WorldWideScience

Sample records for hydrothermal convection systems

  1. Entropy Production in Convective Hydrothermal Systems

    Science.gov (United States)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  2. Chaotic thermohaline convection in low-porosity hydrothermal systems

    NARCIS (Netherlands)

    Schoofs, Stan; Spera, Frank J.; Hansen, Ulrich

    1999-01-01

    Fluids circulate through the Earth's crust perhaps down to depths as great as 5^15 km, based on oxygen isotope systematics of exhumed metamorphic terrains, geothermal fields, mesozonal batholithic rocks and analysis of obducted ophiolites. Hydrothermal flows are driven by both thermal and chemical

  3. Selected geothermal resources data: hydrothermal convection systems in the states of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    1976-02-01

    Data collected as part of the U.S. Geological Survey's research and land classification programs, from professional publications, and industry sources has been compiled in computer format. Location, surface manifestations, chemistry, physical properties, exploratory and development work, and references pertinent to 290 hydrothermal convection systems comprise the data base.

  4. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    Science.gov (United States)

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  5. Selected data for hydrothermal-convection systems in the United States with estimated temperatures greater than or equal to 90/sup 0/C: back-up data for US Geological Survey Circular 790

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Brook, C.A.; Swanson, J.R.; Mabey, D.R.

    1978-12-01

    A compilation of data used in determining the accessible resource base for identified hydrothermal convection systems greater than or equal to 90/sup 0/C in the United States are presented. Geographic, geologic, chemical, isotopic, volumetric, and bibliographic data and calculated thermal energy contents are listed for all vapor-dominated and hot-water systems with estimated reservoir temperatures greater than or equal to 90/sup 0/C and reservoir depths less than 3 km known to the authors in mid 1978. Data presented here is stored in the US Geological Survey's geothermal computer file GEOTHERM. Data for individual hydrothermal convection systems in each state are arranged geographically from north to south and west to east without regard to the type or temperature of the system. Locations of the systems and corresponding reference numbers are shown on map 1 accompanying US Geological Survey Circular 790.

  6. Early Archaean hydrothermal systems

    Science.gov (United States)

    de Vries, S. T.; Nijman, W.

    2003-04-01

    Although many people have written about hydrothermal systems in the early Earth, little real evidence is available. New data from the Barberton greenstone belt (South Africa) and greenstone belts of the East Pilbara (Western Australia), provide proof of the existence and nature of hydrothermal systems in the Early Archaean (around 3.4 Ga). Detailed field relationships between vein systems, host rock and overlying sediments are combined with data from fluid inclusions studies on quartz fills in the sediments. An intimate relationship between chert veins and the overlying sediments has been established (the veins are syn-sedimentary). The salinity and temperature of the fluids in the inclusions shows that these are of hydrothermal origin. Similar types of hydrothermal systems, of approximately the same age, have been found at different locations; in the Barberton greenstone belt and at various locations in the East Pilbara. The setting of these hydrothermal systems is not always identical however. Although a felsic substratum is more common, in the North Pole area (Pilbara) the hydrothermal systems rise from a basaltic substratum. In the Barberton greenstone belt, the systems are closely related to shallow intrusive (felsic) bodies. The study of these ancient hydrothermal systems forms an important framework for studies of early life on Earth. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Foundation Dr. Schürmannfonds.

  7. The Lassen hydrothermal system

    Science.gov (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  8. Evenly-spaced columns in the Bishop Tuff as relicts of hydrothermal convection

    Science.gov (United States)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2015-12-01

    A few square km of the Bishop Tuff in eastern California, USA have evenly spaced erosional columns. These columns are more resistant to erosion due to the precipitation of the low-temperature zeolite (120-200 ºC), mordenite, which is not found in the surrounding tuff. Similar features observed in the Bandelier Tuff were hypothesized to form when cold water from above infiltrated into the still-hot tuff interior. This water would become gravitationally unstable and produced convection with steam upwellings and liquid water downwellings. These downwellings became cemented with mordenite while the upwellings were too dry for chemical reactions. We use two methods to quantitatively assess this hypothesis. First, scaling that ignores the effects of latent heat and mineral precipitation suggests the Rayleigh number (Ra, a measure of convective vigor) for this system is ~103 well above the critical Ra of 4π2. Second, to account for the effect of multiphase flow and latent heat, we use two-dimensional numerical models in the finite difference code HYDROTHERM. We find that the geometry of flow is consistent with field observations and confirm that geometry is sensitive to permeability and topography. These tests suggest a few things about low-pressure hydrothermal systems. 1) The geometry of at least some convection appears to be broadly captured by linear stability theory that ignores reactive transport, heterogeneity of host rock, and the effects of latent heat. 2) Topographic flow sets the wavelength of convection meaning that these columns formed somewhere without topography—probably a lake. Finally, these observations imply a wet paleoclimate in the Eastern Sierra namely that, in the aftermath of the Long Valley eruption, either rain or snow was able to pool in the caldera before the tuff cooled on the order of a hundred years after the eruption.

  9. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures : A new numerical scheme and benchmarks for code comparison

    NARCIS (Netherlands)

    Weis, P.; Driesner, T.; Coumou, D.; Geiger, S.

    2014-01-01

    Thermohaline convection of subsurface fluids strongly influences heat and mass fluxes within the Earth's crust. The most effective hydrothermal systems develop in the vicinity of magmatic activity and can be important for geothermal energy production and ore formation. As most parts of these systems

  10. Entropy production in a box: Analysis of instabilities in confined hydrothermal systems

    Science.gov (United States)

    Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.

    2017-09-01

    We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.

  11. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  12. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.

    1978-01-01

    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  13. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  14. Numerical modelling of hydrothermal convection within a permeable mineralized zone: application to orogenic gold mineralization in Ghana

    Science.gov (United States)

    Bonneville, A.; Harcouët, V.; Guillou-Frottier, L.; Adler, P.

    2006-12-01

    convective patterns in the adjacent basin to 3D circulations within the fault are observed for reasonable permeability gradients. For the most elaborate model, the RAI distribution shows that faulted zones where fluid flows are 3D lead to a spatial periodicity of ore deposits coherent with field data. Moreover in this case, a simple analytical application, demonstrates that the lifespan estimated for the Ashanti's hydrothermal system lies in the range of a few hundreds of thousands of years which agrees with the ones recognized for other mineralized systems.

  15. Phase separation, brine formation, and salinity variation at Black Smoker hydrothermal systems

    NARCIS (Netherlands)

    Coumou, D.; Driesner, T.; Weis, P.; Heinrich, C. A.

    2009-01-01

    We present the first fully transient 2-D numerical simulations of black smoker hydrothermal systems using realistic fluid properties and allowing for all phase transitions possible in the system H2O-NaCl, including phase separation of convecting seawater into a low-salinity vapor and high-salinity

  16. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  17. Aspects of forced convective heat transfer in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilty, K.; Chapman, D.S.; Mase, C.

    1978-07-01

    A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

  18. Self-organization of hydrothermal outflow and recharge in young oceanic crust: Constraints from open-top porous convection analog experiments

    Science.gov (United States)

    Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.

    2016-12-01

    Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10

  19. Peptide synthesis in early earth hydrothermal systems

    Science.gov (United States)

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  20. Organic matter maturation in the contact aureole of an igneous sill as a tracer of hydrothermal convection

    Science.gov (United States)

    Wang, Dayong; Manga, Michael

    2015-06-01

    The intrusion of magmas can induce hydrothermal convection which in turn enhances the transport of heat and solutes. We use a heat convection model to interpret the temperature evolution documented by organic matter maturation, as recorded by the vitrinite reflectance Rr, in a contact aureole of a 15 m thick basaltic sill in the Deep Sea Drilling Project (DSDP) 41-368 hole near Cape Verde Rise, eastern Atlantic. Here there is a pronounced asymmetry of variations of Rr with distance above and below the sill that cannot be explained by heat conduction alone. Neglecting the effects of possible two-phase flow and thermal pressurization from the production of fluids, convection begins to enhance the observed asymmetry for permeabilities greater than about 1 md, and the observations can be matched with permeabilities of at least several tens of millidarcies.

  1. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    Science.gov (United States)

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  2. Numerical simulation of magmatic hydrothermal systems

    Science.gov (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  3. Stable light isotope biogeochemistry of hydrothermal systems.

    Science.gov (United States)

    Des Marais, D J

    1996-01-01

    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2.

  4. Low enthalpy convective system in Western Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, M.S.; Tabet, C.A.; Eckstein, Y.

    1980-01-01

    A distinct positive anomaly in the temperatures of the shallow (Pleistocene) aquifers along the Cincinnati-Findlay Arch in Western Ohio coincides with a low geothermal gradient. A conceptual model of convective currents associated with a tensional fault and/or fracture system along the crest of the Arch is suggested as an explanation of the anomaly. Hydrochemical information indicates that various quantities of warmer ground water, with the composition characteristics of deep bedrock aquifers, is present as an admixture in the shallow aquifers. This confirms the conceptual model of convection in fractures.

  5. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  6. Hydrothermal systems as environments for the emergence of life.

    Science.gov (United States)

    Shock, E L

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  7. Spatially Modulated Structures in Convective Systems

    Science.gov (United States)

    Kao, Hsien-Ching

    This dissertation focuses on the study of spatially modulated structures in pattern forming systems. The work is motivated by recent interest in spatially localized states observed in convective systems. Weakly nonlinear analysis is applied to derive the modulation equations and systematic studies, both analytical and numerical, are then performed on the simplified equations. The following is a summary of this work: Weakly Subcritical Patterns: The transition from subcritical to supercritical periodic patterns is described by the one-dimensional cubic-quintic Ginzburg-Landau equation with cubic nonlinear gradient terms. The coefficients are real indicating that the system is spatially reversible. Properties of the equation such as well-posedness, gradient structure, and bifurcation behavior depend significantly on the coefficients of the cubic nonlinear gradient terms. In this system, periodic patterns may in turn become unstable through one of two different mechanisms, an Eckhaus instability or an oscillatory instability. Dynamics and bifurcations near the instability thresholds are analyzed. Among the stationary solutions, the front solution which connects the zero state to a spatially periodic state plays the most important role. The location of the front in the parameter mu is treated as a Maxwell point. The spatially modulated solutions which bifurcate from the periodic solutions demonstrate protosnaking behavior near this point. These results are used to shed light on both variational and non-variational systems exhibiting homoclinic snaking. Localized Patterns in Rotating Convection and Magnetoconvection: In two-dimensional rotating convection and magnetoconvection, the formation of spatially localized patterns is strongly affected by the interaction between convection and a large scale mode: zonal velocity in rotating convection and magnetic flux in magnetoconvection. A nonlocal fifth order Ginzburg-Landau theory is developed to describe the localization

  8. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Exchange. Dynamics of deep convection. Microphysics of deep convection. Fountain. (Water Vapor). Intrusion. (Ozone). Circulation. Mass and Energy. Budget ... km (wet spell). 厂 Inversion more during dry spell. 厂 Buoyancy - more during the wet spell. Mon. Wea. Rev, 2010 & 2011. Convection in wet and dry spells.

  9. The hydrothermal system at Newberry Volcano, Oregon

    Science.gov (United States)

    Sammel, E.A.; Ingebritsen, S.E.; Mariner, R.H.

    1988-01-01

    Results of recent geological and geophysical studies at Newberry Volcano have been incorporated into conceptual and numerical models of a magma-based hydrothermal system. Numerical simulations begin with emplacement of a small magma body, the presumed source of silicic eruptions at Newberry that began about 10 000 BP, into a thermal regime representing 100 000 yr of cooling of a large underlying intrusion. Simulated flow patterns and thermal histories for three sets of hypothetical permeability values are compatible with data from four geothermal drill holes on the volcano. Meteoric recharge cools the caldera-fill deposits, but thermal water moving up a central conduit representing a permeable volcanic vent produces temperatures close to those observed in drill holes within the caldera. Meteoric recharge from the caldera moves down the flanks and creates a near-isothermal zone that extends several hundred meters below the water table, producing temperature profiles similar to those obserbed in drill holes on the flanks. The temperatures observed in drillholes on the flanks are not influenced by the postulated Holocene magma body. The elevated temperature gradients measured in the lower portions of these holes may be related to the cumulative effect of older intrusions. The models also indicate that meteoric recharge to the deep hyrothermal system probably originates within or near the caldera. Relatively low fluid velocities at depth suggest that at least a significant fraction of the thermal fluid may be very old. -Authors

  10. Land surface sensitivity of mesoscale convective systems

    Science.gov (United States)

    Tournay, Robert C.

    Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and

  11. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?

    Science.gov (United States)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.

    2017-05-01

    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  12. The hydrothermal system of Long Valley Caldera, California

    Science.gov (United States)

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  13. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  14. Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, H.C.

    1980-09-01

    A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

  15. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

    Science.gov (United States)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.

    2018-03-01

    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  16. Simulating North American mesoscale convective systems with a convection-permitting climate model

    Science.gov (United States)

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Bullock, Randy; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn

    2017-10-01

    Deep convection is a key process in the climate system and the main source of precipitation in the tropics, subtropics, and mid-latitudes during summer. Furthermore, it is related to high impact weather causing floods, hail, tornadoes, landslides, and other hazards. State-of-the-art climate models have to parameterize deep convection due to their coarse grid spacing. These parameterizations are a major source of uncertainty and long-standing model biases. We present a North American scale convection-permitting climate simulation that is able to explicitly simulate deep convection due to its 4-km grid spacing. We apply a feature-tracking algorithm to detect hourly precipitation from Mesoscale Convective Systems (MCSs) in the model and compare it with radar-based precipitation estimates east of the US Continental Divide. The simulation is able to capture the main characteristics of the observed MCSs such as their size, precipitation rate, propagation speed, and lifetime within observational uncertainties. In particular, the model is able to produce realistically propagating MCSs, which was a long-standing challenge in climate modeling. However, the MCS frequency is significantly underestimated in the central US during late summer. We discuss the origin of this frequency biases and suggest strategies for model improvements.

  17. Interactions between phase separation, mineral precipitation, and permeability variations in saline magmatic-hydrothermal system

    Science.gov (United States)

    Weis, P.

    2016-12-01

    Fluid flow through permeable rocks in saline magmatic-hydrothermal systems is influenced by non-linear fluid and rock properties as well as physical and chemical fluid-rock interactions. The same processes are of critical importance to a variety of different disciplines of Earth sciences such as volcanology, geothermal energy, hydrogeology and economic geology, and progress in understanding the relative importance of the interactions between different processes requires multi-method approaches investigating both active and fossil hydrothermal systems. Observations and model results suggest that many of these systems are highly dynamic and have a potential for self-organization, optimizing heat and mass transport by fluids in the upper crust. For example, numerical simulations in combination with oxygen isotopes of vein quartz suggest that ore precipitation in porphyry copper deposits occurs at the hydrological interface between a dynamic plume of ascending magmatic fluids and meteoric water convection, which is controlled by the transition from ductile to brittle rock behavior. With increasing ductile behavior, we infer that locally host rock permeability is reduced and the regional stress state is relaxed, resulting in fluid pressure build-up to near-lithostatic values with continued fluid expulsion, which eventually leads to episodic brittle failure of otherwise nominally ductile rocks. Sharp pressure drops and phase separation at this hydrological front can lead to saturation in solid halite, which is indicated to be a ubiquitous feature in hydrothermal systems associated with upper crustal plutons both by fluid inclusion studies and numerical simulations. Precipitation of solid halite can also lead to permeability reduction and evoke pulsating fluid migration. The presentation will show analytical and numerical results describing the role of non-linear fluid properties, phase separation, salt precipitation, fluid mixing, hydraulic fracturing and the brittle

  18. The hydrothermal exploration system on the 'Qianlong2' AUV

    Science.gov (United States)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.

    2016-12-01

    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  19. a Diagnostic Study of Midlatitude Mesoscale Convective Systems.

    Science.gov (United States)

    Skubis, Steven Thomas

    Two case studies of mesoscale convective systems (MCS) over the central plains of the United States were carried out using data from the SESAME experiment. The first case study makes use of high resolution data to examine the structure and evolution of a mesoscale cyclonic vortex within the convectively-produced stratiform region. The second case study containing lower resolution mesoscale data examines the influences of an MCS on the large scale and mesoscale. Potential vorticity and its diabatically-induced Lagrangian time change is used to study the development of a mesoscale cyclonic system. Condensational heating in an ascending northward flow rapidly generated a region of locally large PV over a three to six hour period. The thermal structure and estimate of the Rossby radius of deformation suggests that a mesoscale vortex at the base of the mesoscale cyclonic system evolved towards a quasi -balanced state. Apparent sources representing unresolved horizontal and vertical eddy transports are shown to greatly affect the heat and vorticity budgets around the time of maximum convection. Mismatches between temporal and spatial resolutions in the data also affected the heat and vorticity budgets. Vertically integrated convective available energy (ICAPE) was found more accurate than traditional surface CAPE for identifying locations of initiation and continuation of convection. Low level convergence acting to release convective instability was shown to be strongly tied to convectively-favorable ICAPE changes.

  20. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  1. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    Science.gov (United States)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  2. A System for Measurement of Convection Aboard Space Station

    Science.gov (United States)

    Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.

    1996-01-01

    A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.

  3. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. A reliable power station is one which would supply the required power within its installed capacity at any time within the specified voltage and frequency limits. Required for this evaluation are the station's installed ...

  4. Convection-enhanced delivery to the central nervous system.

    Science.gov (United States)

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  5. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    Science.gov (United States)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  6. Study of Natural Convection Passive Cooling System for Nuclear Reactors

    Science.gov (United States)

    Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik

    2017-07-01

    Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.

  7. Hydrothermal alteration and evolution of the Ohakuri hydrothermal system, Taupo volcanic zone, New Zealand

    Science.gov (United States)

    Henneberger, R. C.; Browne, P. R. L.

    1988-05-01

    Erosion and excavations at Ohakuri in the Taupo Volcanic zone have exposed the upper portion (100-150 m) of a hydrothermal system that was active sometime between 700,000 and 160,000 years ago. Extensive hydrothermal alteration occurred within a host sequence of young, relatively undeformed, chemically and lithologically similar unwelded rhyolitic ignimbrite and air-fall tuffs. Mapping and petrologic work have identified six distinct alteration types. An early event formed a concentrically zoned suite of alteration through the pervasive movement of alkaline chloride type water. In the innermost zone, primary rock components were almost entirely converted to quartz + adularia ± illite ± hematite ± leucoxene. Mineralized veins and breccias of quartz ± pyrite ± adularia ± chlorite formed here in response to episodic hydraulic fracturing. This zone grades outward and upward into a zone of less intense, lower rank alteration with a mordenite + clinoptilolite + smectite + opal ± hematite assemblage, then a zone of weak clay alteration and into fresh rock. Calcite is conspicuously absent from the entire suite. Acid-sulphate type water, formed from steam-condensate, dominated the shallow activity in a second stage of alteration that followed local erosion. Widespread but discontinuous alteration converted the ignimbrite to kaolinite + opal ± hematite, with alunite occurring in the more intense zones. This alteration locally overprints the early alkali-chloride produced suite, but the focus of the second-stage activity was north of the focus of the older event. Scattered opaline sinters and silicified surficial deposits are products of either still later activity or the waning part of the second stage. Chemical analysis shows that the various alteration types have characteristic patterns of major element addition and removal; these reflect the key hydrothermal mineral reactions that formed the new assemblages. Quartz-adularia alteration involved mainly

  8. Implications of Chloride, Boron, and Lithium in Hydrothermal Systems of Jamaica, WI

    Science.gov (United States)

    Wishart, D.

    2012-12-01

    Chloride (Cl) often termed a "relatively conservative element" served as a very useful tracer (pathfinder element) in fluids from hydrothermal systems by comparing its concentration to those of select ions in solution. The concentrations of major ions of three thermal spring water samples: Bath hot springs (BTHS and BTHN), Milk River (MKR), Windsor (WS) and a cold spring water sample-Salt River spring (SR) of Jamaica were plotted against the Cl concentration. Results of chemical analyses, graphical analyses, and hydrogeochemical modeling confirmed three water types: Na-Cl-SO4, Na-Cl, and Ca-Na-Cl. Whereas chloride concentrations at MKR, WS and SR strongly indicate the influence of sea water mixing, the concentrations at MKR and SR are spatially related to a major tectonic feature, the South Coast Fault Zone (SCFZ). A principal component analysis (PCA) performed for the water samples showed a direct correlation between the concentrations of chloride and other conservative elements: boron (B), lithium (Li), bromide (Br), strontium (Sr), arsenic (As), and cesium (Cs). Isotope results (δ18O, δ2H, 3H) of the water samples implied minimal shallow mixing with deep circulating thermal fluids at the Bath site and the predominance of mixing with deep-circulating brines at the WS, MKR, and SR sites. Ionic ratios (Cl/B, Br/Cl, Li/B, have provided further interesting results for these hydrothermal systems including (1) a power series relationship between Li/B and SO4/Cl ratios; (2) the variation of B/Li versus Cl/SO4 concentrations with relatively prolonged water-rock contact time for these waters occurring at depth; and (3) low enthalpy. A discriminant analysis (DA) aided in the delineation of three independent hydrothermal systems based on processes affecting the chemical compositions of the water samples. Calculated chloride convective heat fluxes range between compared to the boron flux range of 3.41 x 104 - 1.63 x 106 Calories/second.

  9. The Benedikt hydrothermal system (north-eastern Slovenia)

    Science.gov (United States)

    Kralj, Peter; Eichinger, Lorenz; Kralj, Polona

    2009-10-01

    Deep welling in the Benedikt area has proven the existence of recently active hydrothermal system in pre-Tertiary basement composed of banded gneiss, marble and schist originating from a regionally metamorphosed sequence of clastic sediments. Two aquifers with very high fracture porosity were tapped—at depths between 1,485-1,530 and 1,848-1,857 m, where the welling stopped owing to a technical failure. The water temperature exceeds 90°C, while the yield of 100 l/s is limited only by the well performances. The Na-HCO3 dominated water is classified as a CO2-rich healing mineral water suitable for drinking, bottling and balneology. The free degassing gas is almost pure CO2 (99.9 %) and its δ13C composition indicates volcanic origin. The tapped water is relatively old, probably of Pleistocene age at least, and the planned exploitation must consider reinjection in order to protect this valuable natural resource from overexploitation. This recent hydrothermal system is characterised by dominating vertical circulation of waters and is superimposed on older, already inactive hydrothermal system(s), recognised by veins of either metal sulphides and quartz, or calcite. These vein minerals precipitated from hydrothermal fluids migrating from a deeper source towards the ancient surface through a fracture system, which is now self-sealed already. The distribution of metal sulphides indicates that the source might have been a deep-seated Neogene pluton genetically related to the tonalites and quartz diorites that outcrop in the Pohorje Mountains, or a subvolcanic-level volcanic body related to the Neogene volcanic activity in the Graz Basin.

  10. Modeling of Perturbations in Mid-Ocean Hydrothermal Systems

    Science.gov (United States)

    Singh, S.; Lowell, R. P.

    2013-12-01

    Mid-ocean ridge hydrothermal systems are complex fluid circulation systems straddling the locations of formation of oceanic crust. Due to the dynamic nature of the crust building process, these systems are episodically subject to magmatic and seismic perturbations. Magma may be emplaced deep or shallow in the oceanic crust thereby changing the thermal structure and permeability of the system. Such events would enhance hydrothermal venting resulting in an increase in vent temperature and heat output along with a decrease in vent salinity in a phase separating system. Event plumes, which may be associated with dike intrusions into the shallow crust, are an important class of such perturbations. In this case, the formation of low salinity vapor may add to the thermal buoyancy flux and allow the plume to rise rapidly to a considerable height above the seafloor. Additionally, seismic or tectonic disturbances may occur both deep and shallow in the crust, changing the fluid-flow structure in the system. Upon knowledge of a major magmatic or seismotectonic event, temporary surveillance at the respective mid ocean ridge site is often increased as a result of rapid response cruises. One of the most common observations made after such events is the temperature of vent fluids, which is then correlated to time of observed activity and used to estimate the residence time of fluids in the system. However, our numerical results indicate that for deep-seated perturbations, surface salinity may show quicker response than temperature. This result serves as our motivation to seek better understanding of propagation mechanism of perturbations through hydrothermal systems. We construct analytical models for fluid flow, heat and salt transfer in both single cracks and through porous media to investigate how perturbations affect both heat and salt transfer to the surface. Our preliminary results for simplified fluid circulation systems tend to support the results from numerical modeling

  11. Flow and permeability structure of the Beowawe, Nevada hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Faulder, D.D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Johnson, S.D.; Benoit, W.R. [Oxbow Power Services, Inc., Reno, NV (United States)

    1997-05-01

    A review of past geologic, geochemical, hydrological, pressure transient, and reservoir engineering studies of Beowawe suggests a different picture of the reservoir than previously presented. The Beowawe hydrothermal contains buoyant thermal fluid dynamically balanced with overlying cold water, as shown by repeated temperature surveys and well test results. Thermal fluid upwells from the west of the currently developed reservoir at the intersection of the Malpais Fault and an older structural feature associated with mid-Miocene rifting. A tongue of thermal fluid rises to the east up the high permeability Malpais Fault, discharges at the Geysers area, and is in intimate contact with overlying cooler water. The permeability structure is closely related to the structural setting, with the permeability of the shallow hydrothermal system ranging from 500 to 1,000 D-ft, while the deeper system ranges from 200 to 400 D-ft.

  12. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  13. Hydrothermal Systems of Kamchatka are Models of the Prebiotic Environment

    Science.gov (United States)

    Kompanichenko, V. N.; Poturay, V. A.; Shlufman, K. V.

    2015-06-01

    The composition of organic matter and fluctuations of thermodynamic parameters were investigated in the hydrothermal systems of the Kamchatka peninsula in the context of the origin of life. Organics were analyzed by gas-chromatography/mass spectrometry, and 111 organic compounds belonging to 14 homologous series (aromatic hydrocarbons, alkanes and isoalkanes, halogenated aromatic hydrocarbons, carboxylic acids, esters, etc.) were found in hot springs inhabited by Archaeal and Bacterial thermophiles. The organics detected in the sterile condensate of water-steam mixture taken from deep boreholes (temperature 108-175 °C) consisted of 69 compounds of 11 homologous series, with aromatic hydrocarbons and alkanes being prevalent. The organic material included important prebiotic components such as nitrogen-containing compounds and lipid precursors. A separate organic phase (oil) was discovered in the Uzon Caldera. A biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ13C value of the bulk oil; its age determined by 14C measurements was 1030 ± 40 years. Multilevel fluctuations of thermodynamic parameters proposed to be required for the origin of life were determined in the Mutnovsky and Pauzhetsky hydrothermal systems. The low-frequency component of the hydrothermal fluid pressure varied by up to 2 bars over periods of hours to days, while mid-frequency variations had regular micro-oscillations with periods of about 20 min; the high-frequency component displayed sharp changes of pressure and microfluctuations with periods less than 5 min. The correlation coefficient between pressure and temperature ranges from 0.89 to 0.99 (average 0.96). The natural regimes of pressure and temperature fluctuations in Kamchatka hydrothermal systems can guide future experiments on prebiotic chemistry under oscillating conditions.

  14. Numerical Modeling of Brine Formation and Serpentinization at the Rainbow Hydrothermal System

    Science.gov (United States)

    Sekhar, P.; Lowell, R. P.

    2015-12-01

    The Rainbow hydrothermal field on the Mid Atlantic Ridge is a high-temperature hydrothermal system hosted in peridotite. The vent fluids are rich in methane and hydrogen suggesting that serpentinization is occurring at depth in the system. Vent temperature of ~365°C, salinity of ~4.5 wt%, and heat output of ~500 MW suggest that Rainbow field is driven by a magmatic heat source and that phase separation is occurring at depth. To understand the origin of high salinity in the Rainbow hydrothermal fluid, we construct a 2D numerical model of two-phase hydrothermal circulation using the numerical simulator FISHES. This code uses the finite volume method to solve the conservation of mass, momentum, energy, and salt equations in a NaCl-H2O fluid. We simulate convection in an open top 2D box at a surface pressure of 23 MPa and seawater temperature of 10oC. The bottom and sides of the box are insulated and impermeable, and a fixed temperature distribution is maintained at the base to ensure phase separation. We first consider a homogeneous model with a permeability of 10-13 m2 and system depths of 2 and 1 km, respectively. The brine-derived fluid from the deeper system barely exceeds seawater, whereas the shallower system produces a short pulse of 9.0 wt% for 5 years. We then consider 1 km deep systems with a high permeability discharge zone of 5x10-13 m2 that corresponds to a fault zone, surrounded by recharge zones of 10-13, 10-14 and 10-15 m2, respectively. The model with recharge permeability of 10-14 m2 yields stable plumes that vent brine-derived fluid of 4.2 wt% for 150 years. Using the quasi- steady state of this model as a base, we estimate the rate of serpentinization along the fluid flow paths, and evolution of porosity and permeability. This analysis will indicate the extent to which serpentinization will affect the dynamics of the system and will provide insight into methane flux in the Rainbow vent field.

  15. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    Science.gov (United States)

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-09-08

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

  16. Temperatures of Mediterranean Volcanic Hydrothermal Systems Reflected by Gas Geothermometry

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; D'Alessandro, W.; Vaselli, O.; Woodland, A. B.

    2011-12-01

    We have addressed the genetic relationship between H2, H2O, CO, CO2, n-alkanes and n-alkenes in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, Campi Flegrei and Pantelleria (all Italy). Methane attains chemical and isotopic equilibrium with CO2 in the associated hydrothermal systems within the single liquid phase. Calculated aquifer temperatures at depth are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at Campi Flegrei and ~540°C at Pantelleria. CH4-CO2 equilibrium temperatures are in agreement with propane/propene concentration ratios. Temperatures >400°C are additionally confirmed by ethane/ethene ratios. In contrast to CH4-CO2, metastable equilibration of the alkane/alkene pairs takes place in the saturated water vapor phase. Overall agreement of vapor and liquid equilibration temperatures suggests that boiling in the investigated high-enthalpy hydrothermal systems is essentially isothermal. Our results imply that the chemical and isotopic CH4-CO2 geothermometer is least prone to re-equilibration reactions occurring in the vapor phase after vapor separation. Redox conditions during these re-equilibration reactions are homogeneously buffered by H2/H2O ratios of the vapor phase, which, in turn, are controlled by those of the parental liquid phase and by the degree of superimposed vapor separation. Amongst the redox pairs investigated, CO/CO2 is most prone to secondary vapor phase equilibration. Our results imply that the isotopic CH4-CO2 geothermometer has the potential to record temperatures of aquifers associated with dormant volcanoes. Alkene/alkane and H2/H2O concentration ratios should be measured along with CH4 and CO2 to prove independently whether isotopic equilibrium has been attained.

  17. Observed structure of mesoscale convective systems and implications for large-scale heating

    Science.gov (United States)

    Houze, Robert A., Jr.

    1989-01-01

    The model for the idealized tropical mesoscale convective system proposed by Houze (1982) is examined. Observations of the structure of mesoscale convective systems are used to determine the applicability of the conceptual model. Data on the vertical distribution of vertical air motion in the convective and stratiform regions of mesoscale convective systems are discussed and the treatment of this distribution in Houze's model is considered.

  18. The Australian Monsoon and its Mesoscale Convective Systems

    Science.gov (United States)

    Mapes, Brian E.

    1992-01-01

    The 1987 Australian monsoon was observed with satellites, rawinsondes, radar and aircraft. These data are presented, with theory filling the gaps, in illustration of its dynamics. The engine of the monsoon is its embedded mesoscale convective systems (MCSs). Ten MCSs were explored with airborne Doppler radar. They all exhibited multicellular convection, in lines or arcs along the edges of cold pools, aging and evolving into areas of stratiform precipitation. This temporal evolution can be divided into three stages: "convective," "intermediary," and "stratiform." Doppler radar divergence profiles for each stage show remarkable consistency from one MCS to the next. Convective areas had low-level convergence, with its peak elevated off the surface, and divergence above ~8 km altitude. Intermediary areas had very little divergence through the lower troposphere, but strong convergence near 10 km altitude, associated with upper-tropospheric ascent. Stratiform areas had midlevel convergence between divergent layers. These divergence profiles indicate thermal forcing of the monsoon by the convection, in a form more useful than heating profiles. The response of the atmosphere to thermal forcing is considered in chapter 2. Thermal disturbances travel through a stratified fluid at a speed proportional to their vertical depth. A heat source with complex vertical structure excites disturbances ("buoyancy bores"), of many depths, that separate themselves out with distance from the heat source. Hence the deeper components of a heat source can be found at greater distances from the heat source, at any given moment and also in the limit of long time in a rotating or dissipative fluid. Low-level dynamical processes initiate deep convection within the active cyclonic areas of the monsoon trough, despite the warm core aloft and the consequent (small) decrease in CAPE. In 1987, four tropical cyclones were generated in the monsoon by this runaway positive feedback loop. Two forcing

  19. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  20. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems.

    Science.gov (United States)

    Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki

    2004-04-01

    Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.

  1. Geochemical Energy for Catabolism and Anabolism in Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; McCollom, T. M.; Bach, W.

    2008-12-01

    Chemically reduced deep-sea vent fluids mixed with oxidized seawater can generate redox disequilibria that serve as energy sources for chemolithoautotrophic (catabolism) and biomass synthesis (anabolism) reactions. Numerical models can be used to evaluate Gibbs energies of such processes on the early Earth and in present-day systems. Here, geochemical data from compositionally diverse vent fluids (Lost City, Rainbow, Logatchev, TAG, 21 °N EPR) are combined with several seawater chemistries to yield a wide range of mixed hydrothermal solutions; this is the starting point for our thermodynamic calculations. In ultramafic-hosted hydrothermal systems, such as Rainbow or Lost City, aerobic chemolithotrophic catabolisms (oxidation of H2, FeII, CH4) are the most energy-yielding at low temperatures (<25 °C); at elevated temperatures, the anaerobic counterparts (e.g., sulfate reduction, methanogenesis) dominate. In basalt-hosed systems, such as TAG and 21 °N EPR, aerobic sulfide oxidation appears to dominate over much of the microbially-relevant temperature range. Such catabolic reaction energetics can then be used to put constraints on the amount of primary biomass production. Under putative early Earth conditions, for example, the net chemoautotrophic synthesis of cellular building blocks is thermodynamically most favorable at moderate temperatures (~50°C), where the energy contributions from HCO3- and H+ in cool seawater coupled to the reducing power in hot vent fluid are optimized. At these conditions, and counter to conventional wisdom, the synthesis of amino acids may even yield small amounts of energy.

  2. Idealized Cloud-System Resolving Modeling for Tropical Convection Studies

    Science.gov (United States)

    Anber, Usama M.

    A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non

  3. Monitoring the hydrothermal system in Long Valley caldera, California

    Science.gov (United States)

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  4. Carlin-type Au Deposits in Nevada: Unique Hydrothermal Systems?

    Science.gov (United States)

    Cline, J. S.

    2006-05-01

    Carlin-type gold deposits (CTGD) in Nevada have huge Au endowments that have made Nevada one of the leading Au producers in the world. Although they form one of the three most productive Au districts in the world, the deposits were not discovered until the early 1960's owing primarily to the lack of visible Au. Numerous studies have provided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model remains elusive because of 1) difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, 2) approximately contemporaneous mineralization that overprinted or was overprinted by Carlin-type mineralization, and 3) post-ore weathering and oxidation. Geologic data from all districts indicate compelling similarities, suggesting that all deposits formed in response to similar geologic processes. Yet, stable isotope studies suggest multiple sources for ore fluids and components. Because of these inconsistencies, current models relate deposits to 1) metal leaching and transport by convecting meteoric water, 2) hydrothermal fluids exsolved from epizonal intrusions, and 3) deep metamorphic and/or magmatic fluids. Proterozoic to early Paleozoic rifting produced a passive margin sequence of reactive calcareous host rocks, and NNW- and WNW-striking basement and Paleozoic normal faults that may control the trends. Following rifting, the host rocks were subjected to compressional orogenies, developing a pre-mineral architecture of steeply dipping fluid conduits and shallow dipping traps. NNW- and WNW-striking basement and Paleozoic normal faults were inverted during these compressional events and formed structural culminations including anticlines and domes that served as depositional sites for ore fluids. Au-bearing pyrite precipitated 42-36 m.y. ago as northwesterly to westerly extension reopened favorably oriented older structures. Fluid flow and mineral deposition appear to have been

  5. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    , radon etc. to locate active venting site 4. Seabed sampling for rocks and minerals looking for indications of hydrothermal mineralization 5. TV and still Photographic surveys with real- time imaging on board 6. Submersible/ROVs for direct... thriving in this unique environments. However, the study of hydrothermal systems is still relatively young, and there are many fundamental questions that remain to be addressed in the forthcoming years. Suggested reading 1. Seafloor hydrothermal...

  6. Geochemistry and strontium isotopic composition of mineralforming solutions of hydrothermal systems of southern Kamchatka

    Energy Technology Data Exchange (ETDEWEB)

    Pampura, V.D.; Plyusnin, G.S.; Sandimirova, G.P.

    1980-01-01

    In order to understand the genesis of hydrothermal systems in the regions of recent volcanism, the chemical composition of hydrothermal waters was studied. In addition, the behavior of strontium in the process of hydrothermal alteration of volcanic aquifers was considered. The data on strontium isotopy for thermal waters, effusives and volcanic-sedimentary rocks of the Pauzhetka hydrothermal region are given. For depth-derived sodium-chloride hydrothermal waters /sup 87/Sr//sup 86/Sr values lie within the range of 0.7033 to 0.7056. Significant differences of /sup 87/Sr//sup 86/Sr values in seawater and sodium-chloride hydrothermal waters at all levels of their geochemical metamorphism were noted. This is considered to be evidence of the absence of seawater in the chemical composition of hydrothermal waters of the Pauzhetka type. To determine the cause of low /sup 87/Sr//sup 86/Sr values of depth-derived sodium-chloride hydrothermal waters, the strontium isotopy of country rocks was studied and /sup 87/Sr//sup 86/Sr = 0.702 to 0.705 have been determined. The data indicate the possibility that recent hydrothermal waters inherited a ratio of /sup 87/Sr//sup 86/Sr = 0.703 to 0.704 at the aquifer level.

  7. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry

    NARCIS (Netherlands)

    Hawkes, J.A.; Connelly, D.P.; Rijkenberg, M.J.A.; Achterberg, E.P.

    2014-01-01

    Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid-ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was

  8. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Directory of Open Access Journals (Sweden)

    Cheryl Jaworowski

    2013-12-01

    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system’s total energy output. Area is a key parameter for calculating the hydrothermal system’s heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.

  9. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  10. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    Science.gov (United States)

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP are both fed by an upflow of high-enthalpy two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. Numerical simulations show that several conditions are necessary for the development of this type of system, including (1) large-scale topographic relief, (2) an initial period of convective heating within an upflow zone followed by some change in hydrologic or geologic conditions that initiates drainage of liquid from portions of the upflow zone, and (3) low permeability barriers that inhibit the movement of cold water into the vapor zone. Simulations of thermal fluid withdrawal south of LVNP, carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park, showed decreases in pressure and liquid saturation beneath the vapor zone which result in a temporary increase and subsequent decrease in the rate of upflow of steam. (USGS)

  11. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  12. New insights into the Kawah Ijen hydrothermal system from geophysical data

    Science.gov (United States)

    Caudron, Corentin; Mauri, G.; Williams-Jones, Glyn; Lecocq, Thomas; Syahbana, Devy Kamil; de Plaen, Raphael; Peiffer, Loic; Bernard, Alain; Saracco, Ginette

    2017-01-01

    Volcanoes with crater lakes and/or extensive hydrothermal systems pose significant challenges with respect to monitoring and forecasting eruptions, but they also provide new opportunities to enhance our understanding of magmatic–hydrothermal processes. Their lakes and hydrothermal systems serve as reservoirs for magmatic heat and fluid emissions, filtering and delaying the surface expressions of magmatic unrest and eruption, yet they also enable sampling and monitoring of geochemical tracers. Here, we describe the outcomes of a highly focused international experimental campaign and workshop carried out at Kawah Ijen volcano, Indonesia, in September 2014, designed to answer fundamental questions about how to improve monitoring and eruption forecasting at wet volcanoes.

  13. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry

    OpenAIRE

    Hawkes, J.A.; Connelly, D. P.; Rijkenberg, M.J.A.; E. P. Achterberg

    2014-01-01

    Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid-ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was rich in Fe(III) colloids (0.02-0.2 mu m; 46% of total Fe), contributing to a fraction of hydrothermal Fe that was stable in ocean water. Iron(III) colloids from island arc calderas may be transfer...

  14. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  15. Estimation and prediction of convection-diffusion-reaction systems from point measurement

    NARCIS (Netherlands)

    Vries, D.

    2008-01-01

    Different procedures with respect to estimation and prediction of systems characterized by convection, diffusion and reactions on the basis of point measurement data, have been studied. Two applications of these convection-diffusion-reaction (CDR) systems have been used as a case study of the

  16. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Houze, Robert A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Leung, L. Ruby [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Feng, Zhe [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-12-27

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.

  17. Migration of hydrothermal systems in an evolving collisional orogen, New Zealand

    Science.gov (United States)

    Craw, D.; Upton, P.; Horton, T.; Williams, J.

    2013-02-01

    The Pacific-Australian tectonic plate boundary through the South Island of New Zealand consists of the transpressional Southern Alps mountain belt and the transcurrent Marlborough Fault System, both of which have active tectonically driven hydrothermal systems, with topographically driven meteoric incursion and warm springs. The Southern Alps hydrothermal system is relatively diffuse, with little or no fault control, and is channelled through scattered extensional sites beneath the mountains, where gold mineralisation is occurring locally. The hydrothermal activity along the Marlborough Fault System is controlled by the principal faults in well-defined valleys separated by narrow high ridges. Lateral evolution of Marlborough fault strands southwestwards into the Southern Alps has caused diversion of diffuse Southern Alps hydrothermal activity into the structural superimposition zone, where fluid flow is increasingly being controlled by faults. This hydrothermal diversion was accompanied by major topographic reorientation and river drainage reversal in the late Quaternary. Vein swarms now exposed in the remnants of the Southern Alps north of the superimposition zone formed at shallow levels, with some evidence for fluid boiling, from a mixture of meteoric and deep-sourced fluid. These veins, some of which contain gold, are part of an abandoned lateral incursion of the Marlborough fault strands. Observations on this active plate boundary provide some insights into processes that controlled orogenic gold mineralisation in ancient belts, particularly with respect to relationships between hydrothermal fluid flow, structure and topography.

  18. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  19. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  20. The dynamics of a double-cell hydrothermal system in triggering seismicity at Somma-Vesuvius: results from a high-resolution radon survey (revisited)

    Science.gov (United States)

    Cigolini, Corrado

    2010-08-01

    Data collected at Somma-Vesuvius during the 1998-1999 radon surveys have been revisited and reinterpreted in light of recent geophysical and geochemical information. The duration of selected radon anomalies, together with the decay properties of radon, have been used to estimate the permeability and porosity of rocks of the deep hydrothermal system. The current local cyclic seismicity is explained by means of a double convective-cell model. Convective cells are separated by a low-permeability horizon located at about 2-2.5 km below sea level. Fluids convecting within the upper cells show temperatures ranging 300-350°C. Rock permeabilities in this sector are estimated on the order of 10-12 m2, for porosities ( ϕ) of about 10-5 typical of a brittle environment where fluid velocities may reach ˜800 m/day. Fluid temperatures within the lower cells may be as high as 400-450°C, consistent with supercritical regimes. The hydrodynamic parameters for these cells are lower, with permeability k ˜ 10-15 m2, and porosity ranging from 10-6 to 10-7. Here, fluid motion toward the surface is controlled by the fracture network within a porous medium approaching brittle-ductile behaviour, and fluid velocities may reach ˜1,800 m/day. The low-permeability horizon is a layer where upper and lower convecting cells converge. In this region, fluids (convecting both at upper and lower levels) percolate through the wallrock and release their brines. Due to self-sealing processes, permeability within this horizon reaches critical values to keep the fluid pressure near lithostatic pressure (for k ˜ 10-18 m2). Deep fluid pressure buildups precede the onset of hydrothermally induced earthquakes. Permeability distribution and rock strength do not exclude that the next eruption at Somma-Vesuvius could be preceded by a seismic crisis, eventually leading to a precursory phreatic explosion. The coupling of these mechanisms has the potential of inducing pervasive failure within rocks of the

  1. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    Science.gov (United States)

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Investigating Mesoscale Convective Systems and their Predictability Using Machine Learning

    Science.gov (United States)

    Daher, H.; Duffy, D.; Bowen, M. K.

    2016-12-01

    A mesoscale convective system (MCS) is a thunderstorm region that lasts several hours long and forms near weather fronts and can often develop into tornadoes. Here we seek to answer the question of whether these tornadoes are "predictable" by looking for a defining characteristic(s) separating MCSs that evolve into tornadoes versus those that do not. Using NASA's Modern Era Retrospective-analysis for Research and Applications 2 reanalysis data (M2R12K), we apply several state of the art machine learning techniques to investigate this question. The spatial region examined in this experiment is Tornado Alley in the United States over the peak tornado months. A database containing select variables from M2R12K is created using PostgreSQL. This database is then analyzed using machine learning methods such as Symbolic Aggregate approXimation (SAX) and DBSCAN (an unsupervised density-based data clustering algorithm). The incentive behind using these methods is to mathematically define a MCS so that association rule mining techniques can be used to uncover some sort of signal or teleconnection that will help us forecast which MCSs will result in tornadoes and therefore give society more time to prepare and in turn reduce casualties and destruction.

  3. Magnetism, planetary rotation and convection in the solar system

    CERN Document Server

    1985-01-01

    On the 6th, 7th' and 8th April 1983, a conference entitled "Magnetism, planetary rotation and convection in the Solar System" was held in the School of Physics at the University of Newcastle upon Tyne. The purpose of the meeting was to celebrate the 60th birthday of Prof. Stanley Keith Runcorn and his, and his students' and associates', several decades of scientific achievement. The social programme, which consisted of excursions in Northumberland and Durham with visits to ancient castles and churches, to Hexham Abbey and Durham Cathedral, and dinners in Newcastle and Durham, was greatly enjoyed by those attending the meeting and by their guests. The success ofthe scientific programme can be judged by this special edition of Geophysical Surveys which is derived mainly from the papers given at the meeting. The story starts in the late 1940s when the question of the origin of the magnetic field of the Earth and such other heavenly bodies as had at that time been discovered as having a magnetic field, was exerci...

  4. An unit commitment model for hydrothermal systems; Um modelo de unit commitment para sistemas hidrotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Thiago de Paula; Luciano, Edson Jose Rezende; Nepomuceno, Leonardo [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: ra611191@feb.unesp.br, edson.joserl@uol.com.br, leo@feb.unesp.br

    2009-07-01

    A model of Unit Commitment to hydrothermal systems that includes the costs of start/stop of generators is proposed. These costs has been neglected in a good part of the programming models for operation of hydrothermal systems (pre-dispatch). The impact of the representation of costs in total production costs is evaluated. The proposed model is solved by a hybrid methodology, which involves the use of genetic algorithms (to solve the entire part of the problem) and sequential quadratic programming methods. This methodology is applied to the solution of an IEEE test system. The results emphasize the importance of representation of the start/stop in the generation schedule.

  5. Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps

    Science.gov (United States)

    Volpi, Giorgio; Magri, Fabien; Frattini, Paolo; Crosta, Giovanni B.; Riva, Federico

    2017-11-01

    Thermal springs are widespread in the European Alps, with hundreds of geothermal sites known and exploited. The thermal circulation and fluid outflows were examined in the area around Bormio (Central Italian Alps), where ten geothermal springs discharge from dolomite bodies located close to the regional Zebrù thrust. Water is heated in deep circulation systems and upwells vigorously at a temperature of about 40 °C. Heat and fluid transport is explored by steady and transient three-dimensional finite-element simulations taking into account the effect of the last glaciation, which in the study area was recognized to end around 11,000-12,000 years ago. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite-element planar grid. Numerical simulations suggest a reactivation of the system following the end of the Last Glacial Maximum. Results correctly simulate the observed discharge rate of ca. 2,400 L/min and the spring temperatures after ca. 13,000 years from deglaciation, and show a complete cooling of the aquifer within a period of approximately 50,000 years. Groundwater flow and temperature patterns suggest that thermal water flows through a deep system crossing both sedimentary and metamorphic lithotypes along a fracture network associated with the thrust system. This example gives insights into the influences of deep alpine structures and glaciations on groundwater circulation that control the development of many hydrothermal systems not necessarily associated with convective heat flow.

  6. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    Science.gov (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    Earth Sciences, 67(2), 589-599. Diersch, H. J, 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Gaston D., Newman C., Hansen G., Lebrun-Grandie D, 2009. MOOSE: A parallel solution framework for coupled systems of nonlinear equations. Nucl. Engrg. Design, 239, 1,768-1778 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., Rödiger, T., Rosenthal, E., Siebert, C., 2016. 2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge. Marine and Petroleum Geology 78, 750-758, DOI: /10.1016/j.marpetgeo.2016.10.002 Malkovsky, V. I., Magri, F., 2016. Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses, Water Resour. Res., 52, 2855-2867, DOI:10.1002/2015WR018001.

  7. Sparse identification of a predator-prey system from simulation data of a convection model

    DEFF Research Database (Denmark)

    Dam, Magnus; Brøns, Morten; Rasmussen, Jens Juul

    2017-01-01

    of a convection problem. A convection model with a pressure source centered at the inner boundary models the edge dynamics of a magnetically confined plasma. The convection problem undergoes a sequence of bifurcations as the strength of the pressure source increases. The time evolution of the energies...... of the pressure profile, the turbulent flow, and the zonal flow capture the fundamental dynamic behavior of the full system. By applying the sparse identification of nonlinear dynamics (SINDy) method, we identify a predator-prey type dynamical system that approximates the underlying dynamics of the three energy...

  8. Convection venting lensed reflector-type compact fluorescent lamp system

    Science.gov (United States)

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  9. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems

    Science.gov (United States)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.

    2016-12-01

    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism around high T intrusions.

  10. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    Science.gov (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  11. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  12. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  13. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.

    2016-01-01

    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  14. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    Science.gov (United States)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2017-03-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  15. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    Science.gov (United States)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  16. Thermochemical convection in porous media : an application to hydrothermal systems and magmetic intrusions

    NARCIS (Netherlands)

    Schoofs, C.A.

    1999-01-01

    The motion of aqueous and magmatic liquids has a large influence on the evolution of the cooling and chemically differentiating Earth. In many geological environments, these fluids percolate through the pores and fractures of a solid matrix, which is composed of (un)conso-lidated rocks or

  17. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  18. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower stratosp......The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... providing a clear signature of these processes on the atmosphere. However the signal is not sensitive enough to detect the variation of water vapor in the UTLS. The ongoing GPS RO missions do not provide a suitable Earth coverage in order to allow a systematic study of convective systems and an increase...

  19. The Muruntau gold deposit (Uzbekistan – A unique ancient hydrothermal system in the southern Tien Shan

    Directory of Open Access Journals (Sweden)

    Ulf Kempe

    2016-05-01

    Full Text Available The Muruntau gold deposit in the Central Kyzylkum, Uzbekistan is one of the largest single gold deposits worldwide. Data available from the literature are reviewed with the aim to (1 integrate the present knowledge on this unique deposit from Russian and English literature; (2 show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades; and (3 point to problems still open for future research. Deposit formation occurred through a multi-stage process involving sedimentation, regional metamorphism including thrusting, magmatism with formation of hornfels aureoles and several stages of hydrothermal activity. According to recent knowledge, synsedimentary or pure metamorphic formation of gold mineralization seems unlikely. The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain. There are no signs of interaction of matter between the magma(s and the hydrothermal system(s. On the other hand, there was an intense, high-temperature (above 400 °C fluid – wall rock interaction resulting in the formation of gold-bearing, cone-like stockworks with veins, veinlets and gold-bearing metasomatites. Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation. Deposit formation through brecciation involving explosion, hydrothermal or tectonic breccias might explain these data. Further investigations on breccia formation as well as on the exact timing of relevant sedimentary, metamorphic, magmatic and hydrothermal events are recommended.

  20. Hydrothermal alteration in the Baca Geothermal System, Redondo Dome, Valles Caldera, New Mexico

    Science.gov (United States)

    Hulen, Jeffrey B.; Nielson, Dennis L.

    1986-02-01

    Thermal fluids circulating in the active hydrothermal system of the resurgent Redondo dome of the Valles caldera have interacted with their diverse host rocks to produce well-zoned alteration assemblages, which not only help locate permeable fluid channels but also provide insight into the system's thermal history. The alteration shows that fluid flow has been confined principally to steeply dipping normal faults and subsidiary fractures as well as thin stratigraphic aquifers. Permeability along many of these channels has been reduced or locally eliminated by hydrothermal self-sealing. Alteration from the surface through the base of the Miocene Paliza Canyon Formation is of three distinctive types: argillic, propylitic, and phyllic. Argillic alteration forms a blanket above the deep water table in formerly permeable nonwelded tuffs. Beneath the argillic zone, pervasive propylitic alteration is weakly developed in felsic host rocks but locally intense in deep intermediate composition volcanics. Strong phyllic alteration is commonly but not invariably associated with major active thermal fluid channels. Phyllic zones yielding no fluid were clearly once permeable but now are hydrothermally sealed. High-temperature alteration phases at Baca are presently found at much lower temperatures. We suggest either that isotherms have collapsed due to gradual cooling of the system, that they have retreated without overall heat loss due to uplift of the Redondo dome, that the system has shifted laterally, or that it has contracted due to a drop in the water table. The deepest Well (B-12, 3423 m) in the dome may have penetrated through the base of the active hydrothermal system. Below a depth of 2440 m in this well, hydrothermal veining largely disappears, and the rocks resemble those developed by isochemical thermal metamorphism. The transition is reflected by temperature logs, which show a conductive thermal gradient below 2440 m. This depth may mark the dome's neutral plane

  1. Strontium and oxygen isotopic profiles through 3km of hydrothermally altered oceanic crust in the Reykjanes Geothermal System, Iceland

    OpenAIRE

    Marks, Naomi; Zierenberg, Robert A.; Schiffman, Peter

    2015-01-01

    © 2015 Elsevier B.V. The Iceland Deep Drilling Program well RN-17 was drilled 3km into a section of hydrothermally altered basaltic crust in the Reykjanes geothermal system in Iceland. The system is located on the landward extension of the Mid-Atlantic Ridge, and the circulating hydrothermal fluid is modified seawater, making Reykjanes a useful analog for mid-oceanic ridge hydrothermal systems. We have determined whole-rock Sr and O isotope compositions, and Sr isotope compositions of epidote...

  2. Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran

    Science.gov (United States)

    Rafati, Somayeh; Karimi, Mostafa

    2017-07-01

    In this research, the spatial and temporal distribution of Mesoscale Convective Systems was assessed in the southwest of Iran using Global merged satellite IR brightness temperature (acquired from Meteosat, GOES, and GMS geostationary satellites) and synoptic station data. Event days were selected using a set of storm reports and precipitation criteria. The following criteria are used to determine the days with occurrence of convective systems: (1) at least one station reported 6-h precipitation exceeding 10 mm and (2) at least three stations reported phenomena related to convection (thunderstorm, lightning, and shower). MCSs were detected based on brightness temperature, maximum areal extent, and duration thresholds (228 K, 10,000 km2, and 3 h, respectively). An MCS occurrence classification system is developed based on mean sea level, 850 and 500 hPa pressure patterns.

  3. Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework

    Science.gov (United States)

    Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick

    2012-01-01

    Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).

  4. Explicit simulation and parameterization of mesoscale convective systems. Final report, November 1, 1993--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, W.R.

    1997-08-12

    This research has focused on the development of a parameterization scheme for mesoscale convective systems (MCSs), to be used in numerical weather prediction models with grid spacing too coarse to explicitly simulate such systems. This is an extension to cumulus parameterization schemes, which have long been used to account for the unresolved effects of convection in numerical models. Although MCSs generally require an extended sequence of numerous deep convective cells in order to develop into their characteristic sizes and to persist for their typical durations, their effects on the large scale environment are significantly different than that due to the collective effects of numerous ordinary deep convective cells. These differences are largely due to a large stratiform cloud that develops fairly early in the MCS life-cycle, where mesoscale circulations and dynamics interact with the environment in ways that call for a distinct MCS parameterization. Comparing an MCS and a collection of deep convection that ingests the same amount of boundary layer air and moisture over an extended several hour period, the MCS will generally generates more stratiform rainfall, produce longer-lasting and optically thicker cirrus, and result in different vertical distributions of large-scale tendencies due to latent heating and moistening, momentum transfers, and radiational heating.

  5. Surficial extent and conceptual model of hydrothermal system at Mount Rainier, Washington

    Science.gov (United States)

    Frank, David

    1995-04-01

    A once massive hydrothermal system was disgorged from the summit of Mount Rainier in a highly destructive manner about 5000 years ago. Today, hydrothermal processes are depositing clayey alteration products that have the potential to reset the stage for similar events in the future. Areas of active hydrothermal alteration occur in three representative settings: (1) An extensive area (greater than 12,000 m 2) of heated ground and slightly acidic boiling-point fumaroles at 76-82 °C at East and West Craters on the volcano's summit, where alteration products include smectite, halloysite and disordered kaolinite, cristobalite, tridymite, opal, alunite, gibbsite, and calcite. (2) A small area (less than 500 m 2) of heated ground and sub-boiling-point fumaroles at 55-60 °C on the upper flank at Disappointment Cleaver with smectite alteration and chalcedony, tridymite, and opal-A encrustations. Similar areas probably occur at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls. (3) Sulfate- and carbon dioxide-enriched thermal springs at 9-24 °C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers, where calcite, opal-A, and gypsum are being deposited. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers. Maximum spring temperatures of 19-25 °C and 38-50 °C, respectively, and extensive travertine deposits have developed in these more distant localities. The heat flow, distribution of thermal activity, and nature of alteration minerals and fluids suggest a conceptual model of a narrow, central hydrothermal system within Mount Rainier, with steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 km of the summit. The lateral extent of the hydrothermal system is marked by discharge of

  6. A satellite-based perspective of convective systems over the Maritime Continent

    Science.gov (United States)

    Rowe, A.; Houze, R.; Virts, K.; Zuluaga, M. D.

    2014-12-01

    Data from TRMM, the A-Train satellites, and the Worldwide Lightning Location Network (WWLLN) have been used to study extreme weather throughout low latitudes, from deep convection over the Himalayas to oceanic mesoscale systems associated with the MJO. This study presents a more in-depth examination of convection over the Maritime Continent (Indonesia and Malaysia). During November to February, this area is the rainiest regional climate on Earth, thus constituting one of the atmosphere's primary heat sources. On multiple temporal and spatial scales, it is a complex region with clouds and precipitation having both oceanic and orographic influence. The November-February season encompasses both the eastward propagation of the MJO through this region and rainfall associated with the Asian-Australian monsoon. More specifically, the precipitation in this region is strongly modulated by MJO phases, pulsations of the monsoon, and the powerful diurnal effects of the islands and ocean. Through a feature-based analysis of convective and stratiform components of storms, the evolution of precipitating clouds in this region will be described using data from the November-February time period over multiple years. This analysis leads to an increased understanding of the characteristics of convection associated with the intraseasonal and diurnal variability during these months over the Maritime Continent. Previous work using A-Train data noted the prevalence of smaller separated MCSs over the region during the locally active phase of the MJO, and WWLLN data have shown a peak in lightning density as convection becomes deeper and more numerous leading up to this active period. By applying the analysis of the TRMM data in addition to the A-Train and WWLLN datasets, the relative roles of convective and stratiform components of MCSs to the behavior of convection can be determined during the MJO and monsoonal maxima of rainfall over the Maritime Continent.

  7. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems

    Science.gov (United States)

    Gysi, A. P.

    2015-12-01

    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH peralkaline granitic systems is the formation of a fluid-buffered subsystem providing the acids and ligands required for REE and Zr mobilization.

  8. The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems

    OpenAIRE

    Philipp Weis

    2015-01-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multiphase flow of variably miscible, compressible H2O–NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model uses values between 10−22 and 10−13 m2, incorporating depth-dependent permeability profiles characteristic for tectonically active crust as wel...

  9. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    Science.gov (United States)

    Tsventoukh, M. M.

    2010-10-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ˜ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  10. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  11. Temperature Effects on Phase Relations in Ultramafic-Hosted Hydrothermal Systems

    Science.gov (United States)

    Seyfried, W. E.; Foustoukos, D. I.; Fu, Q.

    2005-12-01

    The effect of temperature on alteration processes in ultramafic hosted hydrothermal systems is significant and manifest by complex changes in secondary mineralization and the composition of coexisting fluids, as suggested by recent experimental and theoretical data. At relatively high temperatures (400C) olivine recrystallization reactions are sluggish, generally limiting mass transfer. In SiO2 bearing fluids, such as the case for the Rainbow hydrothermal system (36N, MAR), evidence indicates olivine recrystallization to a more fayalite-rich phase and talc, enhancing olivine stability at reaction zone conditions. These phases plus tremolite play a key role in maintaining fluid acidity, accounting for the unusually high levels of dissolved metals that characterize the high temperature Rainbow vent fluids. In contrast, hydrothermal alteration of ultramafic rocks by seawater at temperatures below 300C generally results in high pH fluids, serpentinization of olivine and coexisting pyroxene, and Ca for Mg exchange in the fluid. Data also indicate potentially high dissolved H2 and low dissolved Fe and total dissolved sulfide species. Analogous processes likely characterize subseafloor reaction zones at the Lost City Hydrothermal Field (LCHF), which lies on the Atlantis Massif at 30N, 15 km west of the Mid-Atlantic Ridge. Indeed, geochemical modeling of the Lost City vent fluid chemistry suggests subseafloor temperatures of approximately 200C, which are considerably greater than the measured vent fluid temperatures (40 to 90C), suggesting conductive cooling and seawater mixing effects; processes consistent with the reported mineralization of chimney structures. Available data also suggest moderately high fluid/rock mass ratios, which in combination with reaction zone temperature estimates make it unlikely that hydrothermal circulation can be a direct result of the exothermic nature of the conversion of olivine to serpentine. Accordingly, alternative heat sources need to

  12. An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II - Vertical structure

    Science.gov (United States)

    Mapes, Brian; Houze, Robert A., Jr.

    1993-01-01

    The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.

  13. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept

    National Research Council Canada - National Science Library

    Ishibashi, Jun-ichiro; Okino, Kyoko; Sunamura, Michinari

    2015-01-01

    This book is the comprehensive volume of the TAIGA (“a great river ” in Japanese) project. Supported by the Japanese government, the project examined the hypothesis that the subseafloor fluid advection system...

  14. Interpretation of Doppler Weather Radar Displays of Midlatitude Mesoscale Convective Systems.

    Science.gov (United States)

    Houze, Robert A., Jr.; Biggerstaff, M. I.; Rutledge, S. A.; Smull, B. F.

    1989-06-01

    The utility of color displays of Doppler-radar data in revealing real-time kinematic information has been demonstrated in past studies, especially for extratropical cyclones and severe thunderstorms. Such displays can also indicate aspects of the circulation within a certain type of mesoscale convective system-the squall line with trailing "stratiform" rain. Displays from a single Doppler radar collected in two squall-line storms observed during the Oklahoma-Kansas PRE-STORM project conducted in May and June 1985 reveal mesoscale-flow patterns in the stratiform rain region of the squall line, such as front-to-rear storm-relative flow at upper levels, a subsiding storm-relative rear inflow at middle and low levels, and low-level divergent flow associated with strong mesoscale subsidence. "Dual-Doppler" analysis further illustrates these mesoscale-flow features and, in addition, shows the structure of the convective region within the squall line and a mesoscale vortex in the "stratiform" region trailing the line. A refined conceptual model of this type of mesoscale convective system is presented based on previous studies and observations reported here.Recognition of "single-Doppler-radar" patterns of the type described in this paper, together with awareness of the conceptual model, should aid in the identification and interpretation of this type of mesoscale system at future NEXRAD sites. The dual-Doppler results presented here further indicate the utility of multiple-Doppler observations of mesoscale convective systems in the STORM program.

  15. Post-impact hydrothermal system geochemistry and mineralogy: Rochechouart impact structure, France.

    Science.gov (United States)

    Simpson, Sarah

    2014-05-01

    Hypervelocity impacts generate extreme temperatures and pressures in target rocks and may permanently alter them. The process of cratering is at the forefront of research involving the study of the evolution and origin of life, both on Mars and Earth, as conditions may be favourable for hydrothermal systems to form. Of the 170 known impact structures on Earth, over one-third are known to contain fossil hydrothermal systems [1]. The introduction of water to a system, when coupled with even small amounts of heat, has the potential to completely alter the target or host rock geochemistry. Often, the mineral assemblages produced in these environments are unique, and are useful indicators of post-impact conditions. The Rochechouart impact structure in South-Central France is dated to 201 ± 2 Ma into a primarily granitic target [2]. Much of the original morphological features have been eroded and very little of the allochthonous impactites remain. This has, however, allowed researchers to study the shock effects on the lower and central areas of the structure, as well as any subsequent hydrothermal activity. Previous work has focused on detailed classification of the target and autochthonous and allochthonous impactites [3, 4], identification of the projectile [5], and dating the structure using Ar-isotope techniques [2]. Authors have also noted geochemical evidence of K-metasomatism, which is pronounced throughout all lithologies as enrichment in K2O and depletion in CaO and Na2O [3, 4, 5]. This indicates a pervasive hydrothermal system, whose effects throughout the structure have yet to be studied in detail, particularly in those parts at and below the transient floor. The purpose of this study is to classify the mineralogical and geochemical effects of the hydrothermal system. Samples were collected via permission from the Réserve Naturelle de l'Astroblème de Rochechouart-Chassenon [6]. Sample selection was based on the presence of secondary mineralization in hand

  16. A review of numerical simulation of hydrothermal systems.

    Science.gov (United States)

    Mercer, J.W.; Faust, C.R.

    1979-01-01

    Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors

  17. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  18. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements

    Science.gov (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra

    2017-07-01

    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  19. Nanoparticles in the zirconia-europium niobate system via hydrothermal route.

    Science.gov (United States)

    Hirano, Masanori; Dozono, Hayato

    2013-10-01

    The effect of the composition on the hydrothermal formation, structure, and properties of nanocrystalline luminescent materials in the zirconia (ZrO2)-europium niobate 1/4(Eu3NbO7) system was investigated. In the composition range 40 particles with crystallite size 6.0-7.6 nm that were hydrothermally formed from the precursor solutions of NbCl5, ZrOCI2, and EuCl3 under weakly basic conditions at 240 degrees C showed cubic structure. The lattice parameter when estimated as a single cubic phase linearly decreased as the concentration of ZrO2 increased. The presence of zirconia component effectively promoted the formation of nanocrystals containing the niobate, Eu3NbO7 under hydrothermal condition. The nanocrystalline particles could be excited by ultraviolet light 395 nm (f-f transition) and emitted orange (590 nm) and red light (610 nm) corresponding to 5D0 --> 7F1 and 5D0 --> 7F2 transitions of Eu3+, respectively. The intensity of the electric dipole transition (5D0 --> 7F2) that was expressed in values relative to the magnetic dipole transition (5D0 --> 7F1) increased with increased heat-treatment temperature in the range from 950 to 1200 degrees C.

  20. Modeling and analysis for general non-isothermal convective phase field systems

    OpenAIRE

    Haas, Robert

    2007-01-01

    In this work general non-isothermal phase field models for multi-phase and multi-component systems are considered. The modelling of the free energy by Ginzburg-Landau functionals for multi-phase systems is considered and analyzed theoretically and numerically. Furthermore a general non-isothermal phase field model for convective systems with multiple components and phases has been derived. Finally for a isothermal multi-phase phase field model the existence of a solution is proved in...

  1. Model of banding in diffusive and convective regimes during directional solidification of peritectic systems

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Rappel, W.J. [Northeastern Univ., Boston, MA (United States); Fuh, B.C.; Trivedi, R. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering

    1998-05-01

    The formation of banded microstructure in peritectic systems is examined theoretically in both diffusive and convective regimes. A rigorous model is developed in the diffusive regime that describes the non-steady-state growth of alternate solid {alpha} and {beta} phase bands with a planar solid-liquid interface. The model is extended to incorporate the effect of convection by assuming that solute diffusion takes place within a boundary layer of constant thickness, with a uniform composition in the mixed liquid zone outside this layer. The model predicts that convection effects in a semi-infinite sample narrow the composition range over which extended banding can occur, and the spacing of bands is reduced compared to the diffusive growth model. In a finite length sample, convection is shown to lead only to the transient formation of bands. In this transient banding regime, only a few bands with a variable width are formed, and this transient banding process can occur over a wide range of compositions inside the two-phase peritectic region. Directional solidification studies in the Pb-Bi system show transient bands and agree qualitatively with these predictions. However, the basic mechanism of band formation observed in this system is found to be significantly different from the one assumed in the model. A new mechanism of banding is proposed in which continuous growth of both phases is present instead of nucleation at the boundary of the pre-existing phase. This mechanism yields an oscillatory structure with a shorter spatial periodicity than the band spacing predicted by the purely diffusive or boundary layer convective models.

  2. Intraseasonal variability of organized convective systems in the Central Andes: Relationship to Regional Dynamical Features

    Science.gov (United States)

    Mohr, K. I.; Slayback, D. A.; Nicholls, S.; Yager, K.

    2013-12-01

    The Andes extend from the west coast of Colombia (10N) to the southern tip of Chile (53S). In southern Peru and Bolivia, the Central Andes is split into separate eastern and western cordilleras, with a high plateau (≥ 3000 m), the Altiplano, between them. Because 90% of the Earth's tropical mountain glaciers are located in the Central Andes, our study focuses on this region, defining its zonal extent as 7S-21S and the meridional extent as the terrain 1000 m and greater. Although intense convection occurs during the wet season in the Altiplano, it is not included in the lists of regions with frequent or the most intense convection. The scarcity of in-situ observations with sufficient density and temporal resolution to resolve individual storms or even mesoscale-organized cloud systems and documented biases in microwave-based rainfall products in poorly gauged mountainous regions have impeded the development of an extensive literature on convection and convective systems in this region. With the tropical glaciers receding at unprecedented rates, leaving seasonal precipitation as an increasingly important input to the water balance in alpine valley ecosystems and streams, understanding the nature and characteristics of the seasonal precipitation becomes increasingly important for the rural economies in this region. Previous work in analyzing precipitation in the Central Andes has emphasized interannual variability with respect to ENSO, this is the first study to focus on shorter scale variability with respect to organized convection. The present study took advantage of the University of Utah's Precipitation Features database compiled from 14 years of TRMM observations (1998-2012), supplemented by field observations of rainfall and streamflow, historical gauge data, and long-term WRF-simulations, to analyze the intraseasonal variability of precipitating systems and their relationship regional dynamical features such as the Bolivian High. Through time series and

  3. Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.

  4. A study of the 21 March 2012 tornadic quasi linear convective system in Catalonia

    Science.gov (United States)

    Bech, Joan; Arús, Joan; Castán, Salvador; Pineda, Nicolau; Rigo, Tomeu; Montanyà, Joan; van der Velde, Oscar

    2015-05-01

    This study presents a description of a quasi linear convective system that took place in Catalonia (NE Spain) on 21 March 2012 producing heavy rainfall, moderate lightning activity and a weak tornado in the village of Ivars d'Urgell around 19 UTC after local sunset. A post-event survey indicated EF0 and EF1 damage in houses of the village - roofs and ceilings, broken windows, fences and walls and trees knocked down - along a track approximately 4 km long and about 20 m wide. Doppler radar observations show that the parent thunderstorm that spawned the tornado was one of a series that developed along a convective line that moved from S to N, initiating convective activity in terms of precipitation and lightning in the Mediterranean Sea and moving inland in S Catalonia (Tarragona and Salou coastal areas, producing local flash floods). Convective activity remained several hours with series of thunderstorms developing along the same paths. The synoptic situation was dominated by a high pressure ridge extending from northern Africa to central Europe, with a closed maximum sea level pressure area around 1036 hPa over northern France, southern Germany and Austria. On the other hand a relative low pressure area seen on 850 hPa and upper levels was present over the Iberian Peninsula, favouring a southern maritime flow from the Mediterranean between the forward part of the low pressure area and the high pressure system which blocked the advance of the low to the east. In the study we examine both the synoptic environment and storm scale observations with Doppler radar and total lightning data (cloud to ground and intracloud flashes) that lead to this cool-season severe convective event which is remarkable given the fact that, unlike in this case, most reported tornadoes in the region occur during the warm season (with peaks in August and September) and during daylight hours (6 to 18 UTC).

  5. Multifractal spatial organisation in hydrothermal gold systems of the Archaean Yilgarn craton, Western Australia

    Science.gov (United States)

    Munro, Mark; Ord, Alison; Hobbs, Bruce

    2015-04-01

    A range of factors controls the location of hydrothermal alteration and gold mineralisation in the Earth's crust. These include the broad-scale lithospheric architecture, availability of fluid sources, fluid composition and pH, pressure-temperature conditions, microscopic to macroscopic structural development, the distribution of primary lithologies, and the extent of fluid-rock interactions. Consequently, the spatial distribution of alteration and mineralization in hydrothermal systems is complex and often considered highly irregular. However, despite this, do they organize themselves in a configuration that can be documented and quantified? Wavelets, mathematical functions representing wave-like oscillations, are commonly used in digital signals analysis. Wavelet-based multifractal analysis involves incrementally scanning a wavelet across the dataset multiple times (varying its scale) and recording its degree of fit to the signal at each interval. This approach (the wavelet transform modulus maxima method) highlights patterns of self-similarity present in the dataset and addresses the range of scales over which these patterns replicate themselves (expressed by their range in 'fractal dimension'). Focusing on seven gold ore bodies in the Archaean Yilgarn craton of Western Australia, this study investigates whether different aspects of hydrothermal gold systems evolve to organize themselves spatially as multifractals. Four ore bodies were selected from the Sunrise Dam deposit (situated in the Laverton tectonic zone of the Kurnalpi terrane) in addition to the Imperial, Majestic and Salt Creek gold prospects, situated in the Yindarlgooda dome of the Mount Monger goldfield (approximately 40km due east of Kalgoorlie). The Vogue, GQ, Cosmo East and Astro ore bodies at Sunrise Dam were chosen because they exhibit different structural geometries and relationships between gold and associated host-rock alteration styles. Wavelet-based analysis was conducted on 0.5m and 1m

  6. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  7. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  8. Towards evaluating the intensity of convective systems by using GPS radio occultation profiles

    Science.gov (United States)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried

    2015-04-01

    Deep convective systems, also more casually often just called storms, are destructive weather phenomena causing every year many deaths, injuries and damages and accounting for major economic losses in several countries. The number and intensity of such phenomena increased over the last decades in some areas of the globe, including Europe. Damages are mostly caused by strong winds and heavy rain and these parameters are strongly connected to the structure of the storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes which are still mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in-situ measurements during extreme events are too sparse or not reliable and most ongoing satellite missions do not provide suitable time/space coverage. With this study we propose a new method for detecting the convection intensity in terms of rain rate and surface wind speed by using meteorological surface measurements in combination with atmospheric profiles from Global Positioning System (GPS) radio occultation observations, which are available in essentially all weather conditions and with global coverage. The analysis of models indicated a relationship between the cloud top altitude and the intensity of a storm. We thus use GPS radio occultation bending angle profiles for detecting the storm's cloud top altitude and we correlate this value to the rain rate and wind speed measured by meteorological station networks in two different regions, the WegenerNet climate station network (South-Eastern Styria, Austria) and the Atmospheric Radiation Measurement site (ARM, Southern Great Plains, USA), respectively. The results show a good correlation between the cloud top altitude and the maximum rain rate in the monitored areas, while this is not found for maximum wind speed. We conclude from this

  9. Hydrothermal System of the Lastarria Volcano (Central Andes) Imaged by Magnetotellurics

    Science.gov (United States)

    Diaz, D.

    2015-12-01

    Lazufre volcanic complex, located in the central Andes, is recently undergoing an episode of uplift, conforming one of the most extensive deforming volcanic systems worldwide. Recent works have focused on the subsurface of this volcanic system at different scales, using surface deformation data, seismic noise tomography and magnetotellurics. Here we image the electrical resistivity structure of the Lastarria volcano, one of the most important features in the Lazufre area, using broadband magnetotelluric data at 30 locations around the volcanic edifice. Results from 3-D modeling show a conductive zone at 6 km depth south of the Lastarria volcano interpreted as a magmatic heat source, which is connected to a shallower conductive area beneath the volcanic edifice and its close vicinity. This shallow highly conductive zone fits with geochemical analysis results of thermal fluid discharges, related to fumaroles present in this area, in terms of depth extent and possible temperatures of fluids, and presents also a good correlation with seismic tomography results. The horizontal extension of this shallow conductive zone, related to the hydrothermal system of Lastarria, suggests that it has been draining one of the lagoons in the area (Laguna Azufrera), forming a sulfur rich area which can be observed at the southern side of this lagoon. Joint modeling of the hydrothermal system using magnetotellurics and seismic data is part of the current work.

  10. The cross-over to magnetostrophic convection in planetary dynamo systems.

    Science.gov (United States)

    Aurnou, J M; King, E M

    2017-03-01

    Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ, yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, [Formula: see text], where Λo is the linear (or traditional) Elsasser number, Rmo is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above [Formula: see text], magnetostrophic convection dynamics should not be possible. Only on scales smaller than [Formula: see text] should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because [Formula: see text] is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λo ≃1 and Rmo ≃103 in Earth's core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations.

  11. The cross-over to magnetostrophic convection in planetary dynamo systems

    Science.gov (United States)

    King, E. M.

    2017-01-01

    Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ, yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, LX≈(Λo2/Rmo)D, where Λo is the linear (or traditional) Elsasser number, Rmo is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above LX, magnetostrophic convection dynamics should not be possible. Only on scales smaller than LX should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because LX is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λo≃1 and Rmo≃103 in Earth’s core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations. PMID:28413338

  12. Development of micro-flow hydrothermal monitoring systems and their applications to the origin of life study on Earth.

    Science.gov (United States)

    Kawamura, Kunio

    2011-01-01

    Continuous extensive studies on thermophilic organisms have suggested that life emerged on hydrothermal systems on primitive Earth. Thus, it is well known that hydrothermal reactions are, therefore, very important to study fields deeply related to the origin-of-life study. Furthermore, the importance of hydrothermal and solvothermal systems is now realized in both fundamental and practical areas. Here, our recent investigations are described for the development of real-time and in situ monitoring systems for hydrothermal reactions. The systems were primarily developed for the origin-of-life study, but it was also applicable to fundamental and practical areas. The present techniques are based on the concept that a sample solution is injected to a narrow tubing flow reactor at high temperatures, where the sample is rapidly heated up in a very short time by exposure at to a high-temperature narrow tubing flow reactor with a very short time scale. This enables millisecond to second time-scale monitoring in real time and/or in situ at temperatures of up to 400°C. By using these techniques, a series of studies on the hydrothermal origin-of-life have been successfully carried out.

  13. On a Five-Dimensional Chaotic System Arising from Double-Diffusive Convection in a Fluid Layer

    Directory of Open Access Journals (Sweden)

    R. Idris

    2013-01-01

    Full Text Available A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of dynamical systems. A five-dimensional model of chaotic system is obtained using the Galerkin truncated approximation. The results showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.

  14. Resistivity structure of the Furnas hydrothermal system (Azores archipelago, Portugal) from AMT and ERT imaging.

    Science.gov (United States)

    Byrdina, Svetlana; Vandemeulebrouck, Jean; Rath, Volker; Silva, Catarina; Hogg, Colin; Kiyan, Duygu; Viveiros, Fatima; Eleuterio, Joana; Gresse, Marceau

    2016-04-01

    The Furnas volcanic complex is located in the eastern part of the São Miguel Island and comprises a 5 km × 8 km summit depression filled by two nested calderas with several craters and a lake. Present-day volcanic activity of Furnas volcano is mostly located in the northern part of the caldera, within the Furnas village and north to Furnas Lake, where hydrothermal manifestations are mainly fumarolic fields, steam vents, thermal springs, and intense soil diffuse degassing. Considering the Furnas volcano as a whole, the total integrated CO2 efflux is extremely high, with a total amount of CO2 close to 1000 ton per day (Viveiros et al., 2009). We present the first results of an electrical resistivity tomography (ERT), combined with audio-magneto-telluric (AMT) measurements aligned along two profiles inside the caldera. The purpose of this survey is to delimit the extent, the geometry, and the depth of the hydrothermal system and to correlate the deep resistivity structure with high resolution cartography of diffuse CO2 flux (Viveiros et al, 2015). The ERT and AMT methods are complementary in terms of resolution and penetration depth: ERT can image the structural details of shallow hydrothermal system (down to 100 m in our study) while AMT can image at lower resolution deeper structures at the roots of a volcano (down to 4 km in our study). Our first independent 2D inversions of the ERT-AMT data show a good agreement between the surficial and deeper features. Below the main fumarole area we observe a low resistivity body (less than 1 Ohmm) which corresponds well to the high CO2 flux at the surface and is associated with an extended conductive body at larger depth. These results strongly suggest the presence of hydrothermal waters at depth or/and the presence of altered clay-rich material. On a larger scale however, the geometry of the conducting zones differs slightly from what was expected from earlier surface studies, and may not be directly related to fault zones

  15. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Douville, E. [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie]|[IFREMER Centre de Brest, Plouzane (France); Appriou, P. [Univ. Bretagne Occidentale, Brest (France); Bienvenu, P. [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques; Charlou, J.L.; Donval, J.P.; Fouquet, Y. [IFREMER Centre de Brest, Plouzane (France); Gamo, Toshitaka [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.

    1999-03-01

    Rare earth element (REE) and yttrium (Y) concentrations were measured in fluids collected from deep-sea hydrothermal systems including the Mid-Atlantic Ridge (MAR), i.e., Menez Gwen, Lucky Strike, TAG, and Snakepit; the East Pacific Rise (EPR), i.e., 13{degree}N and 17--19{degree}S; and the Lau (Vai Lili) and Manus (Vienna Woods, PacManus, Desmos) Back-arc Basins (BAB) in the South-West Pacific. In most fluids, Y is trivalent and behaves like Ho. Chondrite normalized Y-REE (Y-REE{sub N}) concentrations of fluids from MAR, EPR, and two BAB sites, i.e., Vai Lili and Vienna Woods, showed common patterns with LREE enrichment and positive Eu anomalies. REE analysis of plagioclase collected at Lucky Strike strengthens the idea that fluid REE contents, are controlled by plagioclase phenocrysts. Other processes, however, such as REE complexation by ligands (Cl{sup {minus}}, F{sup {minus}}, So{sub 4}{sup 2{minus}}), secondary phase precipitation, and phase separation modify REE distributions in deep-sea hydrothermal fluids. REE speciation calculations suggest that aqueous REE are mainly complexed by Cl{sup {minus}} ions in hot acidic fluids from deep-sea hydrothermal systems. REE concentrations in the fluid phases are, therefore, influenced by temperature, pH, and duration of rock-fluid interaction. Unusual Y-REE{sub N} patterns found in the PacManus fluids are characterized by depleted LREE and a positive Eu anomaly. The Demos fluid sample shows a flat Y-REE{sub N} pattern, which increases regularly from LREE to HREE with no Eu anomaly. These Manus Basin fluids also have an unusual major element chemistry with relatively high Mg, So{sub 4}, H{sub 2}S, and F contents, which may be due to the incorporation of magmatic fluids into heated seawater during hydrothermal circulation. REE distribution in PacManus fluids may stem from a subseafloor barite precipitation and the REE in Demos fluids are likely influenced by the presence of sulfate ions.

  16. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    Science.gov (United States)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  17. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.

    Science.gov (United States)

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A

    2012-11-06

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  18. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    Science.gov (United States)

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  19. Evolution of the Vesuvius magmatic-hydrothermal system before the 16 December 1631 eruption

    Science.gov (United States)

    Principe, Claudia; Marini, Luigi

    2008-04-01

    In a recently published manuscript [Guidoboni, E., Boschi, E., 2006. Vesuvius before the 1631 eruption, EOS, 87(40), 417 and 423]; [Guidoboni, E. (Ed.), 2006. Pirro Ligorio, Libro di diversi terremoti (1571), volume 28, codex Ja II 15, Archivio di Stato di Torino, Edizione Nazionale delle Opere di Pirro Ligorio, Roma, De Luca, 261 pp], Pirro Ligorio gives a detailed description of the phenomena occurring in the crater area of Vesuvius volcano, in 1570-1571 and previous years. Here, these phenomena are interpreted as the first clearly documented signals of unrest of this volcanic system caused by the shallow emplacement of a magma batch and leading to the 1631 eruption. Our interpretation is mainly based on the present understanding of the fluid geochemistry of magmatic-hydrothermal systems. In this way, it is possible to conclude that: (i) incandescent rocks were present at the surface, with temperatures > 500 °C approximately and (ii) either a magmatic-dominated or a magmatic-hydrothermal-type of conceptual geochemical model applies to Vesuvius in 1570-1571 and preceding years. The Ligorio's picture represents the first clear evidence that the magma involved in the 1631 eruption was present under the volcano more than sixty years before the eruption. Moreover, its emplacement produced a series of phenomena which were clearly observed although not understood at that time. A similar phenomenological pattern should be easily detected and correctly interpreted at present or in the future.

  20. Response of Hydrothermal System to Stress Transients at Lassen Volcanic Center, California inferred from Seismic Interferometry with Ambient Noise

    Science.gov (United States)

    Taira, T.; Brenguier, F.

    2016-12-01

    Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1% velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrologic load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity.

  1. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    Science.gov (United States)

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  2. Microbial heterotrophy coupled to Fe-S-As cycling in a shallow-sea hydrothermal system

    Science.gov (United States)

    Lu, G.; Amend, J.

    2013-12-01

    To date, there are only a few known heterotrophic arsenite oxidizers and arsenate reducers. They utilize organic compounds as their carbon source and/or as important electron donors in the transfer arsenic in high temperature environments. Arsenic in hydrothermal vent systems can be immobilized at low temperatures through (ad)sorption on iron oxide and other iron-bearing minerals. Interactions with sulfur species can also affect the redox state of arsenic species. A better understanding of microbially-catalyzed reactions involving carbon, arsenic, iron and sulfur would provide constraints on the mobility of arsenic in a wide variety of natural and engineered systems. The aim of this study is to establish links between microbial distribution and in situ Fe-S-As cycling processes in a shallow-sea hydrothermal vent system. We investigated three shallow-sea hydrothermal vents, Champagne Hot Spring (CHS), Soufriere Spring (SOU) and Portsmouth Spring (PM), located off the western coast of Dominica, Lesser Antilles. CHS and SOU are characterized by moderate temperatures (46oC and 55oC, respectively), and PM is substantially hotter (~90-111 oC). Two sediment cores (one close to and one far from the thermal source) were collected from CHS and from SOU. Porewaters in both background cores had low concentrations of arsenic (mostly As3+, to a lesser extent As5+, DMA, MMA) and ferrous iron. The arsenic concentrations (predominantly As3+) in the CHS high temperature core were 30-90 nM, tracking with dissolved iron. Similar to CHS, the arsenic concentration in the SOU high temperature core was dominated by As3+ and controlled by ferrous iron. However, the arsenic concentration at SOU is comparatively higher, up to 1.9 mM. At the hotter and deeper PM site, highly elevated arsenic levels (1-2.5 mM) were measured, values that are among the highest arsenic concentrations ever reported in a marine hydrothermal system. Several autotrophic and heterotrophic media at two pHs (5.5 and 8

  3. A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.

    2000-09-01

    Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.

  4. On the episodic nature of derecho-producing convective systems in the United States

    Science.gov (United States)

    Ashley, Walker S.; Mote, Thomas L.; Bentley, Mace L.

    2005-11-01

    Convectively generated windstorms occur over broad temporal and spatial scales; however, one of the larger-scale and most intense of these windstorms has been given the name derecho. This study illustrates the tendency for derecho-producing mesoscale convective systems to group together across the United States - forming a derecho series. The derecho series is recognized as any succession of derechos that develop within a similar synoptic environment with no more than 72 h separating individual events. A derecho dataset for the period 1994-2003 was assembled to investigate the groupings of these extremely damaging convective wind events. Results indicate that over 62% of the derechos in the dataset were members of a derecho series. On average, nearly six series affected the United States annually. Most derecho series consisted of two or three events; though, 14 series during the period of record contained four or more events. Two separate series involved nine derechos within a period of nine days. Analyses reveal that derecho series largely frequent regions of the Midwest, Ohio Valley, and the south-central Great Plains during May, June, and July. Results suggest that once a derecho occurred during May, June, or July, there was a 58% chance that this event was the first of a series of two or more, and about a 46% chance that this was the first of a derecho series consisting of three or more events. The derecho series climatology reveals that forecasters in regions frequented by derechos should be prepared for the probable regeneration of a derecho-producing convective system after an initial event occurs. Copyright

  5. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    Science.gov (United States)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  6. Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand

    Science.gov (United States)

    Procter, J. N.; Cronin, S. J.; Zernack, A. V.; Lube, G.; Stewart, R. B.; Nemeth, K.; Keys, H.

    2014-10-01

    Analysis of the pre- and post-eruption topography, together with observations of the avalanche deposition sequence, yields a triggering mechanism for the 6 August 2012 eruption of Upper Te Maari. The avalanche was composed of a wedge of c. 683 000-774 000 m3 of coarse breccia, spatter and clay-rich tuffs and diamictons which slid from the western flanks of the Upper Te Maari Crater, the failure plane is considered to be a hydrothermally altered clay layer. This landslide led to a pressure drop of up to 0.5 MPa, enough to generate an explosive eruption from the hydrothermal system below, which had been activated over the months earlier by additional heat and gas from a shallow intrusion. The landslide transformed after c. 700 m into a clay-rich cohesive debris flow, eroding soils from steep, narrow stretches of channel, before depositing on intermediate broad flatter reaches. After each erosive reach, the debris flow contained greater clay and mud contents and became more mobile. At c. 2 km flow distance, however, the unsaturated flow stopped, due to a lack of excess pore pressure. This volume controlled flow deposited thick, steep sided lobes behind an outer levee, accreting inward and upward to form a series of curved surface ridges.

  7. An effective method and pathways of acrylonitrile degradation to acrylic acid through an alkaline hydrothermal system.

    Science.gov (United States)

    Dong, Wenjie; Peng, Boyu; Wang, Ke; Miao, Jia; Zhang, Wei; Zhang, Yalei; Shen, Zheng

    2017-07-01

    Degradation of pollution for specific chemicals represents an optimal approach to high-strength wastewater treatment. One-pot selective conversion of acrylonitrile to acrylic acid in a hydrothermal system with NaOH as a catalyst was carried out. The influence factors were evaluated, including initial acrylonitrile concentration, reaction temperature, reaction time and amount of alkali. Experimental results showed that the highest yield of acrylic acid (55%) was obtained at the initial acrylonitrile concentration of 3 × 10(3) mg/L, 300°C for 90 s with 1.0 M NaOH. To determine the reaction path, intermediates analysis and calculation of carbon and nitrogen balance were carried out by means of HPLC, GC and TOC/TN methods. Two probable reaction pathways were proposed as follows: (1) Acrylonitrile was hydrolyzed into acrylamide, and acrylic acid was obtained via further hydrolysis. (2) Acrylonitrile was converted into 3-hydroxy-propionitrile via additive reaction, and this product was readily converted to 3-hydroxy-propionic acid through two steps of hydrolysis, followed by dehydration reaction to produce acrylic acid. This study offered not only an efficient method to transfer highly toxic pollutants into valuable chemical, but also a better understanding of hydrothermal alkali catalytic reaction.

  8. Convective Flow in an Aquifer Layer

    Directory of Open Access Journals (Sweden)

    Dambaru Bhatta

    2017-10-01

    Full Text Available Here, we investigate weakly nonlinear hydrothermal two-dimensional convective flow in a horizontal aquifer layer with horizontal isothermal and rigid boundaries. We treat such a layer as a porous medium, where Darcy’s law holds, subjected to the conditions that the porous layer’s permeability and the thermal conductivity are variable in the vertical direction. This analysis is restricted to the case that the subsequent hydraulic resistivity and diffusivity have a small rate of change with respect to the vertical variable. Applying the weakly nonlinear approach, we derive various order systems and express their solutions. The solutions for convective flow quantities such as vertical velocity and the temperature that arise as the Rayleigh number exceeds its critical value are computed and presented in graphical form.

  9. Generation of free convection due to changes of the local circulation system

    Directory of Open Access Journals (Sweden)

    T. Foken

    2009-11-01

    Full Text Available Eddy-covariance and Sodar/RASS experimental measurement data of the COPS (Convective and Orographically-induced Precipitation Study field campaign 2007 are used to investigate the generation of near-ground free convection conditions (FCCs in the Kinzig valley, Black Forest, Southwest Germany. The measured high-quality turbulent flux data revealed that FCCs are initiated near the ground in situations where moderate to high buoyancy fluxes and a simultaneously occurring drop of the wind speed were present. The minimum in wind speed – observable by the Sodar measurements through the whole vertical extension of the valley atmosphere – is the consequence of a thermally-induced valley wind system, which changes its wind direction from down to up-valley winds in the morning hours. Buoyancy then dominates over shear within the production of turbulence kinetic energy near the ground. These situations are detected by the stability parameter (ratio of the measurement height to the Obukhov length when the level of free convection, which starts above the Obukhov length, drops below that of the sonic anemometer. An analysis of the scales of turbulent motions during FCCs using wavelet transform shows the occurrence of large-scale turbulence structures. Regarding the entire COPS measurement period, FCCs in the morning hours occur on about 50% of all days. Enhanced surface fluxes of latent and sensible heat are found on these days.

  10. Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection

    Science.gov (United States)

    Chaudhuri, A.; Rajaram, H.; Viswanathan, H.

    2013-09-01

    The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (˜1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/precipitation of limestone in a carbonic acid system, due to both temperature- and pressure-dependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional "mixing corrosion" effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.

  11. Study and Application of Forced Convection in Road Bus Heating System

    Directory of Open Access Journals (Sweden)

    Scheila Sandi Biazus

    2015-03-01

    Full Text Available This work deals with a replacing the heating system of intercity buses, made by long heat exchangers distributed on the sides of the passenger saloon by small and compact ones that use forced convection to heat dissipation. At the beginning the calculation was made of the heat capacity of a heat exchanger with the parameters defined by the supplier, and then conducted an analysis of change in these parameters in order to improve its efficiency. The method for examining the heat exchanger is based on the correlations available in the convection flow inside and outside to determine the respective convective coefficients, and therefore the overall coefficient of heat transfer. Following, the heat exchanger in its original form, was tested on bench. Thus, from the thermal load of the bus model studied, the amount of exchangers required has been defined to satisfy the thermal comfort of passengers. Field tests of the heating systems with new heat exchangers were performed to obtain actual data of the proposed system. The original factory system showed to be efficient in meeting the needs thermal load and economically viable, such that the critical thermal load can be met with ten heaters installed along the body. Furthermore, this system offers the possibility of varying the parameters to best fit to the project, where the flow variation of the fans or the spacing between the fins of the heat exchanger decreases the amount of heaters required. At the same time, the system showed the need for further study to assess its distribution along the passenger saloon in order to meet a best uniformity temperature distribution.

  12. Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition

    Science.gov (United States)

    Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.

    2016-12-01

    Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical

  13. The Suitability of Conductive and Convective Geothermal Resources in New Mexico for EGS Systems

    Science.gov (United States)

    Person, M. A.; Owens, L.; Hubbling, J.; Kelley, S.; Witcher, J. C.; Lucero, S.

    2010-12-01

    The State of New Mexico is endowed with both deep conductive and shallow convective geothermal prospects. Shallow convective resources are associated with relatively permeable, fractured crystalline plutonic, volcanic and sedimentary bedrock units. In most instances, hot springs associated with these systems are located along gaps in Paleozoic to Tertiary confining units that form hydrogeologic windows. Hydrogeologic windows are created either from tectonic or erosional unroofing of permeable units or juxtaposition of permeable units by fault block rotation or the emplacement of fractured volcanic dikes. Other hydrogeologic windows form as a result of close-spaced faulting associated with normal fault accommodation or transfer zones. These systems have broad areas of low and background heat flow in recharge areas and deep lateral flow domains with narrow regions of extremely high heat flow over the upflow zones and associated shallow lateral outflow plumes. These systems can show isothermal conditions at depth in the upflow zones that feed shallow outflow plumes and hot springs. The Socorro geothermal system is a prime example of this type of a geothermal prospect. Deeper conductive targets are overlain by relatively thick low permeability sedimentary or volcanoclastic sequences that have relatively, low thermal conductivity and higher temperature gradients. Portions of the San Juan Basin and Rio Grande rift are characterized by this type of geothermal prospect. NM Tech is currently developing a state-wide assessment of New Mexico’s geothermal resources for the New Mexico Energy Conservation and Management Division. We present two finite element models of conductive-convective heat transfer along the Rio Grande Rift and San Juan Basin to evaluate the suitability of these two types of geothermal resources for EGS systems.

  14. Nitrogen cycling in Ophiolite-hosted and Fault-associated Hydrothermal Systems; Spacial and Temporal Variations

    Science.gov (United States)

    Meyer-Dombard, D. R.; Gulecal, Y.; Loiacono, S. T.; Cardace, D.; Uzunlar, N.; Temel, M.

    2011-12-01

    Gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling, or community shifts over time or with seasons. Previous work has shown that nitrogen cycling in a Yellowstone National Park hot spring, "Bison Pool", and its associated runoff channel functions as a complex system. Analysis of nitrogen isotopes and sequencing of metagenomes from multiple locations at "Bison Pool" revealed that nitrogen fixation and denitrification varies across the chemosynthetic/photosynthetic ecotone [1-3], and high temperature activity of nifH genes has been shown for another nearby feature [4]. Other recent studies have explored the diversity of nifH and archaeal amoA genes in various terrestrial hydrothermal systems [5-8]. Despite these advances, we are still ignorant of changes in N-cycling over time in the same sample location, and in particular during seasonal climate changes. Further, the role of N-cycling in deeply-sourced fluids associated with ophiolites, which represent deep biosphere processes, is unknown. This study will compare evidence of N-cycling in terrestrial hydrothermal and ophiolite-hosted springs, focusing on the role of microbes as environmental conditions vary over space and time. Here, we explore the diversity of nifH [nitrogen fixation], amoA [ammonia oxidation], narG, nirKS, and nosZ [denitrification] genes in a variety of hydrothermal environments in Yellowstone and Turkey, representing fault-associated and deeply-sourced fluids. Environmental nucleic acids were extracted, and PCR-directed screens reveal the presence or absence of functional genes, indicating genetic capacity for N-cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and

  15. Dynamics and mass transport of solutal convection in a closed porous media system

    Science.gov (United States)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  16. Using SEVIRI radiances to retrieve cloud optical properties of convective cloud systems

    Science.gov (United States)

    Müller, Jennifer; Fischer, Jürgen; Hünerbein, Anja; Deneke, Hartwig; Macke, Andreas

    2013-05-01

    In this case study the development of cloud properties (cloud optical depth, effective radius and cloud top height) during the life-cycle of a convective cloud system over Europe was analyzed. To retrieve the properties we developed a retrieval scheme based on the radiative transfer code MOMO and an optimal estimation procedure. Input data are the visible to short-wavelength infrared channels from SEVIRI. In contrast to many other retrieval schemes we used 4 channels simultaneously. Especially the 3,9μm channel provides additional information due to the fact that it measures solar reflectance and thermal emission and allows the inclusion of cloud top height into the retrieval. By using a time series of SEVIRI measurements we want to provide and examine the microphysical development of the cloud over life-time. We monitored the growth of the system and found the most active parts of the convection with the highest water content and optical depth in those regions where the cloud top height is largest, too. The effective radius of the cloud particles is largest in older regions of the cloud system, where the cloud is already decaying.

  17. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system.

    Science.gov (United States)

    Courtois, Anthony; Berthou, Christian; Guézennec, Jean; Boisset, Claire; Bordron, Anne

    2014-01-01

    The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement.

  18. The response of a simulated Mesoscale Convective System to increased aerosol pollution

    Science.gov (United States)

    Clavner, Michal

    This work focuses on the impacts of aerosols on the total precipitation amount, rates and spatial distribution of precipitation produced by a Mesoscale Convective System (MCS), as well as the characteristics of a derecho event. Past studies have shown that the impacts on MCS-produced precipitation to changes in aerosol concentration are strongly dependent on environmental conditions, primarily humidity and environmental wind shear. Changes in aerosol concentrations were found to alter MCS-precipitation production directly by modifying precipitation processes and indirectly by affecting the efficiency of the storm's self-propagation. Observational and numerical studies have been conducted that have examined the dynamics responsible for the generation of widespread convectively-induced windstorms, primarily focusing on environmental conditions and the MCS features that generate a derecho event. While the sensitivity of the formation of bow-echoes, the radar signature associated with derecho events, to changes in microphysics has been examined, a study on a derecho-producing MCS characteristics to aerosol concentrations has not. In this study different aerosol concentrations and their effects on precipitation and a derecho produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS. The MCS was simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that varied in their initial aerosol concentration, distribution and hygroscopicity as determined by their emission sources. The first simulation contained aerosols from only natural sources and the second with aerosols sourced from both natural and anthropogenic emissions The third simulation contained the same aerosol distribution as in the second simulation, however multiplied by a factor of 5 in order to represent a highly polluted scenario. In all three of the

  19. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    Science.gov (United States)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore deposits, and their implications for global climate

  20. Fully determined scaling laws for volumetrically heated convective systems, a tool for assessing habitability of exoplanets

    Science.gov (United States)

    Vilella, Kenny; Kaminski, Edouard

    2017-05-01

    The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.

  1. Characterization of mesoscale convective systems over the eastern Pacific during boreal summer

    Science.gov (United States)

    Berthet, Sarah; Rouquié, Bastien; Roca, Rémy

    2015-04-01

    The eastern Pacific Ocean is one of the most active tropical disturbances formation regions on earth. This preliminary study is part of a broader project that aims to investigate how mesoscale convective systems (MCS) may be related to these synoptic disturbances with emphasis on local initiation of tropical depressions. As a first step, the main characteristics of the MCS over the eastern Pacific are documented with the help of the recently developed TOOCAN tracking algorithm (Fiolleau and Roca, 2013) applied to the infrared satellite imagery data from GOES-W and -E for the period JJAS 2012-2014. More specifically, the spatial distribution of the MCS population, the statistics of their spatial extensions and durations, as well as their trajectories and propagation speeds are summarized. In addition the environment of the MCS will be investigated using various Global Precipitation Mission datasets and the Megha-Tropiques/SAPHIR humidity microwave sounder derived products. Reference: Fiolleau T. and R. Roca, (2013), An Algorithm For The Detection And Tracking Of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite, Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2012.2227762.

  2. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    Science.gov (United States)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  3. Revisiting the Euganean Geothermal System (NE Italy) - insights from large scale hydrothermal modelling

    Science.gov (United States)

    Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico

    2017-04-01

    As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially

  4. Indium: Understanding its Behavior in Magmatic-Hydrothermal Systems Today to Meet Tomorrow's Demand

    Science.gov (United States)

    Piccoli, P. M.; Kayser, S.; Candela, P. A.

    2014-12-01

    Indium is integral to modern electronic devices, and is an essential component in indium-tin oxide (ITO), an electrically conductive, and optically transparent material that forms the basis for touch screens and high-end LCDs. World-wide production of indium has increased almost seven-fold from 1990 to 2012. Continued increases in production can be aided by better models for the formation of indium-bearing ores, yet little is known about the behavior of indium in magmatic-hydrothermal systems. As a first step toward solving this problem, we performed experiments to evaluate the partitioning of indium between pyrrhotite (po) and silicate melt (m). Experiments were performed at 800 °C, 100 MPa, and fO2 ≈ NNO in a po-saturated, vapor-brine-rhyolite melt system for durations of 5 to15 days. Three separate series of experiments were conducted in which each series differed by the aqueous solution added. The first series of experiments were prepared with pure water, the second series of experiments with a 1.01 M chloride solution and the third series with a 0.35 M CuCl2-bearing starting aqueous solution. These changes in starting material produced changes in the composition of the run product po and glass. The partition coefficient D(po/m) for the pure-water series experiments is on the order of ≈ 10. The addition of chloride-bearing aqueous solution leads to a decrease in the partition coefficient to ≈ 1.5. The copper-bearing experiments yield a D ≈ 3. The lower values for D in the chloride-bearing experiments may be explained by indium-chloride interactions in the melt phase. Although the D does vary depending upon the composition of the starting aqueous solution, an order of magnitude estimate for D, for general modeling purposes, can be made by assuming a value of 4. By using reasonable estimates of the mass fraction of po that crystallizes in crustal magmatic systems, the proportion of indium sequestered by po, during fractional crystallization, can be

  5. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.

    1980-08-01

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  6. The Ultramafic-Hosted Lost City Hydrothermal Field: Clues in the Search for Life Elsewhere in the Solar System?

    Science.gov (United States)

    Kelley, D. S.; Baross, J. A.; Frueh-Green, G. L.; Schrenk, M. O.; Karson, J. A.

    2002-12-01

    The recent discovery of the peridotite-hosted Lost City Hydrothermal Field (LCHF) raises the possibility that such systems are prevalent not only on Earth, but that similar systems may have existed, or currently exist, elsewhere in the solar system. The LCHF, which rests atop the Atlantis massif at 30N on the Mid-Atlantic Ridge, is unlike any previously known hydrothermal field: 1) it is located on 1.5 my-old crust, nearly 15 km west of the spreading axis; 2) it hosts at least 30 active and inactive carbonate-brucite chimneys that tower up to 60 m above the seafloor; 3) the venting pinnacles appear to be the surface expression of warm (40-75C), high pH (9-10) fluids emanating from fault zones that tap a region of active serpentinization in the underlying peridotites; and 5) hydrothermal flow is facilitated by exothermic serpentinization reactions at depth. The diffusely venting fluids support dense and diverse communities of mesophilic to hyperthermophilic organisms that may include sulfur-, methane- and hydrogen-oxidizers. The Lost City Field may represent our closest analogue to hydrothermal systems operative during early Earth where ultramafic rocks were predominant. The reducing conditions associated with serpentinization of ultramafic material may be similar to those present in the Hadean ocean (4.5-3.9 Gyr) and it has been suggested that such high-pH systems were a requirement for the emergence of life on the seafloor. Model calculations based on thermodynamic considerations and experimental studies suggest that synthesis of numerous organic compounds is favored during mixing of warm, serpentinite-derived, high-pH, reducing fluids with cool, oxygenated seawater. Dissolved hydrogen, present in hydrothermal fluids due to reaction of olivine and other iron-bearing minerals with fluids, provides the reduction potential and the thermodynamic drive for organic synthesis. Significant quantities of methane and hydrogen produced during serpentinization reactions form

  7. Environment and morphology of mesoscale convective systems associated with the Changma front during 9–10 July 2007

    Directory of Open Access Journals (Sweden)

    J.-H. Jeong

    2012-08-01

    Full Text Available To understand the different environment and morphology for heavy rainfall during 9–10 July 2007, over the Korean Peninsula, mesoscale convective systems (MCSs that accompanied the Changma front in two different regions were investigated. The sub-synoptic conditions were analysed using mesoscale analysis data (MANAL, reanalysis data, weather charts and Multi-functional Transport Satellite (MTSAT-IR data. Dual-Doppler radar observations were used to analyse the wind fields within the precipitation systems. During both the case periods, the surface low-pressure field intensified and moved northeastward along the Changma front. A low-level warm front gradually formed with an east-west orientation, and the cold front near the low pressure was aligned from northeast to southwest. The northern convective systems (meso-α-scale were embedded within an area of stratiform cloud north of the warm front. The development of low-level pressure resulted in horizontal and vertical wind shear due to cyclonic circulation. The wind direction was apparently different across the warm front. In addition, the southeasterly flow (below 4 km played an important role in generating new convective cells behind the prevailing convective cell. Each isolated southern convective cell (meso-β-scale moved along the line ahead of the cold front within the prefrontal warm sector. These convective cells developed when a strong southwesterly low-level jet (LLJ intensified and moisture was deeply advected into the sloping frontal zone. A high equivalent potential temperature region transported warm moist air in a strong southwesterly flow, where the convectively unstable air led to updraft and downdraft with a strong reflectivity core.

  8. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  9. Fluid geochemistry of the Mondragone hydrothermal systems (southern Italy): water and gas compositions vs. geostructural setting

    Science.gov (United States)

    Cuoco, Emilio; Minissale, Angelo; Di Leo, Antonella "Magda"; Tamburrino, Stella; Iorio, Marina; Tedesco, Dario

    2017-10-01

    The geochemistry of natural thermal fluids discharging in the Mondragone Plain has been investigated. Thermal spring emergences are located along the Tyrrhenian coast in two different areas: near Padule-S. Rocco (41°7.5'N 13°53.4'E) at the foot of Mt. Petrino, and near Levagnole (41°8.5'N 13°51.3'E) at the foot of Mt. Pizzuto. The water isotopic composition of both thermal discharges is lighter than the one of local shallow groundwater (δ18O ≅ -6.3‰ SMOW vs. ≅ -5.9‰; δD ≅ -40‰ SMOW vs. ≅ -36‰, respectively) as a consequence of inland higher altitude of recharge by rainfall, suggesting that thermal water undergoes a deep and long flow-path before emerging along the coast. The chemical composition of the highest temperature samples of two areas points that fluids in the hydrothermal reservoir(s) interact with similar lithologies, since they are both hosted in the lower sedimentary carbonate formations of the Campanian-Latial Apennine succession. However, the two spring systems are different in terms of temperature and salinity (Levagnole: ≅50 °C and 8.9 g/L vs. Padule: ≅32 °C and 7.4 g/L, respectively). The higher salinity of Levagnole springs is due to a longer interaction with evaporite material embedded in Miocene sedimentary formations and to the eventual mixing, during rising, with fresh seawater close to the seashore. The chemical and isotopic composition of the free gases associated with the springs, again suggests a different source of the two hydrothermal systems. Comparing the 3He/4He measured ratios with other gas emissions located NE and SE of Mt. Massico-Roccamonfina alignment, it is evident that the Levagnole thermal springs are related to the northern Latial mantle wedge where the 3He/4He is about 0.5 R/Ra, whereas the Padule-S. Rocco springs, although being only 3.5 km south of Levagnole, are related to the Campanian mantle wedge where R/Ra is always ≥2.0. Such a difference in 3He/4He ratio in a very short distance

  10. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  11. Numerical study of tracers transport by a mesoscale convective system over West Africa

    Directory of Open Access Journals (Sweden)

    C. Barthe

    2011-05-01

    Full Text Available A three-dimensional cloud-resolving model is used to investigate the vertical transport from the lower to the upper troposphere in a mesoscale convective system (MCS that occurred over Niger on 15 August 2004. The redistribution of five passive tracers initially confined in horizontally homogeneous layers is analyzed. The monsoon layer tracer (0–1.5 km is the most efficiently transported in the upper troposphere with concentrations 3 to 4 times higher than the other tracers in the anvil. On the contrary the African Easterly Jet tracer (~3 km has the lowest contribution above 5 km. The vertical profiles of the mid-troposphere tracers (4.5–10 km in the MCS exhibit two peaks: one in their initial layers, and the second one at 13–14 km altitude, underlying the importance of mid-tropospheric air in feeding the upper troposphere. Mid-tropospheric tracers also experience efficient transport by convective downdrafts with a consequent increase of their concentrations at the surface. The concentration of the upper troposphere–lower stratosphere tracer exhibits strong gradients at the edge of the cloud, meaning almost no entrainment of this tracer into the cloud. No downward transport from the upper troposphere is simulated below 5 km. A proxy for lightning produced NOx is transported preferentially in the forward anvil in the upper troposphere. Additionally, lateral inflows significantly contribute to the updraft and downdraft airflows emphasizing the three-dimensional structure of the West African MCSs.

  12. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  13. Convective Scale Ensemble Prediction System in KMA for Early Warning of High Impact Weather

    Science.gov (United States)

    Lee, S.

    2016-12-01

    Economic and societal damages due to severe weather events have been increasing in association with the concentration of human and economic resources such as in metropolitan areas. Severe weather events are often associated with rapidly developing convective scale systems, which are strongly influenced by topography, land use, and urbanization, etc. In the forecast those kinds of severe weather events, the high resolution numerical model is crucial to predict these convective scale severe weather events. However, the NWP models have an inherent limitation in the predictability of atmospheric phenomena, especially in predicting the severe weather. It is partly due to the poor resolution and model physics and partly due to the uncertainty of meteorological events. Nowadays most operational centers are being asked to develop more effective early detection systems that can be used to reduce the risk associated with severe weather events. Furthermore, forecasters need to assess and quantify the risk of occurrence of rare but destructive events. Thus, a policy in KMA to provide the probabilistic information of the severe events in limited area using ensemble method was adapted to meets these needs of the effective early warning systems. Ensemble forecasting using finite members is one of the feasible methods to quantify possibilities of extreme severe weather events. The ensemble forecasting has proved to be a successful way of dealing with that kind of inherent uncertainty of weather and climate forecasts. In this study, the limited area ensemble prediction system (LENS) using the Unified Model (UM) in KMA was developed and evaluated for the warm season of 2015. The model domain covers the limited area over the Korean Peninsula. The high resolution(3-km) limited area ensemble prediction system showed beneficial probabilistic forecast skill in predicting the heavy precipitation events. The sensitive experiment to evaluate the impact of uncertainty in model physics on the

  14. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece

    Science.gov (United States)

    Voudouris, P.

    2006-07-01

    Several magmatic-hydrothermal systems in northeastern Greece (western Thrace and Limnos Island) are highly enriched in tellurides which, in addition to native gold and electrum, represent major carriers of precious metals in the ore. Deposition near the porphyry-epithermal transition for several systems is indicated by field relations and by the presence of key minerals (Pb- and Ag-rich tellurides, Bi-sulfosalts and Bi-tellurides/tellurosulfides). Hessite, stützite, sylvanite, petzite, coloradoite, altaite, unnamed Ag-sulfotelluride, native tellurium and electrum are abundant in intermediate sulfidation quartz-carbonate veins together with zincian tetrahedrite-group minerals, chalcopyrite and galena. The presence of hessite, goldfieldite, native gold and enargite or famatinite suggests deposition at a high sulfidation state. The main stage of telluride deposition took place at ˜275 °C at log fTe2 values of -8.5 to -7.1 and log fS2 values of -10.8 to -9.0, based on the Fe-content in sphalerite and the sulfide-telluride mineralogy. The close spatial association of telluride mineralization with intrusive centers of intermediate composition, the base metal enrichment and the trace element signature involving Au, Ag, Te, Bi, Sn and Mo suggest that ore-forming components were introduced at the porphyry-epithermal transition. Potential sources of tellurium are the high-K calc-alkaline (western Thrace) to shoshonitic (Limnos) intrusive rocks.

  15. Structural Architecture of the Hydrothermal System from Geophysical Data in Hammam Bouhadjar Area (Northwest of Algeria)

    Science.gov (United States)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Hamai, Lamine; Boukerbout, Hassina; Djellit, Hamou; Bougchiche, Said Sofiane; Bendali, Mohamed; Bouabdallah, Hamza

    2017-03-01

    We determine the structural architecture of the hydrothermal system of Hammam Bouhadjar area (Northwest of Algeria) by the use of geophysical data. New gravity and electrical surveys covered an area of about 48 km2 in 2009. There were 350 gravity measurements made with a sampling of 500 m and 45 electrical soundings (Schlumberger type, AB = 1000 m). The Bouguer anomaly map shows a regression of gravity field towards the NW and SE. All of the observed anomalies are elongated in NE-SW direction. The results obtained from different processing methods (gradients, upward continuation, Euler deconvolution, wavelet transform and modelling) of gravity data were used to generate structural map of the studied area. The vertical and horizontal variations of resistivity confirm the presence of superficial and deeper faults system. Following the geophysical (gravity and electrical) analysis and modelling, we propose a model to explain the origin of the Hammam Bouhadjar thermal waters. We suggest that the hot spring water comes from an aquifer located in sandstones lenses in the Senono-Oligocene Tellian unit. Following the gravity modelling the aquifer is identified at about 800 m, the same depth where the geothermal gradient is insufficient to heat the water. In these circumstances, the aquifer is probably heated by volcanic processes connected with a hot compartment by faults and contacts affecting structures identified in depth. The presence of a conductor along of the horseshoe area suggests that the water percolates into this area and then is drained by the different accidents to invade the whole area.

  16. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... ventilation (MVRC) under summer (cooling) condition was compared. MVRC system was measured only for the office room case. CB provided convective cooling while the remaining three systems (CBR, CCMV and MVRC) provided combined radiant and convective cooling. Solar radiation, office equipment, lighting...

  17. Microbial lipid remnants within sulfide chimneys reveal organic matter transport in seafloor hydrothermal systems

    Science.gov (United States)

    Reeves, E.; Goldenstein, N. I.; Yoshinaga, M. Y.; Pjevac, P.; Bach, W.; Hinrichs, K.

    2013-12-01

    , with presumed hyperthermophilic archaeal lipid remnants more prevalent in interior and more mesophilic lipids in outer regions of the inactive chimney. Diffuser interior samples, however, are highly unusual, in that they contain presumed mesophilic archaeal core lipids, despite uninhabitable temperatures. Thermal degradation of an in situ microbial community (e.g. due to transient fluid flow variability) is a possible explanation, but the nature of these lipids suggests they may instead reflect transport and pyrolysis of microbial material from lower temperature mixing zones within the crustal aquifer. Not only does this study broaden our understanding of lipid biomolecule distribution in the interiors of sulfide edifices, it provides an initial evaluation of possible sources and implications for carbon cycling in seafloor hydrothermal systems.

  18. The submarine hydrothermal system of Panarea (Southern Italy: biogeochemical processes at the thermal fluids - sea bottom interface

    Directory of Open Access Journals (Sweden)

    T. Maugeri

    2006-06-01

    Full Text Available Among the submarine hydrothermal systems located offshore the volcanic archipelago of the Aeolian Islands (Southern Italy, the most active is located off the coasts of Panarea island. Thermal waters, gases and sulfur deposits coexist at the sea bottom where hydrothermal fluids are released from both shallow and deep vents. The chemical and isotopic composition of the fluid phase shows the presence of a significant magmatic component and the physico-chemical conditions of the geothermal reservoir allow the release of reduced chemical species that are microbially mediated towards the production of organic carbon as a form of biochemical energy. Microorganisms inhabiting this environment possess nutritional requirements and overall metabolic pathways ideally suited to such ecosystem that represents a clear example of the close connection between geosphere and biosphere. Microscopic examination of the white mat attached to rock surfaces showed the presence of Thiothrix-like filamentous bacteria. Moderately thermophilic heterotrophic isolates were identified as strains of the genus Bacillus. Although the hydrothermal system of Panarea has to be considered a “shallow” system, it shows many characteristics that make it similar to the “deep” oceanic systems, giving a unique opportunity for improving our knowledge on such an unexplored world by working at this easily accessible site.

  19. Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Klaartje De Buysser

    2013-09-01

    Full Text Available In this paper, the formation of ZrO2 and yttria-stabilised-zirconia (YSZ aqueous colloidal systems via microwave assisted hydrothermal synthesis is studied. Microwave synthesis allows a fast screening of the influence of different parameters such as time and temperature. The temperature varied from 140 °C up to 180 °C and the used reaction time varied from 5 min up to 1 h. The synthesised zirconia nanoparticles have a particle size of 50 nm confirmed by TEM. A 1H NMR (nuclear magnetic resonance study helped to understand the stabilization mechanism of the synthesised particles. By the addition of ytrrium ions into the zirconia colloidal solution, YSZ could be formed via an additional thermal treatment. Hereby, the samples are heated up to 400 °C for 1 h. YSZ colloidal solutions are synthesised by making use of complexing agents such as nitrilotriacetic acid, ethylenediaminetetraacetic acid and citric acid to control the hydrolysis and condensation of both ions to avoid non-stoichiometric phases. The ratio of Zr/Y in the particles is quantified by XRF. The amorphous structure of those particles necessitates an additional thermal treatment up to 600 °C during 1 h in order to obtain crystalline YSZ.

  20. Geophysical imaging of a vapor dominated hydrothermal system in Yellowstone National Park, USA

    Science.gov (United States)

    Bouligand, C.; Byrdina, S.; Kass, A.; Irons, T. P.; Vandemeulebrouck, J.; Ball, J. L.; Ritzinger, B. T.; McConville, E. G.; Hurwitz, S.

    2016-12-01

    Yellowstone National Park (YNP) hosts several vapor-dominated, acid-sulfate thermal areas that are typically located in topographically high areas along the boundary of the Yellowstone caldera. In these systems, steam and heat rise from deep boiling waters and either condense beneath a low permeability cap layer and then descend down fractures (heat pipes), or discharge through fumaroles either to the atmosphere or into pools. To better understand the geometry of the ascending vapor plumes and their relation to geologic structures and hydrothermal alteration, we carried a geophysical study in the Solfatara Plateau thermal area along the northern boundary of the Yellowstone caldera. This ˜600 m × 600 m area has a small mud pool and several small fumaroles with visible native sulfur deposits. Previous studies in the thermal area have mapped the spatial distributions of heat and CO2 flux. In June 2016 we collected detailed electric resistivity, magnetic, TEM and NMR data. Rock samples were collected to measure the electric resistivity and magnetization properties of the altered and unaltered sub-surface in the laboratory. Initial results suggest that there is a strong electric resistivity contrast between the center and periphery of the thermal area, which suggests that fluid pathways are strongly focused. Magnetic anomalies are subdued in the center of the thermal area, indicating low-magnetization of the shallow subsurface.

  1. The Origin of Carbon-Bearing Volatiles in a Continental Hydrothermal System in the Great Basin: Water Chemistry and Isotope Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike

    2012-01-01

    Hydrothermal systems on Earth are active centers in the crust where organic molecules can be synthesized biotically or abiotically under a wide range of physical and chemical conditions [1-3]. Not only are volatile species (CO, CO2, H2, and hydrocarbons) a reflection of deep-seated hydrothermal alteration processes, but they also form an important component of biological systems. Studying carbon-bearing fluids from hydrothermal systems is of specific importance to understanding (bio-)geochemical processes within these systems. With recent detection of methane in the martian atmosphere [4-7] and the possibility of its hydrothermal origin [8, 9], understanding the formation mechanisms of methane may provide constraints on the history of the martian aqueous environments and climate.

  2. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    Science.gov (United States)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  3. Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from Mid-Atlantic Ridge hydrothermal vent fields.

    Science.gov (United States)

    Bebianno, M J; Company, R; Serafim, A; Camus, L; Cosson, R P; Fiala-Médoni, A

    2005-11-30

    Enzymatic defenses involved in protection from oxygen radical damage were determined in gills and mantle of Bathymodiolus azoricus collected from three contrasting Mid-Atlantic Ridge (MAR) hydrothermal vent fields (Menez-Gwen, Lucky Strike and Rainbow). The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) (total and Se-dependent), and levels of total oxyradical scavenging capacity (TOSC), metallothioneins (MT) and lipid peroxidation (LPO) were determined in B. azoricus tissues and the impact of metal concentrations on these antioxidant systems and lipid peroxidation assessed. SOD, CAT, TOSC, MTs and LPO levels were higher in B. azoricus gills while glutathione peroxidases (total and Se-dependent) were higher in the mantle, and with the exception of CAT, were of the same order of magnitude as in other molluscs. TOSC levels from Menez-Gwen indicate that the vent environment at this site is less stressful and the formation of ROS in mussels is effectively counteracted by the antioxidant defense system. TOSC depletion indicates an elevated ROS production in molluscs at the other two vent sites. Cytosolic SOD, GPx and LPO were more relevant at Lucky Strike (Bairro Alto) where levels of essential (Cu and Zn) and toxic metals (Cd and Ag) were highest in the organisms. CAT activity and LPO were predominant at the Rainbow vent site, where an excess of Fe in mussel tissues and in vent fluids (the highest of all three vent sites) may have contributed to increased LPO. Therefore, three distinct pathways for antioxidant enzyme systems and LPO based on environmental metal speciation of MAR vent fields are proposed for Bathymodiolus gills. At Menez-Gwen, TOSC towards peroxyl and hydroxyl radicals and peroxynitrite are predominant, while at Lucky Strike cytosolic SOD activity and GPx are the main antioxidant mechanisms. Finally at Rainbow, catalase and lipid peroxidation are dominant, suggesting that resistance of mussels to metal toxicity at

  4. Organic compounds in hydrothermal systems on the Russian Far East: relevance to the origin of life

    Science.gov (United States)

    Kompanichenko, Vladimir

    instance, Simoneit et al. (2) established that the light oil associated with the Uzon caldera in Kamchatka was formed by pyrolysis of buried algal mats. More interesting would be to determine that the aromatics and alkanes are products of a Fischer-Tropsch type synthesis. Intermediately the possible in-put of the abiotic organics is confirmed with the availability of Cl-alkanes in the hot solution because these compounds cannot be produced in a living organism. Besides, concentrations of even and uneven carbon atoms are similar in the juvenile hot water from the central zone of Kuldur field (the intracontinental part) that indicates their probable abiotic origination, while the uneven carbon atoms much prevail over the even ones (in 5 times) in the lower-temperature meteoric water on the flank. The detected organic compounds could enter into the composi-tion of various prebiotic microsystems or aggregates existed in the changeable hydrothermal media suitable for the origin of life. It follows of the inversion approach to the origin of life (Kompanichenko, 2008) that synthesis of other biologically important molecules (sugars, ATP, nucleotides), which are not typical for hydrothermal medium, started at the moment of the in-version the ratio "free energy contribution to entropy contribution" in the network of chemical reactions. The re-organized and turned into negentropy way network might promote the syn-thesis of these molecules under higher temperature conditions than revealed for the laboratory experiments in Vitro (50-60C). References. 1. Mukhin L.M., Bondarev V.B., Vakin E.A., Iljukhina I.I., Kalinichenko V.I., Milekhina E.I., Safonova E.N., 1979. Amino acids in hydrothermal systems in Southern Kam-chatka. Doklady AN USSR 244 (4), 974-977, (In Russian). 2. Simoneit, B., Deamer, D.W. and Kompanichenko, V. 2009. Characterization of hydrothermally generated oil from the Uzon Caldera, Kamchatka. Applied Geochemistry 24: 303-309. 3. Kompanichenko V.N. 2008. Three stages of

  5. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  6. Validation of system codes RELAP5 and SPECTRA for natural convection boiling in narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Stempniewicz, M.M., E-mail: stempniewicz@nrg.eu; Slootman, M.L.F.; Wiersema, H.T.

    2016-10-15

    Highlights: • Computer codes RELAP5/Mod3.3 and SPECTRA 3.61 validated for boiling in narrow channels. • Validated codes can be used for LOCA analyses in research reactors. • Code validation based on natural convection boiling in narrow channels experiments. - Abstract: Safety analyses of LOCA scenarios in nuclear power plants are performed with so called thermal–hydraulic system codes, such as RELAP5. Such codes are validated for typical fuel geometries applied in nuclear power plants. The question considered by this article is if the codes can be applied for LOCA analyses in research reactors, in particular exceeding CHF in very narrow channels. In order to answer this question, validation calculations were performed with two thermal–hydraulic system codes: RELAP and SPECTRA. The validation was based on natural convection boiling in narrow channels experiments, performed by Prof. Monde et al. in the years 1990–2000. In total 42 vertical tube and annulus experiments were simulated with both codes. A good agreement of the calculated values with the measured data was observed. The main conclusions are: • The computer codes RELAP5/Mod 3.3 (US NRC version) and SPECTRA 3.61 have been validated for natural convection boiling in narrow channels using experiments of Monde. The dimensions applied in the experiments were performed for a range that covers the values observed in typical research reactors. Therefore it is concluded that both codes are validated and can be used for LOCA analyses in research reactors, including natural convection boiling. The applicability range of the present validation is: hydraulic diameters of 1.1 ⩽ D{sub hyd} ⩽ 9.0 mm, heated lengths of 0.1 ⩽ L ⩽ 1.0 m, pressures of 0.10 ⩽ P ⩽ 0.99 MPa. In most calculations the burnout was predicted to occur at lower power than that observed in the experiments. In several cases the burnout was observed at higher power. The overprediction was not larger than 16% in RELAP and 15% in

  7. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  8. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  9. Mechanical behaviour of the Krafla geothermal reservoir: Insight into an active magmatic hydrothermal system

    Science.gov (United States)

    Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.

    2017-04-01

    Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and

  10. Patterns of Fluid Circulation and Steam Generation in Caldera-Hosted Hydrothermal Systems

    Science.gov (United States)

    Barnard, M. E.; Cook, S. J.

    2009-05-01

    Steam formation is an important mechanism powering near surface phenomena in active hydrothermal systems (e.g., Yellowstone) and an established ore deposition mechanism in ancient equivalents (e.g., Creede). To gain insights into factors controlling steam formation and distribution in these systems, a series of steady-state numerical models were run on a hypothetical caldera-hosted system based on characteristics of a representative suite of calderas (e.g., Yellowstone, Valles, Creede). Base model conditions consisted of (1) a 10 km-wide caldera with a flat floor and rim height of 800 m; (2) a 500 C intrusion 1.5 km below the caldera centre; (3) a regional conductive heat flux twice continental average (0.10 W/m2); (4) host rock thermal conductivity of 2.5 W/m C, density 2650 kg/m3 and pore fraction 0.05. An impermeable intrusion was modeled with a 500 m wide surrounding region with a permeability (k) 10-3 m2 less than the system meant to represent a ductile region produced by elevated temperature (T > 350 C). The remainder of the system was given homogenous permeability. Cylindrical coordinates were used to represent caldera geometry. For these conditions, a minimum k = 10-15 m2 was required to achieve the target thermal condition of T approximately 220 C at 300 m below ground surface observed in active systems (e.g., Yellowstone). This model also resulted in a continuous steam plume originating at the intrusive contact that reached within 300 m of the surface along the edges of the caldera ~2 km from caldera centre. Models with k caldera centre and reduced its volume, but still achieved target conditions. Increasing intrusion temperature by 10% produced a second distinct plume at the caldera centre that also achieved target conditions. Increasing the rim height for these conditions produced the base (i.e., single plume) conditions. Resurgent doming up to 300 m was also modeled for the caldera floor. Increasing dome height shifted steam towards the caldera centre

  11. Supercritical hydrothermal synthesis and in situ organic modification of indium tin oxide nanoparticles using continuous-flow reaction system.

    Science.gov (United States)

    Lu, Jinfeng; Minami, Kimitaka; Takami, Seiichi; Shibata, Masatoshi; Kaneko, Yasunobu; Adschiri, Tadafumi

    2012-01-01

    ITO nanoparticles were synthesized hydrothermally and surface modified in supercritical water using a continuous flow reaction system. The organic modification of the nanoparticles converted the surface from hydrophilic to hydrophobic, making the modified nanoparticles easily dispersible in organic solvent. The addition of a surface modifier into the reaction system impacted the crystal growth and particle size as well as dispersion. The particle size was 18 nm. Highly crystalline cubic ITO with a narrow particle size distribution was obtained. The advantages of short reaction time and the use of a continuous reaction system make this method suitable for industrial scale synthesis. © 2011 American Chemical Society

  12. Newly discovered hydrothermal system on the Alarcón Rise, Mexico

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Martin, J. F.; Nieves-Cardoso, C.

    2012-12-01

    The Alarcón Rise lies at the mouth of the Gulf of California, and is the last segment of the East Pacific Rise before the plate boundary redirects into the gulf. As part of MBARI's expedition to the gulf in 2012, the neovolcanic zone of the entire ridge segment was mapped by MBARI's mapping AUV. 110 potential hydrothermal chimneys were identified in the new high resolution maps, and 70 were visited with the ROV Doc Ricketts, after having been sought in vain without the maps on an expedition in 2003. Two active vent fields were found, and have been named Meyibó and Ja sít from local native languages. They lie 2.5km apart at ~2300m depth, and are associated with a large, young sheet flow 1/3 of the way along the ridge from the south, on the most inflated part of the ridge. The southern field, Meyibó, contains 14 active chimneys (confirmed with ROV observations) nestled in grabens of several highly fractured cones surrounded by the sheet flow, and generally aligned with its discontinuous, 8km-long fissure system. The northern field, Ja sít, is a broad cluster of 8 active chimneys (also confirmed) rising above the sheet flow's channel system, more than 150m from the fissure. The chimneys stand as tall as 18 m. The most vigorous vent "black smoke" (mineral-rich fluid) >300°C and others are bathed in "white smoke". The active chimneys are populated with bacterial mat and dense clumps of Riftia pachyptila with tubes as long as 1.5m. Abundant limpets, Bythograea thermydron and galatheid crabs, and the pink vent fish Thermarces cerberus were on and near the giant tube worms. Alvinellid worms were observed at 2 chimneys. Some cracks in nearby lava flows vented clear fluid and were populated with tubeworms or Calyptogena magnifica clams. Several chimneys exhibited signs of waning activity: dead tubeworms were still attached and only a minor portion of the edifice supported bacterial mat and live tubeworms. Inactive chimneys are more numerous (48 were confirmed with ROV

  13. Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)

    Science.gov (United States)

    Monnin, C.; Chavagnac, V.; Boulart, C.; Ménez, B.; Gérard, M.; Gérard, E.; Pisapia, C.; Quéméneur, M.; Erauso, G.; Postec, A.; Guentas-Dombrowski, L.; Payri, C.; Pelletier, B.

    2014-10-01

    H 11) are not significantly different from one site to the other although the sites are several kilometres away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline endmembers shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal endmember with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at a pH of around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high-pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of Prony Bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).

  14. Reactive Hydrothermal Flow Model for Mid-Oceanic Ridges

    Science.gov (United States)

    Starger, J. L.; Garven, G.; Tivey, M. K.

    2016-12-01

    A two-dimensional finite-element code known as RST2D [1] is being used to study the geothermal energy, geohydrology, and geochemistry of fluid convection in seafloor hydrothermal systems such as the Juan de Fuca Ridge, East Pacific Rise, and TAG hydrothermal fields. Relative to black smoker vents and other discharge features, submarine recharge zones are understudied. We are attempting to model both the recharge and discharge limbs of these flow fields as a coupled system by mathematically and physically linking the fluid dynamics, heat flow, and geochemical reactions. Numerical simulations have been made to quantify likely flow rates and relevant geochemical water-rock reactions including mineral precipitation and dissolution using a fully-coupled reactive flow modeling approach. In particular, the reactive flow model is being used to predict the formation, likely spatial-temporal distribution, and preservation of anhydrite in the hydrothermal recharge zone and its feedback influence on permeability, fluid flow, and heat transport in the discharge zone. We are focusing on the geochemical effects and controls of on- and off-ridge geology and geometry, permeability-porosity, vent width and geometry, and thermal boundary conditions on the predicted size and extent of the recharge and discharge zones, and whether hydrothermal recharge is focused along extensional faults or diffused across broad areas of the seafloor. Hydrothermal flow systems of this type are known to represent modern analogs for ancient systems such as those being studied for understanding the origin of life on the planet, but also as modern analogs for the formation of volcanogenic massive sulfide ore deposits. Reactive flow modeling provides a useful tool for developing a better understanding of the physiobiochemistry of these episodic flow systems, and could potentially guide exploration for modern and ancient ore deposits. [1] Raffensperger, J.P.,1996, Advances in Porous Media 3, 185 - 305.

  15. Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems

    Science.gov (United States)

    Lafay, Romain; Montes-Hernandez, German; Janots, Emilie; Munoz, Manuel; Auzende, Anne Line; Gehin, Antoine; Chiriac, Rodica; Proux, Olivier

    2016-04-01

    While Fluid-Mobile Elements (FMEs) such as B, Sb, Li, As or Cs are particularly concentrated in serpentinites, data on FME fluid-serpentine partitioning, distribution, and sequestration mechanisms are missing. In the present experimental study, the behavior of Sb, As and Cs during San Carlos olivine serpentinization was investigated using accurate mineralogical, geochemical, and spectroscopic characterization. Static-batch experiments were conducted at 200 °C, under saturated vapor pressure (≈1.6 MPa), for initial olivine grain sizes of product content was determined as a function of reaction advancement for the different initial olivine grain sizes investigated. The results confirm that serpentinization products have a high FME uptake capacity with the partitioning coefficient increasing such as CsDp/fl = 1.5-1.6 products, especially brucite. In contrast, mineralogical characterization combined with XAS spectroscopy reveal redox sensitivity for Sb sequestration within serpentine products, depending on the progress of the reaction. When serpentinization is products is observed and is attributed to a reduction of Sb(V) into Sb(III). This stage is characterized by the precipitation of Sb-Ni-rich phases and a lower bulk partitioning coefficient compared to that of the serpentine and brucite assemblage. Antimony reduction appears linked to water reduction accompanying the bulk iron oxidation, as half the initial Fe(II) is oxidized into Fe(III) and incorporated into the serpentine products once the reaction is over. The reduction of Sb implies a decrease of its solubility, but the type of secondary Sb-rich phases identified here might not be representative of natural systems where Sb concentrations are lower. These results bring new insights into the uptake of FME by sorption on serpentine products that may form in hydrothermal environments at low temperatures. FME sequestration here appears to be sensitive to various physicochemical parameters and more particularly

  16. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    Science.gov (United States)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    and Panarea). The explanation of such a difference is not related to the volcanic activity at all, but to the parent mantle that in the western side looks to be less contaminated compared to the eastern side. Crustal contamination has been invoked by several authors as the main factor that caused the dramatic 3He/4He decrease. Although the parent mantle produced magmas with different isotopic signature, the gas phase looks similar. To explain the results of the chemical analyses it is proposed that similar deep boundary conditions (pressure, temperature, oxidation level) act as buffers for the chemical composition of the venting gases. With the aim of investigating their origin, estimations of the deep equilibration conditions have been carried out. The reactive compounds detected in the sampled gases, largely used for geothermometric and geobarometric considerations of hydrothermal fluids were used in a system based on the CH4-CO-CO2 contents assuming the presence of a boiling aqueous solution. The equilibrium constants of the adopted reactions are a function of temperature and oxygen fugacity, being the latter buffered by the mineral assemblage of the host rocks. Due to the similarity in the chemical composition of the gases vented at all the islands, a theoretical model developed to interpret the chemical composition of the gases released at Panarea during the last volcanic crisis is here applied. The results have shown that geothermal boiling systems are detectable at all the islands with temperatures up to 350°C. The adopted geo-thermobarometric system is more sensitive to the contents of CO and CH4 than that of CO2, implying that although GWI induce modifications in the chemical composition, the estimated equilibrium temperatures do not change very much for variations of the CO2 content in the range of several volume percent, thus, whether or not the gaseous mixture underwent GWI. Moreover, the slow reaction kinetics of CO and CH4 allow them to keep the deep

  17. SI-Hydro: an information system for the Brazilian hydrothermal system; SI-Hidro: um sistema de informacao para o sistema hidrotermico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Fontanini, Walcir

    1995-03-01

    An information system for the Brazilian hydrothermal system denominated SI-Hydro is presented. This information system supplies data on the hydroelectric and thermoelectric park and can be used in the main elements recognition and in the planning and management of the whole system. The information system uses the product INGRES in the platform UNIX/X-Windows, which supplies resources so much for access to the database as for the interface man machine through the fourth generation language denominated Windows4GL. The next main topics are presented: information systems concepts and its relation with the direction levels to an organization and implications for the hydrothermal system operation planning in the scenarios of short, medium and long terms; thermal and hydroelectric plants operation routine details; the most used technical terms definition; and mathematical physical typical plants processes modeling presentation.

  18. Correlations between Archaeal Diversity and Geochemical Parameters in an Arsenic-Rich Hydrothermal System

    Science.gov (United States)

    Franks, M.; Omelon, C.; Engel, A. S.; Bennett, P.

    2009-04-01

    Characterizing microbial communities within their geochemical environment is useful for understanding microbial distribution and microbial adaptations to extreme physical and chemical conditions. The hydrothermal waters at El Tatio geyser field (ETGF) demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85oC), arsenic concentrations of 0.5 mM, and inorganic carbon concentrations (DIC) as low as 0.2mM. Yet many of El Tatio's hundred plus hydrothermal features host extensive microbial mat communities. Recent work has shown correlations between the metabolic guilds of microorganisms present and variations in water chemistry. ETGF is a high-altitude hydrothermal basin with over 100 mapped hydrothermal features, located within a 30km2 area near the Chile-Bolivia border. The Na-Cl type waters have a circumneutral pH and contain abundant dissolved metals. Shallow runoff aprons extend tens of meters from some geyser features, where silica rapidly precipitates from cooling water. Thick mats, which appear microbial but consist primarily of silica, iron and arsenic mineral deposits, containing

  19. Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure

    Science.gov (United States)

    Wanli, Li

    2017-04-01

    Two intense quasi-linear mesoscale convective systems (QLMCSs) in northern China were simulated using the WRF (Weather Research and Forecasting) model and the 3D-Var (three-dimensional variational) analysis system of the ARPS (Advanced Regional Prediction System) model. A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures. Results indicate that, compared with calculating the results using two previous methods, the lightning density calculated using the new method presented in this study is in better accordance with observations. Based on the calculated lightning densities using the new method, it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs, where the surface wind field converged intensely. The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it, and their lightning events mainly occurred in regions with a large gradient of CAPE. Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions; the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different; and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.

  20. Diversity of Archaeal Consortia in an Arsenic-Rich Hydrothermal System

    Science.gov (United States)

    Franks, M.; Bennett, P.; Omelon, C.; Engel, A.

    2008-12-01

    Characterizing microbial communities within their geochemical environment is essential to understanding microbial distribution and microbial adaptations to extreme physical and chemical conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme conditions, with water at local boiling (85°C), arsenic concentrations at 0.5 mM, and inorganic carbon concentrations as low as 0.02mM. Yet many of El Tatio's hundred plus hydrothermal features are associated with extensive microbial mat communities. Recent work has shown phylogenetic variation in the communities that correlates to variations in water chemistry between features. MPN analysis indicates variations in metabolic function between hydrothermal features, such as the ability of the community to fix nitrogen, and the presence of methanogens within the community. Methanogenic archaea, which are typical of hydrothermal environments, are found in very few of the sampled hydrothermal features at El Tatio. MPN enumeration shows that nonspecific microbial mat samples from sites with dissolved methane contain 106 cells of methanogenic archaea per gram while non-specific samples from sites lacking dissolved methane contain 100 cells per gram or less. An acetylene assay showed evidence for nitrogen fixation in a sample associated with methanogenesis, but microbial transformation of acetylene to ethylene did not occur in non-methanogenic sites. More specific sampling of microbial mats indicates that methanogenic archaea are dominated by microorganisms within the genus Methanospirillum and Methanobrevibacter. These microbes are associated with a number of unclassified archaea in the class Thermoplasmata Halobacteriales, and unclassifiec Crenarchaeota. In addition, preliminary results include an unclassified Thaumarchaeota clone, a member of the recently proposed third archaeal phylum Thaumarchaeota. Nonspecific microbial mat sample from a non- methanogenic site included only Crenarchaeal clones within the

  1. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios anabolism in chemolithoautotrophs—represented here by the synthesis of amino acids, nucleotides, fatty acids, saccharides, and amines—were generally most favorable at moderate temperatures (22-32 °C) and corresponding SW:HF mixing ratios (˜15). In peridotite-hosted and the troctolite-basalt hybrid systems, Δ G r for primary biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial catabolic strategies—and consequently variations in microbial phylotypes—may be far more diverse and some biomass synthesis may yield energy rather than imposing a high energetic cost.

  2. Geology of the Early Archean Mid-Ocean Ridge Hydrothermal System in the North Pole Dome, Pilbara Craton, Western Australia

    Science.gov (United States)

    Kitajima, K.; Maruyama, S.

    2007-12-01

    An Archean hydrothermal system in the North Pole Dome, Pilbara Craton is associated with extensive fluid circulation driven by numerous extensional fracture systems and the underlying heat source. The fracture system is now occupied by abundant fine-grained quartz aggregate, hence we call this as silica dikes. Some of the fracture system extends deeper structural levels as listric normal faults down to 1000 m depth in the MORB crust. Barite-bearing fine-grained quartz predominant mineralogy indicates the extensive development of fracturing and quenching in a short time. Accompanying the fluid circulation, the extensive metasomatism proceeded to form the four different chemical courses, (1) silicification, (2) carbonation, (3) potassium-enrichment, and (4) Fe- enrichment. Silicification occurs along the silica dikes, carbonated greenstones are distributed relatively shallower level. Potassium-enriched (mica-rich) greenstones occur at the top of the greenstone sequence, and Fe-enriched (chlorite-rich) greenstones are distributed at lower part of the basaltic greenstones. The down going fluid precipitated carbonate-rich layer at shallow levels, whereas depleted in SiO2. Then, the fluid went down to more deeper level, and was dissolved SiO2 at high temperature (~350°C) and chlorite-rich greenstone was formed by water-rock interaction. The upwelling fluid precipitated dominantly SiO2 and formed silica dikes. Silica dikes cement the fractures formed by extensional faulting at earliest stage of development of oceanic crust. Therefore, the hydrothermal system must have related to normal fault system simultaneously with MORB volcanism. Particularly the greenish breccia with cherty matrix (oregano chert) was formed at positions by upwelling near ridge axis. After the horizontal removal of MORB crust from the ridge-axis with time, the propagating fracture into deeper levels, transports hydrothermal fluids into 500-1000 m depth range where metasomatic element exchange between

  3. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    Science.gov (United States)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains

  4. Hydrothermal Biogeochemistry

    Science.gov (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  5. Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models

    Directory of Open Access Journals (Sweden)

    M. S. Johnston

    2013-12-01

    Full Text Available An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009, several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at ~4 m s−1. Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods >30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate eastward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 h

  6. Observational and modeling study of a mesoscale convective system during the HyMeX - SOP1

    Science.gov (United States)

    Dafis, S.; Lagouvardos, K.; Kotroni, V.; Giannaros, T. M.; Bartzokas, A.

    2017-05-01

    An intense and fast moving convective line that crossed Massif Central/Cévennes-Vivarais area (south France) during the field campaign of Hydrological Cycle in Mediterranean Experiment (HyMeX) - Special Observing Period 1 (SOP1) is examined. The mesoscale analysis demonstrates a complex convective system with a V-shape in the Infrared (IR) satellite imagery and a squall line pattern on the radar imagery. Ground stations observed up to 60 mm h- 1 of rain accumulation, while the lightning activity, as observed by 4 detection networks, was also exceptionally high. The Weather Research and Forecasting (WRF) model was used to simulate this convective episode and sensitivity tests were performed with various microphysics and convective parameterization schemes. Satellite data from Meteosat SEVIRI Rapid Scanning Service were used in conjunction with radar, lightning and rain gauge data to conclude on the best simulation for which WRF model exhibits a rather precise and realistic distribution and evolution of the precipitation patterns. Finally, a study of the microphysics was performed indicating the interconnection of graupel with lightning activity, confirming recent results, compared against a sophisticated hydrometeor classification radar algorithm and lightning data.

  7. Field occurrence and lithology of Archean hydrothermal systems in the 3.2Ga Dixon Island Formation, Western Australia

    Science.gov (United States)

    Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.

    2013-12-01

    Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in

  8. Particle Geochemistry of Hydrothermal Systems and Implications for Mining Seafloor Massive Sulfides

    Science.gov (United States)

    Gartman, A.; Hein, J. R.

    2016-12-01

    Seafloor massive sulfide deposits form due to high-temperature hydrothermal venting that occurs globally, in every ocean basin, along plate boundaries and intra-plate hotspots. At these sites, the rapid mixing of hot, metal- and sulfur-rich reduced fluids into cold, oxygenated ocean water results in abundant mineral precipitation. The mining of seafloor massive sulfides is likely to occur in the near future and will generate a new class of mainly inorganic particulates, different from those formed in hydrothermal `black smoke.' While the major components of both black smoke & SMS tailings are Cu, Fe and Zn sulfides, many other minerals, including those containing technology critical elements, especially tellurium, are present. A comparison of these two classes of particulates will be presented, including chemical composition and reactivity to oxidative dissolution.

  9. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  10. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    Science.gov (United States)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  11. A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics.

    Science.gov (United States)

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2017-11-15

    Timely and accurate molecular diagnostics at the point-of-care (POC) level is critical to global health. To this end, we propose a handheld convective-flow real-time polymerase chain reaction (PCR) system capable of direct sample-to-answer genetic analysis for the first time. Such a system mainly consists of a magnetic bead-assisted photothermolysis sample preparation, a closed-loop convective PCR reactor, and a wireless video camera-based real-time fluorescence detection. The sample preparation exploits the dual functionality of vancomycin-modified magnetic beads (VMBs) for bacteria enrichment and photothermal conversion, enabling cell pre-concentration and lysis to be finished in less than 3min. On the presented system, convective thermocycling is driven by a single-heater thermal gradient, and its amplification is monitored in real-time, with an analysis speed of less than 25min, a dynamic linear range from 106 to 101 copies/µL and a detection sensitivity of as little as 1 copies/µL. Additionally, the proposed PCR system is self-contained with a control electronics, pocket-size and battery-powered, providing a low-cost genetic analysis in a portable format. Therefore, we believe that this integrated system may become a potential candidate for fast, accurate and affordable POC molecular diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    Science.gov (United States)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  13. Tropical Atlantic Hurricanes, Easterly Waves, and West African Mesoscale Convective Systems

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2010-01-01

    Full Text Available The relationship between tropical Atlantic hurricanes (Hs, atmospheric easterly waves (AEWs, and West African mesoscale convective systems (MCSs is investigated. It points out atmospheric conditions over West Africa before hurricane formation. The analysis was performed for two periods, June–November in 2004 and 2005, during which 12 hurricanes (seven in 2004, five in 2005 were selected. Using the AEW signature in the 700 hPa vorticity, a backward trajectory was performed to the African coast, starting from the date and position of each hurricane, when and where it was catalogued as a tropical depression. At this step, using the Meteosat-7 satellite dataset, we selected all the MCSs around this time and region, and tracked them from their initiation until their dissipation. This procedure allowed us to relate each of the selected Hs with AEWs and a succession of MCSs that occurred a few times over West Africa before initiation of the hurricane. Finally, a dipole in sea surface temperature (SST was observed with a positive SST anomaly within the region of H generation and a negative SST anomaly within the Gulf of Guinea. This SST anomaly dipole could contribute to enhance the continental convergence associated with the monsoon that impacts on the West African MCSs formation.

  14. Imaging hydrothermal systems at Furnas caldera (Azores, Portugal): Insights from Audio-Magnetotelluric data

    Science.gov (United States)

    Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa

    2016-04-01

    The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike

  15. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    Science.gov (United States)

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen

  16. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D.L. [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D.R. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  17. The low temperature hyperalkaline hydrothermal system of the Prony bay (New Caledonia)

    Science.gov (United States)

    Monnin, C.; Chavagnac, V.; Boulart, C.; Ménez, B.; Gérard, M.; Gérard, E.; Quéméneur, M.; Erauso, G.; Postec, A.; Guentas-Dombrowski, L.; Payri, C.; Pelletier, B.

    2014-04-01

    members (at pH 11) are not significantly different from one site to the other although the sites are several km away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline end members shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal end member with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca-carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca-carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at pH around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of the Prony bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).

  18. Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate

    Science.gov (United States)

    Karami, Alimohammad; Yousefi, Tooraj; Ebrahimi, Saeid; Rezaei, Ehsan; Mahmoudinezhad, Sajjad

    2013-06-01

    This paper reports the application of the adaptive neuro-fuzzy inference system to model the forced convection heat transfer from v-shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the current study is to consider the effects of the angle of the v-shaped plate (Upphi ) , slot-to-plate spacing ratio (Z/W) and the Reynolds number (Re) variation on the average heat transfer from the v-shaped plate.

  19. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.

    Science.gov (United States)

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A

    2016-06-01

    Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks

    Directory of Open Access Journals (Sweden)

    Thang Trung Nguyen

    2018-01-01

    Full Text Available This paper proposes an effective novel cuckoo search algorithm (ENCSA in order to enhance the operation capacity of hydrothermal power systems, considering the constraints in the transmission network, and especially to overcome optimal power flow (OPF problems. This proposed algorithm is developed on the basis of the conventional cuckoo search algorithm (CSA by two modified techniques: the first is the self-adaptive technique for generating the second new solutions via discovery of alien eggs, and the second is the high-quality solutions based on a selection technique to keep the best solutions among all new and old solutions. These techniques are able to expand the search zone to overcome the local optimum trap and are able to improve the optimal solution quality and convergence speed as well. Therefore, the proposed method has significant impacts on the searching performances. The efficacy of the proposed method is investigated and verified using IEEE 30 and 118 buses systems via numerical simulation. The obtained results are compared with the conventional cuckoo search algorithm (CCSA and the modified cuckoo search algorithm (MCSA. As a result, the proposed method can overcome the OPF of hydrothermal power systems better than the conventional ones in terms of the optimal solution quality, convergence speed, and high success rate.

  1. Contribution to the operating energy planning of hydrothermal power systems; Contribuicao ao planejamento da operacao energetica de sistemas hidrotermicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Adriano Alber de Franca Mendes

    1991-08-01

    This work treats of the problem of the planning of the energy operation of hydrothermal power systems, gone back to those with predominance of hydraulic generation, as it is the case of the Brazilian system. The work makes an analysis of the problem of the planning of the energy operation of systems hydrothermal leaving of the concepts and nature of this problem. Their inherent difficulties are shown and they come the main approaches in operation in countries with predominance of hydroelectric generation. It still introduces the methodology in energy planning in Brazil being pointed their main limitations. Finally an alternative model for the planning of the energy operation of the system brazilian hydrothermal, based on the made studies is also presented.

  2. Numerical Modeling of the Hydrothermal System at East Pacific Rise 9°50'N Including Anhydrite Precipitation

    Science.gov (United States)

    Kolandaivelu, K. P.; Lowell, R. P.

    2015-12-01

    To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.

  3. Convective wave front locking for a reaction-diffusion system in a conical flow reactor

    DEFF Research Database (Denmark)

    Kuptsov, P.V.; Kuznetsov, S.P.; Knudsen, Carsten

    2002-01-01

    We consider reaction-diffusion instabilities in a flow reactor whose cross-section slowly expands with increasing longitudinal coordinate (cone shaped reactor). Due to deceleration of the flow in this reactor, the instability is convective near the inlet to the reactor and absolute at the downstr......We consider reaction-diffusion instabilities in a flow reactor whose cross-section slowly expands with increasing longitudinal coordinate (cone shaped reactor). Due to deceleration of the flow in this reactor, the instability is convective near the inlet to the reactor and absolute...

  4. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile)

    Science.gov (United States)

    Tassi, F.; Aguilera, F.; Darrah, T.; Vaselli, O.; Capaccioni, B.; Poreda, R. J.; Delgado Huertas, A.

    2010-04-01

    We investigate the chemical and isotopic composition of water and gas thermal discharges from six hydrothermal systems in the Tarapacà and Antofagasta regions (northern Chile): Surire, Puchuldiza-Tuja, Pampa Lirima, Pampa Apacheta, El Tatio and Torta de Tocorpuri, to determine the chemical-physical conditions at the fluid source. The chemical facies of the thermal discharges vary from Na +-Cl - (El Tatio, Puchuldiza-Tuja and part of Surire where SO 42--rich waters also occur) to Na +(Ca 2+)-Cl -(SO 42-) (Pampa Lirima), Ca 2+-SO 42-(HCO 3-) (Torta de Tocorpuri) and Ca 2+-SO 42- (Pampa Apacheta). The gas seeps are characterized by the dominance of CO 2, H 2S and CH 4 with N 2/Ar ratios that occasionally are up to 450. Significant amounts of SO 2 and HCl are present at Pampa Apacheta. Water and gas geothermometry suggests that El Tatio and Puchuldiza-Tuja fluid reservoirs have relatively high reservoir equilibrium temperature (up to 270 °C). Gases from Pampa Apacheta apparently equilibrated at unusually high temperature for hydrothermal fluids (up to 350 °C), being likely related to an active magmatic system, as testified by the presence of highly acidic gas compounds such as SO 2 and HCl. On the contrary, low equilibrium temperatures were calculated for the Surire fluids (El Tatio, Pampa Apacheta, Surire and Puchuldiza-Tuja can be regarded as the most promising areas and deserve more detailed geological investigations.

  5. Multi-Sensor Mapping of Diffuse Degassing of C-O-H Compounds in Terrestrial Hydrothermal Systems

    Science.gov (United States)

    Schwandner, F. M.; Shock, E. L.

    2004-12-01

    and partially map a previously-inferred active lineament in the Obsidian Pool area. In addition, reduced gas data are yielding areal ratio distributions of CO/CO2, H2/CH4, and CO/CH4, that may be indicative of reactions such as the catalytic hydrogenation of CO2 (Sabatier-Process) and of CO (Fischer-Tropsch-Process) within the shallow hydrothermal system. Barberi & Carapezza (1994). Bull. Volcanol. 56(5): 335-342. Brombach, et al. (2001). Geophys. Res. Lett. 28(1): 69-72. Crenshaw et al. (1982). Nature 300: 345-346. Chiodini et al. (1996). Bull. Volcanol. 58(1): 41-50. Schwandner et al. (2004). JGR D 109: D04301, doi:10.1029/2003JD003890. Werner & Brantley (2004) JGR B 105: 10,831-10,846. Werner et al. (2003). Earth Planet. Sci. Lett. 210: 561-577. Williams (1985). Science 229(4713): 551-553. Williams-Jones et al. (2000). Bull. Volcanol. 62: 130-142.

  6. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    DEFF Research Database (Denmark)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle

    2017-01-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland’s only operating metalliferous mine until its......-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated...

  7. Detection of hydrothermal aging in Cured-In-Place Pipes (CIPP) based on microwave system

    OpenAIRE

    Manavipour, Maryam; Sklarczyk, Christoph; SZIELASKO, Klaus; Kurz, Jochen Horst; Boller, Christian

    2016-01-01

    Pipe rehabilitation by means of trenchless techniques has been performed for more than 40 years already. Cured-in-place pipe (CIPP) is a trenchless method to repair damaged pipelines by inserting a new liner of polymer composite inside the existing host pipe. Since these liners are exposed to water at different temperature after installation for a long time, the purpose of a study was to investigate the effect of hydrothermal aging on CIPP samples and how this effect can be assessed by means ...

  8. Influence of high-frequency vibrations on the onset of convection in a two-layer system

    Science.gov (United States)

    Zenkovskaya, Svetlana M.; Novosiadliy, Vasili A.

    2008-03-01

    This Note deals with the influence of high-frequency translational oscillations on the onset of convection in a two-layer system of weakly heterogeneous immiscible fluids with deformable interface. The averaging method is applied to the generalized Oberbeck-Boussinesq equations. Vibration-generated forces and tensions appear as the result. A transition to the Oberbeck-Boussinesq approximation is made in the averaged equations. Analysis of averaged equations leads to the following conclusions. Horizontal vibrations are obtained not influencing the onset of convection, and in the cases of other directions the influence of vibration is determined by a single parameter, depending on velocity amplitude and direction. Vibration is shown to generate effective surface tension, smoothing the interface. Critical parameters are calculated for the case of homogeneous fluids. To cite this article: S.M. Zenkovskaya, V.A. Novosiadliy, C. R. Mecanique 336 (2008).

  9. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals

    Directory of Open Access Journals (Sweden)

    Webster John G

    2006-10-01

    Full Text Available Abstract Background We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. Methods We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD sensor. We used a circulation system to simulate different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We heated the sensor approximately 5°C above the fluid temperature. We measured the power consumed by the sensor and the resistance of the sensor during the experiments and analyzed these data to determine the value of the convective heat transfer coefficient at various flow rates. Results From 0 to 5 L/min, experimental values of h in W/(m2·K were for distilled water 5100 to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900 to 10700. Conclusion We believe this system is the smallest, most accurate method of minimally invasive measurement of in vivo h in animals and provides the least disturbance of flow.

  10. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Energy Technology Data Exchange (ETDEWEB)

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  11. The impact of simulated mesoscale convective systems on global precipitation: A multiscale modeling study

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, Jiun-Dar

    2017-06-01

    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.

  12. The impact of mesoscale convective systems on global precipitation: A modeling study

    Science.gov (United States)

    Tao, Wei-Kuo

    2017-04-01

    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.

  13. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    Science.gov (United States)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  14. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    Science.gov (United States)

    Hence, Deanna A.; Houze, Robert A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  15. Towards an understanding of the high-temperature, high-salinity part of magmatic-hydrothermal systems

    Science.gov (United States)

    Driesner, T.

    2003-04-01

    In situ observations of fluid state and composition, fluid-rock interaction and flow characteristics in active magmatic-hydrothermal systems is restricted to wells in the upper, i.e. epithermal or geothermal environments. Our knowledge about the deeper parts therefore comes from exposed fossil examples. Up to very recently, the temperature, pressure and fluid evolution could only be inferred from standard petrological and fluid inclusion results. With the advent of quantitative multi-element analysis by LA-ICPMS of fluid inclusions, "hard" constraints on the fluid evolution in complex fossil systems can now be obtained and in ideal cases processes such as ore precipitation by fluid mixing or cooling can be distinguished. While such field-based results moved our understanding of the processes at given points in the systems to a new level of detail, the dynamics of the underlying hydrodynamic and chemical processes can only be inferred quite vaguely and crucial tests of these models are frequently impossible. Worse, such "geological" interpretations cannot distinguish between physically possible and impossible hydrodynamic scenarios because of the highly nonlinear and coupled nature of governing equations and physical fluid properties. A test of such a geological model and the understanding of the dynamics of such a system can only be achieved by forward modeling. This requires two essential components: (1) a simulation tool that is able to handle both flexible geometries with "geologically realistic" detail and material and flow properties with variations of several orders of magnitude, and (2) a comprehensive description of fluid properties over very wide ranges of T, P, and X. If chemical fluid-rock interactions play an important role, a versatile thermodynamic formalism for accurate solute properties even in the near-critical region is required. The Fluids and Ore Deposits Group at ETH has recently developed such a simulation tool (see S. Geiger et al., this

  16. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  17. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    or other high conductive materials to conduct the heat from PCM to airframe or fuel • Thermal energy removal (to ambient) o Convection, air jet ...conditioners served a necessary purpose within this wind tunnel design. The first was to eliminate any rotational motion or ‘ swirl ’ imparted onto the flow

  18. Particle sedimentation and diffusive convection in submarine clouds

    Science.gov (United States)

    Carazzo, G.; Jellinek, M.; Turchyn, A. V.

    2013-12-01

    The longevity of submarine plumes generated by the release of hydrothermal fluids during crustal rupturing or by the rapid cooling of an erupting lava flow constrains the input of crustal-derived elements into the deep-ocean. Decades of observations of episodic "event plumes" suggest that a key process governing the dynamics of a submarine cloud spreading out laterally from a buoyant rising plume is the production of internal layering. Here, we use geological data on submarine clouds and a new experimental apparatus producing at laboratory scale turbulent, hot particle-laden plumes and clouds to show that this layering occurs where particle diffusive convection driven by the differential diffusion of heat and small mineral precipitates gives rise to a large scale double diffusive instability. We show that this "particle diffusive convection" can extend the longevity of an event plume to two years after its emplacement, allowing iron-sulfide minerals to dissolve and deliver iron to the deep-ocean. The very long residence time imposed by diffusive convective effects does not allow iron-oxide minerals to dissolve but may lead to the formation of iron-rich sediments at large distances from the point of emission. We develop a new theoretical model that includes both sedimentation and dissolution processes to quantify the potential amount of iron produced by the dissolution of iron-sulfide minerals settling through the cloud by diffusive convection. A key prediction is that hydrothermal systems could provide 75% of the global budget of dissolved iron in the deep-ocean. The consideration of scale-basin variations suggests that the Southern Hemisphere is probably the most impacted by hydrothermal iron, consistent with observations and global ocean models. Photographs showing the typical evolution of a lab-scale turbulent, hot particle-laden plume. At stage 1, the buoyant plume reaches a level of neutral buoyancy and spreads out laterally forming a neutrally buoyant cloud

  19. Linking Observed Long-term Changes in ITCZ Characteristics and the Morphology of Convective Systems

    Science.gov (United States)

    Rapp, A. D.; Wodzicki, K.

    2016-12-01

    Many recent modeling studies suggest that the region of heavy precipitation associated with the Intertropical Convergence Zone (ITCZ) becomes narrower while precipitation becomes more intense in enhanced greenhouse gas forcing scenarios. Although there have been many observational studies defining the climatological location of the ITCZ and the intensity of general tropical precipitation, there has been less work using observations to determine the extent of the ITCZ. To test whether we observe ITCZ changes in the current climate, satellite observations from the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Climatology Project (GPCP), and ERA-Interim reanalysis are combined to develop an automated identification of the ITCZ and metrics describing its characteristics, including ITCZ center location, width, and precipitation intensity. Results from 1979-2015 show that the ITCZ meridional extent has decreased, with a simultaneous increase in precipitation intensity, especially in the center of the ITCZ. These results imply changes in the morphology of convection in the ITCZ associated with the large-scale changes in ITCZ extent. To better understand the relationship between ITCZ variability and the convection within it, TRMM Precipitation Radar (PR) precipitation features within the boundaries of the ITCZ are identified and the distribution of convective characteristics are examined for the top (wide) and bottom (narrow) quartiles of ITCZ width. Preliminary results show positive anomalies in the density of ITCZ convection when the ITCZ is narrow. Deeper echo top heights, higher maximum reflectivities at 6 km, and larger feature sizes are all more frequently observed for narrow ITCZs compared to wide ITCZs, which suggests a shift in the distribution of deep convection as the ITCZ narrows that is consistent with modeling studies of projected ITCZ changes.

  20. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  1. Comparison of navigation in ROV and AUV surveys with high frequency acoustic systems in deep seafloor hydrothermal environments

    Science.gov (United States)

    Le Bas, T.; Murton, B. J.; Webber, A.

    2013-12-01

    As high frequency acoustic waves are highly attenuated over short distances it is essential that all high resolution surveys must be conducted close to the seafloor. In the deep ocean (over 2500m) this means that the location of a survey vehicle compared to a ship's well constrained position has some significant issues. This paper compares various methods and results of a ROV and AUV multibeam survey over the Mid Cayman Spreading Centre hydrothermal vent sites. The results show the difficulties encountered in processing when navigation uncertainty is considerably higher than the resolution of survey data. For example the best ROV positional accuracy in 5000m water depth is about 10m using USBL, whereas high-frequency multibeam systems used on ROVs and AUVs has a resolution of 50cm or better. AUV location has different navigational challenges. While the continuous movement of an AUV during surveying provides a constant that can be modelled and used to correct any relative locational uncertainty, absolute positioning at sufficient precision and accuracy for swath mapping remains problematic. In response to these uncertainties, we present a method of navigation correction that provides high-precision, internally consistent positioning and external accuracy. Using features identified on overlapping near-bottom multibeam bathymetry swathes, a correlation can be made between adjacent survey tracks. Internal consistency of the survey can be achieved by matching contours of these features by warping adjacent swaths to fit one another. We find that contour matching is extremely effective as the human eye is particularly good at identifying similar feature patterns, and the contours allow control points to be identified at sufficient spatial resolution to match that of the swath data, and then co-located with lower resolution shipboard swath maps. Examples of swath data from a variety of AUV and ROV systems will be presented including those from the deepest hydrothermal vent

  2. Hydrothermal synthesis of fine oxide powders

    Indian Academy of Sciences (India)

    The authors describe. hydrothermal decomposition,; hydrothermal metal oxidation,; hydrothermal reaction,; hydrothermal precipitation and hydrothermal hydrolysis,; hydrothermal electrochemical,; reactive electrode submerged arc,; hydrothermal microwave,; hydrothermal sonochemical,. etc and also ideal and real powders ...

  3. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    Science.gov (United States)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  4. Using CYGNSS to Observe Convectively Driven Near-Surface Winds in Tropical Precipitation Systems During Madden-Julian Oscillation Events

    Science.gov (United States)

    Lang, Timothy J.; Li, Xuanli; Mecikalski, John; Hoover, Kacie; Castillo, Tyler; Chronis, Themis

    2017-01-01

    The Cyclone Global Navigation OKLMA 1411 UTC Satellite System (CYGNSS) is a multi-satellite constellation that launched 15 December 2016. The primary objective of CYGNSS is to use bistatic Global Positioning System (GPS) reflectometry to accurately measure near-surface wind speeds within the heavily raining inner core of tropical cyclones. CYGNSS also features rapid revisit times over a given region in the tropics - ranging from several minutes to a few hours, depending on the constellation geometry at that time. Despite the focus on tropical cyclones, the ability of CYGNSS to provide rapid updates of winds, unbiased by the presence of precipitation, has many other potential applications related to general tropical convection.

  5. The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency

    Science.gov (United States)

    Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.

    2018-01-01

    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which

  6. Natural thermal convection in fractured porous media

    Science.gov (United States)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50fracture density and fracture aperture on the Nusselt number (Nu) is highly Ra dependent. The effect of the damaged zone on Nu is roughly proportional to its size. All these models also allows us to determine for which range of fracture density the fractured porous medium is in good agreement with an unfractured porous medium of the same bulk permeability.

  7. Prospecting for Modern and Ancient Hydrothermal Systems on Mars:Implications for Astrobiology and the Exploration for Past or Present Life

    Science.gov (United States)

    Farmer, J. D.

    2002-12-01

    Hydrothermal systems are regarded to be prime targets in the search for a fossil record on Mars because they provide 1) Localized environments for sustaining high rates of microbial productivity and 2) Co-existing high rates of mineralization (chemical precipitation) favorable for capturing and preserving microbial biosignatures. Hydrothermal environments may have been widespread on Mars early in the planet's history. Previous authors have described a number of potential hydrothermal sites on Mars which may be grouped into the following geologic associations: 1) Channels and chaos terranes associated with volcanic heat sources (e.g. Dao Vallis - Hadriaca Patera and chaos at the base of Apollonaris), 2) Channel networks and modified central uplifts associated with large impact craters, 3) Channels and alteration zones associated with rift fracture systems and dike swarms (e.g. Cerberus volcanic plains, Elysium), 4) Channel systems in periglacial environments related to potential subglacial volcanic heat sources 5) Mineral signatures (coarse-grained hematite) associated with ancient lacustrine basins and extensional geologic features (e.g. Terra Meridian basin, floor of Candor Chasma, central Aram chaos) and 6) modern seeps and runoff channels found on steep, northward facing slopes at high latitudes. In addition, some attribute a hydrothermal origin to the Fe-rich carbonates of Martian meteorite, ALH 84001. In this talk I will review examples of these and related hydrothermal environments that may have been present on Mars from the perspective of terrestrial analogs and what that implies about preservation potential for fossil biosignatures. I will also discuss possible ways to test hydrothermal hypotheses that could be implemented during the next decade of Mars exploration.

  8. Thermodynamics of Fe(II)Fe(III) oxide systems I. Hydrothermal Fe3O4

    Science.gov (United States)

    Bartel, J.J.; Westrum, E.F.; Haas, J.L.

    1976-01-01

    The heat capacity of a hydrothermally-prepared polycrystalline sample of Fe3O4 was measured from 53 to 350 K, primarily to study the thermophysics of the Verwey transitions. Although the bifurcation of the transition was confirmed, the sample was found to contain traces of manganese. The observed transition temperatures of 117.0 and 123.0 K are 3.7 and 4.2 K higher respectively than those found in pure Fe3O4. Ancillary analytical results are consistent and indicate a stoichiometry of Mn0.008Fe2.992O4 for this material. Characteristics in the transition region are ascribed to dopant effects. ?? 1976.

  9. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2006-07-01

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  10. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    Science.gov (United States)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a

  11. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini

    2014-06-01

    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  12. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    Science.gov (United States)

    2013-09-30

    unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 phase of MJO affects ...sensible, and evaporative heating anomalies between the ocean and atmosphere affect the evolution of the MJO? We will identify convective and air...clearly shown by a horizontal plane view of the cloud albedo and surface latent heat flux (Figure 5). At this time a single strong group of

  13. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes

    Science.gov (United States)

    Hurwitz, S.; Lowenstern, J. B.; Heasler, H.

    2007-01-01

    We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher

  14. Investigation of Microphysical Properties of Deep Convective Systems using Aircraft in-situ and Ground-based Measurements during MC3E

    Science.gov (United States)

    Xi, B.; Dong, X.; Feng, Z.; Zhou, N.

    2012-12-01

    Hydrometeors in deep convective clouds can vary significantly from developing stage to dissipating stage, and can be also very different within convective core, stratiform rain and anvil regions. However, the microphysical properties of these systems are one of the most difficult tasks for retrieval from both active and passive remote sensing instruments. The Midlatitude Continental Convective Clouds Experiment (MC3E) provides a unique opportunity to bring the multi sensors and multi platforms to measure the detailed structures of such systems. In this study, we will investigate the microphysical properties of deep convective systems (DCSs) by combining the aircraft in-situ measurements and various ground radar observations. Most importantly, we can examine the microphysics in the convective, stratiform rain and anvil regions of DCSs based on the classifications of Feng et al (2011), and further study the variations of cloud microphysics among developing, mature, dissipating stages based on a satellite tracking method (Feng et al 2012). One of our anticipated outcomes from this study will provide a "cloud-truth" dataset for Midlatitude DCSs. Through the way of case studies during MC3E, we will perform detailed comparisons of convective cloud properties observed by the ARM new instrumentation and aircraft with the Feng et al. (2011, 2012) results.

  15. Pore Water Convection in Carbonaceous Chondrite Planetesimals

    Science.gov (United States)

    Travis, B. J.; Schubert, G.

    2004-12-01

    Chondritic meteorites are so named because they nearly all contain chondrules - small spherules of olivine and pyroxene that condensed and crystallized in the solar nebula and then combined with other material to form a matrix. Their parent bodies did not differentiate, i.e., form a crust and a core. Carbonaceous chondrites (CCs) derived from undifferentiated icy planetesimals. Asteroids of the inner solar system are probably present-day representatives of the early planetesimals. CCs exhibit liquid water-rock interactions. CCs contain small but significant amounts of radiogenic elements (e.g., 26Al), sufficient to warm up an initially cold planetesimal. A warmed-up phase could last millions of years. During the warmed-up phase, liquid water will form, and could evolve into a hydrothermal convective flow. Flowing water will affect the evolution of minerals. We report on results of a numerical study of the thermal evolution of CCs, considering the major factors that control heating history and possible flow, namely: permeability, radiogenic element content, and planetesimal radius. We determine the time sequence of thermal processes, length of time for a convective phase and patterns of flow, amount of fluid flow throughout the planetesimals, and sensitivity of evolution to primary parameters. We use the MAGHNUM code to simulate 3-D dynamic freezing and thawing and flow of water in a self-gravitating, permeable spherical body. Governing equations are Darcy's law, mass conservation, energy conservation, and equation of state for water and ice. We have simulated the evolution of heating, melting of ice, subsequent flow and eventual re-freezing for several examples of CC planetesimals. For a reference simulation, we use typical values from meteorite analyses: 20 % porosity, 1 darcy permeability (~10-12 m2), 3x10-8 wt fraction of 26Al, rock density of 3000 kg/m3, rock specific heat of 1000 J/kg/K, body radius of 50 km, solid rock thermal conductivity of 3 W/m/K. For the

  16. Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems: Importance of iron redox reactions under anoxic conditions

    Science.gov (United States)

    Shibuya, Takazo; Russell, Michael J.; Takai, Ken

    2016-02-01

    Thermodynamic calculations of mixing between hypothetical seawater and hydrothermal fluid in the Hadean deep ocean were carried out to predict saturation states of mineral precipitates and redox reactions that could occur in Hadean submarine alkaline hydrothermal systems associated with the serpentinization of ultramafic rocks. In the calculations, the seawater was assumed to be weakly acidic (pH = 5.5) and to include carbon dioxide, ferrous iron and silica, with or without nitrate, while the Hadean hydrothermal fluid was assumed to be highly alkaline (pH = 11) and to contain abundant molecular hydrogen, methane and bisulfide, based on the Archean geologic record, the modern low-temperature alkaline hydrothermal vent fluid (Lost City field), and experimental and theoretical considerations. The modeling indicates that potential mineral precipitates in the mixing zone (hydrothermal chimney structures) could consist mainly of iron sulfides but also of ferrous serpentine and brucite, siderite, and ferric iron-bearing minerals such as goethite, hematite and/or magnetite as minor phases. The precipitation of ferric iron-bearing minerals suggests that chemical iron oxidation would be made possible by pH shift even under anoxic condition. In the mixing zone, comprising an inorganic barrier precipitated at the interface of the two contrasting solutions, various redox reactions release free energy with the potential to drive endergonic reactions, assuming the involvement of coupling inorganic protoenzymes. Hydrogenotrophic methanogenesis and acetogenesis - long considered the most ancient forms of biological energy metabolisms - are able to achieve higher maximum energy yield (>0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would

  17. COINTEGRATION RELATIONSHIPS TO ESTIMATE THE MARGINAL COST OF DEFICIT IN PLANNING A HYDROTHERMAL SYSTEM: THE CASE OF BRAZIL

    Directory of Open Access Journals (Sweden)

    Lucio Guido Tapia Carpio

    2014-04-01

    Full Text Available The aim of this study is to analyze the behavior of gross domestic product (GDP compared to electricity consumption in Brazil to estimate the curve of deficit marginal cost. The deficit cost is used as exogenous parameter in the chain of models for planning the operation and expansion of a hydrothermal system as part of the total cost of operation. The results show a cointegration relationship between GDP and electricity consumption; therefore, there is a long-term equilibrium relationship between GDP and electricity consumption. This relationship is used to estimate the curve of deficit marginal cost. The possible short-term imbalance can be mitigated using the vector error correction model (VEC.

  18. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    Science.gov (United States)

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  19. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kun Ren

    2014-01-01

    Full Text Available Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  20. Comparing Carbonate-Depositing Hydrothermal Systems Along the Mid-Atlantic Ridge at Lost City Hydrothermal Field and Along the Rio Grande rift in the Southwestern US: Geochemistry, Geomicrobiology and Mineralogy

    Science.gov (United States)

    Cron, B. R.; Crossey, L.; Hall, J.; Takacs-Vesbach, C.; Dahm, K.; Northup, D.; Karlstrom, K.

    2008-12-01

    Both continental and marine rift settings are characterized by hydrothermal vents (smokers) that include important components of mantle-derived "endogenic" fluids. These fluids ascend along extensional faults and provide unique biologic settings. We hypothesize that deep crustal processes support near-surface metabolic strategies by delivering chemically reduced constituents to partially oxidized surface environments. Lost City hydrothermal field, a marine vent system located 15 km west of the Mid-Atlantic ridge, exhibits a range of temperatures (40 to 75°C), pH (9-9.8), and mineral compositions (carbonate rather than sulfide-dominated) that were originally thought to be non-existent in marine vent systems. Travertine depositing CO2 springs within the Rio Grande rift, NM exhibit striking similarities in many respects to vents in Lost City. Previous research has already determined the importance of methanogenic and sulfur metabolizing microorganisms in carbonate structures at Lost City. Phylogenetic analysis of 16S rRNA genes from a terrestrial CO2 spring was performed. In addition, cells from bacteria and fungi were also cultured with oligotrophic media. Both archaeal phylotypes from the terrestrial spring grouped within Marine Group I of the Crenarchaeota, a clade dominated by sequences from hydrothermal marine vents, including some from Lost City. We will report comparative analyses of sequences from Lost City and both cultured and environmental clone libraries from the terrestrial spring using UniFrac. Geochemical modeling of data (water and gas chemistry from both locations) is used to rank the energy available for dozens of metabolic reactions. SEM and microprobe data are presented to compare mineral compositions. Our results will be discussed in respect to the tectonic setting, microbial community distributions, and the geochemical composition and textural properties of the carbonates that are precipitated in each of these systems.

  1. Convection towers

    Science.gov (United States)

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  2. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  3. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  4. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR)

    Science.gov (United States)

    Delacour, Adélie; Früh-Green, Gretchen L.; Bernasconi, Stefano M.; Schaeffer, Philippe; Kelley, Deborah S.

    2008-08-01

    The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ 13C TC values ranging from -28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ 13C TOC: -28.9‰ to -21.5‰) and variations in δ 13C TC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C 15 to C 30. Longer-chain hydrocarbons (up to C 40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C 16 to n-C 20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central

  5. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    Science.gov (United States)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  6. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Science.gov (United States)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  7. Bioavailability, Bioaccumulation and Biotransformation of arsenic in coral reef organisms surrounding an arsenic-rich marine shallow-water hydrothermal vent system in the coastal waters of Ambitle Island, Papua New Guinea

    Science.gov (United States)

    Pichler, T.; Wallschläger, D.; Price, R. E.

    2009-12-01

    Marine shallow-water hydrothermal systems are often enriched in biologically toxic elements, thus making them ideal natural analogs for coastal anthropogenic pollution. Here, we report our investigation of the bioavailability, bioaccumulation, and biotransformation of hydrothermally-derived arsenic into several coral reef organisms from the arsenic-rich marine shallow-water hydrothermal system of Tutum Bay, Ambitle Island, in northeastern Papua New Guinea. Hydrothermal venting provided bioavailable As by two major pathways throughout Tutum Bay: 1) easily-exchangeable As from hydrothermally influenced sediments to as far away as 200 m from focused venting, and 2) in surface seawaters, which may allow for biological uptake by phytoplankton and transfer up the food web. The soft coral Clavularia sp., the calcareous algae Halimeda sp., and the tunicate Polycarpa sp. collected from the hydrothermal area each displayed distinctly higher (up to 20 times) total arsenic compared to the control site, with increasing trends while approaching focused hydrothermal venting. Organic and inorganic arsenic species were extracted intact from the tissues of each organism, separated by anion exchange chromatography, and analyzed by inductively-coupled plasma-dynamic reaction cell-mass spectrometry. Overall, speciation patterns for Clavularia were similar for the control site versus the hydrothermal site, although the concentrations were much higher. Elevated concentrations of DMA and cationic forms of arsenic, most likely AB, in Clavularia, both from the control site and from the hydrothermal area suggest its metabolic pathway is not altered due to hydrothermal activity, and is similar to other marine organisms. Arsenic speciation patterns in Polycarpa were also similar for both sites, and suggests uptake of arsenic via food chain, containing neither As(III) nor As(V), but abundant excluded As and DMA. It is unclear if methylation is taking place within this organism or prior to

  8. A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    Full Text Available In this paper, the correlation between cloud-to-ground (CG lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R and the number of CG lightning flashes (L in the main precipitation period is R = 1.69 ln (L - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.

    Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation

  9. Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    Science.gov (United States)

    Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.

    2017-01-01

    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in

  10. Isolation and Structural Characterization of Lignin from Cotton Stalk Treated in an Ammonia Hydrothermal System

    Science.gov (United States)

    Kang, Sumin; Xiao, Lingping; Meng, Lingyan; Zhang, Xueming; Sun, Runcang

    2012-01-01

    To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%–1.29%) and had relatively low average molecular weights (1255–1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-O-4′ inter-unit linkages (75.6%), and small quantities of β-β′ (12.2%), together with lower amounts of β-5′ carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups. PMID:23203120

  11. Permeability of the Lucky Strike deep-sea hydrothermal system: Constraints from the poroelastic response to ocean tidal loading

    Science.gov (United States)

    Barreyre, Thibaut; Escartin, Javier; Sohn, Robert; Cannat, Mathilde

    2014-12-01

    We use the time delay between tidal loading and the induced subsurface flow response to constrain the poroelastic behavior and permeability of the Lucky Strike hydrothermal field on the Mid-Atlantic Ridge. We demonstrate that high-temperature (T > 200 °C) exit-fluid discharge records from four hydrothermal sites across the field are highly coherent with contemporaneously acquired bottom pressure records at tidal periods, with the thermal response lagging pressure by ∼155° (5.3 h) on average across all sites for the semi-diurnal (M2) frequency over a three-year observation period. In a one-dimensional poroelastic model of ocean tidal loading this phase lag corresponds to a high-permeability system where pore pressure perturbations at the seafloor rapidly propagate downward from the seafloor interface until they encounter a permeability boundary. Our results suggest that at the Lucky Strike field this tidal pumping is largely restricted to the ∼600 m thick extrusive layer (i.e., seismic layer 2A). Under a plausible set of matrix elastic parameters, the ∼5.3 h lag between pressure and exit-fluid temperature is consistent with an effective matrix permeability of ∼10-10 m2 and an average vertical flow velocity of ∼0.02 m/s within the extrusive layer. Our results argue against tidal pumping of the entire crustal section between the seafloor and the axial magma chamber (at ∼3.4 kmbsf) because this scenario requires unrealistically high effective permeabilities (∼10-9 m2) and average vertical flow velocities (∼0.15 m/s) over this depth range. Our effective permeability estimate for the extrusive layer is broadly consistent with previous results, and indicates that flow must be channeled in discrete permeable pathways (e.g., faults, fissures) that cut through the extrusive volcanic layer.

  12. Anomalously Weak Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  13. Convection of tin in a Bridgman system. II - An electrochemical method for detecting flow regimes

    Science.gov (United States)

    Sears, B.; Fripp, A. L.; Debnam, W. J., Jr.; Woodell, G. A.; Anderson, T. J.; Narayanan, R.

    1992-01-01

    An ampoule was designed in order to obtain local flow behavior of the flow fields for convection of tin in a vertical Bridgman configuration. Multiple electrochemical cells were located along the periphery of the ampoule. Oxygen was titrated into the ampoule at one of the cell locations using a potentiostat and the concentration of oxygen was monitored at the other cell locations by operating the cells in a galvanic mode. Onset of oscillations were detected by means of thermocouples. We conclude that the flows are generally three dimensional for an aspect ratio of 5. Results on oscillations concurred with those of earlier workers. Suggestions for improved designs were made.

  14. Sensitivity of summer ensembles of super-parameterized US mesoscale convective systems to cloud resolving model microphysics and resolution

    Science.gov (United States)

    Elliott, E.; Yu, S.; Kooperman, G. J.; Morrison, H.; Wang, M.; Pritchard, M. S.

    2014-12-01

    Microphysical and resolution sensitivities of explicitly resolved convection within mesoscale convective systems (MCSs) in the central United States are well documented in the context of single case studies simulated by cloud resolving models (CRMs) under tight boundary and initial condition constraints. While such an experimental design allows researchers to causatively isolate the effects of CRM microphysical and resolution parameterizations on modeled MCSs, it is still challenging to produce conclusions generalizable to multiple storms. The uncertainty associated with the results of such experiments comes both from the necessary physical constraints imposed by the limited CRM domain as well as the inability to evaluate or control model internal variability. A computationally practical method to minimize these uncertainties is the use of super-parameterized (SP) global climate models (GCMs), in which CRMs are embedded within GCMs to allow their free interaction with one another as orchestrated by large-scale global dynamics. This study uses NCAR's SP Community Atmosphere Model 5 (SP-CAM5) to evaluate microphysical and horizontal resolution sensitivities in summer ensembles of nocturnal MCSs in the central United States. Storm events within each run were identified using an objective empirical orthogonal function (EOF) algorithm, then further calibrated to harmonize individual storm signals and account for the temporal and spatial heterogeneity between them. Three summers of control data from a baseline simulation are used to assess model internal interannual variability to measure its magnitude relative to sensitivities in a number of distinct experimental runs with varying CRM parameters. Results comparing sensitivities of convective intensity to changes in fall speed assumptions about dense rimed species, one- vs. two-moment microphysics, and CRM horizontal resolution will be discussed.

  15. The effect of the United States Great Lakes on the maintenance of derecho-producing mesoscale convective systems.

    Science.gov (United States)

    Bentley, M.; Sparks, J.; Graham, R.

    2003-04-01

    The primary aim of this research is to investigate the influence of the United States Great Lakes on the intensity of mesoscale convective systems (MCSs). One of the greatest nowcast challenges during the warm season is anticipating the impact of the Great Lakes on severe convection, particularly MCSs capable of producing damaging widespread windstorms known as derechos. Since a major derecho activity corridor lies over the Great Lakes region, it is important to understand the effects of the Lakes on the intensity and propagation of severe wind producing MCSs. Specific objectives of the research include: 1) The development of a short-term climatology of MCS events that have impacted the Great Lakes region over the past seven years; 2) An analysis of radar, satellite, surface (including buoy and lighthouse observations), and lake surface temperature data to determine the environmental conditions impacting the evolution of MCSs passing over a Great Lake; 3) An examination of MCS initiation times and seasonal frequencies of occurrence to delineate temporal consistencies in MCS evolution due to changing lake surface temperatures; and 4) The development of conceptual and forecast models to help anticipate MCS intensity and morphology as these systems interact with the Great Lakes environment.

  16. Radar characteristics of tornadic and non-tornadic quasi-linear convective systems over the central United States

    Science.gov (United States)

    Grana, Sarah

    Quasi-Linear Convective Systems (QLCS) are linear convective systems known to produce a variety of severe weather threats including damaging winds, hail, flooding, and even tornadoes. Previous studies have found that QLCSs are most common in the Ohio and Mississippi River Valleys and produce roughly 18% of tornadoes across the United States. In addition, it has been shown that QLCS tornadoes spawn from low-level circulations called mesovortices. Mesovortices build quickly from the ground up making it very difficult to accurately identify them on radar, especially at long distances. Therefore, it is imperative that more research be done to distinguish between QLCSs that produce tornadoes and those that do not. Fifty-seven QLCS events were selected to investigate how radar parameters differ between tornadic and non-tornadic QLCSs. These events were broken into the following categories: warm season tornadic, warm season non-tornadic, cold season tornadic, and cold season non-tornadic. Tornadic cases produced one or more tornadoes, while non-tornadic cases had tornado warnings issued without a tornado actually being produced. These events were chosen based on their geographical location and the data available. The goal was to find radar parameters that were statistically significantly different between tornadic events and non-tornadic events.

  17. Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary

    Science.gov (United States)

    Hips, Kinga; Haas, János; Győri, Orsolya

    2016-06-01

    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow.

  18. Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa

    Directory of Open Access Journals (Sweden)

    H.-D. Betz

    2011-03-01

    Full Text Available During the "African Monsoon Multidisciplinary Analysis" (AMMA field phase in August 2006, a variety of measurements focusing on deep convection were performed over West Africa. The German research aircraft Falcon based in Ouagadougou (Burkina Faso investigated the chemical composition in the outflow of large mesoscale convective systems (MCS. Here we analyse two different types of MCS originating north and south of the intertropical convergence zone (ITCZ, ~10° N, respectively. In addition to the airborne trace gas measurements, stroke measurements from the Lightning Location Network (LINET, set up in Northern Benin, are analysed. The main focus of the present study is (1 to analyse the trace gas composition (CO, O3, NO, NOx, NOy, and HCHO in the convective outflow as a function of distance from the convective core, (2 to investigate how different trace gas compositions in the boundary layer (BL and ambient air may influence the O3 concentration in the convective outflow, and (3 to estimate the rate of lightning-produced nitrogen oxides per flash in selected thunderstorms and compare it to our previous results for the tropics. The MCS outflow was probed at different altitudes (~10–12 km and distances from the convective core (3 mixing ratios in the range of 35–40 nmol mol−1 were observed. Further downwind, O3 mixing ratios in the outflow rapidly increased with distance, due to mixing with the ambient O3-rich air. After 2–3 h, O3 mixing ratios in the range of ~65 nmol mol−1 were observed in the aged outflow. Within the fresh MCS outflow, mean NOx (=NO+NO2 mixing ratios were in the range of ~0.3–0.4 nmol mol−1 (peaks ~1 nmol mol−1 and only slightly enhanced compared to the background. Both lightning-produced NOx (LNOx and NOx transported upward from the BL contributed about equally to this enhancement. On the basis of Falcon measurements, the mass flux of LNOx in the investigated MCS was estimated to be ~100 g(N s−1. The average

  19. Improvement of Systematic Biases of Climate Forecast System (CFS) Model through Revised Convection-Microphysics and Superparameterization

    Science.gov (United States)

    Mukhopadhyay, P.; Goswami, B.; Santra, A.; Ganai, M.; Krishna, R. P. M.; Mahakur, M.; Khairoutdinov, M.; Goswami, B. N.

    2014-12-01

    It is well known that Coupled General Circulation Model (CGCM) shows limited skill in capturing the Tropical Intraseasonal Oscillations (TISO). As the NCEP Climate Forecast System (CFS) is adopted for operational monsoon forecast of India, improving its bias will directly benefit the operational forecast and finally the society. Keeping this in background, we felt, improving the cloud and convection parameterization of CFS (version2) is the need of the hour. A first attempt is made to improve the Indian Summer Monsoon (ISM) rainfall from diurnal through daily to seasonal scale. Experiments with Simplified Arakawa Schubert (SAS) and a revised SAS (RSAS) schemes are carried out to make 15 years climate run (free run). It is clearly seen that the use of RSAS is able to improve some of the biases of CFSv2 with SAS. Improvement is seen in the annual seasonal cycle, onset and withdrawal but most importantly the rainfall probability distribution function (PDF). The PDF of diurnal rainfall has significantly improved with respect to even a high resolution CFSv2 T382. The improvement of diurnal cycle of total rainfall is found to be contributed by the improvement of convective rainfall. However, the cold tropospheric temperature bias, low cloud fractions need further improvement. As the RSAS could only improve the convective rainfall but not the resolved scale process, the existing Zhao and Carr microphysics scheme is replaced by WSM6 scheme with six class of hydrometeors. The incorporation of WSM6 along with RSAS appears to make a significant improvement in the systematic biases of CFSv2 in the intraseasonal scale. It is able to capture the cloud processes much realistically and show a significant improvement in simulating the tropical waves and TISO. As a part of improving the cloud processes in CFSv2, we have attempted Superparameterization technique and have developed a SP-CFS (superparameterized (SP)). The CFSv2 used for SP is at T62 resolution. SP-CFS simulates an

  20. Experimental and theoretical investigation of the production of HCl and some metal chlorides in magmatic/hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    In the calculations we have assumed that all apatites are magmatic. The presence of chlorite and altered plagioclase within the granite and quartz-monzodiorite suggests that alteration may play a role in leading to erroneous estimates of initial melt Cl and F for 2 reasons: (1) the apatites may in fact not be magmatic in origin, but are hydrothermal, and (2) the halogen signature of magmatic apatite may be changed due to subsolidus exchange with a hydrothermal fluid. We are currently endeavoring to develop criteria for determining whether apatite composition represents earlier or later stages of magmatic-hydrothermal development.

  1. The origin of life near deep-sea hydrothermal systems during the Cambrian explosion: data from the Kyzyl Tashtyg sulphide deposit (Central Asia)

    Science.gov (United States)

    Simonov, Vladimir; Terleev, Alexander; Safonova, Inna; Kotlyarov, Alexey; Stupakov, Sergey; Tokarev, Dmitry

    2015-04-01

    On Earth the solar radiation and the hydrothermal circulation both affect life evolution. Recent extensive studies of the World Ocean have shown that the biodiversity of Earth is linked with hydrothermal activity on the oceanic floor. These deep-sea ecosystems use chemical energy, not solar radiation. In the last quarter of the XX century, a new type of hydrothermal systems, so-called black smokers, was discovered in mid-oceanic ridges. As black smokers form sulfide ores and are surrounded by abundant bio-oases or symbioses, identification of their analogues in ancient orogenic belts is necessary for studying life origin and evolution. Of special importance are problems of life associated with deep-sea hydrothermal systems acted at the Precambrian-Cambrian boundary - the time of Cambrian explosion (Maruyama et al., 2013). During that explosion life significantly evolved and diversified due to dramatic changes of Earth's environment. Consequently, the early Cambrian - late Precambrian Kyzyl Tashtyg sulphide deposit of East Tuva in the Central Asian Orogenic Belt is of special interest. This deposit was formed on the bottom of ancient back-arc deep-sea basin as a result of black smoker hydrothermal activity and is hosted by volcanogenic-sedimentary rocks altered by the high temperature solutions. The altered Kyzyl Tashtyg basalts have an amygdules (filled by albite, epidote and carbonates), contain brown-green microfossils, often attached to their walls. The microfossils are thin tubes 5 to 25 microns in diameter and 500 microns long. This tubes are empty and have straight, curved or branching shape. Chemically, the tube material is close to epidote. In consideration of microscopic dimensions, simple morphology and similarity with modern tubular microorganisms, the studied tube-shaped microfossils can be related to cyanobacteria. Almost the same fossils, associated with oceanic basalt complexes, were described earlier (Furnes et al., 2007; Mcloughlin et al., 2007

  2. Sm-Nd age of the Fazenda Brasileiro Gabbro, Bahia, Brazil: example of robust behavior of the Sm-Nd isotopic system under extreme hydrothermal alteration

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio M. [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: marcio@unb.br; mmp1103@terra.com.br; Silva, Maria da Gloria [Bahia Univ., Salvador (Brazil). Dept. de Geologia de Geofisica Aplicada]. E-mail: gloria@ufba.br

    2003-09-15

    The Fazenda Brasileiro gold mineralization is hosted by a gabbroic sill, intrusive into metavolcanic-metasedimentary rocks of the Rio Itapicuru Greenstone Belt, Sao Francisco Craton. The 2.05 Ga old mineralization is associated with intense shearing and hydrothermal alteration, and the host gabbro is altered to a series of rocks rich in sericite, chlorite, actinolite, carbonate and quartz. Twelve whole-rock samples of the gold mineralization, representing varied degrees of alteration, from rocks with preserved igneous textures to the ore (quartz-carbonate-sulfide-chlorite), were studied by the Sm-Nd method. All analytical points resulted in an isochron (MSWD = 1.9) indicating the age of 2142 {+-} 47 Ma (1s) and Epsilon Nd (T) of +1.2. Chlorite-sericite-carbonate rich hydrothermal rocks indicate the age of 2148 {+-} 57 Ma and Epsilon Nd (T) of +1.1. The positive Epsilon Nd (T) suggest limited or no contamination with older continental crust, compatible with an oceanic setting for the tholeiites. Combined with REE data, the Sm-Nd isotopic results reveal that the hydrothermal alteration, although intense, was unable to alter significantly the Sm/Nd ratios of the original igneous rocks and did not cause important scatter of the analytical points, providing a rare example of robust behavior of the isotopic system, even under intense hydrothermal alteration. (author)

  3. Seismic Reflection Imaging of the Heat Source of an Ultramafic-Hosted Hydrothermal System (Rainbow, Mid-Atlantic Ridge 36° 10-17'N)

    Science.gov (United States)

    Canales, J. P.; Dunn, R. A.; Sohn, R. A.; Horning, G.; Arai, R.; Paulatto, M.

    2015-12-01

    Most of our understanding of hydrothermal systems and the nature of their heat sources comes from models and observations at fast and intermediate spreading ridges. In these settings, hydrothermal systems are mainly located within the axial zone of a spreading segment, hosted in basaltic rock, and primarily driven by heat extracted from crystallization of crustal melt sills. In contrast, hydrothermal systems at slow-spreading ridges like the Mid-Atlantic Ridge (MAR) show a great variety of venting styles and host-rock lithology, and are located in diverse tectonic settings like axial volcanic ridges, non-transform discontinuities (NTDs), the foot of ridge valley walls, and off-axis inside corner highs. Among MAR systems, the Rainbow hydrothermal field (RHF) stands out as an end-member of this diversity: an ultramafic-hosted system emitting H2 and CH4-rich fluids at high temperatures and high flow rates, which suggests a magmatic heat source despite the lack of evidence for recent volcanism and its location within an NTD with presumably low magma budget. We present 2D multichannel seismic reflection images across the Rainbow massif from the NSF-funded MARINER multidisciplinary geophysical study that reveal, for the first time, the magmatic system driving hydrothermal circulation in an ultramafic setting. Data were acquired in 2013 onboard the RV M. Langseth with an 8-km-long hydrophone streamer. The images have been obtained from pre-stack depth migrations using a regional 3D P-wave velocity model from a coincident controlled-source seismic tomography experiment using ocean bottom seismometers. Our images show a complex magmatic system centered beneath the RHF occupying an areal extent of ~3.7x6 km2, with partially molten sills ranging in depth between ~3.4 km and ~6.9 km below the seafloor. Our data also image high-amplitude dipping reflections within the massif coincident with strong lateral velocity gradients that may arise from detachment fault planes

  4. The safety and effectiveness of a modified convection heating system for children during anesthesia.

    Science.gov (United States)

    Cassey, John G; Armstrong, Peter J; Smith, Gil E; Farrell, Patrick T

    2006-06-01

    Convection heating shows most promise in maintaining children's core temperatures under anesthesia. We have previously shown that a modified convection heating technique worked in a mannequin model and sought to establish its safety and effectiveness in a clinical study. Children were recruited who were having elective surgery under general anesthesia lasting >90 min. The children were anesthetized and maintained in a room temperature of 21 degrees C. Warming was performed by a 'Bair Hugger' attached to a heat dissipation box, producing turbulent air from multiple outlet holes on its face. A plastic sheet covered the child, was attached to the top of the box, tucked into the sides of the bed and left open at the head end. Temperatures at various sites (air, skin, and core) were continuously monitored using thermistors connected to a datalogger and laptop. Analysis was performed using Excel. The study comprised 40 children ranging in age from 2 days to 12.5 years and weigh 2.5-73 kg. Operations were 'peripheral' (e.g. urethroplasty) lasting 90 min to major laparotomy lasting 590 min. Body surface area uncovered was 5-25%. Skin temperatures rose to a maximum of c. 40 degrees C. Core temperatures rose after a 12-min lag by 0.01-0.04 degrees C x min(-1). In children who became hyperthermic, cooling was readily achieved by turning the heating off and leaving the fan running. The technique is safe and effective for children throughout the pediatric range. The practice of increasing room temperature above 21 degrees C for elective cases should be abandoned. Continuous monitoring of core temperature is necessary to prevent hyperthermia.

  5. Inspired by efficient cellulose-dissolving system: Facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials.

    Science.gov (United States)

    Ma, Jian-Feng; Xing, Jian-Xiong; Wang, Kun; Yang, Hai-Yan; Fei, Ben-Hua; Liu, Xing-E

    2017-05-15

    The core-shell structure of carbon encapsulated magnetic nanoparticles (CEMNs) displays unique properties. Enhancing the magnetization of iron core, in parallel, improving the encapsulation of carbon shell are the two major challenges in the synthesis of CEMNs. Inspired by efficient cellulose-dissolving system, carbon encapsulated magnetic nano-Fe3O4 particles (Fe3O4@C) with ∼10.0nm Fe3O4 cores and 1.9-3.3nm carbon shell, were successfully one-pot synthesized via a novel hydrothermal carbonization (HTC) process. The dissolving process in ionic liquids ([Emim]Ac and [Amim]Cl) completely cleaved the intra- and intermolecular H-bonds in cellulose, and favored the incorporation of Fe3O4 nanoparticles into the cellulose H-bonds systems during the regeneration process. Some stable linkages were formed in Fe3O4@C, taking Fe3O4 nanoparticles as a structure guiding agent. The morphology and properties of Fe3O4@C depended strongly on the type of carbon precursors and pyrolysis temperature. Well encapsulated nanostructure was obtained at HTC temperature 280°C, when [Emim]Ac-treated holocellulose was used as the carbon source. Meanwhile, the thickness of the amorphous shell and magnetization increased with HTC temperature. More importantly, a novel elements for understanding the growth mechanism for the Fe3O4@C composite under HTC conditions was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. GOES Infrared and Reflectance 0-1 hour Lightning Initiation Indicators: Development and Initial Testing within a Convective Nowcasting System

    Science.gov (United States)

    Mecikalski, J. R.; Harris, R.; MacKenzie, W.; Durkee, P. A.; Iskenderian, H.; Bickmeier, L.; Nielsen, K. E.

    2010-12-01

    Within cumulus cloud fields that develop in conditionally unstable air masses, only a fraction of the cumuli may eventually develop into deep convection. Identifying which of these convective clouds most likely to generate lightning often starts with little more than a qualitative visual satellite analysis. The goal of this study is to identify the observed satellite infrared (IR) signatures associated with growing cumulus clouds prior to the first lightning strike, so-called lightning initiation (LI). This study quantifies the behavior of ten Geostationary Operational Environmental Satellite (GOES-12) IR interest fields in the 1-hour in advance of LI. A total of 172 lightning-producing storms that occurred during the 2009 convective season are manually tracked and studied over four regions: Northern Alabama, Central Oklahoma, the Kennedy Space Center and Washington D.C. Four-dimensional and cloud-to-ground lightning array data provide a total cloud lightning picture (in-cloud, cloud-to-cloud, cloud-to-air, cloud-to-ground) and thus precise LI points for each storm in both time and space. Statistical significance tests are conducted on observed trends for each of the ten LI fields to determine the unique information each field provides in terms of behavior prior to LI. Eight out of ten LI fields exhibited useful information at least 15 min in advance of LI, with 35 min being the average. Statistical tests on these eight fields are compared for separate large geographical areas. IR temperature thresholds are then determined as an outcome, which may be valuable when implementing a LI prediction algorithm into real-time satellite-based systems. The key LI indicators from GOES IR data (as well as 3.9 μm reflectance) will be presented. Beginning in 2010, the feasibility of using the satellite-based LI indicators found in the above analysis to forecast first lightning will be assessed within the Federal Aviation Administration’s (FAA) CoSPA nowcasting system. The goal

  7. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  8. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    Science.gov (United States)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤123°C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived

  9. Numerical and Experimental Investigation of Natural Convection in Open-Ended Channels with Application to Building Integrated Photovoltaic (BIPV Systems

    Directory of Open Access Journals (Sweden)

    Timchenko V.

    2015-01-01

    Full Text Available Numerical and experimental investigations of the flow and heat transfer in open-ended channel formed by the double skin façade have been undertaken in order to improve understanding of the phenomena and to apply it to passive cooling of building integrated photovoltaic systems. Both uniform heating and non-uniform heating configurations in which heat sources alternated with unheated zones on both skins were studied. Different periodic and asymmetric heating modes have been considered for the same aspect ratio 1/15 of wall distance to wall height and for periodicity 1/15 and 4/15 of heated/unheated zones and heat input, 220 W/m2. In computational study three dimensional transient LES simulation was carried out. It is shown that in comparison to uniformly heating configuration, non-uniformly heating configuration enhances both convective heat transfer and chimney effect.

  10. CFD Convective Flow Simulation of the Varying Properties of CO2-H2O Mixtures in Geothermal Systems

    Directory of Open Access Journals (Sweden)

    S. Yousefi

    2015-01-01

    Full Text Available Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

  11. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.

    Science.gov (United States)

    Chen, Wan-Ting; Zhang, Yuanhui; Zhang, Jixiang; Yu, Guo; Schideman, Lance C; Zhang, Peng; Minarick, Mitchell

    2014-01-01

    In this study, a mixed-culture algal biomass harvested from a functioning wastewater treatment system (AW) was hydrothermally converted into bio-crude oils. The highest bio-crude oil yield (49% of volatile matter) and the highest energy recovery were obtained at 300 °C with 1 h retention time. The highest heating value of the bio-crude oil was 33.3 MJ/kg, produced at 320 °C and 1h retention time. Thermogravimetric analysis showed approximately 60% of the bio-crude oils were distilled in the range of 200-550 °C; and the solid residue might be suitable for use in asphalt. GC-MS results indicated that the bio-crude oil contained hydrocarbons and fatty acids, while the aqueous product was rich in organic acids and cyclic amines. The nitrogen recovery (NR) in the bio-crude oil ranged from 8.41% to 16.8%, which was lower than the typical range of 25%-53% from previous studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy)

    OpenAIRE

    S. Byrdina; Vandemeulebrouck, J.; Cardellini, C.; Legaz, A.; Camerlynck, C.; Chiodini, G.; Lebourg, T.; Gresse, M.; Bascou, P.; Motos, G; Carrier, A; Caliro, S.

    2014-01-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the ex...

  13. Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-10-01

    Spatiotemporal patterns of rainfall are important characteristics that influence runoff generation and flash-flood magnitude and require high-resolution measurements to be adequately represented. This need is further emphasized in arid climates, where rainfall is scarce and highly variable. In this study, 24 years of corrected and gauge-adjusted radar rainfall estimates are used to (i) identify the spatial structure and dynamics of convective rain cells in a dry climate region in the Eastern Mediterranean, (ii) to determine their climatology, and (iii) to understand their relation with the governing synoptic systems and with flash-flood generation. Rain cells are extracted using a segmentation method and a tracking algorithm, and are clustered into three synoptic patterns according to atmospheric variables from the ERA-Interim reanalysis. On average, the cells are about 90 km2 in size, move 13 m s-1 from west to east, and live for 18 min. The Cyprus low accounts for 30 % of the events, the low to the east of the study region for 44 %, and the Active Red Sea Trough for 26 %. The Active Red Sea Trough produces shorter rain events composed of rain cells with higher rain intensities, longer lifetime, smaller area, and lower velocities. The area of rain cells is positively correlated with topographic height. The number of cells is negatively correlated with the distance from the shoreline. Rain-cell intensity is negatively correlated with mean annual precipitation. Flash-flood-related events are dominated by rain cells of large size, low velocity, and long lifetime that move downstream with the main axis of the catchments. These results can be further used for stochastic simulations of convective rain storms and serve as input for hydrological models and for flash-flood nowcasting systems.

  14. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  15. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  16. Detection of Shallow Marine Cumulus Convection with airborne and spaceborne Lidar-Systems over the tropical North Atlantic Ocean

    Science.gov (United States)

    Gutleben, Manuel; Groß, Silke; Wirth, Martin

    2017-04-01

    Recent modeling and theoretical studies have shown that the vertical and horizontal distribution of cloudiness in the trades has a large impact on the results of cloud feedback calculations. In particular, feedbacks from marine cumulus convection in the boundary layer with maximum cloud top heights of 4 km introduce large uncertainties in climate sensitivity. Characterizing shallow marine cumulus clouds using passive satellite measurements is difficult. The small size of these clouds and the low horizontal resolution of passive satellite sensors as well as the influence of solar background noise on measurements lead to inevitable errors. Airborne lidar instruments allow measurements with high temporal and spatial resolution and are therefore suitable for the investigation of small scale shallow marine cumulus clouds. During the field campaigns NARVAL-I and -II (Next-generation Aircraft Remote-sensing for VALidation studies) in December 2013 and August 2016 over the North Atlantic Ocean measurements with the DLR high spectral resolution and differential absorption lidar system WALES onboard the German research aircraft HALO were performed. Those measurements provide the opportunity to study the horizontal and vertical distribution of shallow marine cumulus convection. Since measurements during NARVAL-I in December 2013 were conducted during the dry season and measurements during NARVAL-II in August 2016 were conducted during the wet season, they can furthermore be used to study seasonal differences in cloud size and cloud top height distributions. During both campaigns sets of A-Train underpasses were flown, that allow to examine the benefit of spaceborne lidar measurements to study shallow marine cumulus convection. In our presentation we will give an overview of the measurements and we will show first results of derived shallow marine cumulus cloud statistics over the subtropical North Atlantic Ocean. In particular, we present statistical quantities such as cloud

  17. The impact of reflectivity correction and accounting for raindrop size distribution variabilty to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    NARCIS (Netherlands)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2014-01-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and

  18. Reconnaissance of the hydrothermal resources of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  19. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  20. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  1. Model for the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1981-01-01

    Earlier studies at Cerro Prieto led to the development of a qualitative model for fluid flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modeling of heat and mass transfer in the system in this undisturbed state. This one-dimensional model assumes that the heat source was a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compilation of various information of the physical properties of the reservoir, the enthalpy contained in two 1 cm thick sections across the reservoir orthogonal to each other was calculated. Various shapes, sizes and depths for the intrusion were considered as initial conditions and boundary conditions for the calculations of heat transfer. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4 km wide emplaced at a depth of 5 km some 30,000 to 50,000 years ago, providing heat to the geothermal system.

  2. Continental Scientific Drilling Program thermal regimes: comparative site assessment geology of five magma-hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Waters, A.C. (eds.)

    1980-10-01

    The geology and salient aspects of geophysics and hydrogeochemistry of five high-grade geothermal systems in the USA are reviewed. On the basis of this information, a target location is suggested for a deep (5- to 8-km) borehole that will maximize the amount of scientific information to be learned at each of the five geothermal areas.

  3. An enhanced artificial bee colony algorithm (EABC for solving dispatching of hydro-thermal system (DHTS problem.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  4. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    Science.gov (United States)

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  5. Assimilation of Chinese Doppler Radar and Lightning Data Using WRF-GSI: A Case Study of Mesoscale Convective System

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2015-01-01

    Full Text Available The radar-enhanced GSI (version 3.1 system and the WRF-ARW (version 3.4.1 model were modified to assimilate radar/lightning-proxy reflectivity. First, cloud-to-ground lightning data were converted to reflectivity using a simple assumed relationship between flash density and reflectivity. Next, the reflectivity was used in the cloud analysis of GSI to adjust the cloud/hydrometeors and moisture. Additionally, the radar/lightning-proxy reflectivity was simultaneously converted to a 3D temperature tendency. Finally, the model-calculated temperature tendencies from the explicit microphysics scheme, as well as cumulus parameterization at 3D grid points at which the radar temperature tendency is available, were updated in a forward full-physics step of diabatic digital filter initialization in the WRF-ARW. The WRF-GSI system was tested using a mesoscale convective system that occurred on June 5, 2009, and by assimilating Doppler radar and lightning data, respectively. The forecasted reflectivity with assimilation corresponded more closely to the observed reflectivity than that of the parallel experiment without assimilation, particularly during the first 6 h. After assimilation, the short-range precipitation prediction improved, although the precipitation intensity was stronger than the observed one. In addition, the improvements obtained by assimilating lightning data were worse than those from assimilating radar reflectivity over the first 3 h but improved thereafter.

  6. Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old Hydrothermal Systems in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere

    Science.gov (United States)

    Zakharov, D. O.; Bindeman, I. N.

    2015-12-01

    The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2

  7. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    Science.gov (United States)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  8. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Grigoras, Ionela; Jensen, Claus Uhrenholt

    2017-01-01

    Feedstock pumpability is one of the main obstacles for continuous processing of biomass through hydrothermal liquefaction (HTL), due to their tendency to form heterogeneous slurries. In this work, a novel strategy is proposed to ensure lignocellulosic feed pumpability in HTL processing, even while...

  9. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division

    2005-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong

  10. 3D Geothermal Modelling of the Mount Amiata Hydrothermal System in Italy

    Directory of Open Access Journals (Sweden)

    Paolo Fulignati

    2014-11-01

    Full Text Available In this paper we build a subsurface model that helps in visualizing and understanding the structural framework, geology and their interactions with the Mt. Amiata geothermal system. Modelling in 3D provides the possibility to interpolate the geometry of structures and is an effective way of understanding geological features. The 3D modelling approach appears to be crucial for further progress in the reconstruction of the assessment of the geothermal model of Mt. Amiata. Furthermore, this model is used as the basis of a 3D numerical thermo-fluid-dynamic model of the existing reservoir(s. The integration between borehole data and numerical modelling results allows reconstructing the temperature distribution in the subsoil of the Mt. Amiata area.

  11. Controls on the Mobilization and Transport of Hfse in Ore-Forming Magmatic-Hydrothermal Systems

    Science.gov (United States)

    Sanchez-Valle, C.; Louvel, M.

    2015-12-01

    The genesis of economical rare metals (Zr, Nb, REE) ore deposits in largegranitic complexes (e.g., Strange Lake and Thor Lake Nechalacho deposit, Canada; Galineiro complex, Spain) is related to the intrusion of alkaline halogen-rich magmatic bodies. Although the role of exolved magmatic fluids in the mobilization and transport of HFSE is widely recognized, the physico-chemical conditions and atomic-scale mechanisms that control the formation of the ore deposits remain poorly understood. We present new experimental constraints on behavior of HFSE during the exsolution of aqueous fluids from peralkaline granitic magmas at crustal conditions. In situ partitioning and speciation studies of Zr in the haplogranite-(F)-H2O systems using synchrotron X-ray spectroscopies provide evidence for large controls of fluid chemistry and temperature on the mobilization and transport of HFSE in crustal settings. At shallow crustal pressure conditions (> 800 °C and 0.3 GPa), Zr preferentially partitions into the exolved aqueous fluid in the presence of fluorine (Df/mZr = 1.40 ± 0.10) as previously reported for Nb in F- (and Cl-) bearing metaluminous granitic systems at similar conditions. The reverse partitioning of HFSE (Zr and Nb) into the aqueous phase at temperature above 800 °C contrast with the behavior observed at lower temperatures, where the Df/mZr remain lower than 1 at all pressures. The enrichment of the aqueous phase in HFSE (Zr, Nb) in the earlier stages of the magmatic evolution is likely related to the enhanced peralkalinity of low pressure ( 700 - 800 °C; 0.05 < P < 0.3 GPa) fluids in volcanic arcs may have critical implications for the interpretation of geochemical signature of arc magmas as will be discussed.

  12. Geostructural context of a hydrothermal system by geophysical methods: Case of Hammam Righa, Algeria

    Science.gov (United States)

    Hocine, Amina; Abtout, Abdesalam; Hamai, Lamine

    2017-04-01

    The presence of thermal water depends on the stratigraphic and structural conditions of the site. Indeed, hydrodynamism is directly related to the geostructural elements. In northern Algeria, thermal springs are increasing from west to east. They are mainly situated along the Tellian Atlas which has a complex geology. In this study, we are interested in the thermal site of Hammam Righa, located about 100 km west of Algiers, southwest of the neogene Basin of Mitidja (northern Algeria). This region, very rugged and subject to a developed tectonic rupture, has been discovered and exploited since roman times. The existing drilling on the site cross a superior cover of travertines and marly clay layers of Miocene and Cretaceous. Thermal waters emerge in a more or less impermeable outcrop of limestone marls of the Upper Cretaceous with elevated temperatures (44-68 °C). In order to define the structure and the nature of the top of the aquifer and to determine the faults system inducing the emergence of thermal waters, a hydrogeophysical survey by electrical prospection was undertaken in this region. The electrical soundings (VES, AB = 1000m) realized according to 10 profiles of direction E-W cover an area of 2.5 Km2. Interpretation of these VES resulted in geo-electric sections and iso-resistivity maps, to finally map the top of the Upper Cretaceous. The preliminary results of this study allowed to clarify the lithological nature of the top of the Upper Cretaceous and to demonstrate that there is a variation of depth according to the system of faults highlighted.

  13. In situ ore formation experiment: Amino acids and amino sugars trapped in artificial chimneys on deep-sea hydrothermal systems at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean

    CERN Document Server

    Takano,; Marumo,; K.,; Ebashi,; T.,; Gupta,; P., L; Kawahata,; H.,; Kobayashi,; K.,; Yamagishi,; A.,; Kuwabara,; T,

    2013-01-01

    The present study reports on the bio-organic composition of a deep-sea venting hydrothermal system originating from arc volcanism; the origin of the particulates in hydrothermal fluids from the Suiyo Seamount in the southern Izu-Bonin (Ogasawara) Arc is discussed with regard to amino compounds. Chimney samples on deep-sea hydrothermal systems and core samples at Suiyo Seamount were determined for amino acids, and occasionally amino sugars. Two types of chimney samples were obtained from active hydrothermal systems by submersible vehicles: one was natural chimney (NC) on a hydrothermal natural vent; the other was artificial chimneys (AC), mainly formed by the growth and deposition of sulfide-rich particulate components in a Kuwabara-type in situ incubator (KI incubator). Total hydrolyzed amino acids (THAA) and hydrolyzed hexosamines (HA) in AC ranged from 10.7 nmol/g to 64.0 nmol/g and from 0 nmol/g to 8.1 nmol/g, respectively, while THAA in hydrothermally altered core samples ranged from 26.0 nmol/g to 107.4 ...

  14. Free convection in parallelogram-shaped enclosures with isothermal active walls: viscous shear stress in active systems

    Energy Technology Data Exchange (ETDEWEB)

    Baieri, A; Zarco-Pernia, E; Laraqi, N [Laboratoire de Thermique Interfaces Environnement, LTIE-GTE EA 4415, Universite Paris Ouest, 50 Rue de Sevres, F-92410 Ville d' Avray (France); Garcia de Maria, J-M, E-mail: abairi@u-paris10.fr, E-mail: e.zarcopernia@yahoo.fr, E-mail: nlaraqi@u-paris10.fr, E-mail: juanmario.garcia@upm.es [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Ronda de Valencia 3, E-28012 Madrid (Spain)

    2012-10-01

    Thermocouples are often used for thermoregulation of active thermal systems. When the junctions of these sensors are under a natural convection flow, it is necessary to take into account the viscous stress that can affect the measurement of temperature and therefore the regulation set points. The main objective of this work is to study the viscous shear stress taking place close to the active hot wall in closed air-filled cavities of parallelogrammic shape. The influence of shear stress is examined for different inclination angles of the cavity and large Rayleigh numbers which are usual in thermal applications. The local stress distributions are presented for the steady state for all the geometric configurations considered. The Nusselt number at the hot wall as well as the temperature and stream function distributions in the cavities are also included. The findings obtained from the numerical simulation using the finite volume method are validated by thermal measurements on an experimental cavity. This study confirms the need to properly choose the location of thermocouples in the reference cell used for controlling the active system. (paper)

  15. COSMO-DE-EPS - construction, diagnoses and verification of a limited-area ensemble prediction system on the convective scale

    Science.gov (United States)

    Paulat, M.; Theis, S.; Gebhardt, C.; Ben Bouallegue, Z.; Buchhold, M.; Ohl, R.

    2009-09-01

    Aiming to improve the very short-range forecast of severe weather triggered by deep moist convection and interaction with small-scale topography, DWD has developed the convection-permitting limited-area model COSMO-DE. This model has a horizontal grid-spacing of 2.8 km, covers the area of Germany and is in operational mode since April 2007. To properly take into account the limited predictability of processes on this small spatial scale, the DWD project COSMO-DE-EPS is developing an ensemble prediction system based on COSMO-DE. The project aims to quantify forecast uncertainty and to support the beneficial use of COSMO-DE forecasts in warning and decision-making processes. Project activities comprise the generation, diagnoses, verification, statistical postprocessing and visualization of ensemble forecasts. A pre-operational mode is foreseen to start in the beginning of 2010 with an approximate number of 20 members differing in physics parameters, lateral boundary conditions, and initial conditions. Operational implementation with about 40 members is envisaged to start in 2011. The ensemble perturbation strategy focuses on model physics, lateral boundary conditions, and initial conditions. Model physics is perturbed by altering distinct parameters of the physical parameterization schemes either individually or in combination. Lateral boundary conditions are perturbed by nesting the COSMO-DE-EPS members into members of the COSMO-SREPS (ARPA-SIM, Bologna) which itself is a nested EPS with a grid-spacing of 10 km. Thus, the COSMO-DE-EPS represents the small-scale end of an ensemble chain which transfers uncertainty from large scales down to the convective scale. The development of initial condition perturbations is in its early stages. As a first approach modification of data assimilation parameters and insertion of analysis increments calculated from differences between COSMO-SREPS and control are being tested. The quality of the current and further developed

  16. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.

    Science.gov (United States)

    Li, Rui; Dong, Xue; Guo, Jingchao; Fu, Yunfei; Zhao, Chun; Wang, Yu; Min, Qilong

    2017-10-23

    Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.

  17. Stochastic-convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intra-streamtube dispersion.

    Science.gov (United States)

    Ginn, T R

    2001-01-01

    An effective streamtube ensemble method is developed to upscale convective-dispersive transport with multicomponent nonlinear reactions in steady nonuniform flow. The transport is cast in terms of a finite ensemble of independent discrete streamtubes that approximate convective transport along macroscopically averaged pathlines and dispersive transport longitudinally as microscopic mixing within streamtubes. The representation of fate and transport via a finite ensemble of effective linear streamtubes, allows the treatment of arbitrarily complex reaction systems involving both homogeneous and heterogeneous reactions, and longitudinal dispersive/diffusive mixing within streamtubes. This allows the use of reactive-transport codes designed to solve such problems in an Eulerian framework, as opposed to reliance on closed-form (convolutional or canonical) expressions for reactive transport in exclusively convective streamtubes. The approach requires both reactive-transport solutions for a representative ensemble of one-dimensional convective-dispersive-reactive streamtubes and the distribution of flux over the streamtube ensemble variants, and it does not allow for lateral mixing between streamtubes. Here, the only ensemble variant is travel time. The discussion details the way that the conventional Eulerian fate and transport model is converted first into an ensemble of transports along three-dimensional streamtubes of unknown geometry, and then to approximate one-dimensional streamtubes that are designed to honor the important global properties of the transport. Conditions under which such an 'equivalent' ensemble of one-dimensional streamtubes are described. The breakthrough curve of a nonreactive tracer in the ensemble is expressed as a combined Volterra-Fredholm integral equation, which serves as the basis for estimation of the distribution of flux over the variant of the ensemble, travel time. Transient convective speed and the effects of errors in flux

  18. Fluid inclusion petrography and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414

    Science.gov (United States)

    Brandstätter, J.; Kurz, W.; Krenn, K.; Micheuz, P.

    2015-12-01

    We present new data from microthermometric analyses of fluid inclusions entrapped in hydrothermal veins within lithified sediments and Cocos Ridge (CCR) basalt from IODP Expedition 344 site U1414 (Costa Rica) and concern on a primary task of Expedition 344, i.e. to evaluate fluid/rock interaction, the hydrologic system, and the geochemical processes (indicated by composition and volume of fluids) active within the incoming Cocos Plate. Mineralization of the veins and crosscutting relationships gives constraints for the different generation of veins. Calcium carbonate, commonly aragonite in the upper part and calcite in the lower part of the igneous basement, is usually present in veins as a late phase following the quartz precipitation and the clay minerals formation. The sequence of vein generations in the lithified sediments close to the contact within the CCR basalt is characterized by smaller veins filled by quartz, followed by massive intersecting calcite veins. A high fluid pressure can be concluded, due to wall rock fragments embedded within the filling and fractured mineral grains in the ground mass, which are close to the veins. This requires that the magmatic basement and the lithified sediments were covered by sequences of low permeability sediments forming a barrier that enabled build up elevated fluid pressure. The investigation of fluid inclusions in the lowest units of borehole 344-U1414, give clues about the source of the fluids and about the vein evolution within the incoming Cocos Plate close to Middle American Trench. The microthermometric analyses of the primary, almost aqueous, inclusions indicate a temperature range during entrapment between 200 and 420°C. The data indicate that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection. We consider the Galapagos hotspot and/ or the Cocos-Nazca spreading center as heat source. Fluids originated from mobilized sediment pore water

  19. A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma.

    Science.gov (United States)

    Barua, Neil U; Hopkins, Kirsten; Woolley, Max; O'Sullivan, Stephen; Harrison, Rob; Edwards, Richard J; Bienemann, Alison S; Wyatt, Marcella J; Arshad, Azeem; Gill, Steven S

    2016-01-01

    Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.

  20. A Climatology of Derecho-Producing Mesoscale Convective Systems in the Central and Eastern United States, 1986-95. Part I: Temporal and Spatial Distribution.

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.

    1998-11-01

    In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name "derecho". Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.

  1. Identification of Cr-magnetite in Neoproterozoic serpentinites resulting of Cr-Spinel alteration in a past hydrothermal system: Aït Ahmane ultramafic unit (Bou Azzer ophiolite, Anti Atlas, Morocco)

    Science.gov (United States)

    Hodel, Florent; Macouin, Mélina; Carlut, Julie; Triantafyllou, Antoine; Berger, Julien; Trindade, Ricardo; Ennih, Nasser; Rousse, Sonia

    2017-04-01

    If magnetite is a common serpentinization product, centimetric, massive and almost pure magnetite veins are rarely observed in serpentinites. Unique examples of these, in the Aït Ahmane ultramafic unit (Bou Azzer Neoproterozoic ophiolite, Anti-Atlas, Morocco), offer the opportunity to assess the hydrothermal processes that prevailed at the end of the Precambrian. Pseudomorphic lizardite/chrysotile texture of unaltered serpentinites suggests an oceanic-like first serpentinization stage, under static and low temperature conditions (T CrM/M ratio providing a quantification of the Cr-magnetite contribution to the magnetic susceptibility, relatively to the pure magnetite one. This CrM/M ratio increases drastically with the hydrothermal alteration of serpentinites and Cr-spinels, attesting of a change of the magnetic mineralogy. Combined with petrography, mineral and bulk chemistry, these magnetic data allow us to propose that a Cl-rich acidic hydrothermal event, involving temperatures below 350 °C, appears to have been responsible of an intense magnetite leaching in host serpentinite and an advanced Cr-spinel alteration in ferritchromite and Cr-magnetite. Iron provided by this leaching may have conducted to the unique magnetite veins formation in the Aït Ahmane ultramafic unit. Two different settings are proposed concerning the nature of the hydrothermal event: (1) a continental hydrothermal system as advanced for the Co-Ni-As ores in the Bou Azzer inliers or (2) an oceanic black smoker type hydrothermal vent field on the Neoproterozoic sea-floor.

  2. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  3. Fractionation of 238U/235U in rivers and hydrothermal systems: Constraints for the oceanic U isotope cycle

    Science.gov (United States)

    Noordmann, J.; Weyer, S.; Sharma, M.; Georg, R.; Rausch, S.; Bach, W.

    2010-12-01

    Recently, fractionation of 238U/235U has been observed between oxic and anoxic oceanic environments (Weyer et al., 2008). Sedimentary deposits that formed under oxic conditions (containing U+6) are typically enriched in 235U and anoxic or euxinic sediments (containing U+4) typically show enrichment in 238U. These findings are in agreement with theoretical modeling by Schauble (2007) predicting that U isotope fractionation is dominated by volume-dependent effects. To constrain redox evolution of the oceans (Montoya-Pino et al., 2010), we need detailed information on the U isotope mass balance. However, U isotope fractionation during continental weathering and transport to the oceans, as well as during hydrothermal alteration (the second most important sink for U) is yet unknown. To constrain the isotope composition of the dominant U source to the oceans, we investigated water samples from rivers of different climatic conditions. To obtain an estimate on the U isotope composition of the hydrothermal sink, we analyzed five different hydrothermal fluids from the Juan de Fuca Ridge and, additionally, altered oceanic crust from the Bermuda Rise, Reykjanes Ridge and Pigafetta Basin. Furthermore, δ238U has been measured for granites of different localities and ages to expand the very limited data set for samples from the continental crust. Large rivers display an average δ238U of -0.24 ‰ (relative to CRM-112A) which is very similar to the average value of granites (δ238U= -0.30 ‰) and basalts (δ238U= -0.28 ‰), indicating that in average only minor U isotope fractionation occurs during weathering and transport. Only smaller rivers display larger U isotope variations (between 0.01 and -0.28 ‰) likely monitoring U isotope variations of their bed rocks. The hydrothermal waters display a tight range of δ238U (-0.32 and -0.54 ‰) around the seawater value of δ238U= -0.41 ‰ (Weyer et al., 2008), however, at much lower U concentration levels (0.08 to 0.24 ppb

  4. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system

    OpenAIRE

    Bedussi, Beatrice; van Lier, Monique G. J. T. B.; Bartstra, Jonas W.; de Vos, Judith; Siebes, Maria; vanBavel, Ed; Erik N. T. P. Bakker

    2015-01-01

    Background In the absence of a true lymphatic system in the brain parenchyma, alternative clearance pathways for excess fluid and waste products have been proposed. Suggested mechanisms for clearance implicate a role for brain interstitial and cerebrospinal fluids. However, the proposed direction of flow, the anatomical structures involved, and the driving forces are controversial. Methods To trace the distribution of interstitial and cerebrospinal fluid in the brain, and to identify the anat...

  5. Relationships of dispersive mass transport and stochastic convective flow through hydrologic systems

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.

    1981-01-01

    Uncertainty in water flow velocity appears to be a major factor in determining the magnitude of contaminant dispersion expected in a ground water system. This report discusses some concepts and mathematical methods relating dispersive contaminant transport to stochastic aspects of ground water flow. The theory developed should not be construed as absolutely rigorous mathematics, but is presented with the intention of clarifying the physical concepts.

  6. Thermal Comfort in Simulated Office Environment with Four Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Mustakallio, Panu; Kolencíková, Sona

    2013-01-01

    Experiments with 24 human subjects in a simulated office with four cooling systems were performed. The systems were: chilled beam (CB), chilled beam with integrated radiant panel (CBR), chilled ceiling with overhead mixing ventilation (CCMV) and four desk partition mounted radiant cooling panels...... with overhead mixing ventilation (MVRC). Whole body thermal sensation (TS) and whole body TS acceptability under the four systems in a simulated office room for one hour exposure were collected. The simulated two-man office (4.12 x 4.20 x 2.89 m, L x W x H) was kept at 26 oC room air temperature. Moderate heat...... load of 64 W/m2 was generated by simulated solar heat load, 2 laptops and 2 occupants, giving in total 1104 W. The supplied outdoor air temperature was kept at 16 oC. The supply air flow rate for CB, CBR and CCMV was set to 26 L/s (category II low-polluting building, EN 15251-2007). For MVRC supply...

  7. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: Addressing Higher Latitude, Cold Season, and Synoptic Systems

    Science.gov (United States)

    Wu, D.; Tao, W. K.; Lang, S. E.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The current CSH LUTs are differentiated with respect to surface rainfall characteristics, which is effective for tropical and continental summertime environments. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics and mid-latitudes to higher latitudes, including cold season and synoptic weather systems. Accordingly, the CSH algorithm and LUTs need to be updated for higher latitude events. In this study, NU-WRF was employed at 1 km to simulate winter systems in the US. A, new methodology has been adopted to construct LUTs utilizing satellite-observable 3D intensity fields, such as radar reflectivity. The new methodology/LUTs can be then applied to simulated radar fields to derive cloud heating for comparison against the model simulated heating. The model heating is treated as the `truth' as it is self-consistent with the simulated radar fields. This `consistency check' approach is a common well-established first step in algorithm development (e.g., the earlier CSH). The LUTs will be improved by iterating the consistency checks to quantitatively evaluate the similarities between the retrieved and simulated heating. The evaluations will be performed for different weather events, including northeast winter storms and atmospheric rivers.

  8. Shear heating in creeping faults changes the onset of convection

    Science.gov (United States)

    Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.

    2017-10-01

    The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.

  9. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Science.gov (United States)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  10. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  11. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    Science.gov (United States)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  12. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system.

    Science.gov (United States)

    Bedussi, Beatrice; van Lier, Monique G J T B; Bartstra, Jonas W; de Vos, Judith; Siebes, Maria; VanBavel, Ed; Bakker, Erik N T P

    2015-10-05

    In the absence of a true lymphatic system in the brain parenchyma, alternative clearance pathways for excess fluid and waste products have been proposed. Suggested mechanisms for clearance implicate a role for brain interstitial and cerebrospinal fluids. However, the proposed direction of flow, the anatomical structures involved, and the driving forces are controversial. To trace the distribution of interstitial and cerebrospinal fluid in the brain, and to identify the anatomical structures involved, we infused a mix of fluorescent tracers with different sizes into the cisterna magna or striatum of mouse brains. We subsequently performed confocal fluorescence imaging of horizontal brain sections and made 3D reconstructions of the mouse brain and vasculature. We observed a distribution pattern of tracers from the parenchyma to the ventricular system, from where tracers mixed with the cerebrospinal fluid, reached the subarachnoid space, and left the brain via the cribriform plate and the nose. Tracers also entered paravascular spaces around arteries both after injection in the cisterna magna and striatum, but this appeared to be of minor importance. These data suggest a bulk flow of interstitial fluid from the striatum towards the adjacent lateral ventricle. Tracers may enter arterial paravascular spaces from two sides, both through bulk flow from the parenchyma and through mixing of CSF in the subarachnoid space. Disturbances in this transport pathway could influence the drainage of amyloid β and other waste products, which may be relevant for the pathophysiology of Alzheimer's disease.

  13. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  14. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  15. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    Science.gov (United States)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  16. Lightning Potential Index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event

    Science.gov (United States)

    Lagasio, M.; Parodi, A.; Procopio, R.; Rachidi, F.; Fiori, E.

    2017-04-01

    Severe weather events are responsible for hundreds of fatalities and millions of euros of damage every year on the Mediterranean basin. Lightning activity is a characteristic phenomenon of severe weather and often accompanies torrential rainfall, which, under certain conditions like terrain type, slope, drainage, and soil saturation, may turn into flash flood. Building on the existing relationship between significant lightning activity and deep convection and precipitation, the performance of the Lightning Potential Index, as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, is here evaluated for the V-shape back-building Mesoscale Convective System which hit Genoa city (Italy) in 2014. An ensemble of Weather Research and Forecasting simulations at cloud-permitting grid spacing (1 km) with different microphysical parameterizations is performed and compared to the available observational radar and lightning data. The results allow gaining a deeper understanding of the role of lightning phenomena in the predictability of V-shape back-building Mesoscale Convective Systems often producing flash flood over western Mediterranean complex topography areas. Moreover, they support the relevance of accurate lightning forecasting for the predictive ability of these severe events.

  17. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  18. Geophysical imaging of hydrothermal shallow degassing in Yellowstone National Park

    Science.gov (United States)

    Pasquet, S.; Holbrook, W. S.; Carr, B.; Sims, K. W. W.

    2016-12-01

    The Yellowstone Plateau Volcanic Field is the world's largest active hydrothermal system, with over 10,000 thermal features. Yet very little is known about the shallow "plumbing" system connecting hydrothermal reservoirs with the surface features. Here we present the results of geophysical investigations of shallow hydrothermal degassing in Yellowstone. In addition to electrical methods, we combined seismic refraction and surface-wave profiling to estimate pressure and shear wave velocities together with the Poisson's ratio. We find that resistivity data helps identifying hydrothermal areas and fluids flowpaths. Poisson's ratio shows a good sensitivity to saturation variations, highlighting gas saturated areas. Porosity and saturation predicted from rock physics modeling provide critical insight to estimate the depth of fluid phase separation and understand the evolution of hydrothermal systems. Finally, the consistency between Poisson's ratio and predicted saturation illustrates its ability to map shallow "plumbing" systems in hydrothermal areas and constrain gas saturation in depth.

  19. Fluid inclusion petrology and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414.

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Micheuz, Peter

    2016-04-01

    In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ∼210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos-Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high-temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater.

  20. Fluid inclusion petrology and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Micheuz, Peter

    2016-04-01

    In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ˜210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos-Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high-temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater.

  1. The use of a potential lightning index in multi-microphysical cloud-resolving simulations of a V-shape convective system.

    Science.gov (United States)

    Lagasio, Martina; Parodi, Antonio; Procopio, Renato; Rachidi, Farhad; Fiori, Elisabetta

    2017-04-01

    Lightning activity is a characteristic phenomenon of severe weather as confirmed by many studies on different weather regimes that reveal strong interplay between lightning phenomena and extreme rainfall process in thunderstorms. The improvement of the so-called total (i.e. cloud-to-ground and intra-cloud) lightning observation systems in the last decades has allowed to investigate the relationship between the lightning flash rate and the kinematic and microphysical properties of severe hydro-meteorological events characterized by strong convection. V-shape back-building Mesoscale Convective Systems (MCSs) occurring over short periods of time have hit several times the Liguria region located in north-western Italy in the period between October 2010 and November 2014, generating flash-flood events responsible for hundreds of fatalities and millions of euros of damage. All these events showed an area of intense precipitation sweeping an arc of a few degrees around the warm conveyor belt originating about 50-60 km from the Liguria coastline. A second main ingredient was the presence of a convergence line, which supported the development and the maintenance of the aforementioned back-building process. Other common features were the persistence of such geometric configuration for many hours and the associated strong lightning activity. A methodological approach for the evaluation of these types of extreme rainfall and lightning convective events is presented for a back-building MCS event occurred in Genoa in 2014. A microphysics driven ensemble of WRF simulations at cloud-permitting grid spacing (1 km) with different microphysics parameterizations is used and compared to the available observational radar and lightning data. To pursue this aim, the performance of the Lightning Potential Index (LPI) as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, is computed and analyzed to gain further physical insight in

  2. Planning of the power hydrothermal system operation - alternatives for the modelling and uncertainties treatment; Planejamento da operacao de sistemas hidrotermicos de potencia - alternativas de modelagem e o tratamento das incertezas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Andre Flavio Soares; Bajay, Sergio Valdir [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mails: apereira@fem.unicamp.br; bajay@fem.unicamp.br; Barbosa, Paulo Sergio Franco [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: franco@fec.unicamp.br

    2006-07-01

    The complexity of the operation scheduling of hydrothermal power systems lies, among other factors, in the interconnection between the operation decision in a certain stage and the future consequences of such decision. The operation of a hydrothermal power system comprises from the supervision and real time control of the generation and transport of electricity, to aspects as the modelling of the uncertainties concerning the future stream flows and the optimised management of the hydro power plant reservoirs. This work addresses a general formulation of the operation scheduling problem of hydrothermal power systems; a brief presentation of the various optimization techniques which can be used in its solution; and a discussion about the main alternatives that has been adopted to model the problem and to deal with its main uncertainties. (author)

  3. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  4. On the role of convective systems over the northwest Pacific and monsoon activity over the Indian subcontinent

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Babu, A.K.; Reason, C.

    been examined in relation to breaks in monsoon conditions over the Indian sub-continent during contrasting monsoon years. A see-saw nature of convection between the NWP and north Indian Ocean was found during the years with excess monsoon rainfall...

  5. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    Science.gov (United States)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF

  6. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    Science.gov (United States)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as

  7. A stochastic approach to long term operation planning of hydrothermal systems; Uma abordagem estocastica para o planejamento a longo prazo da operacao de sistemas hidrotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marinho G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas; Soares, Secundino; Cruz Junior, Gelson da; Vinhal, Cassio D.N. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Eletrica

    1996-01-01

    This paper is concerned with long term operation of hydro-thermal power systems. The problem is approached by a deterministic optimization technique coupled to an inflow forecasting model in open-loop feedback framework in monthly basis. The paper aims to compare the solution obtained by this approach and Stochastic Dynamic Programming (SDP), which has been accepted for over than two decades as the better solution to deal with inflow uncertainty in long term planning. The comparison was carried out in systems with a single plant, simulating the operation throughout a period of five years under the historical inflow conditions and evaluating the cost of the complementary thermal generation. Results show that the proposed approach can handle uncertainty as effectively as SDP. Furthermore, it does not require modeling simplification, such as composite reservoirs, to deal with multi hydro plant systems. 10 refs., 1 tab.

  8. Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil

    Science.gov (United States)

    SãO Sabbas, F. T.; Taylor, M. J.; Pautet, P.-D.; Bailey, M.; Cummer, S.; Azambuja, R. R.; Santiago, J. P. C.; Thomas, J. N.; Pinto, O.; Solorzano, N. N.; Schuch, N. J.; Freitas, S. R.; Ferreira, N. J.; Conforte, J. C.

    2010-11-01

    On the night of 22-23 February 2006, 444 transient luminous events (TLEs), 86% sprites, were observed above a prolific mesoscale convective system (MCS) over Argentina, as part of the third sprite campaign in Brazil. GOES infrared (IR) cloud top temperatures (Tc) and Tropical Rainfall Measuring Mission (TRMM) radar (PR) and microwave (TMI) data were used to investigate the MCS convective characteristics and their relationship with World Wide Location Network (WWLLN) detected cloud-to-ground (CG) lightning and TLE activity. The MCS had a minimum lifetime of 20 hours, 8.5 as a MCS, a maximum extent of ˜430,000 km2, and gusty winds of ˜39-50 km/h. It had several distinctive characteristics: exceptionally high TLE rate, multicellular structure with 19 distinguishable convective regions, and cloud tops temperatures (Tc) ˜10-20 °C higher than regular TLE-producing MCSs over the central USA and South America. Most TLEs occurred above "individual stratiform regions", where Tc varied from -45 °C to -53 °C from the beginning to the end of the night, surrounding the areas of strong convections, with convective cores at Tc -59 °C to -74 °C, which did not extend up to or overshoot the tropopause, estimated at -75 °C (˜17.1 km) as normally observed for TLE-producing MCS in these regions. The moderated convection is contrary to the expectation that large charge production is accompanied by vigorous updrafts within deep convection that give rise to cold cloud overshooting tops, thus prompting a detailed study of this prolific TLE-producing thunderstorm. On the basis of a charge moment change threshold of 350 Ckm and estimated 5 km charge removal altitude, a lower threshold of ˜4,300 C/h was estimated for the hourly charge transfer rate necessary for the observed sprite production (383 events), which is twice the rate for an average TLE-producing MCS (70 events), also estimated. TMI/TRMM data for the storm at early development showed a low brightness temperature of 84 K

  9. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Nordstrom, D. Kirk; Guo, Qinghai; McCleskey, R. Blaine

    2014-01-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  10. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  11. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    Science.gov (United States)

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200 μm in length and 1-5 μm in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional

  12. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    Science.gov (United States)

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and

  13. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems : implications for ore genesis and fluid circulation.

    OpenAIRE

    Zeng, Z.; Ma, Y.; Chen, S; Selby, D.; Wang, X.; X. Yin

    2017-01-01

    Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur iso...

  14. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  15. Mode I fracture toughness behavior of hydro-thermally aged carbon fibre reinforced DGEBA-HHPA-PES systems

    Science.gov (United States)

    Alessi, Sabina; Pitarresi, Giuseppe; Spadaro, Giuseppe; Tumino, Davide

    2012-07-01

    In this work the Mode I fracture toughness behavior of unidirectional CFRP laminates is investigated by means of Double Cantilever Beam (DCB) tests. The composite samples were manufactured by thermal curing after impregnation of a Carbon fabric with a DGEBA epoxy and anhydride HHPA curing agent. One resin batch was also mixed with a PES thermoplastic monomer to enhance the matrix toughness. Two lots of samples, toughened and untoughened, were then left to soak in hot water to achieve various degrees of aging. The influence of matrix toughening and hydrothermal aging on the delamination behavior of the composite have then been assessed and correlated with characterization data from Dynamic Mechanical Thermal Analysis (DMTA) and Scanning Electron Microscopy (SEM).

  16. Hydrothermal Conditions and the Origin of Cellular Life.

    Science.gov (United States)

    Deamer, David W; Georgiou, Christos D

    2015-12-01

    The conditions and properties of hydrothermal vents and hydrothermal fields are compared in terms of their ability to support processes related to the origin of life. The two sites can be considered as alternative hypotheses, and from this comparison we propose a series of experimental tests to distinguish between them, focusing on those that involve concentration of solutes, self-assembly of membranous compartments, and synthesis of polymers. Key Word: Hydrothermal systems.

  17. NeMO-Net: A System for Near Real-Time Remote Sensing of Hydrothermal and Biological Activity in the Caldera of an Active Submarine Volcano

    Science.gov (United States)

    Hammond, S. R.; Butterfield, D.; Embley, R. W.; Meinig, C.; Stalin, S.

    2001-12-01

    In July of 2000, a camera and three temperature sensors were placed on the seafloor near a hydrothermal vent located in the caldera of an active submarine volcano. The volcano's summit lies at a depth of about 1500 m and is located at 46° N, 130° W, approximately 250 nautical miles off the Oregon coast. The volcano is the site of a long-term interdisciplinary study focused in part on discovering relationships between submarine volcanic and hydrothermal activity and a microbial biosphere which exists beneath the sea floor within the volcano's summit caldera. NeMO-Net utilizes an acoustic modem to communicate with a surface mooring anchored nearby. The mooring, in turn, is linked from the ocean surface to the Pacific Marine Environmental Laboratory by means of satellite systems. A unique feature of NeMO-Net is that it enables shore-based investigators to interrogate and command the system to perform specific tasks, the results of which are then reported back typically within several minutes . In the initial year-long deployment, photographic images, along with hourly readings from the three temperature probes, were available on a website which was updated every 24 hours. During the year, the camera documented a dynamic vent biological community as well as water temperature variations due to the influence of tides, and possibly with changing vent fluid temperatures The NeMO-Net system is under continuing development with particular emphasis on linking it to multiple sea floor instruments including near-real-time chemical and water samplers. Near-future plans also call for NeMO Net to be linked to a resident sea floor AUV.

  18. Seismic Characterization of Hypogenic Karst Systems Associated with Deep Hydrothermal Fluids in the Middle-Lower Ordovician Yingshan Formation of the Shunnan Area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Hongtao Zhu

    2017-01-01

    Full Text Available Two fundamental forms of hypogenic karst systems (lateral stratiform hypogenic and cross-formational fault-vein hypogenic karst system are distinguished mainly by differential effects of preexisting faults. In seismic cross sections, hypogenic karst systems are expressed as complex string-beads-like seismic reflections associated with faults. In this study, a new seismic characterization workflow was developed including seismic amplitude thresholding, fault interpretation, pickup, and merge display to enhance the description of the spatial distribution and coupling of hypogenic karst system and faults. The results suggest that the lateral stratiform hypogenic karst systems are predominantly developed at the top of the secondary faults, presenting an overall of “layered distribution and finger-like interaction” features. The cross-formational fault-vein hypogenic karst systems are developed around faults and characterized by dendritic distribution. Furthermore, we infer that the development pattern of hypogenic karst systems has been produced by the interplay of the faults, preexisting epigenic karst systems, and lateral carrier-beds, which together combine the complex hydrothermal migration pathways of fluids with the characteristics of vertical and horizontal combined pathways. In addition, some possible controlling factors (e.g., sequence stratigraphic boundaries, paleogeomorphology, and sedimentary facies that can influence the development of these hypogenic karst systems have been discussed in detail.

  19. Hydrothermal pretreatment of palm oil empty fruit bunch

    Science.gov (United States)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  20. Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and hydrothermal system

    Science.gov (United States)

    Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar

    2015-04-01

    Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or hydrothermal fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at geothermal system, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/hydrothermal system.

  1. Convective Systems during the South China Sea Monsoon Onset and Post-Onset Simulated by a Cloud Resolving Model Using SCSMEX Data

    Science.gov (United States)

    Shie, C.-L.; Tao, W.-K.; Johnson, D.; Simpson, J.; Braun, S.; Wang, J.-J.; Johnson, R.; Ciesielski, E.; Starr, David O'C. (Technical Monitor)

    2002-01-01

    South China Sea Monsoon Experiment (SCSMEX, 1998), one of several major TRMM field experiments, has successfully obtained a wealth of information and observational data on the summer monsoon onset and evolution in the South China Sea region. The primary goal of the experiment is to provide a better understanding of the key physical processes for the onset and maintenance of the monsoon over Southeast Asia and southern China leading to improved predictions. In this paper, our objective is to investigate the major physical and microphysical processes involved in the convective systems that developed during the onset and post-onset of the South China Sea monsoon - for both the similarities and differences between these two phases. There are two episodes simulated in this study, one of the onset period (May 18-26, 1998) and one of the post-onset period (June 2-11, 1998). The focus of this paper is to study four major aspects between these two different episodes. First, characteristics of rainfall such as rainfall amount and occurrence in the convective and stratiform regions are investigated, as well as the propagation of convective systems. The numerical precipitation fields are also validated against both the TRMM Microwave Imager (TMI) soundings and Precipitation Radar (PR) observations. Second, the domain-averaged heat and moisture budgets are analyzed to comprehend the essential roles played by physical processes such as the large-scale forcing and latent heat flux. Third, the microphysical processes associated with warm rain or ice are also closely examined during these two episodes. Finally, vertical distributions of Q1 and Q2 budgets are presented to perform a detailed discussion on the energy and moisture cascade in the vertical direction.

  2. The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada)

    Science.gov (United States)

    Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.

    2016-11-01

    At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry

  3. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy).

    Science.gov (United States)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono

    2015-04-01

    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  4. Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2008-05-01

    Full Text Available A cloud system resolving model including photo-chemistry (CSRMC has been developed based on a prototype version of the Weather Research and Forecasting (WRF model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NOx, O3, and HOx(=HO2+OH, in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248×248 km2 horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O3 in the 3-D run than in the 2-D runs, but at the same time undiluted O3-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O3 budget. Near zero O3 volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NOx chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NOx concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O3 is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport

  5. The response of a simulated mesoscale convective system to increased aerosol pollution: Part II: Derecho characteristics and intensity in response to increased pollution

    Science.gov (United States)

    Clavner, Michal; Grasso, Lewis D.; Cotton, William R.; van den Heever, Susan C.

    2018-01-01

    Mesoscale Convective Systems (MCS) are important contributors to rainfall as well as producers of severe weather such as hail, tornados, and straight-line wind events known as derechos. In this study, different aerosol concentrations and their effects on a derecho event are examined by simulating a case study, the 8 May 2009 "Super-Derecho", using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model with sophisticated aerosol and cloud microphysics. Three simulations were conducted that differed in the initial aerosol concentrations, spatial distribution and chemical composition as derived from output of GEOS-Chem, a 3D chemical transport model. In order to understand the impact of changes in aerosol concentrations on the derecho characteristics, the dynamical processes that produced the strong surface wind were determined by performing back-trajectory analysis during two periods of the simulated storm: the development and the onset of dissipation. A time dependent and non-monotonic trend was found between the intensity of the derecho and the increased aerosol concentrations that served as cloud condensation nuclei. During the formation period of the MCS, the non-monotonic trend was attributed to the microphysical impact of aerosol loading on the intensity of the cold pool; that is, the impact of aerosols on both the melting and evaporation rates of hydrometeors. The subsequent intensity changes within the cold pool modified the balance between the horizontal vorticity generated by the cold pool and that of the environment, thereby impacting the orientation of the convective updraft at the leading line. This, in turn, altered the primary flow that contributed to the formation of the derecho-strength surface winds. The simulation with no anthropogenic aerosols exhibited the strongest cold pool and the primary flow was associated with a descending rear inflow jet that produced the derecho winds over a larger region. The simulation with the highest

  6. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  7. Sensitivity of summer ensembles of fledgling superparameterized U.S. mesoscale convective systems to cloud resolving model microphysics and grid configuration

    Science.gov (United States)

    Elliott, Elizabeth J.; Yu, Sungduk; Kooperman, Gabriel J.; Morrison, Hugh; Wang, Minghuai; Pritchard, Michael S.

    2016-06-01

    The sensitivities of simulated mesoscale convective systems (MCSs) in the central U.S. to microphysics and grid configuration are evaluated here in a global climate model (GCM) that also permits global-scale feedbacks and variability. Since conventional GCMs do not simulate MCSs, studying their sensitivities in a global framework useful for climate change simulations has not previously been possible. To date, MCS sensitivity experiments have relied on controlled cloud resolving model (CRM) studies with limited domains, which avoid internal variability and neglect feedbacks between local convection and larger-scale dynamics. However, recent work with superparameterized (SP) GCMs has shown that eastward propagating MCS-like events are captured when embedded CRMs replace convective parameterizations. This study uses a SP version of the Community Atmosphere Model version 5 (SP-CAM5) to evaluate MCS sensitivities, applying an objective empirical orthogonal function algorithm to identify MCS-like events, and harmonizing composite storms to account for seasonal and spatial heterogeneity. A five-summer control simulation is used to assess the magnitude of internal and interannual variability relative to 10 sensitivity experiments with varied CRM parameters, including ice fall speed, one-moment and two-moment microphysics, and grid spacing. MCS sensitivities were found to be subtle with respect to internal variability, and indicate that ensembles of over 100 storms may be necessary to detect robust differences in SP-GCMs. These results emphasize that the properties of MCSs can vary widely across individual events, and improving their representation in global simulations with significant internal variability may require comparison to long (multidecadal) time series of observed events rather than single season field campaigns.

  8. Sm-Nd age of the fazenda brasileiro gabbro, Bahia, Brazil: example of robust behavior of the Sm-Nd isotopic system under extreme hydrothermal alteration

    Directory of Open Access Journals (Sweden)

    Márcio M. Pimentel

    2003-09-01

    Full Text Available The Fazenda Brasileiro gold mineralization is hosted by a gabbroic sill, intrusive into metavolcanicmetasedimentary rocks of the Rio Itapicuru Greenstone Belt, São Francisco Craton. The 2.05 Ga old mineralization is associated with intense shearing and hydrothermal alteration, and the host gabbro is altered to a series of rocks rich in sericite, chlorite, actinolite, carbonate and quartz. Twelve whole-rock samples of the gold mineralization, representing varied degrees of alteration, from rocks with preserved igneous textures to the ore (quartz-carbonate-sulfide-chlorite, were studied by the Sm-Nd method. All analytical points resulted in an isochron (MSWD = 1.9 indicating the age of 2142 +/- 47 Ma (1s and Epsilon Nd (T of +1.2. Chlorite-sericite-carbonate rich hydrothermal rocks indicate the age of 2148 +/- 57 Ma and Epsilon Nd (T of +1.1. The positive Epsilon Nd (T suggest limited or no contamination with older continental crust, compatible with an oceanic setting for the tholeiites. Combined withREEdata, the Sm-Nd isotopic results reveal that the hydrothermal alteration, although intense, was unable to alter significantly the Sm/Nd ratios of the original igneous rocks and did not cause important scatter of the analytical points, providing a rare example of robust behavior of the isotopic system, even under intense hydrothermal alteration.A mineralização de ouro de Fazenda Brasileiro é hospedada por um sill gabróico intrusivo em rochas metavulcânicas/metassedimentares do Greenstone Belt do Rio Itapicuru, Craton do São Francisco. A mineralização, com idade de ca. 2.05 Ga, está associada com forte cizalhamento e alteração hidrotermal, e o gabro hospedeiro está alterado para rochas ricas em clorita, actinolita, carbonato e quartzo. Doze amostras de rocha total representando graus variados de alteração hidrotermal, desde rochas com texturas ígneas reliquiares até o minério (quartzo-carbonato-sulfeto-clorita, foram estudadas pelo

  9. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  10. Stochastic Convection Parameterizations

    Science.gov (United States)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  11. Convection and downbursts

    Science.gov (United States)

    Joseph J. Charney; Brian E. Potter

    2017-01-01

    Convection and downbursts are connected meteorological phenomena with the potential to affect fire behavior and thereby alter the evolution of a wildland fire. Meteorological phenomena related to convection and downbursts are often discussed in the context of fire behavior and smoke. The physical mechanisms that contribute to these phenomena are interrelated, but the...

  12. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  13. Using Jupiter's gravitational field to probe the Jovian convective dynamo.

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-03-23

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.

  14. Mapping hydrothermal altered mineral deposits using Landsat 7 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4. Mapping hydrothermal altered mineral ... To evaluate the conventional methods for mapping hydrothermal altered deposits by using Landsat 7 ETM+ image in and around Kuju volcano is the prime target of our study. The Kuju volcano is a mountainous ...

  15. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Directory of Open Access Journals (Sweden)

    S. Tang

    2016-11-01

    Full Text Available This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1 and apparent moisture sink (Q2 profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs that were conducted from 15 February to 26 March 2014 (wet season and from 1 September to 10 October 2014 (dry season near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5 experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  16. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  17. The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. 2: Kinetic energy and resolution analysis

    Science.gov (United States)

    Wolf, Bart J.; Johnson, D. R.

    1995-01-01

    A kinetic energy (KE) analysis of the forcing of a mesoscale upper-tropospheric jet streak by organized diabatic processes within the simulated convective system (SCS) that was discussed in Part 1 is presented in this study. The relative contributions of the ageostrophic components of motion to the generation of KE of the convectively generated jet streak are compared, along with the KE generation by the rotational (nondivergent) and irrotational (divergent) mass transport. The sensitivity of the numerical simulations of SCS development to resolution is also briefly examined. Analysis within isentropic coordinates provides for an explicit determination of the influence of the diabatic processes on the generation of KE. The upper-level production of specific KE is due predominatly to the inertial advective ageostrophic component (IAD), and as such represents the primary process through which the KE of the convectively generated jet streak is realized. A secondary contribution by the inertial diabatic (IDI) term is observed. Partitioning the KE generation into its rotational and irrotational components reveals that the latter, which is directly linked to the diabatic heating within the SCS through isentropic continuity requirements, is the ultimate source of KE generation as the global area integral of generation by the rotational component vanishes. Comparison with an identical dry simulation reveals that the net generation of KE must be attributed to latent heating. Both the IAD and IDI ageostrophic components play important roles in this regard. Examination of results from simulations conducted at several resolutions supports the previous findings in that the effects of diabatic processes and ageostrophic motion on KE generation remain consistent. Resolution does impact the location and timing of SCS development, a result that has important implications in forecasting the onset of convection that develops from evolution of the large-scale flow and moisture

  18. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    Science.gov (United States)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a ~ 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (S1-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na ~ 100.5, As/Na ~ 10- 1.1, Cu/Na ~ 10- 4.2), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na ~ 10- 1, As/Na ~ 10- 2.5, Cu/Na ~ 10- 2.5 in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and hydrological properties of host rock, we explored the effect of the development of a low-cohesion low-permeability clay cap on the conditions of fault rupture and on the long-term thermal structure of the system. These analyses were performed by using

  19. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc.

    Science.gov (United States)

    Nakagawa, Tatsunori; Takai, Ken; Suzuki, Yohey; Hirayama, Hisako; Konno, Uta; Tsunogai, Urumu; Horikoshi, Koki

    2006-01-01

    Novel hydrothermal activities accompanying effluent white smokers and elemental sulfur chimney structures at the north-east lava dome of the TOTO caldera depression in the Mariana Volcanic Arc have been explored and characterized by geochemical and microbiological surveys. White smoker hydrothermal fluids were observed in the potential hydrothermal activity centre of the field and represented the maximal temperature of 170 degrees C and the lowest pH of 1.6. The chimney structures, all consisting of elemental sulfur (sulfur chimney), were also unique to the TOTO caldera hydrothermal field. Microbial community structures in a sulfur chimney and its formation hydrothermal fluid with a high concentration of hydrogen sulfide (15 mM) have been investigated by culture-dependent and -independent analyses. 16S rRNA gene clone analysis and fluorescence in situ hybridization (FISH) analysis revealed that epsilon-Proteobacteria dominated the microbial communities in the sulfur chimney structure and formed a dense microbial mat covering the sulfur chimney surface. Archaeal phylotypes were consistently minor components in the communities and related to the genera Thermococcus, Pyrodictium, Aeropyrum, and the uncultivated archaeal group of 'deep-sea hydrothermal vent euryarchaeotal group'. Cultivation analysis suggested that the chemolithoautotrophs might play a significant ecological role as primary producers utilizing gas and sulfur compounds provided from hydrothermal fluids.

  20. Hydrothermal energy development projects

    Science.gov (United States)

    Dibello, E. G.

    The development of hydrothermal energy for direct heat applications is being accelerated by twenty-two demonstration projects that are funded on a cost sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of hydrothermal resources in the United States. Engineering and economic data for the projects are summarized. The data and experience being generated by these projects will serve as an important basis for future direct heat development.

  1. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  2. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system.

    Science.gov (United States)

    Inagaki, Fumio; Kuypers, Marcel M M; Tsunogai, Urumu; Ishibashi, Jun-Ichiro; Nakamura, Ko-Ichi; Treude, Tina; Ohkubo, Satoru; Nakaseama, Miwako; Gena, Kaul; Chiba, Hitoshi; Hirayama, Hisako; Nunoura, Takuro; Takai, Ken; Jørgensen, Bo B; Horikoshi, Koki; Boetius, Antje

    2006-09-19

    Increasing levels of CO2 in the atmosphere are expected to cause climatic change with negative effects on the earth's ecosystems and human society. Consequently, a variety of CO2 disposal options are discussed, including injection into the deep ocean. Because the dissolution of CO2 in seawater will decrease ambient pH considerably, negative consequences for deep-water ecosystems have been predicted. Hence, ecosystems associated with natural CO2 reservoirs in the deep sea, and the dynamics of gaseous, liquid, and solid CO2 in such environments, are of great interest to science and society. We report here a biogeochemical and microbiological characterization of a microbial community inhabiting deep-sea sediments overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough. We found high abundances (>10(9) cm(-3)) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (10(7) cm(-3)) at the liquid CO2/CO2-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes related to one-carbon assimilation and the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or CH4 dominate the liquid CO2 and CO2-hydrate-bearing sediments. Clearly, the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies.

  3. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system.

    Science.gov (United States)

    Rusch, Antje; Islam, Shaer; Savalia, Pratixa; Amend, Jan P

    2015-01-01

    Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)). © 2015 IUMS.

  4. Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany

    Science.gov (United States)

    Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor

    2018-02-01

    The majority of hydrothermal vein systems of economic interest occur at relatively shallow crustal levels, although many of them formed at significantly greater depths. Their present position is a consequence of uplift and erosion. Although, many aspects of their formation are well constrained, the temporal chemical evolution of such systems during uplift and erosion is still poorly understood. These vein minerals comprise calcite, dolomite-ankerite, siderite-magnesite, anhydrite and gypsum forming the last gangue assemblages in Jurassic and Tertiary sulphide-fluorite-quartz-barite veins of the Schwarzwald mining district, SW Germany. Mineral textures of samples from nine localities reveal that in these sequences, mineral precipitation follows a recurring pattern: early calcite is followed by anhydrite or gypsum, siderite and/or dolomite. This succession may repeat up to three times. In-situ (LA-ICP-MS) U-Pb age dating of 15 carbonates from three subsequent generations of the late-stage vein assemblage yield robust ages between 20 and 0.6 Ma. Each mineral sequence forms in a distinctive period of about 2-5 Ma. These ages clearly relate these late-stage mineral phases to the youngest geological episode of the Schwarzwald, which is associated with the Cenozoic Rhine Graben rifting and basement uplift. Based on thermodynamic modelling, the formation of the observed mineral assemblages required an deeply sourced Mg-, Fe- and SO4-rich fluid (b), which was episodically mixed with a shallow crustal HCO3-rich fluid (a). As a consequence of fluid mixing, concentrations of Mg, Fe and SO4 temporarily increased and initiated the formation of the observed sulphate-carbonate mineral sequences. This discontinuous large-scale vertical fluid mixing was presumably directly related to episodes of active tectonics associated with the Cenozoic strike-slip regime of the Upper Rhine Graben. Analogously, episodic fluid mixing is a major key in the formation of older (Jurassic to early

  5. Experimental and theoretical investigation of the production of HCl and some metal chlorides in magmatic/hydrothermal systems. Annual report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In the calculations we have assumed that all apatites are magmatic. The presence of chlorite and altered plagioclase within the granite and quartz-monzodiorite suggests that alteration may play a role in leading to erroneous estimates of initial melt Cl and F for 2 reasons: (1) the apatites may in fact not be magmatic in origin, but are hydrothermal, and (2) the halogen signature of magmatic apatite may be changed due to subsolidus exchange with a hydrothermal fluid. We are currently endeavoring to develop criteria for determining whether apatite composition represents earlier or later stages of magmatic-hydrothermal development.

  6. Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems: Ice Microphysics in Midlevel Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Hannah C. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Houze, Robert A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Pacific Northwest National Laboratory, Richland Washington USA

    2016-07-25

    To equitably compare the spatial pattern of ice microphysical processes produced by three microphysical parameterizations with each other, observations, and theory, simulations of tropical oceanic mesoscale convective systems (MCSs) in the Weather Research and Forecasting (WRF) model were forced to develop the same mesoscale circulations as observations by assimilating radial velocity data from a Doppler radar. The same general layering of microphysical processes was found in observations and simulations with deposition anywhere above the 0°C level, aggregation at and above the 0°C level, melting at and below the 0°C level, and riming near the 0°C level. Thus, this study is consistent with the layered ice microphysical pattern portrayed in previous conceptual models and indicated by dual-polarization radar data. Spatial variability of riming in the simulations suggests that riming in the midlevel inflow is related to convective-scale vertical velocity perturbations. Finally, this study sheds light on limitations of current generally available bulk microphysical parameterizations. In each parameterization, the layers in which aggregation and riming took place were generally too thick and the frequency of riming was generally too high compared to the observations and theory. Additionally, none of the parameterizations produced similar details in every microphysical spatial pattern. Discrepancies in the patterns of microphysical processes between parameterizations likely factor into creating substantial differences in model reflectivity patterns. It is concluded that improved parameterizations of ice-phase microphysics will be essential to obtain reliable, consistent model simulations of tropical oceanic MCSs.

  7. Impact of Assimilation of Conventional and Satellite Radiance GTS Observations on Simulation of Mesoscale Convective System Over Southeast India Using WRF-3DVar

    Science.gov (United States)

    Madhulatha, A.; Rajeevan, M.; Bhowmik, S. K. Roy; Das, A. K.

    2018-01-01

    The primary goal of present study is to investigate the impact of assimilation of conventional and satellite radiance observations in simulating the mesoscale convective system (MCS) formed over south east India. An assimilation methodology based on Weather Research and Forecasting model three dimensional variational data assimilation is considered. Few numerical experiments are carried out to examine the individual and combined impact of conventional and non-conventional (satellite radiance) observations. After the successful inclusion of additional observations, strong analysis increments of temperature and moisture fields are noticed and contributed to significant improvement in model's initial fields. The resulting model simulations are able to successfully reproduce the prominent synoptic features responsible for the initiation of MCS. Among all the experiments, the final experiment in which both conventional and satellite radiance observations assimilated has showed considerable impact on the prediction of MCS. The location, genesis, intensity, propagation and development of rain bands associated with the MCS are simulated reasonably well. The biases of simulated temperature, moisture and wind fields at surface and different pressure levels are reduced. Thermodynamic, dynamic and vertical structure of convective cells associated with the passage of MCS are well captured. Spatial distribution of rainfall is fairly reproduced and comparable to TRMM observations. It is demonstrated that incorporation of conventional and satellite radiance observations improved the local and synoptic representation of temperature, moisture fields from surface to different levels of atmosphere. This study highlights the importance of assimilation of conventional and satellite radiances in improving the models initial conditions and simulation of MCS.

  8. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.M., E-mail: hussain.modassir@yahoo.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Jain, J., E-mail: jj.28481@gmail.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Seth, G.S., E-mail: gsseth_ism@yahoo.com [Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004 (India); Rashidi, M.M., E-mail: mm_rashidi@yahoo.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management System, Tongji University, Shanghai 201804 (China)

    2017-01-15

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration. - Highlights: • Magnetic field, Hall current, rotation and chemical reaction play vital role on flow field. • Hall current tends to accelerate secondary fluid velocity in the boundary layer region. • Rotation tends to retard primary fluid velocity throughout the boundary layer region. • Rotation and chemical reaction tend to enhance primary skin friction. • Solutal buoyancy force and permeability of medium reduce primary skin friction.

  9. Solar Surface Convection

    Directory of Open Access Journals (Sweden)

    Nordlund Åke

    2009-04-01

    Full Text Available We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.The properties of convection at the main energy carrying (granular scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc. of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with

  10. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  11. Added value of convection-permitting reanalyses

    Science.gov (United States)

    Wahl, S.; Keller, J. D.; Ohlwein, C.; Hense, A.; Friederichs, P.; Crewell, S.

    2016-12-01

    Atmospheric reanalyses are a state-of-the-art tool to generate consistent and realistic state estimates of the atmospheric system. They are used for validation of meteorological and hydrological models, climate monitoring, and renewable energy applications, amongst others. Current reanalyses are mainly global, while regional reanalyses are emerging for North America, the polar region, and most recently for Europe. Due to the horizontal resolution used, deep convection is still parameterized even in the regional reanalyses. However, convective parameterization is a major source of errors and uncertainties in atmospheric models. Therefore, it is expected that convection permitting reanalysis systems are able to adequately simulate the mechanisms leading to high-impact weather, notably heavy precipitation and winds related to deep moist convection. A novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2) has been developed by the Hans-Ertel Center for Weather Research - Climate Monitoring Branch. The system is based on the COSMO model and uses a nudging scheme for the assimilation of observational data. In addition, radar-derived rain rates are assimilated through a latent heat nudging scheme. With a horizontal grid-spacing of 2 km, the model parameterization for deep moist convective processes is turned off. As we expect the largest benefit of the convection-permitting system for precipitation, the evaluation focuses on this essential climate variable (ECV). Furthermore, precipitation is crucial for climate monitoring purposes, e.g., in the form of extreme precipitation which is an major cause of severe damages and societal costs in Europe. This study illustrates the added value of the convective-scale reanalysis compared to coarser gridded regional European and global reanalyses.

  12. Layer Formation in Sedimentary Fingering Convection

    CERN Document Server

    Reali, J F; Alsinan, A; Meiburg, E

    2016-01-01

    When particles settle through a stable temperature or salinity gradient they can drive an instability known as sedimentary fingering convection. This phenomenon is thought to occur beneath sediment-rich river plumes in lakes and oceans, in the context of marine snow where decaying organic materials serve as the suspended particles, or in the atmosphere in the presence of aerosols or volcanic ash. Laboratory experiments of Houk and Green (1973) and Green (1987) have shown sedimentary fingering convection to be similar to the more commonly known thermohaline fingering convection in many ways. Here, we study the phenomenon using 3D direct numerical simulations. We find evidence for layer formation in sedimentary fingering convection in regions of parameter space where it does not occur for non-sedimentary systems. This is due to two complementary effects. Sedimentation affects the turbulent fluxes and broadens the region of parameter space unstable to the $\\gamma$-instability (Radko 2003) to include systems at l...

  13. Peroxy radical observations over West Africa during AMMA 2006: photochemical activity in the outflow of convective systems

    Directory of Open Access Journals (Sweden)

    M. D. Andrés-Hernández

    2009-06-01

    Full Text Available Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence or simultaneous emission of NOx, with a potential radical precursor (i.e. formaldehyde, acetone or peroxides, which has likely been transported to higher atmospheric altitudes. Based on the measurements, significant O3 production rates around 1 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20–25 pptv and with peak values of up to 60–70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures.

    Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover, the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.

  14. Geothermal systems simulation: A case study

    OpenAIRE

    Guerrero-Martinez, Fernando J.; Verma, Surendra P.; Younger, Paul; Paul, Manosh C.

    2015-01-01

    Geothermal reservoir simulation is a key step for developing sustainable and efficient strategies for the exploitation of geothermal resources. It is applied in the assessment of several areas of reservoir engineering, such as reservoir performance and re-injection programs, pressure decline in depletion, phase transition conditions, and natural evolution of hydrothermal convection systems. Fluid flow and heat transfer in rock masses, fluid-rock chemical interaction and rock mass deformation ...

  15. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption

    Science.gov (United States)

    Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.

    2016-01-01

    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  16. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  17. Magneto-convection.

    Science.gov (United States)

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.

  18. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-06-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  19. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  20. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough: e0123095

    National Research Council Canada - National Science Library

    Ryota Nakajima; Hiroyuki Yamamoto; Shinsuke Kawagucci; Yutaro Takaya; Tatsuo Nozaki; Chong Chen; Katsunori Fujikura; Tetsuya Miwa; Ken Takai

    2015-01-01

      There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known...

  1. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  2. 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, Nitin [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2016-08-15

    Highlights: • Investigation of three-dimensional natural convection and thermal stratification inside large water pool. • Effect of inclination (α) of condenser tube on fluid flow and heat transfer. • The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. • Laminar-turbulent natural convection and heat transfer in the presence of longitudinal vortices. - Abstract: Many advanced nuclear reactors adopt methodologies of passive safety systems based on natural forces such as gravity. In one of such system, the decay heat generated from a reactor is removed by isolation condenser (ICs) submerged in a large water pool called the Gravity Driven Water Pool (GDWP). The objective of the present study was to design an IC for the passive decay heat removal system (PDHRS) for advanced nuclear reactor. First, the effect of inclination of IC tube on three dimensional temperature and flow fields was investigated inside a pilot scale (10 L) GDWP. Further, the knowledge of these fields has been used for the quantification of heat transfer and thermal stratification phenomenon. In a next step, the knowledge gained from the pilot scale GDWP has been extended to design an IC for real size GDWP (∼10,000 m{sup 3}). Single phase CFD simulation using open source CFD code [OpenFOAM-2.2] was performed for different tube inclination angles (α) (w.r.t. to vertical direction) in the range 0° ⩽ α ⩽ 90°. The results indicate that the heat transfer coefficient increases with increase in tube inclination angle. The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. This behavior is due to the interaction between the primary flow (due to pressure gradient) and secondary flow (due to buoyancy force). The primary flow enhanced the fluid sliding motion at the tube top whereas the secondary flow resulted in enhancement in fluid motion along the circumference of tube. As the angle of inclination (α) of the tube was increased, the

  3. Further on integrator circuit analogy for natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Khane, Vaibhav [Nuclear Engineering, Missouri University of Science and Technology, 225 Fulton Hall, 300W. 13th St., Rolla, MO-65409 (United States); Usman, Shoaib, E-mail: usmans@mst.ed [Nuclear Engineering, Missouri University of Science and Technology, 225 Fulton Hall, 300W. 13th St., Rolla, MO-65409 (United States)

    2010-03-15

    This research is an extension of the previous work on the development of an integrator (RC) circuit analogy for natural convection. This analogy has been proven experimentally as well as by numerical simulations. Additional Rayleigh-Benard convection numerical simulations were performed to investigate DELTAT (temperature difference between source and sink) dependence of the thermal resistance of a natural convection system. Our results suggest that analogous to voltage dependent resistor (VDR) in electrical engineering, DELTAT dependent thermal resistance is observed in natural convection system. This DELTAT dependent thermal resistance leads to a variable time constant. Moreover, this research also suggests that for a natural convection system, in addition to the thermal capacitance a kinetic energy capacitance also exists. The relative contribution of kinetic energy capacitance depends on Rayleigh number. These results provide significant step forward towards development of a new inexpensive modeling and transient analysis tool for a natural convection system.

  4. Geochemical variability of hydrothermal emissions between three Pacific volcanic arc systems: Alaskan-Aleutian and Cascadian, North America and Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Blackstock, J. M.; Horton, T. W.; Gravley, D. M.; Deering, C. D.

    2013-12-01

    Knowledge of the source, transport, and fate of hydrothermal fluids in the upper crust informs our understanding and interpretation of ore-forming processes, volcanogenic hazards, geothermal resources, and volatile cycling. Co-variation between fluid inclusion CO2/CH4 and N2/Ar ratios is an established tracer of magmatic, meteoric, and crustal fluid end-members. Yet, this tracer has had limited application to macroscopic fluid reservoirs accessible via geothermal wells and hydrothermal features (e.g. pools). In this study, we compared the covariance CO2/CH4 and N2/Ar ratios of gases collected throughout the Taupo Volcanic Zone, New Zealand (TVZ), the Alaska-Aleutian Volcanic Arc, USA (AAVA), and the Cascadian Volcanic Arc, USA (CVA) with corresponding δ13C and 3He/4He values. Our findings show that there is good agreement between these proxies for different end-member contributions at coarse scales. However, some samples classified as meteoric water according to the CO2/CH4 and N2/Ar ratios also show more positive δ13C values (~ -7.0 per mil) and relatively higher 3He/4He ratios indicative of magmatic input from primarily mantle sources. This unexpected result may be related to magmatic fluids, CO2 in particular, mixing with predominantly meteoric derived waters. The potential to identify magmatic CO2 in groundwater samples overlying geothermal systems in differing volcanic arc settings using simple and cost-effective gas ratios is a promising step forward in the search for ';surface blind' but developable geothermal systems and volcanic monitoring. 3He/4He anomalies also support this inference and underscore the potential decoupling of thermal anomalies and magmatic-derived fluids in the Earth's crust. The general agreement between the co-variation of CO2/CH4 and N2/Ar ratios with other isotope and geochemical proxies for magmatic, meteoric, and crustal end-members is encouraging to employ expanded use of these ratios for both the exploration and monitoring of

  5. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  6. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    Science.gov (United States)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  7. Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bai, Eastern Carpathians, Romania

    Science.gov (United States)

    Bobos, Iuliu; Eberl, D.D.

    2013-01-01

    The crystal growth of NH4-illite (NH4-I) from the hydrothermal system of Harghita Bãi (Eastern Carpathians) was deduced from the shapes of crystal thickness distributions (CTDs). The 4-illite-smectite (I-S) interstratified structures (R1, R2, and R3-type ordering) with a variable smectite-layer content. The NH4-I-S (40–5% S) structures were identified underground in a hydrothermal breccia structure, whereas the K-I/NH4-I mixtures were found at the deepest level sampled (−110 m). The percentage of smectite interlayers generally decreases with increasing depth in the deposit. This decrease in smectite content is related to the increase in degree of fracturing in the breccia structure and corresponds to a general increase in mean illite crystal thickness. In order to determine the thickness distributions of NH4-I crystals (fundamental illite particles) which make up the NH4-I-S interstratified structures and the NH4,-I/K-I mixtures, 27 samples were saturated with Li+ and aqueous solutions of PVP-10 to remove swelling and then were analyzed by X-ray diffraction. The profiles for the mean crystallite thickness (Tmean) and crystallite thickness distribution (CTD) of NH4-I crystallites were determined by the Bertaut-Warren-Averbach method using the MudMaster computer code. The Tmean of NH4-I from NH4-I-S samples ranges from 3.4 to 7.8 nm. The Tmean measured for the NH4-I/K-I mixture phase ranges from 7.8 nm to 11.7 nm (NH4-I) and from 12.1 to 24.7 nm (K-I). The CTD shapes of NH4-I fundamental particles are asymptotic and lognormal, whereas illites from NH4-I/K-I mixtures have bimodal shapes related to the presence of two lognormal-like CTDs corresponding to NH4-I and K-I. The crystal-growth mechanism for NH4-I samples was simulated using the Galoper code. Reaction pathways for NH4-I crystal nucleation and growth could be determined for each sample by plotting their CTD parameters on an α–β2 diagram constructed using Galoper. This analysis shows that NH4-I

  8. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California

    Science.gov (United States)

    Soto, Luis A.

    2009-09-01

    Potential food sources and the trophic position of some of the most conspicuous faunal components (vent and non-vent) were examined in the deep-hydrothermal vent system of Guaymas Basin, in the Gulf of California using carbon and nitrogen stable isotope analyses. The isotopic signatures of 13 species collected by the DSRV Alvin and Nautile mostly from sulfide-influenced habitats were analyzed. The δ 13C of nine vent species had a wide range (-36.0‰ to -12.7‰), whereas the δ 15N values varied from -5.0‰ to+9.4‰. The dual isotopic approach allowed the recognition of two main groups containing vent-endemic fauna. One was represented by an assemblage of eight species associated with sulfide deposits, visually dominated by the siboglinid worm Riftia pachyptila and characterized by enriched δ 13C values (means -13.7‰ to -21.0‰). The second group included a single species, the bivalve Vesicomya gigas, an inhabitant of soft sediments, which had depleted δ 13C and δ 15N signatures (means -35.7‰ and -1.5‰). The galatheid Munidopsis alvisca is an exception among the species in the R. pachyptila aggregation, due to its depleted δ 13C (-26.4‰) and an intermediate δ 15N value (+5.5‰). Isotopic δ 13C and δ 15N signatures of four non-vent species exhibited mostly enriched δ 15N values (means δ 13C -27.8‰ to -13.6‰; δ 15N +14.5‰ to +17.9‰), expected for higher consumers and detritivores in a deep-sea food web. They may benefit from the vent production via microbial matter or decaying vent organisms. Vent and non-vent fauna were assigned to five feeding guilds: symbiont-containing fauna, bacterivores, detritivores, predator-scavengers, and suspension-feeders. Based on isotopic values of vent and non-vent fauna, as well as that of surficial sediments, it is inferred that the hydrothermal ecosystem in the Guaymas Basin is self-supported with high-energy efficiency and with low exporting capacity to the background deep-sea food web.

  9. Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915

    Science.gov (United States)

    Parodi, Antonio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco; Boni, Giorgio

    2017-05-01

    Highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood-producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapour content. However, analyses of the historical record do not provide a univocal answer, but these are likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: the San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs that show strong convergence over the Ligurian Sea (17 out of 56 members) as these runs are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Ligurian Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers, and even photographs, can be very valuable sources of knowledge in the reconstruction of past extreme events.

  10. Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system

    Directory of Open Access Journals (Sweden)

    Adnan M. Hussein

    2017-03-01

    Full Text Available The limited thermal properties of liquids have led to the addition of solid nanoparticles to liquids in many industrial applications. In this paper, the friction factor and forced convection heat transfer of TiO2 nanoparticles dispersed in water in a car radiator was numerically determined. Four different nanofluid volume concentrations (1%, 2%, 3% and 4% were used, and the resulting thermal properties were evaluated. The Reynolds number and inlet temperature ranged from 10000 to 100000 and from 60 to 90 °C, respectively. The results showed that the friction factor decreases as the Reynolds number increases and increases as the volume concentration increases. Additionally, the Nusselt number increases as the Reynolds number and volume concentration of the nanofluid increases. The TiO2 nanofluid at low concentrations can enhance the heat transfer efficiency up to 20% compared with that of pure water. There was good agreement among the CFD analysis and experimental data available in the literature.

  11. Hydrothermal Synthesis, Photocatalytic Performance, and Phase Evolution from BiOCl to Bi2Ti2O7 in the Bi-Ti-Cl-O System

    Science.gov (United States)

    Pham, Khac Vu; Nguyen, Van Hung; Nguyen, Dang Phu; Do, Danh Bich; Le, Mai Oanh; Luc, Huy Hoang

    2017-12-01

    In this work, the influence of annealing treatment on the phase evolution and photocatalytic behavior in a Bi-Ti-Cl-O system prepared by a hydrothermal method was investigated. The crystal structure, particle surface morphology, and absorption properties of the samples were characterized by x-ray diffraction, field emission scanning electron microscopy, and UV-Vis diffuse-reflectance spectroscopy, respectively. The transformation process was found to occur in three stages, involving BiOCl, Bi2Ti2O7/BiOCl composite, and Bi2Ti2O7 phases, with increasing annealing temperature. The photocatalytic activity of the samples was evaluated through photodegradation of Rhodamine B under simulated sunlight irradiation. It was found that the photocatalytic activity of Bi2Ti2O7/BiOCl nanocomposites is greater than that of BiOCl or Bi2Ti2O7. The enhanced photocatalytic activity of the Bi2Ti2O7/BiOCl nanocomposite could be attributed to the effective separation of electron-hole pairs.

  12. Assimilation of GOES satellite-based convective initiation and cloud growth observations into the Rapid Refresh and HRRR systems to improve aviation forecast guidance

    Science.gov (United States)

    Mecikalski, John; Smith, Tracy; Weygandt, Stephen

    2014-05-01

    Latent heating profiles derived from GOES satellite-based cloud-top cooling rates are being assimilated into a retrospective version of the Rapid Refresh system (RAP) being run at the Global Systems Division. Assimilation of these data may help reduce the time lag for convection initiation (CI) in both the RAP model forecasts and in 3-km High Resolution Rapid Refresh (HRRR) model runs that are initialized off of the RAP model grids. These data may also improve both the location and organization of developing convective storm clusters, especially in the nested HRRR runs. These types of improvements are critical for providing better convective storm guidance around busy hub airports and aviation corridor routes, especially in the highly congested Ohio Valley - Northeast - Mid-Atlantic region. Additional work is focusing on assimilating GOES-R CI algorithm cloud-top cooling-based latent heating profiles directly into the HRRR model. Because of the small-scale nature of the convective phenomena depicted in the cloud-top cooling rate data (on the order of 1-4 km scale), direct assimilation of these data in the HRRR may be more effective than assimilation in the RAP. The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate

  13. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    Directory of Open Access Journals (Sweden)

    Ryota Nakajima

    Full Text Available There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331 on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014 where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the

  14. Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4

    Science.gov (United States)

    Walter, Benjamin F.; Steele-MacInnis, Matthew; Markl, Gregor

    2017-07-01

    Sulfate is among the most abundant ions in seawater and sulfate-bearing brines are common in sedimentary basins, among other environments. However, the properties of sulfate-bearing fluid inclusions during microthermometry are as yet poorly constrained, restricting the interpretation of fluid-inclusion compositions where sulfate is a major ion. The Schwarzwald mining district on the eastern shoulder of the Upper Rhinegraben rift is an example of a geologic system characterized by sulfate-bearing brines, and constraints on the anion abundances (chloride versus sulfate) would be desirable as a potential means to differentiate fluid sources in hydrothermal veins in these regions. Here, we use the Pitzer-type formalism to calculate equilibrium conditions along the vapor-saturated liquidus of the system H2O-Na-Ca-Cl-SO4, and construct phase diagrams displaying the predicted phase equilibria. We combine these predicted phase relations with microthermometric and crush-leach analyses of fluid inclusions from veins in the Schwarzwald and Upper Rhinegraben, to estimate the compositions of these brines in terms of bulk salinity as well as cation and anion loads (sodium versus calcium, and chloride versus sulfate). These data indicate systematic differences in fluid compositions recorded by fluid inclusions, and demonstrate the application of detailed low-temperature microthermometry to determine compositions of sulfate-bearing brines. Thus, these data provide new constraints on fluid sources and paleo-hydrology of these classic basin-hosted ore-forming systems. Moreover, the phase diagrams presented herein can be applied directly to compositional determinations in other systems.

  15. Hydrothermal conversion of biomass

    OpenAIRE

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  16. The approximate analytical solution of the internal problem of conductive and laminar free convection

    Directory of Open Access Journals (Sweden)

    M. I. Popov

    2016-01-01

    Full Text Available The approximate analytical solution of a problem about nonstationary free convection in the conductive and laminar mode of the Newtonian liquid in square area at the instantaneous change of temperature of a sidewall and lack of heat fluxes is submitted on top and bottom the bases. The equations of free convection in an approximation of Oberbeka-Bussinesk are linearized due to neglect by convective items. For reduction of number of hydrothermal parameters the system is given to the dimensionless look by introduction of scales for effect and explanatory variables. Transition from classical variables to the variables "whirlwind-a flow function" allowed to reduce system to a nonstationary heat conduction equation and a nonstationary nonuniform biharmonic equation, and the first is not dependent on the second. The decision in the form of a flow function is received by application integral a sine - Fourier transforms with terminating limits to a biharmonic equation at first on a variable x, and then on a variable y. The flow function has an appearance of a double series of Fourier on sine with coefficients in an integral form. Coefficients of a row represent integrals from unknown functions. On the basis of a hypothesis of an express type of integrals coefficients are calculated from the linear equation system received from boundary conditions on partial derivatives of function. Dependence of structure of a current on Prandtl's number is investigated. The cards of streamlines and isolines of components of speed describing development of a current from the moment of emergence before transition to a stationary state are received. The schedules of a field of vectors of speeds in various time illustrating dynamics of a current are provided. Reliability of a hypothesis of an express type of integral coefficients is confirmed by adequacy to physical sense and coherence of the received results with the numerical solution of a problem.

  17. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    Science.gov (United States)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  18. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 1; Modeling Strategies and Simulations of TOGA-COARE Convective Systems

    Science.gov (United States)

    Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.

  19. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    Science.gov (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3 × 2km2 sized magma chamber emplaced at ∼ 2.5 km beneath the seafloor connected to the permeable cone via a ∼ 200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first

  20. Phenomenology of turbulent convection

    Science.gov (United States)

    Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi

    2016-11-01

    We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.

  1. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  2. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  3. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    of stars. For stars like the sun, energy transport in the outer layers occurs mainly through turbulent convection. Here, pressure mode oscillations are essentially propagating sound waves, whose properties can be altered by interaction with the turbulent motion of the gas. This has always been a problem...... for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...

  4. Magnetic properties and opaque mineralogy of rocks from selected seafloor hydrothermal sites at oceanic ridges

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, A.L. (Univ. of Miami, FL (United States) NOAA, Miami, FL (United States)); Harrison, C.G.A. (Univ. of Miami, FL (United States)); Rona, P.A. (NOAA, Miami, FL (United States)); Haggerty, S.E. (Univ. of Massachusetts, Amherst (United States))

    1990-08-10

    Magnetic properties (natural remanent magnetization, susceptibility, Curie point temperature, saturation isothermal remanent magnetization, and Koeenigsberger ratio) and opaque mineralogy were determined for basalts, diabases, gabbros, peridotites, and serpentinites collected by dredging and submersible from the rift valley at five hydrothermal sites (the Snake Pit hydrothermal field, the Tag hydrothermal field on the Mid-Atlantic Ridge, and the Sea Cliff hydrothermal field on the northern Gorda Ridge). Evidence for unequivocal magnetic mineral modification by hydrothermal action is present only in a small percentage of extrusive basalts but is pervasive in diabases, gabbros, and ultramafic rocks. The studies reveal distinct correlations between magnetization intensity, thermomagnetic behavior, and magnetic mineralogy, grain size, style, and intensity of alteration and rock type. Layer 2A basalts are the source of median valley magnetic anomalies. The magnetic source may shift from the surface to deeper horizons with progressive seafloor aging and enhanced deuteric oxidation in layer 2B dikes and layer 3 gabbros and the formation of magnetite in derpentinized peridotites. This shift is influenced by fluctuations in the Curie isotherm related to the duration of active magma chambers and convective hydrothermal cells. The magnetic and mineralogic properties of oceanic rocks determined show the effects of a wide range of alteration processes that are variously related to depth in oceanic lithosphere, magmatic cooling history, and hydrothermal circulation.

  5. Chaotic convection in a rotating fluid layer

    Directory of Open Access Journals (Sweden)

    Vinod K. Gupta

    2015-12-01

    Full Text Available A study of thermal convection in a rotating fluid layer is investigated based on the dynamical systems approach. A system of differential equation like Lorenz model has been obtained by using Galerkin-truncated approximation. The chaotic convection is investigated in a rotating fluid layer. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated approximation. The fourth-order Runge–Kutta method is employed to obtain the numerical solution of Lorenz-like system of equations. We found that there is proportional relation between Taylor number and the scaled Rayleigh number R. This means that chaotic behavior can be delayed (for increasing value of R when we increase the scaled Taylor number. We conclude that the transition from steady convection to chaos depends on the level of Taylor number.

  6. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  7. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  8. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    Science.gov (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    metasomatism by halogen-bearing exsolved fluid(s) is provided by the high Mg# (>70) secondary amphiboles and biotites from within the Spirit Lake pluton, where the amphiboles are clear replacement products of primary pyroxenes. Fluid halogen fugacity ratios calculated from the biotite compositions overlap with other global mineralised porphyry systems, despite not being immediately associated with sulphide ores. The evidence suggests complex fluid processes and the coincidental development of the mineralised porphyry system within the pluton. Heat, fluids, and metals were therefore likely supplied by a later phase of magmatism, unrelated to the consolidation of the main Spirit Lake granitoid. These new constraints on magmatic-hydrothermal fluid signatures have wider applicability to potentially tracing proximal barren and mineralised processes, and for distinguishing between formation mechanisms for primary and secondary halogen-bearing minerals.

  9. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  10. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    Science.gov (United States)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  11. Hydrothermal system of the Papandayan Volcano, West Java, Indonesia and its geochemistry evolution of thermal water after the November 2002 eruption

    Directory of Open Access Journals (Sweden)

    Agnes Mazot

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no1.20072Papandayan is a strato volcano situated in West Java, Indonesia. After the last magmatic eruptionin 1772, only few phreatic explosions have been occurring. At the present time, the activity is centeredin the northeast crater manifested by the presence of fumaroles and hot springs. In November 2002an explosive eruption occurred and ejected ash and altered rocks. Study of the altered rocks revealedthat an advanced argillic alteration took place in the hydrothermal system by an interaction betweenacid fl uids and rocks. Four zones of alteration have been formed as a limited extension along faults oracross permeable structures at different levels beneath the active crater of the volcano.Two types of acid fl uids are distinguished in the crater of the Papandayan Volcano: (1 acidsulphate-chloride water with pH values between 1.6 and 4.6, and (2 acid sulphate water with pHvalues between 1.2 and 2.5. The samples collected after the eruption revealed an increase in the SO4/Cl and Mg / Cl ratios. This evolution is likely explained by an increase in the neutralization of acidfl uids which tends to show that water-rock interactions were more signifi cant after the eruption. Thechanges in chemistry observed in 2003 were the consequence of the opening of new fractures whereunaltered or less altered volcanic rocks were in contact with the ascending acid water. The high δ34Svalues (9-17‰ observed in the acid sulphate-chloride water before the November 2002 eruptionsuggest that dissolved sulphates were mainly formed by the disproportionation of magmatic SO2. Onthe other hand, the low δ34S values (-0.3-7 ‰ observed in acid sulphate-chloride water sampled afterthe eruption suggest that the origin of dissolved sulphates for these waters is the surfi cial oxidation ofhydrogen sulphide.

  12. Lutibacter profundi sp. nov., isolated from a deep-sea hydrothermal system on the Arctic Mid-Ocean Ridge and emended description of the genus Lutibacter.

    Science.gov (United States)

    Le Moine Bauer, Sven; Roalkvam, Irene; Steen, Ida Helene; Dahle, Håkon

    2016-07-01

    A bacterial strain designated LP1T was isolated from a microbial mat growing on the surface of a black smoker chimney at the Loki's Castle hydrothermal system, which is located on the Arctic Mid-Ocean Ridge. Phylogenetic analyses based on 16S rRNA gene sequences positioned strain LP1T within the family Flavobacteriaceae with Lutibacterholmesii as the closest relative (97.5 % 16S rRNA gene sequence similarity). Strain LP1T was rod-shaped, Gram-reaction-negative and non-motile. It grew in a modified artificial seawater medium supplemented with tryptone and vitamins at pH 5.5-7.5 (optimum pH 6.0-6.5), within a temperature range of 13-34 °C (optimum 23 °C), and under microaerobic conditions. The most abundant fatty acids (>10 %) were iso-C15 : 0 (25.2 %) and iso-C15 : 0 3-OH (14.5 %). The genome of strain LP1T has a DNA G+C content of 29.8 mol%. Based on the results of the polyphasic characterization presented here, strain LP1T is considered to represent a novel species of the genus Lutibacter, for which the name Lutibacter profundi sp. nov. is proposed. The type strain is LP1T (=DSM 100437T =JCM 30585T). An emended description of the genus Lutibacter is also provided to fit the description of strain LP1T.

  13. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A New Deep-Sea Hydrothermal Vent Species of Ostracoda (Crustacea) from the Western Pacific: Implications for Adaptation, Endemism, and Dispersal of Ostracodes in Chemosynthetic Systems.

    Science.gov (United States)

    Tanaka, Hayato; Yasuhara, Moriaki

    2016-10-01

    Deep-sea hydrothermal vent fields are among the most extreme habitats on Earth. Major research interests in these ecosystems have focused on the anomalous macrofauna, which are nourished by chemoautotrophic bacterial endosymbionts. In contrast, the meiofauna is largely overlooked in this chemosynthetic environment. The present study describes a new species, Thomontocypris shimanagai sp. nov. (Crustacea: Ostracoda), which was collected from the surface of colonies of neoverrucid barnacles and paralvinellid worms on the chimneys at the Myojin-sho submarine caldera. This is the first discovery of an ostracode from deep-sea hydrothermal vent environments in the western Pacific region. In addition to the species description, we discuss three aspects: 1) adaptation, 2) endemism, and 3) dispersal strategy of the hydrothermal vent ostracodes. Regarding these aspects, we conclude the following: 1) the new species may feed on sloughed-off tissues, mucus secretions, or fecal pellets of sessile organisms, rather than depend on chemoautotrophic bacteria as symbionts for energy; 2) as has been pointed out by other studies, Thomontocypris does not likely represent a vent-specific genus; however, this new species is considered to be endemic at the species level, as it has not been found outside of the type locality; and 3) this new species may have migrated from adjacent deep-sea chemosynthesis-based habitats, such as hydrothermal vents, with wood falls potentially having acted as stepping stones.

  15. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  16. Report on Current Convective Weather Processes and Product Requirements at the Air Traffic Control System Command Center (ATCSCC) and Kansas City Air Route Traffic Control Center (ARTCC)

    National Research Council Canada - National Science Library

    Sims, Danny

    2002-01-01

    ...). In addition, user needs for convective weather forecast products are presented. ACT-32O collected information from both facilities through site visits and interviews during the early summer of 2000...

  17. Comparative Simulations of 2D and 3D Mixed Convection Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan

    Science.gov (United States)

    Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.

    2014-12-01

    Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014

  18. Tracing thermal aquifers of El Chichón volcano-hydrothermal system (México) with 87Sr/ 86Sr, Ca/Sr and REE

    Science.gov (United States)

    Peiffer, L.; Taran, Y. A.; Lounejeva, E.; Solís-Pichardo, G.; Rouwet, D.; Bernard-Romero, R. A.

    2011-08-01

    The volcano-hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-to-neutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/ 86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/ 86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17-28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2-30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (< 0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid

  19. A randomised controlled trial of the resistive heating blanket versus the convective warming system for preventing hypothermia during major abdominal surgery.

    Science.gov (United States)

    Tanaka, Noriyoshi; Ohno, Yuko; Hori, Megumi; Utada, Mai; Ito, Kenji; Suzuki, Toshiyasu

    2013-04-01

    We compared resistive heating (RH) and upper-body convective warming (CW) in 70 patients (RH 33, CW 31, 6 excluded) undergoing major abdominal surgery. The effect of RH was not inferior to that of CW for the time-weighted average core temperature, and the lower limit of 95% CW was greater than -0.5 degrees C. Resistive heating showed no inferiority in maintaining core temperature compared with convective warming.

  20. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    Science.gov (United States)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  1. Metal-rich Scales in the Reykjanes Geothermal System, SW Iceland: Sulfide Minerals in a Seawater-dominated Hydrothermal Environment

    Science.gov (United States)

    Hardardottir, Vigdis

    Downhole sampling of unboiled liquid at 1350 and 1500 m depth in the seawater-dominated Reykjanes high-temperature geothermal system in Iceland shows that metal concentrations measured at surface are minimum values due to mineral precipitation in the wells; by analogy of similar tectonic setting, host rocks and fluid composition, the metal concentrations measured in many black smoker vents at the seafloor are also minima. Fluids in the Reykjanes geothermal system react with mid-ocean ridge basalt at temperatures as high as 346°C and contain Fe 9-140 ppm, Cu 14-17 ppm, Zn 5-27 ppm, Pb 120-290 ppb, 1-6 ppb Au, and 28-107 ppb Ag. Fluids discharged at surface from the same wells have orders of magnitude lower metal concentrations due to precipitation caused by boiling and vapor loss during depressurization. Upstream of the orifice plate at high pressure (40 bar, 252°C) the precipitates consist mainly of sphalerite and chalcopyrite with a trace of galena and bornite. At the orifice plate of old wells, the pressure decreased sharply to 11 bar (188°C), resulting in abundant deposition of amorphous silica together with minor sphalerite and traces of chalcopyrite. In new wells the pressure at the orifice plate decreases to 22 bar (220°C); this pressure decrease and concomitant boiling causes deposition of fine-grained bornite-digenite solid solution together with sphalerite and galena on the fluid flow control valve. In high-pressure wells (average wellhead pressure 45-35 bar) most metals (mainly as sphalerite) are deposited downstream of the orifice plate, with up to 950 ppm Au and 2.5 wt.% Ag. Bulk concentrations in the scales vary between 15-60 wt.% upstream and downstream of the orifice plate and diminish from there. Iron increases up well from 8 to ˜20 wt.% and decreases downstream of the orifice plate from 6 to 2 wt.% at the separation station; Cu downhole is ˜3 wt.% but increases to 25 wt.% on the fluid flow control valve and then decreases; Pb downhole 100s

  2. An efficient linear approach towards the planning of the energetic operation in hydrothermal power systems; Uma eficiente abordagem linear para o planejamento da operacao energetica de sistemas hidrotermicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Adriano A.F.M.; Zambon, Katia L. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Eletrica

    1997-12-31

    In this paper the the operation planning of hydrothermal systems is formulated with a simplified hydroelectric generation function, resulting in an quadratic objective function. In this function were applied linearization techniques, with separable methods, and the quadratic programming technique. In the obtained models were possible to apply the Simplex, a simple, quick and efficient method. The most important features were the preservation of the system physic characteristics. (author) 6 refs., 10 figs., 2 tabs.; e-mail: adriano at sel.eesc.sc.usp.br

  3. Transition to geostrophic convection: the role of the boundary conditions

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Ostilla-Monico, Rodolfo; van der Poel, Erwin; Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Rotating Rayleigh–Bénard convection, the flow in a rotating fluid layer heated from below and cooled from above, is used to analyse the transition to the geostrophic regime of thermal convection. In the geostrophic regime, which is of direct relevance to most geo- and astrophysical flows, the system

  4. Natural convection heat exchangers for solar water heating systems. Technical progress report, October 1, 1995--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.H.

    1998-06-01

    The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

  5. Hydrothermal phase transformation of hematite to magnetite.

    Science.gov (United States)

    Lu, Jie-Feng; Tsai, Cho-Jen

    2014-01-01

    Different phases of iron oxide were obtained by hydrothermal treatment of ferric solution at 200°C with the addition of either KOH, ethylenediamine (EDA), or KOH and EDA into the reaction system. As usually observed, the α-Fe2O3 hexagonal plates and hexagonal bipyramids were obtained for reaction with KOH and EDA, respectively. When both KOH and EDA were added into the reaction system, we observed an interesting phase transformation from α-Fe2O3 to Fe3O4 at low-temperature hydrothermal conditions. The phase transformation involves the formation of α-Fe2O3 hexagonal plates, the dissolution of the α-Fe2O3 hexagonal plates, the reduction of Fe(3+) to Fe(2+), and the nucleation and growth of new Fe3O4 polyhedral particles.

  6. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems

    Science.gov (United States)

    Nishizawa, Manabu; Miyazaki, Junichi; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2014-08-01

    Hyperthermophilic hydrogenotrophic methanogens are considered to be one of the most predominant primary producers in hydrogen (H2)-abundant hydrothermal environments in the present-day ocean and throughout the history of the Earth. However, the nitrogen sources supporting the development of microbial communities in hydrothermal environments remain poorly understood. We have investigated, for the first time, methanogenic archaea commonly found in deep-sea hydrothermal environments to understand their physiological properties (growth kinetics, energetics, and metal requirements) and isotopic characteristics during the fixation of dinitrogen (N2), which is an abundant but less-bioavailable compound in hydrothermal fluids. Culture experiments showed that Methanocaldococcus strain (Mc 1-85N) (Topt = 85 °C) and Methanothermococcus strain (Mt 5-55N) (Topt = 55 °C) assimilated N2 and ammonium, but not nitrate. Previous phylogenetic studies have predicted that the Methanocaldococcus and Methanothermococcus lineages have nitrogenases, key enzymes for N2 fixation, with biochemically uncharacterised active site metal cofactors. We showed that Mt 5-55N required molybdenum for the nitrogenase to function, implying a molybdenum-bearing cofactor in the strain. Molybdenum also stimulated diazotrophic (i.e., N2-fixing) growth of Mc 1-85N, though further experiments are required to test whether the strain contains a molybdenum-dependent nitrogenase. Importantly, Mc 1-85N exhibited an apparently lower requirement of and higher tolerance to molybdenum and iron than Mt 5-55N. Furthermore, both strains produced more 15N-depleted biomass (-4‰ relative to N2) than that previously reported for diazotrophic photosynthetic prokaryotes. These results demonstrate that diazotrophic hyperthermophilic methanogens can be broadly distributed in seafloor and subseafloor hydrothermal environments, where the availability of transition metals is variable and where organic carbon, organic nitrogen

  7. Importance of convective parameterization in ENSO predictions

    Science.gov (United States)

    Zhu, Jieshun; Kumar, Arun; Wang, Wanqiu; Hu, Zeng-Zhen; Huang, Bohua; Balmaseda, Magdalena A.

    2017-06-01

    This letter explored the influence of atmospheric convection scheme on El Niño-Southern Oscillation (ENSO) predictions using a set of hindcast experiments. Specifically, a low-resolution version of the Climate Forecast System version 2 is used for 12 month hindcasts starting from each April during 1982-2011. The hindcast experiments are repeated with three atmospheric convection schemes. All three hindcasts apply the identical initialization with ocean initial conditions taken from the European Centre for Medium-Range Weather Forecasts and atmosphere/land initial states from the National Centers for Environmental Prediction. Assessments indicate a substantial sensitivity of the sea surface temperature prediction skill to the different convection schemes, particularly over the eastern tropical Pacific. For the Niño 3.4 index, the anomaly correlation skill can differ by 0.1-0.2 at lead times longer than 2 months. Long-term simulations are further conducted with the three convection schemes to understand the differences in prediction skill. By conducting heat budget analyses for the mixed-layer temperature anomalies, it is suggested that the convection scheme having the highest skill simulates stronger and more realistic coupled feedbacks related to ENSO. Particularly, the strength of the Ekman pumping feedback is better represented, which is traced to more realistic simulation of surface wind stress. Our results imply that improving the mean state simulations in coupled (ocean-atmosphere) general circulation model (e.g., ameliorating the Intertropical Convergence Zone simulation) might further improve our ENSO prediction capability.

  8. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwin