  14. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. (United States)

    Wang, Liping; Li, Aimin; Chang, Yuzhi


    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparation of Rutile from Ilmenite Concentrate Through Pressure Leaching with Hydrochloric Acid (United States)

    Xiang, Junyi; Liu, Songli; Lv, Xuewei; Bai, Chenguang


    Take into account the fact that the natural rutile utilized for the production of titanium dioxide pigment through chloride process is desperately lacking worldwide especially in China, an attempt was exploited for extracting synthetic rutile from Yunnan ilmenite concentrate with hydrochloric acid pressure leaching process. The leaching parameters for one step leaching process were investigated. The results shown that the optimum condition is leaching temperature of 413 K (140 °C), acid concentration of 20 pct HCl, leaching time of 4 hours and liquid/solid mass ratio of 8:1. A two steps leaching process was also suggested to reutilize the leaching liquor which with a high content of HCl. The results showed that the content of HCl decreased from 135 to 75 g/L, total iron increased from 44.5 g/L to about 87.6 g/L, and the liquid/solid mass ratio decreased to 5:1 with a two steps leaching process. The leaching product produced through a two steps leaching process shows a pure golden red with a high content of titanium (92.65 pct TiO2), a relatively low content of calcium (0.10 pct CaO) and magnesium (0.12 pct MgO), but high content of silicon (5.72 pct SiO2).

  16. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev


    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  17. Thiosulfate leaching of gold from waste mobile phones. (United States)

    Ha, Vinh Hung; Lee, Jae-chun; Jeong, Jinki; Hai, Huynh Trung; Jha, Manis K


    The present communication deals with the leaching of gold from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a copper-ammonia-thiosulfate solution, as an alternative to the conventional and toxic cyanide leaching of gold. The influence of thiosulfate, ammonia and copper sulfate concentrations on the leaching of gold from PCBs of waste mobile phones was investigated. Gold extraction was found to be enhanced with solutions containing 15-20 mM cupric, 0.1-0.14 M thiosulfate, and 0.2-0.3 M ammonia. Similar trends were obtained for the leaching of gold from two different types of scraps and PCBs of waste mobile phones. From the scrap samples, 98% of the gold was leached out using a solution containing 20 mM copper, 0.12 M thiosulfate and 0.2 M ammonia. Similarly, the leaching of gold from the PCBs samples was also found to be good, but it was lower than that of scrap samples in similar experimental conditions. In this case, only 90% of the gold was leached, even with a contact time of 10h. The obtained data will be useful for the development of processes for the recycling of gold from waste mobile phones. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Nielson, D.L. (eds.)


    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  19. LEACH-A: An Adaptive Method for Improving LEACH Protocol

    Directory of Open Access Journals (Sweden)

    Jianli ZHAO


    Full Text Available Energy has become one of the most important constraints on wireless sensor networks. Hence, many researchers in this field focus on how to design a routing protocol to prolong the lifetime of the network. The classical hierarchical protocols such as LEACH and LEACH-C have better performance in saving the energy consumption. However, the choosing strategy only based on the largest residue energy or shortest distance will still consume more energy. In this paper an adaptive routing protocol named “LEACH-A” which has an energy threshold E0 is proposed. If there are cluster nodes whose residual energy are greater than E0, the node of largest residual energy is selected to communicated with the base station; When all the cluster nodes energy are less than E0, the node nearest to the base station is select to communication with the base station. Simulations show that our improved protocol LEACH-A performs better than the LEACH and the LEACH-C.

  20. Leaching of silver from solid waste using ultrasound assisted thiourea method. (United States)

    Oncel, M Salim; Ince, Mahir; Bayramoglu, Mahmut


    Thiourea leaching of precious metals such as gold and silver from ores has several advantages when compared with conventional cyanidation process. In recent years, the use of ultrasound in leaching processes is becoming increasingly popular in hydrometallurgy. This paper deals with combining these two techniques for silver leaching from solid waste of a cyanidation leach plant located in Kutahya, Turkey. The primary aim of this research is to assess the technical performance of the method. To achieve maximum leaching yield, eight process variables have been selected to estimate optimum process conditions by means of statistical factorial design and steepest ascent techniques. Laboratory-scale experiments showed that complete leaching of silver may be achieved by this process.

  1. Recovery of Vanadium from a High Ca/V Ratio Vanadium Slag Using Sodium Roasting and Ammonia Leaching (United States)

    Xu, Song; Long, Mujun; Chen, Dengfu; Fan, Helin; Chen, Yuting; Sun, Xue

    In order to seek an effective extraction process for vanadium, the recovery of vanadium from a high Ca/V ratio vanadium slag was studied by sodium roasting and ammonia leaching. In the present paper, the oxidation and leaching process of vanadium slag was investigated by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) techniques. The effects of ammonium carbonate concentration, leaching temperature and leaching time on the leaching ratio of vanadium were discussed. As indicated in the experimental result, the optimal (NH4)2CO3 concentration was 120g/L, leaching temperature was 60°C and leaching time was 20 min. Approximately 92% of the vanadium was recovered under the optimal conditions. Furthermore, by means of X-ray diffraction analysis, the phase transformations of the vanadium slag during roasting and leaching processes were analyzed and discussed.

  2. Optimization of hydrothermal pretreatment and membrane filtration processes of various feedstocks to isolate hemicelluloses for biopolymer applications (United States)

    Sukhbaatar, Badamkhand

    Hemicelluloses (HC) are the second most abundant plant polysaccharides after cellulose, constituting 25-30% of plant materials. In spite of their abundance, HC are not effectively utilized. Recently, considerable interest has been directed to HC-based biomaterials because of their high oxygen barrier properties, which has potential in food packaging applications. In this study, HC were extracted from sugarcane bagasse and southern yellow pine using a hydrothermal technique which utilizes hot compressed water without catalyst. The parameters affecting the yield of extracted HC such as temperature, time and pressure, were tested and optimized. Eighty four percent of xylose was extracted from sugarcane bagasse at the optimum condition, 180 °C 30 min and 1 MPa pressure. In the case of southern yellow pine, 79% of the mannose was extracted at 190 °C for 10 min and 2 MPa pressure. Concentration and isolation of HC from bagasse and southern yellow pine HC extract were performed by membrane filtration and freeze drying systems. Isolated HC were characterized by FT-IR and 13C NMR techniques and used as a starting material for film preparation. Films were prepared in 0/100, 50/50, 60/40, 70/30 and 80/20% ratios of HC and sodium carboxymethylcellulose (CMC). Thirty five percent of sorbitol (w/w of HC and CMC weight) was also added as a plasticizer. Films were evaluated by measuring water absorption, water vapor permeability (WVP), tensile property and oxygen barrier capability. At 55% relative humidity (RH) and 25 °C the water absorption of both sugarcane bagasse and southern yellow pine HC-based films tended to increase as HC content increased. The lowest WVP of sugarcane bagasse (3.84e-12 g/Pa h m) and southern yellow pine HC films (2.18e-12 g/Pa h m) were determined in 60/40 HC/CMC films. Tensile test results showed that as HC content increases the Young's modulus decreases, deflection at maximum load and percentage of strain at break increase. It implies that the film

  3. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.


    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  4. Carbonate heap leach of uranium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Turney, W.R.; Mason, C.F.V.; Longmire, P. [Los Alamos National Lab., NM (United States)] [and others


    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO{sub 2}CO{sub 3}{sub 2}{sup =}) and uranyl tricarbonate (UO{sub 2}CO{sub 3}{sub 3}{sup 4-}), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions ({approx}0.5M) proved more effective than lower molar strength solutions ({approx} 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal.

  5. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini


    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  6. Dynamics of the Yellowstone hydrothermal system (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.


    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  7. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T


    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrothermal process of coal obtainment from high humidity biomasses - grass, peat, sugar cane bagasse; Processo hidrotermal de obtencao de carvao a partir de biomassas de alta umidade (capim, turfa e bagaco de cana)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarinho, Silvio Benedicto


    To convert biomass of high productivity and high moisture to coal, the author proposes a hydrothermal process. This way, the carbonization proceeds under wet conditions and drying before processing is not needed. Three raw materials have been tested: Pennisetun Purpureum Shum (elephant grass), peat and sugar cane bagasse. The first material has high productivity, the latter two show high moisture, they are easily available and up to now, a good coalification technology has not been developed. This study gives results of the hydrothermal process applied and characterizes some steps of this process in more detail to enhance understanding of process. Tests have been conducted in autoclaves of 1 L capacity with external pressure and temperature control. The range of temperatures used is 180 to 300 deg C and the coalification time has been 5, 15 and 45 minutes. The result of this study shows that during the hydrothermal process, a high quantity of volatile material is retained in the newly formed coal due to working with low temperature and high pressures. This gives a product of high calorific power (about 6,000 kcal/Kg) and high reactivity and mass. The resulting product does not need much grinding to be used by burners. The process partially removes the ashes and the final ash content of the coal is much lower than the one produced by dry coalification. Dewatering is very easily done by mechanical means, filter pressing by example and does not require high amount of energy. (Author)

  9. MoMar-Demo at Lucky Strike. A near-real time multidisciplinary observatory of hydrothermal processes and ecosystems at the Mid-Atlantic Ridge (United States)

    Cannat, M.; Sarradin, P.; Blandin, J.; Escartin, J.; Colaco, A.; MoMAR-Demo Scientific Party; Aron, Michael; Aumont, Virginie; Baillard, Christian; Ballu, Valérie; Barreyre, Thibaut; Blandin, Jérôme; Blin, Alexandre; Boulart, Cédric; Cannat, Mathilde; Carval, Thierry; Castillo, Alain; Chavagnac, Valérie; Coail, Jean Yves; Colaço, Ana; Corela, Carlos; Courrier, Christophe; Crawford, Wayne; Cuvelier, Daphné; Daniel, Romuald; Dausse, Denis; Escartin, Javier; Fabrice, Fontaine; Gabsi, Taoufik; Gayet, Nicolas; Guyader, Gérard; Lallier, François; Lecomte, Benoit; Legrand, Julien; Lino, Silva; Miranda, Miguel; Mitard, Emmelyne; Pichavant, Pascal; Pot, Olivier; Reverdin, Gilles; Rommevaux, Céline; Sarradin, Pierre Marie; Sarrazin, Jozée; Tanguy, Virginie; Villinger, Heinrich; Zbinden, Magali


    The MoMAR "Monitoring the Mid-Atlantic Ridge" project was initiated by InterRidge in 1998 to study the environmental instability resulting from active mid-ocean-ridge processes at hydrothermal vent fields south of the Azores. It then developped into a component of the ESONET (European Seafloor Observatory Network) and EMSO (European Multidisciplinary Subsea Observatory) programs, which coordinate eulerian observatory initiatives in the seas around Europe. MoMAR experiments have started in 2006 and address two main questions : What are the feedbacks between volcanism, deformation, seismicity, and hydrothermalism at a slow spreading mid-ocean ridge? and How does the hydrothermal ecosystem couple with these sub-seabed processes? The MoMAR-Demo project started in 2010 with partial support from ESONET. It has been implemented so far by 2 cruises of the RV Pourquoi Pas ? during which we successfully deployed (in 2010), and upgraded (in 2011) a near-realtime buoyed observatory system. The system comprises two Sea Monitoring Nodes (SeaMoN) at the seafloor, which are acoustically linked to a surface relay buoy (BoRel), ensuring satellite communication to a land base station in Brest (France). One SeaMoN node connects to a 3-components seismometer and an hydrophone for seismic event detection, and two pressure probes for geodetic measurements, and the other SeaMoN node connects to a video camera, a dissolved-iron analyzer, and an optode (oxygen and temperature probe) for ecological time studies. The BOREL transmission buoy is equiped with GPS (geodetic experiment and buoy location) and meteo station. Data and/or status signals from these sensors are transmitted every 6 hours, and put on line in compliance with the ESONET-EMSO data policy (temporary access through The MoMAR-Demo system also allows for interactive connections and changes of data transmission rates on demand. It is nested in arrays of autonomous sensors (OBSs

  10. Selenite adsorption using leached residues generated by reduction roasting-ammonia leaching of manganese nodules. (United States)

    Randhawa, N S; Das, N N; Jana, R K


    This study was carried out to investigate the adsorption characteristics of leached manganese nodule residue (MNR), generated from the reduction roasting-ammonia leaching process, towards aqueous selenite. Physicochemical characterization revealed that the leached residue was a complex mixture of oxides of mainly manganese and iron along with MnCO(3). Adsorption studies of the water washed leached residue (wMNR) at varying the pH, selenite ion concentration, wMNR dosage, heat treatment condition indicated that selenite uptake increased with increasing pH and heat-treatment temperature of wMNR. The maximum value of selenite uptake was obtained at pH ~5.0 with wMNR heat-treated at 400°C and thereafter decreased on increasing the pH and heat-treatment temperature further. The adsorption data were best fitted by the Freundlich isotherm model. The derived monolayer selenite adsorption capacities increased from, X(m)=9.50 mg Se/g (for untreated wMNR) to 15.08 mg Se/g (for wMNR heat-treated at 400°C). The results of the studies may be useful for possible utilization of MNR as an adsorbent for the removal of selenite ions from contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Influence of several experimental parameters on As and Se leaching from coal fly ash samples

    Energy Technology Data Exchange (ETDEWEB)

    Otero-Rey, Jose R. [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Mato-Fernandez, Maria J. [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Moreda-Pineiro, Jorge [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Alonso-Rodriguez, Elia [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)]. E-mail:; Muniategui-Lorenzo, Soledad [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Lopez-Mahia, Purificacion [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain); Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071 A Coruna (Spain)


    Coal fly ash leaching process for As and Se is studied. Environmental parameters such as pH, temperature, solid-liquid ratio, particle size and leaching time are taken into account in order to simulate As and Se leaching process for disposal coal fly ash. Analysis of reference materials was carried out by using of hydride generation coupled to atomic fluorescence spectrometry. Plackett-Burman experimental design is used to know the significative parameters, and Box-Behnken experimental design is used to refine the results obtained for these significative parameters. pH and temperature shown a hardly influence in leaching process. Furthermore, leaching time was also significative. According our results, it may be assumed that percentage of As and Se leaching in experimental conditions tested is relatively low for acidic fly ashes.

  12. The Effect of Fulvic Acid on the Leaching of a Weathered Rare-Earth Ore (United States)

    Luo, Xian-ping; Feng, Bo; Wang, Peng-cheng; Zhou, He-peng; Chen, Xiao-ming


    The effect of fulvic acid on the leaching of a weathered crust elution-deposited rare-earth ore, using ammonium sulfate as lixiviant, has been investigated. The results show that fulvic acid can enhance the leaching process effectively. With the addition of fulvic acid to the lixiviant at a concentration of 0.1 wt pct, the leaching extraction of rare-earth elements increased by 8.38 pct and the ammonium sulfate concentration decreased by 25 wt pct. Fulvic acid promotes the leaching process. It also reacts with rare-earth ions, forms soluble complexes, reduces the activity of the leached rare-earth ions, and increases the concentration difference of ion diffusion. These results highlight a new approach for making the leaching process of low-grade weathered crust elution-deposited rare-earth ore more efficient and also for lowering the lixiviant consumption.

  13. [Dynamic leaching behavior of heavy metals in eco-cement mortar block]. (United States)

    Li, Cheng; Liu, Jian-Guo; Zhang, Jun-Li; Yue, Dong-Bei; Nie, Yong-Feng; Wang, Chang-Hai


    A dynamic leaching test with the renewal of acidic leaching medium was designed to study the leaching behavior of the seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn) in three solidified eco-cement mortar samples with different particle size (fine granule, coarse granule, block) under a long-term leaching condition. It was demonstrated that all the heavy metals were detected in the leachate except Cd. The leaching ratio of Cr was the highest when compared with other metals in the same sample, and the leaching ratio of every metal showed an identical tendency: fine granule> coarse granule > block. The on-going leaching part of the relationship curve of accumulative leaching point (Pt) and t1/2 of each metal presented a fairly good linearity, which indicated that the leaching process was under the control of diffusion mechanism by the Fick Law. To each metal, the effective diffusion coefficient (Deff) showed a tendency of fine granule metals, the Deff was very low, with the magnitude around 10(-10) cm2/s, which meant the leaching process would take a relatively long time.

  14. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen


    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  15. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi


    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  16. Investigation of the use of ammonium acetate as an alternative lixiviant in the leaching of malachite ore

    Directory of Open Access Journals (Sweden)

    Künkül Asım


    Full Text Available The solutions containing ammonia allow for selective leaching of the copper from a copper ore. In this study, the leaching and kinetics of malachite ore were examined using ammonium acetate solutions as an alternative lixiviant. The effects of some experimental parameters on the leaching of malachite ore were investigated. A kinetic model to represent the effects of these parameters on the leaching rate was developed. It was determined that the leaching rate increased with increasing solution concentration, temperature and stirring speed, and decreasing particle size and solid-to-liquid ratio. It was found that the leaching reaction followed the mixed kinetic control model. The activation energy of this leaching process was determined to be 59.6 kJmol-1. Consequently, it was determined that ammonium acetate solutions could be used as an effective leaching agent for the copper extraction form malachite ore.

  17. Fluids associated with hydrothermal dolomitization in St. George Group, western Newfoundland, Canada


    J. Conliffe; K. Azmy; S. A. Gleeson; D. Lavoie


    Dolomite reservoirs are increasingly recognized as an important petroleum exploration target, although the application of a hydrothermal dolomite exploration model to these reservoirs remains controversial. The St. George Group of western Newfoundland consists of a sequence of dolomitised carbonates, with significant porosity development (up to 30%) and petroleum accumulations. Fluid inclusion microthermometry and bulk fluid leach analyses indicated that fluids responsible for matrix dolomiti...

  18. Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions


    Kelbert, M.; Romaní, Aloia; Coelho, Eduardo; Pereira, L; Teixeira, J. A.; Domingues, Lucília


    Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hyd...

  19. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study. (United States)

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N


    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants.

  20. Chemical environments of submarine hydrothermal systems (United States)

    Shock, Everett L.


    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  1. [Effect of natural and hydrothermal synthetic goethite on the release of methane in the anaerobic decomposition process of organic matter]. (United States)

    Yao, Dun-Fan; Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo


    The effects of natural goethite (NGt) and synthetic goethite (SGt) on the release of methane in the anaerobic biochemical system consisted of dissimilatory iron-reducing bacteria (DIRB) and methane-producing bacteria (MPB) were investigated through batch tests with sodium acetate as the carbon source. To explore the effects and mechanisms of both mineral materials on the release of methane in the anaerobic decomposition process of organic matter in the presence of DIRB, the main gas components and total organic carbon (TOC) , total inorganic carbon (TIC), and Fe2+ in the aqueous phase of the experimental process were determined and XRD analyses were conducted for the solid-phase product. Moreover, the minerals were analyzed by specific surface area (BET), X-ray diffraction (XRD), X-ray fluorescence (XRF). Modified Gompertz equation was used to fit the cumulative methane and carbon dioxide. Results showed that the maximum cumulative production of methane was brought forward by 60-78 days by the addition of goethite and CO2 was effectively reduced by 30% - 67% compared with the control samples. SGt was more effective than NGt in promoting the release of CH4 and reducing the CO, emission. Furthermore, the analysis of the solid product showed that the addition of goethite can fix part of CO2 by the formation of siderite.

  2. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. (United States)

    Arun, Jayaseelan; Shreekanth, Sivaraman Jayachandran; Sahana, Ravishankar; Raghavi, Meenakshi Sundaram; Gopinath, Kannappan Panchamoorthy; Gnanaprakash, Dhakshinamoorthy


    In this study, liquefaction of Chlorella vulgaris biomass grown in photo-bioreactor using wastewater as source of nutrition was studied and influence of process parameters on the yield of bio-oil was analysed. Different biomass to water ratio (5g/200ml, 10g/200ml, 15g/200ml, and 20g/200ml) was taken and bio-oil yield at various temperatures ranging from 220 to 340°C was studied. Catalyst loading of the range 2.5-8%wt of NaOH was also studied to analyse the influence of catalyst concentration on bio-oil yield. Obtained bio-oil was characterized using Gas Chromatography Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Results showed that maximum bio-oil yield of 26.67%wt was observed at operating conditions of 300°C, 15g/200ml biomass load and 2.5%wt of NaOH at 60min holding time. Fatty acids and other high carbon compounds were detected in the bio-oil obtained through liquefaction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A preferential flow leaching index

    NARCIS (Netherlands)

    McGrath, G.S.; Hinz, C.; Sivapalan, M.


    The experimental evidence suggests that for many chemicals surface runoff and rapid preferential flow through the shallow unsaturated zone are significant pathways for transport to streams and groundwater. The signature of this is the episodic and pulsed leaching of these chemicals. The driver for

  4. Hydrothermal carbonization of food waste for nutrient recovery and reuse. (United States)

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D


    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Early Archaean hydrothermal systems (United States)

    de Vries, S. T.; Nijman, W.


    Although many people have written about hydrothermal systems in the early Earth, little real evidence is available. New data from the Barberton greenstone belt (South Africa) and greenstone belts of the East Pilbara (Western Australia), provide proof of the existence and nature of hydrothermal systems in the Early Archaean (around 3.4 Ga). Detailed field relationships between vein systems, host rock and overlying sediments are combined with data from fluid inclusions studies on quartz fills in the sediments. An intimate relationship between chert veins and the overlying sediments has been established (the veins are syn-sedimentary). The salinity and temperature of the fluids in the inclusions shows that these are of hydrothermal origin. Similar types of hydrothermal systems, of approximately the same age, have been found at different locations; in the Barberton greenstone belt and at various locations in the East Pilbara. The setting of these hydrothermal systems is not always identical however. Although a felsic substratum is more common, in the North Pole area (Pilbara) the hydrothermal systems rise from a basaltic substratum. In the Barberton greenstone belt, the systems are closely related to shallow intrusive (felsic) bodies. The study of these ancient hydrothermal systems forms an important framework for studies of early life on Earth. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Foundation Dr. Schürmannfonds.

  6. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs (United States)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf


    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  7. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta


    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  8. Transformation of Selenium-Containing Phases in Copper Anode Slimes During Leaching (United States)

    Li, Xue Jiao; Yang, Hong Ying; Jin, Zhe Nan; Chen, Guo Bao; Tong, Lin Lin


    The transformation of selenium-containing phases in copper anode slimes during the leaching process was investigated based on the Eh-pH diagram, leaching efficiencies of metals, and characterization of the residues produced during leaching. The leaching efficiency of selenium increases slowly to 17.7% in the first 50 min and then more rapidly to 98.3% in the next 110 min. The Eh-pH diagram indicates that elemental selenium is an intermediate product of the oxidation of selenide to selenite. The x-ray powder diffraction data and scanning electron microscopy-energy-dispersive x-ray spectroscopy data demonstrate that selenium leaching can be divided into three stages. Ag-Cu selenide first transforms into silver selenide and then converts to elemental selenium. Finally, elemental selenium is dissolved as selenite. The intermediate product, elemental selenium, is the main reason for the slow initial leaching rate of selenium.

  9. Hydrothermal Conditions and the Origin of Cellular Life. (United States)

    Deamer, David W; Georgiou, Christos D


    The conditions and properties of hydrothermal vents and hydrothermal fields are compared in terms of their ability to support processes related to the origin of life. The two sites can be considered as alternative hypotheses, and from this comparison we propose a series of experimental tests to distinguish between them, focusing on those that involve concentration of solutes, self-assembly of membranous compartments, and synthesis of polymers. Key Word: Hydrothermal systems.

  10. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Butera, Stefania; Kosson, D.S.


    , due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system...... boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic......Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis...

  11. Fenton-like oxidation of azo dye using mesoporous Fe/TiO2 prepared by microwave-assisted hydrothermal process

    Directory of Open Access Journals (Sweden)

    Nešić Jelena


    Full Text Available Fe-doped TiO2 photocatalysts with different content of Fe (0.5, 1.6, 3.4 and 6.4% were synthesized by the microwave-hydrothermal method and characterized by XRD, N2 physisorption at 77 K and DRS. The characterization showed that Fe ions are highly dispersed in the TiO2 lattice. It was found that all the synthesized catalysts had the mesoporous structure and Fe doping increased BET surface areas. The UV-Vis study showed that the absorption spectra shifted to a longer wavelength (red shift with an increase in the dopant concentration. The photocatalytic activity of the samples was evaluated by the decolorization of textile dye Reactive Blue 52 (RB in aqueous solutions under sun-like radiation in the presence of H2O2 (heterogeneous photo-Fenton process. The photocatalyst with 3.4% Fe was found to be the most efficient with H2O2. The effect of the initial pH of the dye solution was assessed and dissolution of iron ions was studied, as a function of pH value. It was concluded that decolorization is more favorable in acidic pH and when pH >4, the releasing of Fe ions in solution was negligible. Photocatalytic degradation of 4-chlorophenol (4-CP was investigated under the optimal conditions and proved that our catalyst was capable to degrade colorless pollutants. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172035

  12. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.


    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  13. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers (United States)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko


    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  14. Leaching kinetics of gibbsitic bauxite with sodium hydroxide

    Directory of Open Access Journals (Sweden)

    Abdel-Aal El-Sayed A.


    Full Text Available In this paper the results of a leaching kinetics study of bauxite ore with sodium hydroxide are presented. The effect of ore particle size, sodium hydroxide concentration and reaction temperature on the Al2O3 extraction rate was determined. The results obtained showed that 99% of Al2O3 was leached out using −200+270 mesh ore particle size at a reaction temperature of 105 °C for 60 min reaction time with 250 g/L NaOH. The solid-to-liquid ratio was maintained constant at 1:20. The results indicated that leaching of bauxite is the rate controlling process. The activation energy was determined to be 46.04 kJ/mole, which was characteristic for a chemically controlled process.

  15. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau (United States)

    Wang, Qingfeng; Jin, Huijun; Zhang, Tingjun; Cao, Bin; Peng, Xiaoqing; Wang, Kang; Xiao, Xiongxin; Guo, Hong; Mu, Cuicui; Li, Lili


    Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600 m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650-3700 m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77 cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60 cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14 m of the underlying permafrost were all significantly lower near the LLP on the northern slope of

  16. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo


    down to 14 m, with VpCO2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO2 reservoir. With the 2D profiles we can image up to around 70 m depth: the first 30 m are characterized by features and velocities comparable to those of the 3D profiles, deeper, between 40-60 m depth, were found two low velocity anomalies, that probably indicate a preferential via for fluid degassing. These features are expression of an area located between the Fangaia, which is water saturated and replenished from deep aquifers, and the main fumaroles that are the superficial relief of deep rising CO2 flux. So, the changes in the outgassing rate greatly affects the shallow hydrothermal system, which can be used as a near-surface "mirror" of fluid migration processes occurring at greater depths.

  17. Modeller subjectivity in estimating pesticide parameters for leaching models using the same laboratory data set

    NARCIS (Netherlands)

    Boesten, J.J.T.I.


    User-dependent subjectivity in the process of testing pesticide leaching models is relevant because it may result in wrong interpretation of model tests. About 20 modellers used the same data set to test pesticide leaching models (one or two models per modeller). The data set included laboratory

  18. PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.; Daniel, Richard C.; Su, Yin-Fong; Geeting, John GH; Golovich, Elizabeth C.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Smith, Dennese M.; Valdez, Patrick LJ; Yokuda, Satoru T.; Young, Joan K.


    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  19. Increasing flux rate to shorten leaching period and ramp-up production (United States)

    Ngantung, Billy; Agustin, Riska; Ravi'i


    J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.

  20. Observing phthalate leaching from plasticized polymer films at the molecular level. (United States)

    Zhang, Xiaoxian; Chen, Zhan


    Phthalates, the most widely used plasticizers in poly(vinyl chloride) (PVC), have been extensively studied. In this paper, a highly sensitive, easy, and effective method was developed to examine short-term phthalate leaching from PVC/phthalate films at the molecular level using sum frequency generation vibrational spectroscopy (SFG). Combining SFG and Fourier transform infrared spectroscopy (FTIR), surface and bulk molecular structures of PVC/phthalate films were also comprehensively evaluated during the phthalate leaching process under various environments. The leaching processes of two phthalates, diethyl phthalate (DEP) and dibutyl phthalate (DBP), from the PVC/phthalate films with various weight ratios were studied. Oxygen plasma was applied to treat the PVC/phthalate film surfaces to verify its efficacy on preventing/reducing phthalate leaching from PVC. Our results show that DBP is more stable than DEP in PVC/phthalate films. Even so, DBP molecules were still found to very slowly leach to the environment from PVC at 30 °C, at a rate much slower than DEP. Also, the bulk DBP content substantially influences the DBP leaching. Higher DBP bulk concentration yields less stable DBP molecules in the PVC matrix, allowing molecules to leach from the polymer film more easily. Additionally, DBP leaching is very sensitive to temperature changes; higher temperature can strongly enhance the leaching process. For most cases, the oxygen plasma treatment can effectively prevent phthalate leaching from PVC films (e.g., for samples with low bulk concentrations of DBP-5 and 30 wt %). It is also capable of reducing phthalate leaching from high DBP bulk concentration PVC samples (e.g., 70 wt % DBP in PVC/DBP mixture). This research develops a highly sensitive method to detect chemicals at the molecular level as well as provides surface and bulk molecular structural changes. The method developed here is general and can be applied to detect small amounts of chemical

  1. Microwave assisted leaching and electrochemical recovery of copper from printed circuit boards of computer waste

    Directory of Open Access Journals (Sweden)

    Ivănuş R.C.


    Full Text Available Due to the rapid technological progress, the replacement of electronic equipment is very often necessary, leading to huge amounts that end up as waste. In addition, waste electrical and electronic equipment (WEEE contains metals of high commercial value and others that are supposed to be hazardous for the environment. Consequently, WEEE could be considered as a significant source for recovery of nonferrous metals. Among these wastes, computers appear to be distinctive, as far as further exploitation is concerned. The most ″useful″ parts of the computers are the printed circuit boards that contain many metals of interest. A study on microwave assisted electronic scrap (printed circuit boards of computer waste – PCBs leaching was carried out with a microwave hydrothermal reactor. The leaching was conducted with thick slurries (50-100 g/L. The leaching media is a mixed solution of CuCl2 and NaCl. Preliminary electrolysis from leaching solution has investigated the feasibility of electrodeposition of copper. The results were discussed and compared with the conventional leaching method and demonstrated the potential for selective extraction of copper from PCBs.

  2. Microwave assisted leaching and electrochemical recovery of copper from printed circuit boards of computer waste (United States)

    Ivǎnuş, R. C.; ǎnuş, D., IV; Cǎlmuc, F.


    Due to the rapid technological progress, the replacement of electronic equipment is very often necessary, leading to huge amounts that end up as waste. In addition, waste electrical and electronic equipment (WEEE) contains metals of high commercial value and others that are supposed to be hazardous for the environment. Consequently, WEEE could be considered as a significant source for recovery of nonferrous metals. Among these wastes, computers appear to be distinctive, as far as further exploitation is concerned. The most ″useful″ parts of the computers are the printed circuit boards that contain many metals of interest. A study on microwave assisted electronic scrap (printed circuit boards of computer waste - PCBs) leaching was carried out with a microwave hydrothermal reactor. The leaching was conducted with thick slurries (50-100 g/L). The leaching media is a mixed solution of CuCl2 and NaCl. Preliminary electrolysis from leaching solution has investigated the feasibility of electrodeposition of copper. The results were discussed and compared with the conventional leaching method and demonstrated the potential for selective extraction of copper from PCBs.

  3. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe


    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li2CO3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H2SO4, and the cathode material LiNi1/3Co1/3Mn1/3O2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi1/3Co1/3Mn1/3O2 is miro spherical morphology without any impurities, which can meet with LiNi1/3Co1/3Mn1/3O2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Imouraren - uranium leaching tests and specificities with analcites

    Energy Technology Data Exchange (ETDEWEB)

    Wattinne-Morice, A., E-mail: [AREVA - Tour Areva, Paris la Defense (France); Belieres, M. [AREVA - Service d' Etudes de Procede et Analyses (SEPA), Bessines sur Gartempe (France)


    Imouraren is a sedimentary uranium deposit (total > 150 000 tU, average U ~ 0.08 %), located in Niger (~ 100 km from Agadez). Uranium mineralization is trapped in sandstones and is widely oxidized (uranotyle, metatuyamunite), but a part remains reduced (pitchblende, uraninite). The sandstones have a peculiar mineralogical assemblage (analcite partly chloritized) which can affect uranium recovery. Several acid heap leaching tests have been completed to determine the most suitable process parameters. Microscopic studies and XRD analysis performed on fresh ore and on leached residue highlight the complex behavior of uranium and the associated mineralogical families during the tests. (author)

  5. Leaching Behavior of Al, Co and W from the Al-Alloying Treated WC-Co Tool as a New Recycling Process for WC Hard Scrap

    Directory of Open Access Journals (Sweden)

    Jaeryeong Lee


    Full Text Available The Al-alloying treated tungsten carbide (WC-Co tool was subjected to grinding using a jaw crusher and planetary mill followed by three wet chemical treatment steps to establish an effective recycling process for WC scraps, especially those generated as bulky and hard scrap. This alloyed WC tool was readily ground to a powder of 1 mm or less and divided into two portions that were 150 µm in size. The wet chemical treatments enabled us to recover W to 69.44% from the under-sized 150 µm and also obtain WC powders from the over-sized 150 µm with a high purity of 98.9% or more.

  6. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS (United States)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges


    The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite "lava flows" formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive

  7. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Directory of Open Access Journals (Sweden)

    Toni Gutknecht


    Full Text Available Metal oxide varistors (MOVs are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  8. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis. (United States)

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Ekberg, Christian; Steenari, Britt-Marie


    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  9. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada (United States)

    Lode, Stefanie; Piercey, Stephen J.; Layne, Graham D.; Piercey, Glenn; Cloutier, Jonathan


    Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from -38.8 to +14.4 ‰, with an average of ˜ -12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing

  10. A Simulator for Copper Ore Leaching

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.


    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  11. Method of operating a heap leach for recovering uranium and vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, S.; Skiles, D.O.; Hansen, D.J.


    A method is described of operating a heap leach for leaching uranium and vanadium from a uranium-vanadium bearing ore formed into a relatively tall heap from a mixture of coarsely crushed ore and concentrated sulfuric acid. It consists of leaching the heap in sections in multiple cycles in accordance with a leaching operation comprising the steps o: (a) applying a dilute solution of between 1 to 5% sulfuric acid to the first section at a predetermined average flow rate over a predetermined time; (b) directing the leach liquor output into a product liquor sump for direct delivery to a processing plant for extracting uranium values; (c) applying a stronger acid solution of between 10 to 20% H/sub 2/SO/sub 4/ to the first section upon completion of step (a); (d) directing the leach liquor output into a high grade recycle pond; (e) recycling the leach liquor through the first section a predetermined multiple number of times; (f) directing the output leach liquor into the product liquor sump for direct delivery to the processing plant; (g) applying a fresh dilute acid solution as defined in step (a) to each section in a timed sequence upon substantial completion of the dilute acid application to the preceding section; (h) directing the leach liquor output of each section from step (g) to the product liquor jumps; (i) applying acid solution to each section in succession following the completion of step (g) in each corresponding section respectively; (j) directing the output leach liquor (i) into the high grade recycle pond; and (k) recycling the leach liquor (j) through each section a predetermined multiple number of times with the last cycle passed through the next section in succession before being sent to the product liquor sump in accordance with step (f).

  12. Caustic Leaching of Hanford Tank S-110 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Carson, Katharine J.; Darnell, Lori P.; Greenwood, Lawrence R.; Hoopes, Francis V.; Sell, Richard L.; Sinkov, Sergey I.; Soderquist, Chuck Z.; Urie, Michael W.; Wagner, John J.


    This report describes the Hanford Tank S-110 sludge caustic leaching test conducted in FY 2001 at the Pacific Northwest National Laboratory. The data presented here can be used to develop the baseline and alternative flowsheets for pretreating Hanford tank sludge. The U.S. Department of Energy funded the work through the Efficient Separations and Processing Crosscutting Program (ESP; EM﷓50).

  13. Rapid total sulphur reduction in coal samples using various dilute alkaline leaching reagents under microwave heating: preventing sulphur emissions during coal processing. (United States)

    Mketo, Nomvano; Nomngongo, Philiswa Nosizo; Ngila, Jane Catherine


    Currently in South Africa, online flue gas desulphurisation (FGD) is being utilized as one of the most effective methods for total sulphur reduction in coal samples during the combustion process. However, the main disadvantage associated with FGD is the formation of its by-products (FGD gypsum). The latter is mostly formed in low grade quality, thereby bringing secondary pollution problems and extra disposal costs. Therefore, the current study describes the development of total sulphur extraction in coal under microwave heating using different dilute alkaline solutions such as NaOH, NaOH-H2O2, NH4OH, and NH4OH-H2O2. The experimental conditions were as follows: 150 °C, 5 min and 10% (m/v or v/v) for temperature, extraction time and reagent concentration, respectively. The most effective alkaline reagent for coal desulphurisation was observed to be NaOH-H2O2 with total sulphur reduction of 55% (from the inductively coupled plasma-optical emission spectrometry (ICP-OES) results). The NaOH-H2O2 reagent also showed significant morphological changes in coal as observed from the SEM images and effective demineralisation as revealed by the powder X-ray diffractometer (P-XRD) results. Additionally, desulphurisation results obtained from the developed microwave-assisted dilute alkaline extraction (MW-ADAE) method were quite comparable with the published work. The proposed total sulphur reduction method is advantageous as compared to some of the literature reported coal desulphurisation methods as it requires a short period (5 min) of time to reach its completion. Additionally, the proposed method shows excellent reproducibility (% RSD from 0.5 to 1); therefore, it can be utilized for routine analysis. Graphical abstract ᅟ.

  14. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. (United States)

    Jing-ying, Li; Xiu-li, Xu; Wen-quan, Liu


    The present communication deals with the leaching of gold and silver from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a thiourea leaching process as an alternative to the conventional and toxic cyanide leaching of gold. The influence of particle size, thiourea and Fe(3+) concentrations and temperature on the leaching of gold and silver from waste mobile phones was investigated. Gold extraction was found to be enhanced in a PCBs particle size of 100 mesh with the solutions containing 24 g/L thiourea and Fe(3+) concentration of 0.6% under the room temperature. In this case, about 90% of gold and 50% of silver were leached by the reaction of 2h. The obtained data will be useful for the development of processes for the recycling of gold and silver from the PCBs of waste mobile phones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano


    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  16. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham


    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  17. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo


    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  18. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching (United States)

    Zhang, Guo-quan; Zhang, Ting-an; Lü, Guo-zhi; Zhang, Ying; Liu, Yan; Liu, Zhuo-lin


    To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vanadium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L-1, a leaching temperature of 140°C, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g-1, and oxygen pressure at 0.2 MPa, the leaching rate of vanadium reaches 97.69%.

  19. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide. (United States)

    Jadhav, Umesh; Su, C; Hocheng, Hong


    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H2O2) was used to leach the metals from CPCB piece. The influence of system variables such as H2O2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H2O2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H2O2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  20. The Lassen hydrothermal system (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.


    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  1. Sequential Leaching of Chromium Contaminated Sediments - A Study Characterizing Natural Attenuation (United States)

    Musa, D.; Ding, M.; Beroff, S.; Rearick, M.; Perkins, G.; WoldeGabriel, G. W.; Ware, D.; Harris, R.; Kluk, E.; Katzman, D.; Reimus, P. W.; Heikoop, J. M.


    Natural attenuation is an important process in slowing down the transport of hexavalent chromium, Cr(VI), an anthropogenic environmental contaminant, either by adsorption of Cr(VI) to sediments, or by reduction to nontoxic trivalent chromium, Cr(III). The capacity and mechanism of attenuation is explored in this sequential leaching study of different particle size fractions of chromium contaminated sediments and similar uncontaminated sediments from the regional aquifer near Los Alamos, New Mexico. Using this leaching protocol each sediment sample is split in two: one half is leached three times using a 0.1 M sodium bicarbonate/carbonate solution, while the second half is leached three times using a 0.01 M nitric acid, followed by two consecutively increasing magnitudes of nitric acid concentrations. Based on the amphoteric nature of chromium, alkaline leaching is used to establish the amount of Cr(VI) sorbed on the sediment, whereas acid leaching is used to establish the amount of Cr(III). The weak acid is predicted to release the attenuated anthropogenic Cr(III), without affecting Cr-bearing minerals. The sequential, stronger, acid is anticipated to leach Cr(III)-incorporated in the minerals. The efficiency and validation of the sequential leaching method is assessed by comparing the leaching behavior of bentonite and biotite samples, with and without loaded Cr(VI). A 97% chromium mass balance of leached Cr(VI)-loaded bentonite and biotite proves the viability of this method for further use on leaching contaminated sediments. By comparing contaminated and uncontaminated sediment leachate results, of chromium and other major and trace elements, the signature of anthropogenic chromium is determined. Further mineralogical characterization of the sediments provides a quantitative measure of the natural attenuation capacity for chromium. Understanding these results is pertinent in delineating the optimal procedure for the remediation of Cr(VI) in the regional aquifer

  2. Hydrothermal energy development projects (United States)

    Dibello, E. G.

    The development of hydrothermal energy for direct heat applications is being accelerated by twenty-two demonstration projects that are funded on a cost sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of hydrothermal resources in the United States. Engineering and economic data for the projects are summarized. The data and experience being generated by these projects will serve as an important basis for future direct heat development.

  3. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C


    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  4. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.


    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  5. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    Directory of Open Access Journals (Sweden)

    Jacques Livage


    Full Text Available A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment.

  6. Estimated water requirements for gold heap-leach operations (United States)

    Bleiwas, Donald I.


    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  7. [Advances in studies on accumulation and leaching of nitrate in farming soil]. (United States)

    Zhang, Qingzhong; Chen, Xin; Shen, Shanmin


    Nitrate leaching in farming soil is the main reason resulting in ground water pollution of nitrate. The main factors, which can affect nitrate accumulation and leaching greatly, include fertilization, precipitation, irrigation, soil characteristics, and cultivation system. Superfluous nitrogen in soil caused either by using chemical fertilizer and manure solely or compost will result in nitrate accumulation. Cultivation and plow systems also can affect the process of nitrate accumulating and leaching. Down flows due to irrigation or precipitation are the necessary condition and carrier for transference and leaching of accumulated nitrate in soil. Great pores are the main channels for down flows. These factors always work corporately. Mathematical model, which has been developed quickly and used widely, may be a good method to study and predict nitrate leaching in farming land.

  8. Kinetics of Hydrochloric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag (United States)

    Zheng, Fuqiang; Chen, Feng; Guo, Yufeng; Jiang, Tao; Travyanov, Andrew Yakovlevich; Qiu, Guanzhou


    The hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag was investigated under different experimental conditions. The results indicate that particle size, hydrochloric acid concentration and reaction temperature were of significance to the leaching kinetics. Specifically, reaction temperature was the most important factor followed by hydrochloric acid concentration and particle size. The shrinking core model was used to describe the leaching process which was controlled by surface chemical reaction. The kinetic equation was obtained and the activation energy was found to be 43.16 kJ/mol. Iron and calcium species were almost completely dissolved in the acid when the extraction degree of titanium reached 99.84%. MgO (19.34 wt.%) and Al2O3 (32.45 wt.%) in the spinel were still in the leaching residue and SiO2 (43.53 wt.%) in the form of quartz remained in the leaching residue.

  9. Leaching of manganese from electrolytic manganese residue by electro-reduction. (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan


    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  10. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana


    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  11. Ultrasonic transducer for the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bornmann, Peter; Hemsel, Tobias [University of Paderborn, Paderborn (Germany); Littmann, Walter [ATHENA Technologie Beratung GmbH, Paderborn (Germany); Ageba, Ryo; Kadota, Yoishi; Morita, Takeshi [University of Tokyo, Kashiwa (Japan)


    Direct ultrasound irradiation is advantageous for increasing the efficiency of the hydrothermal method, which can be used to produce piezoelectric thin films and lead-free piezoelectric ceramics. To apply ultrasound directly to the process, transducer prototypes were developed regarding the boundary conditions of the hydrothermal method. LiNbO{sub 3} and PIC 181 were proven to be feasible materials for high-temperature-resistant transducers ({>=} 200 .deg. C). The resistance of the transducer's horn against a corrosive mineralizer was achieved by using Hastelloy C-22. The efficiency of the ultrasound-assisted hydrothermal method depends on the generated sound field.The impedance and the sound field measurements have shown that the sound field depends on the filling level and on the position and design of the transducer.


    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.


    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  13. Ultrasound effects on zinc recovery from EAF dust by sulfuric acid leaching (United States)

    Brunelli, K.; Dabalà, M.


    In this work, an ultrasound-assisted leaching process was studied for the recovery of zinc from electric arc furnace (EAF) dust, in which zinc was mainly present in the form of franklinite (60%). Hydrometallurgy is emerging as a preferred process for the recovery of a variety of metals, and the use of ultrasound could offer advantages over the conventional leaching process, especially for the dissolution of franklinite. Franklinite is a refractory phase that is difficult to leach and represents the main obstacle in conventional hydrometallurgy processing. Atmospheric leaching with different sulfuric acid concentrations (0.2-2.0 M) at two temperatures (323 and 353 K) was performed. The tests were conducted using both conventional and ultrasound-assisted leaching. After the leaching tests, the solid residues were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, whereas the leach liquor was analyzed by inductively coupled plasma spectroscopy (ICP). The use of ultrasound facilitated the dissolution of franklinite at low acid concentrations and resulted in a greater zinc recovery under all of the investigated operating conditions.

  14. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric


    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  15. Leaching of basic oxygen furnace sludge with sulphuric acid

    Directory of Open Access Journals (Sweden)

    Andrea Miškufová


    Full Text Available In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressureand temperatures up to 100 °C is investigated on a laboratory scale. The influence of sulphuric acid concentration, temperature, timeand liquid to solid ratio (L:S on the leaching process was studied. The main aim of this study was to determine optimal conditions whenthe maximum amount of zinc passes into the solution.

  16. Phosphorus leaching in a soil textural gradient

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton


    exceeded the in situ leaching. However, the two application techniques did not vary significantly. In a sandy and a clay loam preferential flow paths within the soil columns caused high P leaching when slurry was applied at the soil surface. The effect increased with increasing clay content. Injection...

  17. Study on Leaching of Hexavalent Chromium from Hardened Concretes Using Tank Leaching Test


    Takahashi, Shigeru; Sakai, Etsuo; Sugiyama, Takafumi


    Tank leaching tests were carried out to investigate the behavior of leaching trace elements from monolith samples. This study consists of two series, and the trace element used was hexavalent chromium. In Series I, the influence of the leachant/surface area of the specimen (L/S ratio) on the leaching amount was investigated. The leaching amount was found to increase with the amount of worked water. This shows that any L/S ratio can be selected in the tank leaching test. In Series II, th...

  18. Ultrasonic-assisted hydrothermal synthesis and catalytic behavior of a novel SAPO-34/Clinoptilolite nanocomposite catalyst for high propylene demand in MTO process (United States)

    Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa


    SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.

  19. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.


    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  20. Bypass flow and its role in leaching of raised beds under different land use types on an acid sulphate soil.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Booltink, H.W.G.; Mensvoort, van M.E.F.; Bouma, J.


    A better understanding of leaching processes in raised beds is useful in assessing management options for acid sulphate soils. Field and laboratory studies were carried out to quantify the effects of soil physical properties and bypass flow on leaching processes of new, 1-year-old and 2-year-old

  1. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    National Research Council Canada - National Science Library

    Anđelković Darko H; Anđelković Tatjana D; Nikolić Ružica S; Purenović Milovan M; Blagojević Srđan D; Bojić Aleksandar Lj; Ristić Milica M


    Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction...

  2. Leaching behavior of coal combustion products and the environmental implication in road construction. (United States)


    Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...

  3. Dynamic leaching test of personal computer components

    Energy Technology Data Exchange (ETDEWEB)

    Li Yadong, E-mail: [Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217 (United States); Richardson, Jay B.; Niu Xiaojun; Jackson, Ollie J.; Laster, Jeremy D.; Walker, Aaron K. [Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217 (United States)


    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.

  4. Extracting Vanadium from Stone Coal by a Cyclic Alkaline Leaching Method (United States)

    Hu, Kailong; Liu, Xuheng; Li, Qinggang


    In order to achieve an efficient and economical approach on extracting vanadium from stone coal, a cyclic alkaline leaching method was studied in this work. The effects of operating parameters, including the NaOH concentration, temperature, reaction time, and liquid-solid ratio, on vanadium leaching efficiency were investigated. Also, we studied the influence of caustic soda dosage on the cyclic leaching process as well as the effect of increasing ionic strength in leachates and wash water. The results show that this method achieved a 51 pct decrease of the dosage of caustic soda under the optimized conditions compared with the single-step alkaline leaching. The average leaching yield of vanadium reached 82.28 pct. The leachates and wash water in each leaching cycle were utilized for the next leaching cycle, achieving the recycling of alkali as well as waste water. During the cyclic process, the volume of water was not increased, which markedly reduces the discharge of waste water and is also beneficial in terms of cost reduction.

  5. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin


    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  6. Cross-current leaching of indium from end-of-life LCD panels. (United States)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca


    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. (United States)

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Ma, Yinfa


    concentration between washing procedure involved and no washing procedure involved (AC) was larger than zero for samples A to G. This interesting result showed that higher antimony concentration was detected in experiments with no washing procedures compared with those experiments with washing procedures. Our study results indicate that partial antimony leaching from PET bottles comes from contaminations on the surface of plastic during manufacturing process, while major antimony leaching comes from conditional changes. The results revealed that heating and microwaving enhance antimony leaching significantly in PET plastic bottles. Plastic bottle manufacturers should consider the contaminations during manufacturing process and washing bottles before first use was strongly recommended to remove those contaminants.

  8. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yi [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Zhang, Hua, E-mail: [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Phoungthong, Khamphe [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Shi, Dong-Xiao; Shen, Wen-Hui [Changzhou Domestic Waste Treatment Center, Changzhou 213000 (China); Shao, Li-Ming [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China); He, Pin-Jing, E-mail: [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China)


    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  9. Leaching behavior and immobilization of heavy metals in solidified/stabilized products. (United States)

    Malviya, Rachana; Chaudhary, Rubina


    Solidification/stabilization (S/S) of hazardous sludge from steel processing plant has been studied. Mechanical strength and leaching behavior test of solidified/stabilized product was performed. Mechanical strength decreases with increase in waste content. Pb, Zn, Cu, Fe and Mn could be considerably immobilized by the solidification/stabilization process. The elements least immobilized were Na, K, and Cl. Leaching of heavy metals in the S/S matrix can be considered as pH dependent and corresponding metal hydroxide solubility controlled process. Geochemical modeling was performed for the prediction of speciation. On the basis of test results, mobility and mechanism of leaching was assessed. Dominant leaching mechanism was surface wash off in the initial stages followed by diffusion for Pb, Zn, Cu, Fe and Mn. Diffusion coefficient was above 11.5 indicating low mobility in the cement matrix.

  10. Phosphorus leaching from biosolids-amended sandy soils. (United States)

    Elliott, H A; O'Connor, G A; Brinton, S


    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils.

  11. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance (United States)

    Feng, Libang; Zhu, Yali; Wang, Jing; Shi, Xueting


    Superhydrophobic surfaces can exhibit anti-corrosion, anti-fogging, and self-cleaning performance due to their high water repellence. It is significant for industrial fabricating of superhydrophobic surface with a simple and environment-friendly method. Herein, a facile, environment-friendly, and cost-effective one-step hydrothermal route is proposed to fabricate the superhydrophobic surface on magnesium alloy. The as-prepared superhydrophobic magnesium alloy surface presents the rough and hierarchical micro/nano- structure grafted with long hydrophobic alkyl chains via covalent bonds. Both electrochemical corrosion test and long term immersion in 3.5 wt.% of NaCl solution demonstrate that the superhydrophobic surface greatly improves the corrosion resistance of magnesium alloy. Meanwhile, the superhydrophobic magnesium alloy exhibits excellent self-cleaning performance. It is supposed that this facile method and remarkable properties of resultant superhydrophobic magnesium alloys have a promising future in expanding the application of magnesium alloys.

  12. Morphology controlled hydrothermal synthesis processes and emission near 2 {mu}m of Tm{sup 3+}-doped Lu{sub 2}O{sub 3}nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Concepcion; Esteban-Betegon, Fatima; Zaldo, Carlos [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz, 3 28049 Cantoblanco, Madrid (Spain)


    Hydrothermal syntheses at 185 C for 24 h yield pure cubic Ia anti 3 nanocrystalline Tm{sup 3+}-doped Lu{sub 2}O{sub 3} materials, whose morphologies are controlled through the conditions of the reaction. Chloride reagents under mild conditions produce rods of {proportional_to}15 {mu}m length x 90 nm diameter size. These nanorods exhibit photoluminescence at {proportional_to}1.95 {mu}m, and fluorescence lifetime {tau} = 976 {mu}s has been measured for {sup 3}F{sub 4} in the 2% mol Tm{sup 3+}-doped Lu{sub 2}O{sub 3} sample (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study. (United States)

    Di Napoli, R.; Federico, C.; Aiuppa, A.; D'Antonio, M.; Valenza, M.


    Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path modeling approach of Helgeson and co-workers can also be applied to quantitative investigation of reactions in high T-P environments. Ischia volcano, being the site of diffuse hydrothermal circulation, is an ideal place where to test the application of reaction-path modeling. Since its last eruption in 1302 AD, Ischia has shown a variety of hydrothermal features, including fumarolic emissions, diffuse soil degassing and hot waters discharges. These are the superficial manifestation of an intense hydrothermal circulation at depth. A recent work has shown the existence of several superposed aquifers; the shallowest (near to boiling) feeds the numerous surface thermal discharges, and is recharged by both superficial waters and deeper and hotter (150-260°C) hydrothermal reservoir fluids. Here, we use reaction path modelling (performed by using the code EQ3/6) to quantitatively constrain the compositional evolution of Ischia thermal fluids during their hydrothermal flow. Simulations suggest that compositions of Ischia groundwaters are buffered by interactions between reservoir rocks and recharge waters (meteoric fluids variably mixed - from 2 to 80% - with seawater) at shallow aquifer conditions. A CO2 rich gaseous phase is also involved in the interaction processes (fCO2 = 0.4-0.6 bar

  14. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.


    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  15. EFRT M-12 Issue Resolution: Caustic-Leach Rate Constants from PEP and Laboratory-Scale Tests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.


    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. The work described in this report addresses caustic leaching under WTP conditions, based on tests performed with a Hanford waste simulant. Because gibbsite leaching kinetics are rapid (gibbsite is expected to be dissolved by the time the final leach temperature is reached), boehmite leach kinetics are the main focus of the caustic-leach tests. The tests were completed at the laboratory-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. Two laboratory-scale caustic-leach tests were performed for each of the PEP runs. For each PEP run, unleached slurry was taken from the PEP caustic-leach vessel for one batch and used as feed for both of the corresponding laboratory-scale tests.

  16. Leaching of gold, silver and accompanying metals from circuit boards (PCBs waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová


    Full Text Available Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements.The presented leaching strategy for Au-Ag contained in circuit boards (PCBs aims at gaining gold and silver in the metallic form.Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastesrepresents a practical, economic and at the same time an ecological solution. The ammonium thiosulphate based leaching of gold and silverfrom PCBs waste, using crushing as a pretreatment, was investigated. It was possible to achieve 98 % gold and 93 % silver recovery within48 hours of ammonium thiosulphate leaching. This type of leaching is a better leaching procedure for recovery of gold and silver from PCBwaste than the classical toxic cyanide leaching. 84 % Cu, 82 % Fe, 77 % Al, 76 % Zn, 70 % Ni, 90 % Pd, 88 % Pb and 83 % Sn recovery ofthe accompanying metals was achieved, using sulphuric acid with hydrogen peroxide, sodium chloride and aqua regia. A four steps leachingprocess gave a very satisfactory yield and a more rapid kinetics for all observed metals solubilization than other technologies.

  17. Leaching of wood ash - Laboratory and field studies; Lakning av vedaska - Laboratorie- och faeltstudier

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Erik


    High forest production leads to diminishing amounts of base cations and micro nutrients in forest soils. This is due to uptake in, and harvest of, the trees. Losses can be compensated for by spreading stabilized wood ash on the forest ground, which means recycling of base cations and micro nutrients. Chemical composition of wood ash can easily be described by standard methods in the laboratory. However, this does not include the process of leaching in nature, such as which components and leaching rate for different compounds. During field conditions several factors are added, which are not available in the laboratory. After almost 10 years in the forest soils there still remains large quantities of the original product. Only 10-30 % of the wood ash products and 5 % of the lime product has been leached. In the laboratory study the leached amount was slightly larger, at the most 35 % for wood ash and 20 % for lime. Both studies indicate long time for weathering of the products in forest soils. Slower leaching rate from pellets of wood ash compared to leaching rate from crushed wood ash in the laboratory study is not verified by the field study. This indicates limited possibilities to control rates of leaching in the environment

  18. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.


    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  19. The chemistry of hydrothermal magnetite: a review (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John


    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  20. Mechanochemical pretreatment and thiosulphate leaching of silver from complex sulphide concentrate

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva


    Full Text Available The refractory character of complex ores and concentrates is at present one of the main problems of their metallurgical processing. The research activity in this sphere is aimed at the methods of improving the process of metal extraction from the sulphidic minerals representing the major components of these ores and concentrates.One of the sulphidics components of complex ores is tetrahedrite. It represents a compound of complicated structure containing several metals among which copper, antimony and arsenic prevail. Some deposits are aspecially rich in silver. The Peruvian complex sulphidic concentrate of provenience Casapalca is each from these rich deposits.In this study the physico-chemical transformations and leachability of silver from Peruvian sulphide concentrate mechanochemically activated by ultrafine alkaline milling in the attritor were investigated. The experiments with alkaline leaching of using samples have shown that this hydrometallurgical process represents an effective method to prepare of treated concentrate with physico-chemical means for further leaching process. Ammonium thiosulphate were used as agent for obtain of silver to leaching solution.The leaching of as-received concentrate with the alkaline thiosulphate solution afforded only 6 % Ag into leach. The use of milling in attritor as an innovation method of pretreatment brought about 57% of structure degradation of tetrahedrite as silver-bearing mineral in concentrate as well as to the increase in specific surface area from the original value 0.26 m2g-1 to the maximum value of 16 m2g-1. This pretreatment has been performed in an attritor using the method of experiment design. The physico-chemical changes had influence on the two step process of thiosulphate leaching of silver.The optimum results obtained by mechanochemical pretreatment and subsequent leaching of the concentrate with ammonium thiosulphate were achieved by using milling time 30 min and weight of sample

  1. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi


    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn4+ into Mn2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hubler, Timothy L.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; Lumetta, Gregg J.; MacFarlan, Paul J.; McNamara, Bruce K.; Peterson, Reid A.; Sinkov, Sergey I.; Snow, Lanee A.; Swoboda, Robert G.


    This report describes processing and analysis results of boehmite waste type (Group 5) and insoluble high Cr waste type (Group 6). The sample selection, compositing, subdivision, physical and chemical characterization are described. Extensive batch leach testing was conducted to define kinetics and leach factors of selected analytes as functions of NaOH concentration and temperature. Testing supports issue M-12 resolution for the Waste Treatment Plant.

  3. Sediment Enrichment Ratio and Nutrient Leached by Runoff and Soil Ero


    Oteng Haridjaja


    Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leacheds by water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrient leached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiple strip cropping of upland rice or soybean (Glycine max) were planted to improve soil physical characterictic on cacao plantation as a main plant. ...

  4. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite. (United States)

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu


    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F- ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H2O2). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F- ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H2O2. This prevents the Cl- ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Washing and caustic leaching of Hanford Tank C-106 sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.


    This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

  6. Plutonium Speciation in Support of Oxidative-Leaching Demonstration Test

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.


    Bechtel National, Inc. (BNI) is evaluating the plutonium speciation in caustic solutions that reasonably represent the process streams from the oxidative-leaching demonstration test. Battelle—Pacific Northwest Division (PNWD) was contracted to develop a spectrophotometric method to measure plutonium speciation at submicromolar (< 10-6 M) concentrations in alkaline solutions in the presence of chromate and carbonate. Data obtained from the testing will be used to identify the oxidation state of Pu(IV), Pu(V), and Pu(VI) species, which potentially could exist in caustic leachates. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan TSS A-219 to evaluate the speciation of chromium, plutonium, and manganese before and after oxidative leaching. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract MOA: 24590-QL-HC9-WA49-00001.

  7. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić M.


    Full Text Available Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism.

  8. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. (United States)

    Rattanachueskul, Natthanan; Saning, Amonrada; Kaowphong, Sulawan; Chumha, Nawapong; Chuenchom, Laemthong


    Sugarcane bagasse, an agricultural waste, was successfully converted into novel magnetic carbon composites by low temperature hydrothermal carbonization at 230°C for 24h, followed by heat treatment at 400°C for only 1h in air. Effects of NaOH and iron loading on the chemical properties of the composites were studied. In addition, various techniques were employed to investigate the physicochemical properties of the composites. Adsorption kinetics and isotherms were investigated with tetracycline (TC) for the magnetic composites. The magnetic carbon composite exhibited 48.35mg/g maximum adsorption capacity and was highly stable chemically and mechanically, with also good magnetic properties. The adsorption of TC by the magnetic adsorbent was mainly attributed to H-bonds and π-π interactions. The results indicate that waste sugarcane bagasse from the sugar industries can be efficiently transformed to a magnetic adsorbent for TC removal via a facile environmentally friendly method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters

    Directory of Open Access Journals (Sweden)

    Claudia Antonetti


    Full Text Available The hydrothermal conversion of giant reed (Arundo donax L. to furfural (FA and levulinic acid (LA was investigated in the presence of dilute hydrochloric acid. FA and LA yields were improved by univariate optimization of the main reaction parameters: concentration of the acid catalyst, solid/liquid ratio of the reaction mixture, hydrolysis temperature, and reaction time. The catalytic performances were investigated adopting the efficient microwave (MW irradiation, allowing significant energy and time savings. The best FA and LA yields were further confirmed using a traditionally heated autoclave reactor, giving very high results, when compared with the literature. Hydrolysis temperature and time were the main reaction variables to be carefully optimized: FA formation needed milder reaction conditions, while LA more severe ones. The effect of the crop management (e.g., harvest time on FA/LA production was discussed, revealing that harvest time was not a discriminating parameter for the further optimization of both FA and LA production, due to the very high productivity of the giant reed throughout the year. The promising results demonstrate that giant reed represents a very interesting candidate for a very high contemporary production of FA and LA of up to about 70% and 90% of the theoretical yields, respectively.

  10. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling (United States)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.


    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  11. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.


    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  12. Development of mathematic model for coffee decaffeination with leaching method

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo


    Full Text Available A simple mathematic model for caffeine kinetic description during the extraction process (leaching of coffee bean was developed. A non­steady diffusion equation coupled with a macroscopic mass transfer equation for solvent was developed and them solved analytically. The kinetic of caffeine extraction from coffee bean is depend on initial caffeine content, final caffeine content, caffeine content at certain time, mass­transfer coefficient, solvent volume, surface area of coffee beans, process time, radius of coffee bean, leaching rate of caffeine, caffeine diffusivity and a are constan, solvent concentration, activation energy, temperature absolute and gas constant. Caffeine internal mass diffusivity was estimated by fitting the model to an experiment using acetic acid and liquid waste of cocoa beans fermentation. The prediction equation for leaching rate of caffeine in coffee beans has been found. It was found that Dk (m2/sec=1.345x10­7—4.1638x10­7, and kL (m/sec=2.445x10­5—5.551x10­5 by acetic acid as solvent depended on temperature and solvent concentration. The prediction equation for length of time to reduce initial caffeine content to certain concentration in coffee beans has been developed, Caffeine diffusivity (Dk and mass­transfer coefficient (kL was found respectively 1.591x 10­7—2.122x10­7 m2/sec and 4.897x10­5—6.529x10­5 m/sec using liquid waste of cocoa bean fermentation as solvent which depend on temperature and solvent concentration. Key words: Coffee, caffeine, decaffeination, leaching, mathematic model.

  13. Powering hydrothermal activity on Enceladus (United States)

    Tobie, Gabriel; Choblet, Gael; Sotin, Christophe; Behounkova, Marie; Cadek, Ondrej; Postberg, Frank; Soucek, Ondrej


    A series of evidence gathered by the Cassini spacecraft indicates that the intense activity at the South Pole of Saturn's moon Enceladus is related to a subsurface salty water reservoir associated with seafloor hydrothermal activity (Hsu et al. 2015, Waite et al. 2017). The observation of an elevated libration implies that this reservoir is global with a thin ice shell (20-25 km in average (Thomas et al. 2016) and power and a mechanism to focus the release of heat in the SPT, unexplained by previous models. Here we investigate heat generation by tidal friction in the porous core and simulate heat transport by water flow for core porosities consistent with Cassini gravity data (Iess et al. 2014). We demonstrate that, for effective viscosity and permeability values typical of water-saturated terrestrial rock analogues, more than 20 GW can be generated in the core, which can maintain a global liquid ocean and power hydrothermal activity at the seafloor. By performing 3D simulations of water flow in a tidally-heated porous rock matrix, we show that heat is extracted from the core in the form of focused outflows of hot water (> 90 °C) mostly in the polar regions, explaining strongly localized ice shell thinning. Owing to strong dissipation in Saturn (Lainey et al. 2017), we show that circulation of hot waters in the core may last at least 20-25 million years and that 10 to 100% of the oceanic volume may be processed in the core at temperature higher than 90°C on this timescale. Whether this has been sufficient for the emergence of life can be explored by future spacecraft missions (Mitri et al., this meeting; Lunine et al. 2017).

  14. High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching (United States)

    Hu, Ming; Peng, Bing; Chai, Li-yuan; Li, Yan-chun; Peng, Ning; Yuan, Ying-zhen; Chen, Dong


    An integrated process for the recovery of zinc that is generated from zinc hydrometallurgy in residues was developed. A mixture of residue and ferric sulfate was first roasted to transform the various forms of zinc in the residue, such as ferrite, oxide, sulfide, and silicate, into zinc sulfate. Next, water leaching was conducted to extract the zinc while the iron remained in the residue as ferric oxide. The effects of the roasting and leaching parameters on zinc recovery were investigated. A maximum zinc recovery rate of 90.9% was achieved for a mixture with a ferric sulfate/residue weight ratio of 0.05 when roasting at 640°C for 30 min before leaching with water at room temperature for 20 min using a liquid/solid ratio of 10. Only 0.13% of the iron was dissolved in the water. Thus, the leaching liquor could be directly returned for zinc smelting.


    Directory of Open Access Journals (Sweden)

    Rodrigo Rangel Porcaro


    Full Text Available Chalcopyrite leaching by ferric iron is considered a slow process with low copper recovery; a phenomenon ascribed to the passivation of the mineral surface during leaching. Thus, the current study investigated the leaching kinetics of a high purity chalcopyrite sample in the presence of ferric sulfate as oxidant. The effects of the stirring rate, temperature, Eh and Fe3+ concentration on copper extraction were assessed. The leaching data could be described by the shirking core model (SCM for particles of unchanging size and indicated diffusion in the ash layer as the rate-controlling step with a high activation energy (103.9±6.5kJ/mol; likely an outcome of neglecting the effect of particle size distribution (PSD on the kinetics equations. Both the application of the quasi-steady-state assumption to solid-liquid systems and the effect of the particle size distribution on the interpretation of kinetics data are also discussed.

  16. Cross-current leaching of indium from end-of-life LCD panels

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ubaldini, Stefano [Institute of Environmental Geology and Geoengineering IGAG, National Research Council, Via Salaria km 29300, 00015 Montelibretti, Rome (Italy); De Michelis, Ida [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Kopacek, Bernd [ISL Kopacek KG, Beckmanngasse 51, 1140 Wien (Austria); Vegliò, Francesco [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Beolchini, Francesca, E-mail: [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)


    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  17. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.


    Testing Summary Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-2, the slurry is

  18. Extraction of neodymium isotopes from different phases of deep sea sediments by selective leaching

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Patrick; Frank, Norbert; Boehm, Evelyn [Ruprecht-Karls-Universitaet Heidelberg (Germany); Lippold, Joerg [Universitaet Bern (Switzerland); Gutjahr, Marcus [GEOMAR, Helmholtz Centre for Ocean Research, Kiel (Germany)


    The analysis of seawater-derived neodymium (Nd) isotopes in marine sediments provides a unique proxy for deep water provenance, and thus ocean circulation, in particular in the Atlantic. Bottom water Nd is archived in different authigenic phases in the sediment. Extracting this Nd from mineral accretions bound to foraminiferal tests has lately become the preferred since most reliable method. Attempts have also been made to extract the Nd-rich authigenic fraction by leaching it off the bulk sediment and thereby use this proxy with less effort, in the highest possible resolution and in sediments where foraminifera are not sufficiently present. However, often other sedimentary components are also leached in the process and contaminate the extracted Nd. In this project several sediments across the Atlantic were leached in ten consecutive steps with two commonly used acidic solutions. The leachates were analysed on their elemental and Nd isotope compositions, as well as rare earth element (REE) distributions. By graduating the total leaching procedure into smaller stages the results display which processes take place in the course of sediment leaching in the laboratory and thus help to better evaluate the quality of sediment leaches for Nd isotope analysis.

  19. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud for Titanium Recovery

    Directory of Open Access Journals (Sweden)

    Gözde Alkan


    Full Text Available Due to its alkalinity, red mud produced by the Bayer process may affect both the environment and human health. For this reason, its further utilization instead of disposal is of great importance. Numerous methods have already been studied for hydrometallurgical treatment of red mud, especially for the recovery of various metallic components such as iron, aluminum, titanium or rare earth elements. This study focuses on the extraction of titanium from red mud and in particular the mineralogical changes, induced by leaching. Sulfuric acid, hydrochloric acid and their combination have been utilized as leaching agents with the same leaching parameters. It has been determined that sulfuric acid is the best candidate for the red mud treatment in terms of titanium leaching efficiency at the end of 2 h with a value of 67.3%. Moreover, samples from intermediate times of reaction revealed that leaching of Ti exhibit various reaction rates at different times of reaction depending on acid type. In order to explain differences, X-ray Diffraction (XRD, scanning electron microscope (SEM and QEMSCAN techniques were utilized. Beside titanium oxide (TiO2 with available free surface area, a certain amount of the TiO2 was detected as entrapped in Fe dominating oxide. These associations between Ti and Fe phases were used to explain different leaching reaction rates and a reaction mechanism was proposed to open a process window.

  20. Leaching characteristics of CCA-treated wood waste: a UK study. (United States)

    Mercer, T G; Frostick, L E


    CCA-treated wood is expected to increase in the UK waste stream over the next 20-50 years. The potential pollution from this waste has been evaluated through two leaching studies, one based upon batch leaching tests and another based upon a series of lysimeter tests. The aim of the studies was to characterise the behaviour of arsenic (As), chromium (Cr) and copper (Cu) from this wood when applied to soil as a mulch. Results demonstrate that all three elements leach from CCA waste wood, occasionally in concentrations exceeding regulatory thresholds by two to three orders of magnitude. In the lysimeter study, wood mulch monofills and wood mulch in combination with soil were used to monitor the leaching of As, Cr and Cu. Peak concentrations for As, Cr and Cu were 1885 μg/l, 1243 μg/l and 1261 μg/l, respectively. Freshly treated wood leached 11, 23 and 33 times more Cu, Cr and As, respectively than weathered wood. The toxic and mobile species of arsenic (As III, As V) were detected. Leaching in the CCA wood monofill was influenced by rainfall, with higher concentrations of metal(loid)s produced in lower intensity events. As and Cu were mobilised preferentially, with all metals exhibiting similar temporal trends. Retention of leached metal(loid)s was observed in lysimeters containing soil. Leaching processes appear to be favoured by the chipping process, diffusion and weathering. This study has shown that weathered waste wood mulch can cause significant pollution in soil water with potential impacts on both the environment and human health. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Hydrothermal treatment for preparation of europium-lanthanum phosphates and exploration of their fluorescence properties

    Directory of Open Access Journals (Sweden)

    Hiroaki Onoda


    Full Text Available Europium-substituted lanthanum phosphates (Eu; 5 mol% were prepared from lanthanum nitrate, europium nitrate, and sodium polyphosphate solutions by a hydrothermal process at 120 and 160 °C up to 8 h. The obtained phosphates were studied using XRD, IR spectroscopy, TG–DTA, and SEM. UV–vis absorbance and reflectance, as well as fluorescence, were estimated as functional properties of these phosphate materials. We found that samples prepared without hydrothermal treatment were amorphous (as indicated by their XRD patterns, whereas those prepared by a hydrothermal treatment contained peaks corresponding to lanthanum orthophosphate, indicating that the hydrothermal process caused the polyphosphate(s to decompose into orthophosphate(s. The TG–DTA curves of the samples prepared by a hydrothermal treatment were different from those of the samples prepared without hydrothermal treatment. All samples reported herein had no specified shape despite using prolonged hydrothermal treatment times. Although the samples prepared without hydrothermal treatment showed only weak fluorescence peaks, those prepared by a hydrothermal treatment showed strong peaks at 556, 590, 615, and 690 nm. These peaks corresponded to transitions from 5D0 to 7F0, 7F1, 7F2, and 7F4, respectively. Collectively, these results indicate that the hydrothermal treatment is a useful method of obtaining europium-substituted lanthanum phosphates with fluorescence properties.

  2. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen


    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  3. PEP Integrated Test D Run Report Caustic and Oxidative Leaching in UFP-VSL-T02A

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Bredt, Ofelia P.; Burns, Carolyn A.; Kurath, Dean E.; Geeting, John GH; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.


    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes" of the External Flowsheet Review Team (EFRT) issue response plan. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario (Test B and D) has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario (Test A) has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP VSL-00001A and B in the WTP PTF). In Test D, 19M sodium hydroxide (NaOH, caustic) was added to the waste slurry in the UFP VSL T02 vessel after the solids were concentrated to ~20% undissolved solids. The NaOH was added to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by heating to 85°C using direct injection of steam to accelerate the leach process. The main difference of Test D compared to Test B is that the leach temperature is 85°C for 24 hrs as compared to 100°C for 12 hours. The other difference is the Test D simulant had Cr in the

  4. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland (United States)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.


    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  5. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua


    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  6. Stable light isotope biogeochemistry of hydrothermal systems. (United States)

    Des Marais, D J


    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2.

  7. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching (United States)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi


    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  8. Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching (United States)

    Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing


    Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.

  9. Kinetics of Pb and Zn leaching from zinc plant residue by sodium hydroxide

    Directory of Open Access Journals (Sweden)

    Erdem M.


    Full Text Available In the hydrometallurgical zinc production processes, important amount of hazardous solid extraction residue containing unextractable Zn and Pb is generated. Due to increasing demand of metals and the depletion of high grade natural resources, these types of wastes are gaining great importance in the metallurgical industries. In this study, selective leaching and leaching kinetics of Pb and Zn from zinc extraction residue were investigated. For this purpose; the effects of NaOH concentration, contact time, stirring speed and temperature on the Pb and Zn recovery from the residue were studied. The shrinking core model was applied to the results of the experiments. Leaching results showed that 85.55% Pb and 21.3 % Zn could be leached under the optimized conditions. The leaching of Pb and Zn were found to fit well to shrinking core model with ash layer diffusion control. Activation energy values for Pb and Zn leaching were calculated to be 13.645 and 22.59 kJ/mol, respectively.

  10. Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Macossay, Javier


    In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method f...

  11. Regional modelling of nitrate leaching from Swiss organic and conventional cropping systems under climate change (United States)

    Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan


    Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching

  12. Facile hydrothermal synthesis of CeO2 nanopebbles

    Indian Academy of Sciences (India)


    Ostwald ripening and oriented attachment process, res- pectively. In the hydrothermal process after the nuclea- tion stage, where the small nanocrystals are dissolved or re-precipitated to grow the larger crystals by the Ostwald ripening process, resulting in the formation of CeO2 nanopebbles.24 Figure 2f shows the ...

  13. Carlin-type Au Deposits in Nevada: Unique Hydrothermal Systems? (United States)

    Cline, J. S.


    Carlin-type gold deposits (CTGD) in Nevada have huge Au endowments that have made Nevada one of the leading Au producers in the world. Although they form one of the three most productive Au districts in the world, the deposits were not discovered until the early 1960's owing primarily to the lack of visible Au. Numerous studies have provided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model remains elusive because of 1) difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, 2) approximately contemporaneous mineralization that overprinted or was overprinted by Carlin-type mineralization, and 3) post-ore weathering and oxidation. Geologic data from all districts indicate compelling similarities, suggesting that all deposits formed in response to similar geologic processes. Yet, stable isotope studies suggest multiple sources for ore fluids and components. Because of these inconsistencies, current models relate deposits to 1) metal leaching and transport by convecting meteoric water, 2) hydrothermal fluids exsolved from epizonal intrusions, and 3) deep metamorphic and/or magmatic fluids. Proterozoic to early Paleozoic rifting produced a passive margin sequence of reactive calcareous host rocks, and NNW- and WNW-striking basement and Paleozoic normal faults that may control the trends. Following rifting, the host rocks were subjected to compressional orogenies, developing a pre-mineral architecture of steeply dipping fluid conduits and shallow dipping traps. NNW- and WNW-striking basement and Paleozoic normal faults were inverted during these compressional events and formed structural culminations including anticlines and domes that served as depositional sites for ore fluids. Au-bearing pyrite precipitated 42-36 m.y. ago as northwesterly to westerly extension reopened favorably oriented older structures. Fluid flow and mineral deposition appear to have been

  14. PEP Support: Laboratory Scale Leaching and Permeate Stability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Buchmiller, William C.


    This report documents results from a variety of activities requested by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The activities related to caustic leaching, oxidative leaching, permeate precipitation behavior of waste as well as chromium (Cr) leaching are: • Model Input Boehmite Leaching Tests • Pretreatment Engineering Platform (PEP) Support Leaching Tests • PEP Parallel Leaching Tests • Precipitation Study Results • Cr Caustic and Oxidative Leaching Tests. Leaching test activities using the PEP simulant provided input to a boehmite dissolution model and determined the effect of temperature on mass loss during caustic leaching, the reaction rate constant for the boehmite dissolution, and the effect of aeration in enhancing the chromium dissolution during caustic leaching. Other tests were performed in parallel with the PEP tests to support the development of scaling factors for caustic and oxidative leaching. Another study determined if precipitate formed in the wash solution after the caustic leach in the PEP. Finally, the leaching characteristics of different chromium compounds under different conditions were examined to determine the best one to use in further testing.

  15. Numerical simulation of magmatic hydrothermal systems (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.


    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  16. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  17. KONVERSI LIMBAH TANDAN KOSONG KELAPA SAWIT MENJADI GLUKOSA DENGAN PROSES HIDROTERMAL TANPA MELALUI PROSES PRETREATMENT - (Conversion of Waste Palm Oil Empty Fruit Bunches into Glucose using Hydrothermal Process without Pretreatment

    Directory of Open Access Journals (Sweden)

    Rakhman Sarwono


    Full Text Available Palm oil empty fruit bunch (EFB is a waste from palm oil industry and commonly used as compost for soil breeding. EFB could be hydrolized into glucose using hydrothermal process with hydrochloric acid as catalyst.  Eight gram of EFB in particle sizes (–30+40 mesh were hydrolyzed with HCl 10% 80 mL in a tube reactor. Reaction time were 2, 3 and 4 hours in temperature range 140-240oC. EFB decomposition did not increase despite of higher temperature while reaction time influenced the process significantly. EFB conversion was 47% in 4 hours and 240oC while in 3 hours resulted 34% same with 2 hours in 210oC. EFB decomposition did not influence glucose yield which was 23% in 2 hours  170oC, 24% in 3 hours 160oC and 6% in 4 hours 150oC. The optimum conditions of conversion were 2 and 3 hours with temperature range 150-170oC.Keywords: conversion, EFB, glucose, hydrothermal, pretreatment ABSTRAKLimbah tandan kosong kelapa sawit (TKKS merupakan hasil samping dari industri minyak sawit dan terdapat dalam jumlah banyak. Sampai saat ini belum termanfaatkan dengan baik, biasanya dipakai sebagai kompos untuk pemuliaan tanah perkebunan sawit. Persentase TKKS sebesar 23% dari tandan buah segar (TBS dengan komponen utama berupa selulosa, hemi-selulosa dan lignin. TKKS bisa dihidrolisis menjadi gula atau glukosa dengan proses hidrotermal menggunakan katalis asam klorida. TKKS  seberat 8 g dengan ukuran partikel (–30+40 mesh dikonversi secara hidrotermal pada reaktor tabung dengan penambahan 80 ml HCl 10% sebagai katalis, waktu reaksi 2, 3 dan 4 jam, suhu reaksi dari 120–240oC. Proses peruraian TKKS tidak menunjukkan kenaikan yang berarti walaupun suhu reaksi semakin tinggi. Waktu reaksi memberi pengaruh yang lebih besar terhadap peruraian TKKS dimana peruraian paling tinggi sebesar 47% pada suhu 240oC dan waktu reaksi 4 jam. Pada waktu reaksi 3 jam dihasilkan peruraian TKKS paling tinggi sebesar 34%, sama dengan hasil pada waktu 2 jam dan suhu 210o

  18. Effect of key parameters on the selective acid leach of nickel from mixed nickel-cobalt hydroxide (United States)

    Byrne, Kelly; Hawker, William; Vaughan, James


    Mixed nickel-cobalt hydroxide precipitate (MHP) is a relatively recent intermediate product in primary nickel production. The material is now being produced on a large scale (approximately 60,000 t/y Ni as MHP) at facilities in Australia (Ravensthorpe, First Quantum Minerals) and Papua New Guinea (Ramu, MCC/Highlands Pacific). The University of Queensland Hydrometallurgy research group developed a new processing technology to refine MHP based on a selective acid leach. This process provides a streamlined route to obtaining a high purity nickel product compared with conventional leaching / solvent extraction processes. The selective leaching of nickel from MHP involves stabilising manganese and cobalt into the solid phase using an oxidant. This paper describes a batch reactor study investigating the timing of acid and oxidant addition on the rate and extent of nickel, cobalt, manganese leached from industrial MHP. For the conditions studied, it is concluded that the simultaneous addition of acid and oxidant provide the best process outcomes.

  19. Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching (United States)

    Xu, Cong; Cheng, Hong-wei; Li, Guang-shi; Lu, Chang-yuan; Lu, Xiong-gang; Zou, Xing-li; Xu, Qian


    The recovery of valuable metals from complex sulfide concentrates was investigated via chlorination roasting followed by water leaching. A reaction process is proposed on the basis of previous studies and the results of our preliminary experiments. During the process, various process parameters were studied, including the roasting temperature, the addition of NH4Cl, the roasting time, the leaching time, and the liquid-to-solid ratio. The roasted products and leach residues were characterized by X-ray diffraction and vibrational spectroscopy. Under the optimum condition, 95% of Ni, 98% of Cu, and 88% of Co were recovered. In addition, the removal of iron was studied in the water leaching stage. The results demonstrate that this process provides an effective approach for extracting multiple metals from complex concentrates or ores.

  20. Nation-wide assessment of pesticide leaching to groundwater in Germany: comparison of indicator and metamodel approaches. (United States)

    Vanderborght, Jan; Kuhr, Petra; Tiktak, Aaldrik; Wendland, Frank; Vereecken, Harry; Corsten, Karin


    In order to estimate the risk op groundwater contamination by surface applied pesticides, the fate of pesticides in the unsaturated zone needs to be evaluated. Process models that describe relevant processes such as transport of dissolved pesticides, sorption, degradation and root uptake, in combination with water and heat fluxes in the soil have been developed and used for regulatory purposes. Regional assessments are required to indentify regions with higher risks of groundwater contamination. A major problem for the application of process models for a regional, EU-member state, or EU-scale assessment of pesticide leaching risk is the availability of regional databases of input parameters and boundary conditions that are required to run these models. Therefore, procedures that can assess pesticide leaching risk based on databases with regional coverage are required. In this presentation, we compare two different approaches for a regional estimation of pesticide leaching risk to groundwater in Germany. The first method uses an indicator approach to evaluate the risk of pesticide leaching as a function of a number of categorized soil, climate and pesticide properties. The result is a map of categorized risks. In the second approach, a metamodel is used to estimate the leached pesticide concentrations based on nation-wide available data of yearly average precipitation, temperature, soil organic matter content, soil texture, and pesticide parameters. The metamodel represents a synthesis of relations between climate, soil, and pesticide properties on one hand and leaching concentrations that are simulated by a more detailed process model on the other hand. The obtained maps of leaching risks and leaching concentrations were compared with the locations of anomynized pesticide findings in groundwater. The use of databases of pesticide findings in groundwater for the validation of leaching risks assessments is discussed.

  1. New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. (United States)

    Rabhi, Mokded; Atia, Abdallah; Abdelly, Chedly; Smaoui, Abderrazak


    Vegetative bioremediation of calcareous sodic and saline-sodic soils is a biological approach for soil desalination by plants. It is based on three main processes: (i) sodium release from cation exchange sites, (ii) its leaching, and/or (iii) phytodesalination (Na(+) uptake by plant roots and its accumulation in shoots). Leaching needs sufficient rainfall and/or adequate irrigation. Thus, under non-leaching conditions, phytodesalination is the only existing process in terms of sodium removal. Several works tried to evaluate these processes; used plants were grown in field, in lysimeters, or in non-perforated pots. The evaluation of vegetative bioremediation, leaching, and phytodesalination was mainly based on plant analyses (including biomass production, sodium accumulation, test culture, and co-culture) and soil analyses (porosity, salinity, sodicity...). Nevertheless, used parameters are not enough to ensure comparisons between results found in different investigations. The present study introduces new parameters like phytodesalination efficiency, yield, and rate as well as vegetative bioremediation and leaching yields and rates. Our study is also illustrated by an estimation of all parameters for several previously-published data from our own works and those of other authors. Obtained results showed usefulness of these parameters and some of them can be extended to heavy metal phytoexraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Duality properties of Gorringe Leach equations (United States)

    Grandati, Yves; Bérard, Alain; Mohrbach, Hervé


    In the category of motions preserving the angular momentum direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold Vassiliev type. The specific associated conserved quantities (Laplace Runge Lenz vector and Fradkin Jauch Hill tensor) are then dual reflections of each other.

  3. Simulating cement microstructural evolution during calcium leaching

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jacques, D.; De Schutter, G.; Van Breugel, K.; Ye, G.


    Calcium leaching is one of the important degradation mechanisms causing dissolution of the crystalline phases such as, AFm, portlandite increasing capillary porosity. Further it leads to decalcification of an amorphous C-S-H phase causing increase in the gel porosity and in turn degrading the long

  4. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard


    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  5. Leaching of Plastic Additives to Marine Organisms

    NARCIS (Netherlands)

    Koelmans, A.A.; Besseling, E.; Foekema, E.M.


    It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of

  6. Long-term lessons on pesticide leaching obtained via the Danish Pesticide Leaching Assessment Programme

    DEFF Research Database (Denmark)

    Rosenbom, Anette E.; Olsen, Preben; Plauborg, Finn

    To avoid any unacceptable influence on the environment posed by pesticides and their degradation products, all pesticides used in the European Union needs authorization. The authorization procedure includes assessing the leaching risk of both pesticides and their degradation products...

  7. A statistical approach to the experimental design of the sulfuric acid leaching of gold-copper ore

    Directory of Open Access Journals (Sweden)

    Mendes F.D.


    Full Text Available The high grade of copper in the Igarapé Bahia (Brazil gold-copper ore prevents the direct application of the classic cyanidation process. Copper oxides and sulfides react with cyanides in solution, causing a high consumption of leach reagent and thereby raising processing costs and decreasing recovery of gold. Studies have showm that a feasible route for this ore would be a pretreatment for copper minerals removal prior to the cyanidation stage. The goal of this experimental work was to study the experimental conditions required for copper removal from Igarapé Bahia gold-copper ore by sulfuric acid leaching by applying a statistical approach to the experimental design. By using the Plackett Burman method, it was possible to select the variables that had the largest influence on the percentage of copper extracted at the sulfuric acid leaching stage. These were temperature of leach solution, stirring speed, concentration of sulfuric acid in the leach solution and particle size of the ore. The influence of the individual effects of these variables and their interactions on the experimental response were analyzed by applying the replicated full factorial design method. Finally, the selected variables were optimized by the ascending path statistical method, which determined the best experimental conditions for leaching to achieve the highest percentage of copper extracted. Using the optimized conditions, the best leaching results showed a copper extraction of 75.5%.

  8. Effects of acid leaching aluminum from reservoir bottom sediment ...

    African Journals Online (AJOL)

    Comparison of before and after leaching, the spectra showed that the mineral composition of chlorite disappeared after acid leaching with a sound effect. Among the three acids, sulfuric acid is the best leaching solution under same operating conditions. The best combination for maximum extraction in this study is 5 N ...

  9. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib


    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...

  10. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan


    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  11. Spatially distributed modelling of pesticide leaching at European scale with the PyCatch modelling framework (United States)

    Schmitz, Oliver; van der Perk, Marcel; Karssenberg, Derek; Häring, Tim; Jene, Bernhard


    The modelling of pesticide transport through the soil and estimating its leaching to groundwater is essential for an appropriate environmental risk assessment. Pesticide leaching models commonly used in regulatory processes often lack the capability of providing a comprehensive spatial view, as they are implemented as non-spatial point models or only use a few combinations of representative soils to simulate specific plots. Furthermore, their handling of spatial input and output data and interaction with available Geographical Information Systems tools is limited. Therefore, executing several scenarios simulating and assessing the potential leaching on national or continental scale at high resolution is rather inefficient and prohibits the straightforward identification of areas prone to leaching. We present a new pesticide leaching model component of the PyCatch framework developed in PCRaster Python, an environmental modelling framework tailored to the development of spatio-temporal models ( To ensure a feasible computational runtime of large scale models, we implemented an elementary field capacity approach to model soil water. Currently implemented processes are evapotranspiration, advection, dispersion, sorption, degradation and metabolite transformation. Not yet implemented relevant additional processes such as surface runoff, snowmelt, erosion or other lateral flows can be integrated with components already implemented in PyCatch. A preliminary version of the model executes a 20-year simulation of soil water processes for Germany (20 soil layers, 1 km2 spatial resolution, and daily timestep) within half a day using a single CPU. A comparison of the soil moisture and outflow obtained from the PCRaster implementation and PELMO, a commonly used pesticide leaching model, resulted in an R2 of 0.98 for the FOCUS Hamburg scenario. We will further discuss the validation of the pesticide transport processes and show case studies applied to

  12. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. (United States)

    Silva, J E; Soares, D; Paiva, A P; Labrincha, J A; Castro, F


    Leaching studies of a sludge produced by the physico-chemical treatment of wastewaters generated by a Ni/Cr plating plant were carried out in both sulphuric acid and ammoniacal media aiming to decide which of them would be the best treatment for this kind of waste material. The dissolution behaviour of some metals (Cu, Ni, Cr and Zn) was studied in order to assure the best metal recovery conditions in subsequent processes by the use of some separation methods such as solvent extraction and precipitation techniques. Therefore, the study here presented deals with the first chemical stage of an integrated treatment process. For the sulphuric acid leaching, maximal conversions obtained were 88.6% Cu, 98.0% Ni and 99.2% Zn for the following experimental conditions: a 100 g L(-1) acid concentration, a 5:1 liquid-to-solid ratio (L/S), a particle size less than 1 mm, a digestion time of 1h, a stirring speed of 700 rpm (all at room temperature and under atmospheric pressure). As expected, no selectivity was achieved for the sulphuric acid leaching, despite this option yielding much higher metal ion dissolution when compared with that reached by ammoniacal leaching. The use of this latter medium allowed the extraction of Cu and Ni without Cr species, but rates of conversion were only about 70% for Cu and 50% for Ni, much lower than those obtained for sulphuric acid leaching.

  13. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis


    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  14. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin


    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  15. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen


    Incineration fly ash could be contaminated with NH3 that was slipped from the ammonia-based selective non-catalytic reduction(SNCR) process and from evaporation of municipal solid wastes' leachate involved in the wastes. This research was conducted to investigate the impacts of ammonia on leaching...... of dissolved organic carbon (DOC) and metals from incineration fly ash in the pH range of 3.66-12.44 with an active ammonia spike. A geochemical modeling software Visual MINTEQ was adopted to calculate the chemical speciation of metals under the leaching conditions to reveal the mechanism behind the impacts...... by precipitation/dissolution and surface complexation/precipitation processes; Visual MINTEQ modeling could well describe the leaching behaviors of Al, Cu, Pb and Zn from incineration fly ash....

  16. Effect of Acetylene Black Content to Half Cells Li-ion Battery Performance Based on Li4Ti5O12 using Li2CO3 as Lithium Ion Source with Hydrothermal Mechanochemical Process (United States)

    Priyono, B.; Faizah; Syahrial, A. Z.; Subhan, A.


    Lithium titanate (Li4Ti5O12)/LTO is a promising candidate to be used as anode electrode in Li-ion battery, to replace graphite in Li-ion battery application. Crystal structure of lithium titanate/LTO is more stable or undergoes less strain than graphite during intercalation and de-intercalation process Li+ ions. However, although lithium titanate has good stability, the material has low electrical conductivity and lithium ion diffusion. The purpose of this research is to synthesis the spinel LTO using combinated hydrothermal and mechanochemical processes from xerogel TiO2. Then, to increase the conductivity, in the half-cell battery assembly process it was added acetylene black conductive (AB) additive with various from 10%, to 15% in wt. The LTO obtained were characterized using scanning electron microscope (SEM), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET). The XRD showed a rutile as minor phase, while SEM showed homogeneous distribution of particle with an average particle size of 0.35 μm. The BET showed that the surface area of LTO formed is 2.26 m2/g. The assembled coin half cells used this Li4Ti5O12 as a cathode and lithium metal foil as the anode were tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). The conductivity value obtained from EIS corresponds to the contents of AB. Meanwhile, the CV and CD testing showed that higher percentage of AB causing the decrease of battery specific capacity. The highest specific capacity at the rate of 10C is obtained at the mixture of 10wt% AB with the value of 40.91 mAh/g.

  17. Heap Leaching of Caliche Ore. Modeling of a Multicomponent System with Particle Size Distribution

    Directory of Open Access Journals (Sweden)

    Javier I. Ordóñez


    Full Text Available Caliche is a mineral exploited in northern Chile, from which iodine and Nitrate salts (saltpeter are obtained. This ore is the most important source of iodine in the world and is processed mainly by heap leaching using water as a leaching agent. Heap leaching of caliche ore is carried out by the stacking of ROM (Run-Of-Mine material, where the particle size distribution covers a wide range, from a few millimeters up to several decimeters, even diameters about 1 m. During the leaching, the multiple soluble species of caliche, which can reach total fractions larger than 40%, are dissolved at different rates, mainly controlled by their solubilities. When it occurs and unlike most other leachable ores, the particle size diminishes. The leaching modeling of several soluble species of caliche has been recently addressed; however, one of the main assumptions is the idealization that the heap is composed of particles of the same size. The present work aims to complement the previously formulated phenomenological models for caliche ore leaching, through a model that considers the simultaneous dissolution of two species from caliche with three different particle sizes. These two water-soluble species have different solubilities and dissolution rates and the conceptual model considers that both species are dissolved at the particle surface. When the most soluble species is being depleted, the particle collapses, leaving a remaining fraction of the less soluble species together with insoluble material. The less soluble species is now being dissolved from the collapsed material. This article also includes the experimental verification of the conceptual model using data obtained from column leaching tests conducted for this purpose, focusing on the dissolution of two soluble species: Nitrate and Magnesium.

  18. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes (United States)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka


    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  19. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken


    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  20. Geochemistry and strontium isotopic composition of mineralforming solutions of hydrothermal systems of southern Kamchatka

    Energy Technology Data Exchange (ETDEWEB)

    Pampura, V.D.; Plyusnin, G.S.; Sandimirova, G.P.


    In order to understand the genesis of hydrothermal systems in the regions of recent volcanism, the chemical composition of hydrothermal waters was studied. In addition, the behavior of strontium in the process of hydrothermal alteration of volcanic aquifers was considered. The data on strontium isotopy for thermal waters, effusives and volcanic-sedimentary rocks of the Pauzhetka hydrothermal region are given. For depth-derived sodium-chloride hydrothermal waters /sup 87/Sr//sup 86/Sr values lie within the range of 0.7033 to 0.7056. Significant differences of /sup 87/Sr//sup 86/Sr values in seawater and sodium-chloride hydrothermal waters at all levels of their geochemical metamorphism were noted. This is considered to be evidence of the absence of seawater in the chemical composition of hydrothermal waters of the Pauzhetka type. To determine the cause of low /sup 87/Sr//sup 86/Sr values of depth-derived sodium-chloride hydrothermal waters, the strontium isotopy of country rocks was studied and /sup 87/Sr//sup 86/Sr = 0.702 to 0.705 have been determined. The data indicate the possibility that recent hydrothermal waters inherited a ratio of /sup 87/Sr//sup 86/Sr = 0.703 to 0.704 at the aquifer level.

  1. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy. (United States)

    Zhang, Libo; Guo, Wenqian; Peng, Jinhui; Li, Jing; Lin, Guo; Yu, Xia


    A major source of germanium recovery and also the source of this research is the by-product of lead and zinc metallurgical process. The primary purpose of the research is to investigate the effects of ultrasonic assisted and regular methods on the leaching yield of germanium from roasted slag containing germanium. In the study, the HCl-CaCl2 mixed solution is adopted as the reacting system and the Ca(ClO)2 used as the oxidant. Through six single factor (leaching time, temperature, amount of Ca(ClO)2, acid concentration, concentration of CaCl2 solution, ultrasonic power) experiments and the comparison of the two methods, it is found the optimum collective of germanium for ultrasonic-assisted method is obtained at temperature 80 °C for a leaching duration of 40 min. The optimum concentration for hydrochloric acid, CaCl2 and oxidizing agent are identified to be 3.5 mol/L, 150 g/L and 58.33 g/L, respectively. In addition, 700 W is the best ultrasonic power and an over-high power is adverse in the leaching process. Under the optimum condition, the recovery of germanium could reach up to 92.7%. While, the optimum leaching condition for regular leaching method is same to ultrasonic-assisted method, except regular method consume 100 min and the leaching rate of Ge 88.35% is lower about 4.35%. All in all, the experiment manifests that the leaching time can be reduced by as much as 60% and the leaching rate of Ge can be increased by 3-5% with the application of ultrasonic tool, which is mainly thanks to the mechanical action of ultrasonic. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Tonya M; Stewart, Brian W; Capo, Rosemary C; Schroeder, Karl T; Chapman, Elizabeth C; Spivak-Birndorf, Lev J; Vesper, Dorothy J; Cardone, Carol R; Rohar, Paul C


    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  3. Surface and subsurface hydrothermal flow pathways at Norris Geyser Basin, Yellowstone National Park (United States)

    Graham Wall, B. R.


    During summer 2003 at Yellowstone's Norris Geyser Basin notable changes were observed in the discharge of heat and steam, creating new thermal features, dying vegetation, and the consequent closure of trails to protect public safety. In order to interpret data collected from GPS, seismic, and temperature instruments deployed in response to the increased hydrothermal activity, a study has been undertaken to provide a more complete knowledge of the spatial distribution of subsurface fluid conduits. Geologic data, including mapped outcrops, aerial imagery, thermal infrared imagery, and subsurface core, indicate that fracture pathways in the Lava Creek Tuff (LCT) channel flow in the hydrothermal system. These data show clear evidence that NE-SW and NW-SE trending structures provide major flow pathways at Norris. By mapping fracture sets in outcrops of LCT with varied degrees of hydrothermal alteration, one can consistently identify fractures that localize hydrothermal fluid flow, alteration, and the geometry of surface thermal features. Alteration is characterized by acid leaching that quickly alters LCT mafic minerals and glassy groundmass, which in outcrop is recognized by corroded and disaggregated LCT with local secondary mineral deposition. Mapping the sequence from unaltered to altered LCT has identified vertical cooling joints as primary conduits for hydrothermal fluids. These vertical joints correlate with the NE-SW trending geomorphic expression of the LCT in this area, and parallel the adjacent caldera boundary. Horizontal fractures parallel depositional stratigraphy, and in core from drill holes Y-9 (248 m) and Y-12 (332 m) appear to initiate at collapsed vapor-phase cavities or regions of altered fiamme. Vertical fractures in the core show sequences of hydrothermal minerals locally derived from water-rock interaction that line fracture walls, characteristic of mineral deposition associated with repeat reactivation. Although the hydrothermal system is

  4. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiadou, Kalliopi; Axiotis, Dimosthenis [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Chania, P.C. 73100 (Greece); Gidarakos, Evangelos, E-mail: [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Chania, P.C. 73100 (Greece)


    The present research investigates, develops and evaluates the transformation of chrysotile asbestos into a non-hazardous material, such as forsterite, using an economically viable and safe method. The aim of this study is to convert fibrous chrysotile asbestos into an anhydrous magnesium silicate with a non-hazardous lamellar morphology using supercritical steam. The treatment method is characterized as hydrothermal in a temperature and pressure range of 300-700 deg. C and 1.75-5.80 MPa, respectively. Small amounts of asbestos (2.5 g) were treated in each experiment. Deionised water was used as the treatment solution. The treatment duration varied from approximately 1-5 h. Additional experiments took place using solutions of distilled water and small amounts of acetic acid, with the aim of attaining optimal treatment conditions. Crystal phases of the samples were determined by X-ray diffraction (XRD). The main phases present in the treated samples were forsterite, enstatite, and chrysotile asbestos. Lizardite and periclase were also found. The morphology of the treated chrysotile asbestos fibers was identified by scanning electron microscope (SEM). The fibrous form of chrysotile asbestos was converted into non-fibrous form of forsterite. In fact, none of the fibrous-needle-like morphology, with length equal to or greater than 5 {mu}m and diameter less than 3 {mu}m, which was responsible for the toxicity of the original material, was visible in the solid phase. The dissolution of magnesium from chrysotile asbestos was measured using volumetric determination by titration with EDTA. Leaching of magnesium into the liquid phase was observed. Clearly, the highest concentrations of dissolved magnesium are observed after hydrothermal treatment of chrysotile asbestos using acetic acid 1% (8.4-14.6%). Lowest concentrations of dissolved magnesium are obtained after hydrothermal treatment of chrysotile asbestos without using additives. Observing the results of the hydrothermal

  5. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.


    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  6. Evaluation of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. (United States)

    Yu, Qiaogang; Chen, Yingxu; Ye, Xuezhu; Zhang, Qiuling; Zhang, Zhijian; Tian, Ping


    The application of nitrogen fertilizers leads to various ecological problems such as nitrate leaching. The use of nitrification inhibitors (NI) as nitrate leaching retardants is a proposal that has been suggested for inclusion in regulations in many countries. In this study, the efficacy of the new NI, 3,4-dimethyl pyrazole phosphate (DMPP), was tested under simulated high-risk leaching situations in two types of undisturbed soil columns. The results showed that the accumulative leaching losses of soil nitrate under treatment of urea with 1.0% DMPP, from columns of silt loam soil and heavy clay soil, were 66.8% and 69.5% lower than those soil columns tested with regular urea application within the 60 days observation, respectively. However, the losses of ammonium leaching were reversely increased 9.7% and 6.7% under the former treatment than the latter one. Application of regular urea with 1.0% DMPP addition can reduce about 59.3%-63.1% of total losses of inorganic nitrogen via leaching. The application of DMPP to urea had stimulated the inhibition effects of DMPP on the ammonium nitrification process in the soil up to 60 days. It is proposed that the DMPP could be used as an effective NI to control inorganic N leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.

  7. Comparison of leaching Behavior of {sup 137}Cs and {sup 60}Co in the Simulated Paraffin Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Kyoung-Kil; Ji, Young-Yong; Ryu, Young-Gerl; Kim, Ki-Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    The evaluation on the leachability of waste form incorporated various radionuclides, plays an important role in the development of solidification matrix, safety analysis for the choice of the suitable waste management system, and quality assurance of the waste treatment process (installations). Various foreign countries have been developed and standardized the leaching test method compatible to their social circumstances because the results of leaching test are very important in quality control of waste forms and in the comparison of results obtained from many laboratories. The leaching test methods can be classified according to the purpose for use, the interval period of renewal of leachant, and the mixing existence of leachant. In this study, the leaching test were performed for the paraffin waste forms Incorporated {sup 60}Co and {sup 137}Cs by using HEPSE method, ANS 16.1 which are popular in IAEA, USA. Those 2 tests are different in the exposing area to the leachant, the number of renewal of leachant, the total leaching time, the presentation (or calculation) of the leaching results, and type of leachant. And we evaluated the leaching test results with the semi-infinitive diffusion model.

  8. Leaching of Bornite Produced from the Sulfurization of Chalcopyrite (United States)

    Veloso, T. C.; Paiva, P. R. P.; Silva, C. A.; Leão, V. A.


    The pyrometallurgical route accounts for 80 pct of world metallic copper production, because chalcopyrite, the most abundant copper sulfide, is refractory to hydrometallurgical treatment. However, pyrometallurgical routes are quite restrictive as far as copper concentrates are concerned mainly owing to limits on the concentration of impurities, such as fluorine, chlorine, and arsenic that can be tolerated. Such concentrates require innovative processing solutions because their market value is greatly reduced. A potential alternative is the transformation of chalcopyrite to a sulfide amenable to leaching, such as chalcocite, covellite, or bornite, through treatment in either aqueous or gaseous environments. In this study, the sulfurization of a chalcopyrite concentrate containing 78 pct CuFeS2 in the presence of gaseous sulfur was investigated, with the goal of demonstrating its conversion to the leachable phases, i.e., bornite and covellite. The concentrate was reacted with elemental sulfur in a tubular furnace at temperatures ranging from 573 K to 723 K (300 °C to 450 °C), followed by atmospheric leaching in an Fe(III)-bearing solution. The mineral phases in the sample were quantified using the Rietveld method, and it was shown that at temperatures below 673 K (400 °C) chalcopyrite was converted to covellite (41 pct) and pyrite (34 pct), whereas at temperatures above these, the reaction products were bornite (45 pct) and pyrite (31 pct). Leaching tests [6 hours at 353 K (80 °C)] showed significantly higher copper extraction rates after sulfurization (90 pct) than those using the raw chalcopyrite concentrate (15 pct).

  9. Laboratory study on the leaching potential of spent alkaline batteries. (United States)

    Xará, Susana M; Delgado, Julanda N; Almeida, Manuel F; Costa, Carlos A


    Four different leaching tests were carried out with spent alkaline batteries as an attempt to quantify the environmental potential burdens associated with landfilling. The tests were performed in columns filled up with batteries either entire or cross-cut, using either deionized water or nitric acid solution as leachant. In a first set of tests, the NEN 7343 standard procedure was followed, with leachant circulating in open circuit from bottom to top through columns. These tests were extended to another leaching step where leachant percolated the columns in a closed loop process. Leachate solutions were periodically sampled and pH, conductivity, density, redox potential, sulphates, chlorides and heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were determined in the samples. The results showed that the total amount of substances leached in tests with cross-cut batteries was higher than with entire ones; zinc and sulphates were the substances found the most in the leachate solutions. In general, the amount of substances dissolved in open circuit is higher than in closed loop due to the effect of solution saturation and the absence of fresh solution addition. Results were compared with metal contents in the batteries and with legal limits for acceptance in landfill (Decision 2003/33/CE and Decree-Law 152/2002). None of the metals were meaningfully dissolved comparatively to its content in the batteries, except Hg. Despite the differences in the experiment procedure used and the one stated in the legislation (mixing, contact time and granulometry), the comparison of results obtained with cross-cut batteries using deionized water with legal limits showed that batteries studied could be considered hazardous waste.

  10. Pesticide leaching in a changing climate

    DEFF Research Database (Denmark)

    Rasmussen, Signe Bonde

    preferential flow pathways. The sensitivity of pesticide leaching towards single high intensity events was tested by use of the artificial Chicago Design Storm (CDS), which were inserted in the driving weather file. Glyphosate showed a strong dependence, as short intense events resulted in relatively high...... leaching amounts under specific pre and post event weather conditions. This clearly illustrated the importance of including weather variability in pesticide fate modelling. An ensemble of 11 climate model projections were downscaled by perturbing a weather generator calibrated on local meteorological data......, resulting in 3000-year long weather series of statistically stationary climate. Effects of pesticide properties (sorption and degradation), pesticide application dates, and soil properties were included. The synthetic weather series produced in relation to objective (II) were used to simulate future changes...

  11. Evaluation of the effectiveness of the filtration leaching for uranium recovery from uranium ore

    Directory of Open Access Journals (Sweden)

    Bolat Uralbekov


    Full Text Available The physical and chemical processes taking place in filtration leaching of uranium from uranium ore sample by sulphuric acid solution have been studied by modern physico-chemical methods (X-ray diffraction, scanning electron spectroscopy, electron probe microanalysis, optical emission spectroscope, ICP OES. Column leaching test was carried out for ore samples obtained from a uranium in-situ leaching (ISL mining site using deluted sulphuricacid to study the evolution of various elements concentration in the pregnant leach solution. It has been shown that the uranium in pregnant solutions appears by dissolution of calcium and magnesium carbonates and uranium minerals as well. It was found the decreasing of filtration coefficient from 0.099 m day-1 to 0.082 m day-1, due to the presence of mechanical and chemical mudding. Partial extraction of uranium (85% from the ore has been explained by the slow diffusion of sulfuric acid to the uranium minerals locates in the cracks of silicate minerals. It was concluded that the studied uranium ore sample according to adverse geotechnical parameters is not suitable for uranium extraction by filtration leaching.

  12. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese. (United States)

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos


    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code. (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W


    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance. (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng


    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Laboratory leach tests of phosphate/sulfate waste grout and leachate adsorption tests using Hanford sediment

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; McLaurine, S.B.; Airhart, S.P.; LeGore, V.L.; Treat, R.L.


    An assessment of the long-term risks posed by grout disposal at Hanford requires data on the ability of grout to resist leaching of waste species contained in the grout via contact with water that percolates through the ground. Additionally, data are needed on the ability of Hanford sediment (soil) surrounding the grout and concrete vault to retard migration of any wastes released from the grout. This report describes specific laboratory experiments that are producing empirical leach rate data and leachate-sediment adsorption data for Phosphate-Sulfate Waste (PSW) grout. The leach rate and adsorption values serve as inputs to computer codes used to forecast potential risk resulting from the use of ground water containing leached species. In addition, the report discusses other chemical analyses and geochemical computer code calculations that were used to identify mechanisms that control leach rates and adsorption potential. Knowledge of the controlling chemical and physical processes provides technical defensibility for using the empirical laboratory data to extrapolate the performance of the actual grout disposal system to the long time periods of interest. 59 refs., 83 figs., 18 tabs.

  16. Effect of hydrochloric acid concentration on the selectivity of leaching of high-calcium dead-burned magnesite

    Directory of Open Access Journals (Sweden)

    Alena Fedoročková


    Full Text Available Leaching of particulate dead-burned magnesite with hydrochloric acid at 45 °C was investigated with special regard to the effectof acid concentration (from 0.1 M to 4.8 M on the rate of chemical dissolution of magnesium, calcium and iron. The leaching process wasfound to be mostly selective in the initial stage and the differences in dissolution rates decreased with an increase in the fraction of deadburnedmagnesite reacted.

  17. Biocide leaching from CBA treated wood — A mechanistic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Mathies, Helena; Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany); Tiruta-Barna, Ligia, E-mail: [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, ESE/Environment, 24 rue Joseph Fourier, F-38400 Saint Martin d' Hères (France)


    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper–boron–azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: -Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. -Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. -The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. -Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. - Highlights: ► A pH dependent leaching mechanism for CBA treated wood is described. ► The fixation and mobilisation of inorganic and organic biocides was investigated. ► Extractives' quantity and nature depend on pH. ► Competition of ligands for protonation and complexation explains Cu behaviour. ► Tebuconazole seems to interact with -OH groups

  18. Evidence for Hesperian Impact-Induced Hydrothermalism on Mars (United States)

    Marzo, Giuseppe A.; Davila, Alfonso F.; Tornabene, Livio L.; Dohm, James M.; Fairen, Alberto G.; Gross, Christoph; Kneissl, Thomas; Bishop, Janice L.; Roush, Ted L.; McKay, Chris P.


    Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.

  19. The hydrothermal exploration system on the 'Qianlong2' AUV (United States)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.


    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  20. Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, S.; Nath, B.N.; Ramaswamy, V.; Naman, D.; Rao, T.G.; KameshRaju, K.A.; Selvaraj, K.; Chen, C.T.A.

    carbonate-free sediments (e.g., Rutten and De Lange, 2003). The deeper samples of the cores have very low Mn content and thus can be clay mineral-Mn or carbonate-Mn (Table 4). Leach studies (Table 4) and PAAS normalized REE patterns (Fig.4) confirm....A., Ramprasad, T., Nath, B.N., Rao, B.R., Rao. Ch.M., Nair, R.R., 1996. Evidence for hydrothermal activity in the Andaman Backarc Basin. Curr. Sci. 70, 379-385. Reitz, A., Thomson, J., De Lange, G.J., Hensen, C., 2006. Source and development of large...

  1. Long-term leaching from MSWI air-pollution-control residues: Leaching characterization and modeling

    DEFF Research Database (Denmark)

    Hyks, Jiri; Astrup, Thomas; Christensen, Thomas Højlund


    Long-term leaching of Ca, Fe, Mg, K, Na, S, Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Mo, Sb, Si, Sri, Sr, Ti, V, P, Cl, and dissolved organic carbon from two different municipal solid waste incineration (MSWI) air-pollution-control residues was monitored during 24 months of column percolat......Long-term leaching of Ca, Fe, Mg, K, Na, S, Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Mo, Sb, Si, Sri, Sr, Ti, V, P, Cl, and dissolved organic carbon from two different municipal solid waste incineration (MSWI) air-pollution-control residues was monitored during 24 months of column...... percolation experiments; liquid-to-solid (L/S) ratios of 200-250 L/kg corresponding to more than 10,000 years in a conventional landfill were reached. Less than 2% of the initially present As, Cu, Pb, Zn, Cr, and Sb had leached during the Course of the experiments. Concentrations of Cd, Fe, Mg, Hg, Mn, Ni, Co......, Sn, Ti, and P were generally bellow 1 mu g/L; overall less than 1% of their mass leached. Column leaching data were further used in a two-step geochemical modeling in PHREEQC in order to (i) identify solubility controlling minerals and (ii) evaluate their interactions in a water-percolated column...

  2. Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide (United States)

    Zhang, Chun; Min, Xiaobo; Chai, Liyuan; Zhang, Jianqiang; Wang, Mi


    In this work, zinc neutral leaching residue was mechanically activated by ball-milling. The subsequent leaching behavior and kinetics of cadmium extraction in a mixed SO2-H2SO4 system were studied. Changes in the crystalline phase, lattice distortion, particle size and morphology, which were induced by mechanical activation, were also investigated. The activated samples showed different physicochemical characteristics, and cadmium extraction was found to be easier than for the un-activated samples. Under the same conditions, mechanical activation contributed to higher cadmium leaching. The cadmium extraction kinetics at 75-95°C was found to fit the shrinking core model. The raw neutral leaching residue, and the samples activated for 60 min and 120 min had a calculated activation energy of 65.02 kJ/mol, 59.45 kJ/mol and 53.46 kJ/mol, respectively. The leaching residue was characterized by ICP, XRD and SEM analysis. According to XRD analysis, the main phases in the residue were lead sulfate (PbSO4), zinc sulfide (ZnS) and cadmium sulfide (CdS).

  3. Vertical Leaching of Allelochemicals Affecting Their Bioactivity and the Microbial Community of Soil. (United States)

    Xiao, Zhongxiang; Le, Chang; Xu, Zhenghao; Gu, Zhefeng; Lv, Junfei; Shamsi, Imran Haider


    Leaching of allelochemicals in soil is one of the fundamental processes that determines allelopathic activities but is often overlooked. In the present study, the vertical leaching of seven putative allelochemicals as well as one pesticide and one herbicide was investigated using polyvinyl chloride columns combined with a bioassay approach. The results indicated that the leachability of pretilachlor and imidacloprid were the best (Lf > 0.8), followed by vanillin and coumarin (Lf > 0.6). The leachability of daidzein, menthol, and m-tyrosine were medium (0.3 interactions of chemical-microorganism and modified the bioavailability of allelochemicals in soil.

  4. A study on the recycling of scrap integrated circuits by leaching. (United States)

    Lee, Ching-Hwa; Tang, Li-Wen; Popuri, Srinivasa R


    In order to minimize the problem of pollution and to conserve limited natural resources, a method to recover the valuable metals such as gold, silver and copper) present in the scrap integrated circuits (ICs) was developed in the present study. Roasting, grinding, screening, magnetic separation, melting and leaching were adopted to investigate the efficiency of recovery of gold, silver and copper from scrap ICs. The collected scrap IC samples were roasted at 850 °C to destroy their plastic resin sealing material, followed by screening and magnetic separation to separate the metals from the resin residue. The non-ferrous materials (0.840 mm) were mainly composed of copper and could be melted into a copper alloy. Non-ferrous materials containing gold (860.05 ppm), silver (1323.12 ppm) and copper (37259.7 ppm) (size less than 50 mesh) were recovered 100% by a leaching process and thiourea was used as a leaching reagent.

  5. Extraction of uranium from tailings by sulfuric acid leaching with oxidants (United States)

    Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan


    Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.

  6. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email:; Duzenli, Derya [Ankara Central Laboratory (Turkey)


    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  7. Hydrothermal Synthesis of Leaf-Shaped Ferric Oxide Particles


    Keqiang Ding


    For the first time, leaf-shaped ferric oxide particles were prepared from an aqueous solution of potassium ferricyanide [K3Fe(CN)6] by hydrothermal process. Images obtained from SEM (scanning electron microscope) revealed that leaf-shaped ferric oxides (around 1.5 μm in length) were clearly exhibited when the hydrothermal tempreature was 150 °C, while as the temperature was increased to 200 °C leaf-shaped ferric oxide particles with larger size were observed. XRD (X-ray diffraction) patterns ...

  8. Study on hydrothermal synthesis dynamics of nanoscale xonotlite fibers (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.


    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Hydrothermal synthesis dynamics of nanoscale xonotlite fibers was explored by masterly measuring the electrical conductivities and the calcium concentrations of product slurries synthesized at various reaction temperature in this paper. The results indicated that the calculated values of the products’ quality at various reaction temperatures were consistent with the measured values. Based on chemical reaction kinetic, using fourth-order Runge-Kutta method, spline interpolation and least-squares fitting method, the dynamic relationship of xonotlite fibers synthesized via hydrothermal synthesis process is of -{dc}A/{dt}={kc}A4/5.

  9. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. (United States)

    Zhang, Kaihua; Li, Bin; Wu, Yufeng; Wang, Wei; Li, Rubing; Zhang, Yi-Nan; Zuo, Tieyong


    The tremendous amount of end-of-life liquid crystal displays (LCDs) has become one of the prominent sources of waste electrical and electronic equipment (WEEE) in recent years. Despite the necessity of safe treatment, recycling indium is also a focus of waste LCD treatment because of the scarcity of indium. Based on the analyses of the structure of Indium Tin Oxide (ITO) glass, crushing is demonstrated to be not required. In the present research, a complete non-crushing leaching method was firstly adopted to recycle indium from waste LCDs, and the ultrasonic waves was applied in the leaching process. The results demonstrated that indium can be leached efficiently with even a low concentration of chloride acid (HCl) without extra heating. About 96.80% can be recovered in 60mins, when the ITO glass was leached by 0.8MHCl with an enhancement of 300W ultrasonic waves. The indium leaching process is abridged free from crushing, and proves to be of higher efficiency. In addition, the ultrasonic wave influence on leaching process was also explained combing with micron-scale structure of ITO glass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). (United States)

    Guo, Yang; Li, Feng; Zhu, Haochen; Li, Guangming; Huang, Juwen; He, Wenzhi


    Spent lithium-ion batteries (LIBs) are considered as an important secondary resource for its high contents of valuable components, such as lithium and cobalt. Currently, studies mainly focus on the recycling of cathode electrodes. There are few studies concentrating on the recovery of anode electrodes. In this work, based on the analysis result of high amount of lithium contained in the anode electrode, the acid leaching process was applied to recycle lithium from anode electrodes of spent LIBs. Hydrochloric acid was introduced as leaching reagent, and hydrogen peroxide as reducing agent. Within the range of experiment performed, hydrogen peroxide was found to have little effect on lithium leaching process. The highest leaching recovery of 99.4wt% Li was obtained at leaching temperature of 80°C, 3M hydrochloric acid and S/L ratio of 1:50g/ml for 90min. The graphite configuration with a better crystal structure obtained after the leaching process can also be recycled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of gold and silver leaching from printed circuit board of cellphones. (United States)

    Petter, P M H; Veit, H M; Bernardes, A M


    Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining "reference" values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2h at 60°C and 80°C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.


    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  13. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    methods, hydrothermal synthesis allows excellent control over particle size, shape, distribution and crystallinity of the material. Synthesis is conducted in a ... terns were recorded on Tecnai G2 S-twin transmission elec- tron microscope with field emission gun operating at 200 kV. Samples for TEM measurements were ...

  14. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures. (United States)

    Xing, Yan; Zhang, Hongjie; Song, Shuyan; Feng, Jing; Lei, Yongqian; Zhao, Lijun; Li, Meiye


    Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.

  15. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.


    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  16. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries: Hydrothermal Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland WA USA; Tao, Ling [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Wyman, Charles E. [Chemical and Environmental Engineering Department and Center for Environmental Research and Technology, Bourns College of Engineering, University of California at Riverside, CA, USA, BioEnergy Science Center (BESC), Oak Ridge National Laboratory, TN USA


    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of the entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Thus, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.

  17. Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. (United States)

    Pietrelli, L; Bellomo, B; Fontana, D; Montereali, M


    Since NiMH and NiCd batteries are still used in the electronic devices market, a treatment and recycling plant has many advantages both from the environmental and the economic points of view. Unfortunately, there is no relationship between shape, size and chemical composition of spent batteries, consequently the characterization and the leaching method of the starting material becomes an important step of the overall treatment process in choosing the best conditions for the selective separation of the metals by hydrometallurgy. Leaching at 20 degrees C with H(2)SO(4) 2M for about 2h seems to be a good solution in terms of cost and efficiency for both battery types. The hydroxide compounds can be readily leached while Ni present as metallic form requires more aggressive conditions due to kinetic constraints. In this paper, the characterization of NiMH and NiCd spent batteries and the results of leaching tests in different conditions are reported.

  18. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification. (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin


    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films (United States)

    Kaur, Jasmeet; Gadipelly, Thirupathi; Singh, R.


    The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H)) whereas the M(H) plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  20. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park (United States)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.


    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  1. Chalcopyrite concentrate leaching with biologically produced ferric sulphate. (United States)

    Kinnunen, P H-M; Heimala, S; Riekkola-Vanhanen, M-L; Puhakka, J A


    Biological ferric iron production was combined with ferric sulphate leaching of chalcopyrite concentrate and the effects of pH, Fe3+, temperature and solids concentration on the leaching were studied. The copper leaching rates were similar at pH of 1.0-1.8 and in the presence of 7-90 g L-1 Fe3+ despite massive iron precipitation with 90 g L-1 Fe3+. Increase of the leaching temperature from 50 degrees C to 86 degrees C and solids concentration from 1% to 10% increased the copper leaching rate. Increase in solids concentration from 1% to 10% decreased the copper yields from 80% to 40%. Stepwise addition of ferric iron did not improve the copper yields. CuFeS2, Ag and Cu1.96S potentials indicated the formation of a passivating layer, which consisted of jarosite and sulphur precipitates and which was responsible for the decreased leaching rates.

  2. Impact of weather variability on nitrate leaching (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine


    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  3. Sensitivity analyses for four pesticide leaching models. (United States)

    Dubus, Igor G; Brown, Colin D; Beulke, Sabine


    Sensitivity analyses using a one-at-a-time approach were carried out for leaching models which have been widely used for pesticide registration in Europe (PELMO, PRZM, PESTLA and MACRO). Four scenarios were considered for simulation of the leaching of two theoretical pesticides in a sandy loam and a clay loam soil, each with a broad distribution across Europe. Input parameters were varied within bounds reflecting their uncertainty and the influence of these variations on model predictions was investigated for accumulated percolation at 1-m depth and pesticide loading in leachate. Predictions for the base-case scenarios differed between chromatographic models and the preferential flow model MACRO for which large but transient pesticide losses were predicted in the clay loam. Volumes of percolated water predicted by the four models were affected by a small number of input parameters and to a small extent only, suggesting that meteorological variables will be the main drivers of water balance predictions. In contrast to percolation, predictions for pesticide loss were found to be sensitive to a large number of input parameters and to a much greater extent. Parameters which had the largest influence on the prediction of pesticide loss were generally those related to chemical sorption (Freundlich exponent nf and distribution coefficient Kf) and degradation (either degradation rates or DT50, QTEN value). Nevertheless, a significant influence of soil properties (field capacity, bulk density or parameters defining the boundary between flow domains in MACRO) was also noted in at least one scenario for all models. Large sensitivities were reported for all models, especially PELMO and PRZM, and sensitivity was greater where only limited leaching was simulated. Uncertainty should be addressed in risk assessment procedures for crop-protection products.

  4. Microwave Processing of Materials (United States)


    reactions in sol-gel processing, gas-phase synthesis , solution evaporation/decomposition, or hydrothermal reactions. Each of these, and other powder... synthesis methods, will be described next. Sol-Gel Decomposition/Drying Microwaves have been used in several of the processing stages to synthesize BaTiO3 ...high surface areas (10-700 m2/g). Hydrothermal Reactions Microwave- hydrothermal processing has been utilized in catalyzing the synthesis of crystalline

  5. Leaching of radioactive isotopes from ash


    Aycik, G.A.; Paul, M.; Sandström, Åke; Paul, Jan


    The aim of the study is to reduce the environmental impact of ash deposits. Ash from coal and biomass combustion, containing uranium and thorium from Yatagan-Silopi and Tuncbilek coal; cesium-137 from forests in northeastern Turkey and central Sweden. Turkey is dependent on coal for power generation and huge volumes of ash (>15 Mton/yr) are produced every year. Because of that certain coals, in particular Yatagan, with known problems from Mo and U leaching to the ground water, and Silopi o...

  6. Leaching of DOC, DN, and inorganic constituents from scrap tires. (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju


    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Leaching studies for metals recovery from waste printed wiring boards (United States)

    Luyima, Alex; Shi, Honglan; Zhang, Lifeng


    The leaching behavior of most metals present in printed wiring boards is evaluated, aiming at its recycling by hydrometallurgy. Two leaching reagents (nitric acid and aqua regia) are compared. The effects of acid concentration, particle size of sample, leaching time, and temperature are examined. The results reveal that small particle size and a combination of both nitric acid and aqua regia are capable of dissolving most of the metals content of printed wiring boards.

  8. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  9. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.


    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  10. Cadmium leaching from thermal treated and gamma irradiated Mexican aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Rangel, J.I. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico); Unidad Academica Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas Cipres 10, Frac. La Penuela, Zacatecas, Zacatecas 98068 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100 Col. Centro C.P. 50000, Toluca, Edo. de Mexico (Mexico); Solache-Rios, M. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico)], E-mail:


    Thermal and radiation effects on the leaching of cadmium from two cadmium exchanged zeolitic tuffs and one clay were determined. The cadmium exchanged aluminosilicates were heated at different temperatures (500, 700, 900 and 1100 {sup o}C), and the materials were then treated with NaCl (1 M and 5 M) and HNO{sub 3} (0.001 M and 1 M) solutions to determine the leaching behaviour of cadmium from the materials. The stability of cadmium in the materials increased as the heating temperature was increased. Cadmium leaching from gamma irradiated and heated materials at 1100 {sup o}C was higher than leaching from non-irradiated samples.

  11. The mass balance calculation of hydrothermal alteration in Sarcheshmeh porphyry copper deposit

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou


    Full Text Available Sarcheshmeh porphyry copper deposit is located 65 km southwest of Rafsanjan in Kerman province. The Sarcheshmeh deposit belongs to the southeastern part of Urumieh-Dokhtar magmatic assemblage (i.e., Dehaj-Sarduyeh zone. Intrusion of Sarcheshmeh granodiorite stock in faulted and thrusted early-Tertiary volcano-sedimentary deposits, led to mineralization in Miocene. In this research, the mass changes and element mobilities during hydrothermal process of potassic alteration were studied relative to fresh rock from the deeper parts of the plutonic body, phyllic relative to potassic, argillic relative to phyllic and propylitic alteration relative to fresh andesites surrounding the deposit. In the potassic zone, enrichment in Fe2O3 and K2O is so clear, because of increasing Fe coming from biotite alteration and presence of K-feldspar, respectively. Copper and molybdenum enrichments resulted from presence of chalcopyrite, bornite and molybdenite mineralization in this zone. Enrichment of SiO2 and depletion of CaO, MgO, Na2O and K2O in the phyllic zone resulted from leaching of sodium, calcium and magnesium from the aluminosilicate rocks and alteration of K-feldspar to sericite and quartz. In the argillic zone, Al2O3, CaO, MgO, Na2O and MnO have also been enriched in which increasing Al2O3 may be from kaolinite and illite formation. Also, enrichment in SiO2, Al2O3 and CaO in propylitic alteration zone can be attributed to the formation of chlorite, epidote and calcite as indicative minerals of this zone.

  12. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica


    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided......-ponents such as carbohydrates; lignin, protein and fat, and each of them produce distinct groups of compounds when processed individually. When processed to-gether in different ratios, they will most likely cross-influence each other and thus the composition of the product. Processing conditions including temperature, pres......-sure, residence time, catalyst, and type of solvent are important for the bio-oil yield and product quality....

  13. Study of uranium leaching from industrial residues of Industrias Nucleares do Brazil S.A. (INB), Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Formiga, Thiago S.; Morais, Carlos A., E-mail: cmorais@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Gomiero, Luiz A., E-mail: [Industrias Nucleares do Brasil S/A (INB), Caetite, BA (Brazil)


    The uraniferous district of Lagoa Real, located in the south-central region of the state of Bahia, has reserves estimated at 100,000 tons of uranium, which is enough to supply Angra I, II and III for 100 more years. The process adopted for the beneficiation of the uranium ore from Lagoa Real is heap leaching, a static process in which the ore is crushed, disposed in heaps and irrigated with a sulfuric acid solution to remove the uranium. This technique has a relatively low cost of implementation, although the yield of uranium recovery is low, with an uranium content in the leached residue of 700 {mu}g/g U{sub 3}O{sub 8} for ores with an initial content of 2,700 {mu}g/g U{sub 3}O{sub 8}. With the deepening of the mine pit, an increase in the carbonate content in the ore was noted, which required a higher acid consumption in the leaching. In order to reduce the concentration of carbonates, a study of the ore concentration by flotation column was accomplished. The flotation reject had high carbonate content, with a uranium content of about 2,300 {mu}g/g U{sub 3}O{sub 8} for flotation in one column and 1,100 {mu}g/g U{sub 3}O{sub 8} for flotation in two columns. This paper presents the study of the leaching process for the recovery of the uranium present in the residue of the heap leaching and in the carbonated residue from the flotation of the anomaly 13 ore. The results indicate the feasibility of treating the waste of the heap leaching through dynamic leaching. The study of the uranium leaching from the flotation residue through acid leaching technique indicated a recovery of 96% of uranium, however with a high consumption of acid, around 450 kg/t, showing that for this case, the most suitable technique for the process is alkaline leaching. (author)

  14. Hydrothermal decomposition of liquid crystal in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xuning [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Shanghai Cooperative Centre for WEEE Recycling, Shanghai Second Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209 (China); He, Wenzhi, E-mail: [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)


    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H{sub 2}O{sub 2} supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment.

  15. Hydrothermal stability of zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.Y. [Daelim College of Technology, Anyang (Korea); Gogotsi, G.A. [National Academy of Sciences of Ukraine, Kiev (Uzbekistan); Kim, D.J. [Korea Institute of Science and Technology, Seoul (Korea); Park, N.J. [Kumho National University of Technology, Kumi (Korea)


    3 mol% Y{sub 2}O{sub 3} partially-Stabilized Zirconia single Crystals (PSZCs) containing a small quantity (<0.5%) of rare-earth oxides (CeO{sub 2}, Tb{sub 2}O{sub 3}) were prepared by using a direct high-frequency skull melting technique to evaluate hydrothermal stability in an autoclave. Pole figure measurements indicate that both CeO{sub 2} and Tb{sub 2}O{sub 3} containing specimens prepared by the skull melting are single crystals. PSZCs exhibited no t{yields}m phase transformation during aging for 5 h at temperatures from 150 to 250 deg. C and 4 MPa water vapor pressure in an autoclave, resulting in excellent hydrothermal stability. (author). 19 refs., 1 tab., 4 figs.

  16. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting


    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247


    Directory of Open Access Journals (Sweden)

    Caroline Fenner Scher


    Full Text Available ABSTRACTYacon roots contain inulin, which has prebiotic properties and it may be used as sucrose or fat substitutes. However, inulin is very soluble in water. The loss of this important nutrient during blanching is caused mainly by diffusion or leaching, which might be diminished if blanching temperature - time conditions are correctly employed. The aim of this study was to determine the leaching of the sugars inulin, glucose and fructose, present in yacon roots, during hot water blanching under different time/temperature conditions. The samples were cleaned and peeled and cut into geometric forms of 1.75 ± 0.35 mm thick disks. A complete factorial experimental design was used, and the treatments of the samples were compared using the Tukey test. The results indicated that the time and temperature were significant in the dissolution of the sugars. The lowest inulin losses occurred at temperatures and times lower than 60 ºC and 3 minutes. For all temperatures, the lowest glucose and fructose losses were obtained at time lower than 3 and 5 minutes, respectively.

  18. PAHs leaching test for solidified waste

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, R.; Grathwohl, P. [Tuebingen Univ. (Germany). Center for Applied Geoscience


    The treatment of waste materials to allow recycling or safe disposal is a rapidly expanding business, but also subject to increasing public awareness of enviromental issues and tightening of the regularise governing in many countries. One of the most widely used treatment for wastes is stabilisation /solidification using a cement matrix to obtain a monolithic residue. The most common test procedure to assess the risks of contaminant release into water (seepage, surface and groundwater) is the so-called ''tank leaching test'' or ''diffusion test'' (NEN 7345, Mulder et al 2001, Hohberg et al 2000), in which a solidified specimen is leached with water during different periods of time. The tests are usually done at room temperatures between 20 C and 25 C. However, the temperature under natural conditions are lower resulting in lower contaminant release rates. (subsurface temperature: 5 C - 10 C). If the thermodynamics of the contaminant release, especially the activation energy of desorption and diffusion, is known, it is possible to estimate the contaminant release for lower temperatures, e.g. down to groundwater temperatures. In addition the test can be accelerated if performed at high temperatures.

  19. Remediation of contaminated soil using heap leach mining technology

    Energy Technology Data Exchange (ETDEWEB)

    York, D.A.; Aamodt, P.L.


    Los Alamos National Laboratory is evaluating the systems technology for heap treatment of excavated soils to remove and treat hazardous chemical and radioactive wastes. This new technology would be an extrapolation of current heap leach mining technology. The candidate wastes for treatment are those organic or inorganic (including radioactive) compounds that will chemically, physically, or biologically react with selected reagents. The project would start with bench-scale testing, followed by pilot-scale testing, and eventually by field-scale testing. Various reagents would be tried in various combinations and sequences to obtain and optimize the desired treatment results. The field-scale testing would be preceded by site characterization, process design, and equipment selection. The final step in this project is to transfer the systems technology to the private sector, probably to the mining industry. 6 refs., 1 fig.

  20. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup


    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  1. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Directory of Open Access Journals (Sweden)

    Cheryl Jaworowski


    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothe